Patch Auditing in Infrastructure as a Service Clouds

Lionel Litty *

VMware, Inc.
llity@vmware.com

Abstract

A basic requirement of a secure computer system is that it be up to
date with regard to software security patches. Unfortunately, Infras-
tructure as a Service (IaaS) clouds make this difficult. They lever-
age virtualization, which provides functionality that causes tradi-
tional security patch update systems to fail. In addition, the diver-
sity of operating systems and the distributed nature of administra-
tion in the cloud compound the problem of identifying unpatched
machines.

In this work, we propose P2, a hypervisor-based patch audit
solution. P2 audits VMs and detects the execution of unpatched
binary and non-binary files in an accurate, continuous and OS-
agnostic manner. Two key innovations make P2 possible. First, P2
uses efficient information flow tracking to identify the use of un-
patched non-binary files in a vulnerable way. We performed a patch
survey and discover that 64% of files modified by security updates
do not contain binary code, making the audit of non-binary files
crucial. Second, P2 implements a novel algorithm that identifies
binaries in mid-execution to allow handling of VMs resumed from
a checkpoint or migrated into the cloud.

We have implemented a prototype of P2 and and our experi-
ments show that it accurately reports the execution of unpatched
code while imposing performance overhead of 4%.

Categories and Subject Descriptors K.6.3 [Software Manage-
ment]: Software maintenance

General Terms Algorithms, Design, Experimentation, Manage-
ment, Measurement, Security

Keywords virtualization, cloud computing, infrastructure as a ser-
vice, patch management, application discovery

1. Introduction

A large number of security vulnerabilities stem directly from soft-
ware implementation flaws in critical code. To maintain the secu-
rity of a system against attackers, it is critical that patches, which
fix these flaws, be applied in a timely manner. As a result, many
software packages and operating systems (OSs) contain support

* The majority of this work was done while Lionel Litty was at the Univer-
sity of Toronto

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

VEE’l1 March 9-11, 2011, Newport Beach, California, USA.

Copyright © 2011 ACM 978-1-4503-0501-3/11/03.... $10.00

David Lie

Department of Electrical and Computer Engineering
University of Toronto

lie@eecg.toronto.edu

for automatic patch installation. These systems are simple — they
periodically check a central server for the existence of patches and
apply any patches that have not yet been applied to the system they
are running on.

However, automatic patch installation cannot always prevent the
exploitation of known vulnerabilities and can reduce the stability of
computer systems. Patches are not applied instantly as the patch in-
stallation system only checks for updates periodically. This creates
an exploitable window of vulnerability between the time the patch
is disclosed and the time it is applied [4]. In addition, automatic
patch systems are unaware of which patches need to be applied, and
proactively apply all available patches, even if the patched compo-
nent is never used. Unfortunately, patches can have unintended side
effects, so such unnecessary patches can needlessly cause system
failures or performance degradation [2].

This problem is made more acute in a virtualized cloud environ-
ment. Public and private virtualized cloud environments offering
Infrastructure as a Service (IaaS) have grown in popularity due to
their ability to provide elasticity of resources and reduce user costs.
These environments have two characteristics that make patch man-
agement even more complicated than in a unvirtualized environ-
ment. First, virtualization introduces new usage models that break
standard automatic patch installation systems [11]. Patch installa-
tion systems rely on machines always being powered on so that
they can check for updates and apply them. They also assume that
time proceeds in a linear fashion so that patches are naturally ap-
plied in sequence. Unfortunately, virtual machines (VMs) can be
archived and left powered off for long periods of time. They can be
rolled back to a previous checkpoint in time, cloned, migrated, cre-
ated and destroyed easily and frequently. These capabilities skew
time in the VM and can cause automatic patch installation systems
to fail.

Second, by separating the administration and maintenance of
hardware from that of the software, IaaS clouds permit a larger
number of administrative domains, resulting in a greater diversity
of OSs and software environments. Whereas a single organization
with a single IT department may have forced all users to conform
to a homogeneous computing environment, a private cloud envi-
ronment removes that restriction, giving users more freedom. Users
may have any OS (i.e. Windows, Linux), any flavor of the OS (i.e.
Vista, XP, Ubuntu, Red Hat), and any version level (i.e. Linux ker-
nel version, Windows service pack). In a public cloud, such as those
implemented by Amazon’s EC2, GoGrid and Mosso, there are no
restrictions at all on what OSs and software users may install. The
de-federalization of administrative control and greater diversity in
software make it difficult for a cloud provider to ascertain the patch
level of VMs running on their infrastructure. Unfortunately, the in-
security of a single cloud user can negatively impact both their fel-
low cloud users and the cloud provider itself [18][26]. Thus, cloud
providers are motivated to identify and protect themselves from
VMs on their cloud that are vulnerable to attack.

In this paper, we demonstrate that virtualization can also solve
the patch management problems it creates in cloud environments.
We design and implement P2, a patch audit solution that leverages
the hypervisor to detect and mitigate vulnerabilities in unpatched
software in VMs. P2 has several advantages over existing solutions.
First, P2 provides continuous protection, and does not fail if the ma-
chine is powered off or check-pointed and rolled back. Second, P2
is more accurate than existing solutions. P2 only reports unpatched
software if it is actually executed, reducing the number of alerts
and enabling administrators to apply only the minimal number of
patches required. Finally, P2 is OS-agnostic, allowing it to work
on any standard commodity OS. This allows the cloud provider to
have a single patch audit solution, instead of having to support an
OS-specific one for every OS their customers use.

P2 accomplishes this by relying on architectural introspec-
tion [18], which monitors virtual hardware to infer events within a
VM. By restricting monitoring to only hardware state, P2 is able
to detect unpatched software in VMs without having to rely on any
detailed or implementation-specific information about the OS and
software in the VM. P2 detects unpatched binary and non-binary
software. Binary software denotes software that will execute na-
tively on the underlying processor, such as executables or libraries.
Non-binary software generally refers to scripts or byte-code, which
will execute with the aid of an interpreter or just-in-time compiler
(JIT). However, non-binary software can also include configuration
files and other application resources.

To detect the execution of an unpatched binary, P2 monitors
memory pages in a way similar to Patagonix [17]. However, Pata-
gonix needs to be invoked before an application starts to identify it,
meaning that it cannot be applied to VMs that have been resumed
from checkpoints or migrated into a cloud. In contrast, P2 does
not suffer from this restriction and can identify applications mid-
execution. To detect scripts and byte code that are executed by an
interpreter or JIT compiler, P2 uses lightweight, coarse-grain infor-
mation flow tracking to determine if an unpatched file is read from
disk into the address space of an interpreter or JIT compiler that is
capable of executing the non-binary file. This allows P2 to detect
the execution of unpatched non-binary code with low overhead and
few false positives.

When P2 detects unpatched code it can take one of two actions
depending on the mode it is used in. In reporting mode, it simply
reports that a VM has executed unpatched code to the cloud ad-
ministrator, who can then inform the VM administrator and take
actions according to their service agreement (i.e. the VM adminis-
trator may have to patch the code or the cloud administrator could
adjust firewall rules to prevent exploitation). In prevention mode, in
addition to reporting the unpatched code, P2 actively prevents the
exploitation of the unpatched code by injecting code into the vul-
nerable process that prevents it from executing any more instruc-
tions.

We make three contributions in this paper. First, we perform a
study of patches on the Fedora Core 10 and 11 Linux distributions.
We find that across both distributions, 102,819 files were updated,
of which 23,711 are non-documentation files that may contain ex-
ecutable code or configuration resources. Among these files, only
36% are binary code files. This serves as a strong motivation for the
ability to be able to detect the execution of unpatched non-binary
code. Second, we describe P2, which uses architectural introspec-
tion to detect the execution of unpatched binary and non-binary
code. We demonstrate the OS-agnostic property of P2 by running
it on both Windows XP and Linux VMs. Finally, we evaluate the
effectiveness and performance overhead of P2 by evaluating it on
workloads that contain both patched and unpatched code. We find
that P2 can accurately detect the execution of unpatched applica-
tions with minimal overhead.

We give a detailed motivation for P2 and state its assumptions
and guarantees in Section 2. Then we describe our patch survey in
Section 3, which illustrates and characterizes the need for monitor-
ing of non-binary files. Section 4 describes the architecture of P2
and implementation details of our prototype are described in Sec-
tion 5. We then evaluate P2’s effectiveness and performance over-
head in Section 6. Finally, Section 7 compares P2 to other related
work and we conclude in Section 8.

2. Overview
2.1 Motivation

A survey conducted by Bellissimo et al. in 2006 [3] found that
69 out of 71 CERT Technical Cyber Security Alerts recommended
applying updates or patches to fix vulnerabilities. This supports the
conventional wisdom that many security attacks can be prevented
by keeping a system patched. Software developers have come to
the same conclusion and recent software systems now commonly
incorporate automatic software update components. In this section,
we motivate P2 by summarizing the existing state of the art in patch
update systems and illustrating their deficiencies compared to P2 in
terms of how accurate, continuous and OS-agnostic they are.

Automatic update systems can be provided by the OS, or built
specifically into an application. OS-wide update systems, such as
the ones built into Windows, Mac OS and Linux periodically check
for patches and can be configured to automatically download and
apply them. OS-wide automatic update systems may also be built
into system administration tool suites, such as IBM’s Tivoli system,
which also performs various other security and compliance auditing
tasks. Application-specific automatic update systems only handle
patches for a specific application. Many popular applications, such
as the Firefox and Chrome browsers, Acrobat Reader, and many
games implement such solutions. Application-specific update sys-
tems usually execute when the application is run, when they will
check for patches and if necessary, download and install them.

All automatic update systems are host-based: they execute as
part of the software system, either as separate software agents or
as software mechanisms built into applications. As a result, these
systems are tied to a specific OS and are thus not OS-agnostic. In
addition, the cloud provider must rely on the cloud user to properly
install and configure host-based systems since the cloud provider
does not have administrative access to the VMs. Automatic update
systems can be accurate or continuous depending on whether they
are OS-wide or application-specific. OS-wide updaters periodically
compare a database of installed patches on the host with an online
repository of patches to determine if patches need to be applied.
They are unaware of whether the components they maintain are
executed or not, making them inaccurate. In addition, because the
check for patches is periodic, they are not continuous. Application-
specific updaters that exist as separate applications from the appli-
cation they maintain have the same properties as OS-wide updaters.
However, many application-specific updaters are part of the appli-
cation they maintain and only run when the application they are
patching is run, making them accurate as a result. However, they
are only partially continuous. These systems will check for patches
when the application first starts up, and then periodically after-
wards. Thus, if a patch exists at startup, they will apply it before
the application actually runs. However, if a patch becomes avail-
able while the application is running, it will not be detected and
applied until the next time the update system checks.

An alternative, OS-agnostic approach for detecting the presence
of unpatched software is a network vulnerability scanner such as
Nessus [21]. These scanners attempt to detect unpatched code by
scanning all hosts and ports in a range of IP addresses and trying
to identify the version of any network facing services installed on

[Solution | Continuous | Accurate | OS-agnostic |
OS-wide update No No No
Application update | On startup Yes No
Network scanning No No Yes
P2 Yes Yes Yes

Table 1. Comparison of P2 and current solutions.

those hosts. The identification of the software version can be done
simplistically by examining the banner returned by the service, or
in a more sophisticated way by sending requests to the hosts and
observing the responses. After such scans, the network vulnerabil-
ity scanner informs system administrators of the presence of soft-
ware with known vulnerabilities on machines connected to the net-
work. A network vulnerability scanner does not rely on any soft-
ware agent being present on the host and thus is attractive in IaaS
clouds where there is a diversity of OSs running and the cloud ad-
ministrator has no administrative access to install and manage any
host-based solution.

Unfortunately, a network-based approach has limited coverage.
It can only be used to detect unpatched server software for which
the version can be determined via network queries. As a result,
it will not protect a user that uses an out-of-date browser to visit
a malicious website. In addition, network scanning has limited
precision and may not be able to definitively determine if a service
is vulnerable or not. For example, if the network scanner relies
on banners, it will fail if the server is configured not to return a
banner. More sophisticated scanners that attempt exploits may fail
if the exploit’s success depends on random factors. Thus, network
scanners have limited accuracy. Network scanning is also non-
continuous since the scans only happen periodically. In a cloud
environment, this problem is compounded by the fact that software
executing on VMs that are only powered on occasionally could
remain out-of-date for long periods of time.

In this work, we show how P2 takes advantage of a virtu-
alized infrastructure to implement a patch audit system that has
the combined advantages of existing systems. Table 1 summarizes
the advantages of P2 over host-based automatic update systems
and network-based vulnerability scanning. In a virtualized envi-
ronment, a ubiquitous layer of software executes below OSs which
now interact with virtualized hardware. Because it facilitates man-
agement and allows system administrators to retain some control
over desktop machines, such a setup has become popular and is
offered by VMware View [32] and Citrix XenClient [8], amongst
others. This is also increasingly the architecture used in clouds, be
they public or private.

2.2 Assumptions and Guarantees

We make several assumptions about the OS that will be installed
in the VMs. First, we assume that an efficient, commodity OS is
installed. P2 relies on the efficiency assumption because it uses in-
formation flow tracking to infer whether a non-binary file is read
by an application that can interpret the non-binary file and expose
the vulnerability. Specifically, we assume that when a process re-
quests data from a file, data is copied directly from the disk into a
buffer cache using Direct Memory Access (DMA), and then copied
from there into the address space of the requesting process. If the
OS inefficiently makes extra copies of the data before returning it,
this will confuse the information flow tracking of P2. Similarly,
DMA transfers are much faster than Programmed I/O (PIO) trans-
fers. OSs will generally use DMA if it is available and only fall
back to PIO if DMA is not available. We have confirmed that this
assumption holds for all flavors of Linux and Windows. Memory
copying is expensive and we believe that all OS implementations

that consider performance important will try to avoid unnecessary
copying of disk data.

Second, P2 assumes that application code is stored on the local
virtual disk of the VM. Applications that are executed over a web
browser as JavaScript or stored on networked storage are not mon-
itored by P2 because the files containing these applications are not
read from the local disk. This assumption is reasonable for a cloud
environment where VMs are usually self-contained, and contain all
code necessary to execute.

Third, P2 assumes the system it is monitoring is not trying to
covertly execute unpatched code. For example, for efficiency, P2
assumes that the flow of information from the disk to a process ter-
minates at the process that reads the file. However, if the adversary
wants to avoid detection, she can create a “scrubbing” application
that reads an unpatched script, and then passes it to the stdin of
the interpreter via a pipe. Thus, P2’s patch auditing is restricted to
VMs that are not under the control of a malicious adversary.

Finally, P2 inspects disk contents to identify blocks that corre-
spond to unpatched files. Currently, if the disk or files on the disk
are encrypted or compressed, P2 will not be able to monitor the
content of these files. P2 can be extended to support encrypted or
compressed files, by adding functionality that would allow it to de-
crypt or decompress files for analysis.

Given that these assumptions hold, P2 provides two guaran-
tees. First, P2 will identify the execution of all unpatched appli-
cations, regardless of whether they are composed of native binary
code, non-binary code, or some combination of the above. Non-
binary code includes all forms of byte code or scripts, regardless of
whether they are executed by an interpreter or a JIT compiler. P2 in-
fers non-binary code execution anytime a script or byte code file is
loaded into the memory of a matching interpreter or JIT compiler,
i.e. if the Perl interpreter loads a valid Perl script or a JAVA vir-
tual machine loads a JAVA class file. P2 can also detect unpatched
resource and configuration files, provided that they match the un-
patched, vulnerable version exactly — P2 does not identify vulner-
abilities caused by custom configurations. Second, P2 works for
any commodity OS. We have validated P2 on two widely used OS
environments, Windows XP and Fedora Core Linux.

3. Patch Survey

To be OS-agnostic, P2 uses architectural introspection, which re-
stricts hypervisor monitoring to the interaction between the guest
VM and virtual hardware. As a result, P2 must make a distinc-
tion between applications implemented in native binary code and
applications implemented in an interpreted language. On the one
hand, binary code must execute directly on the processor and thus
is observable through interactions with the memory management
unit (MMU). On the other hand, interpreted code can only execute
when it is read and executed by the appropriate interpreter or JIT,
which itself is usually a native binary. To understand the impor-
tance of these two forms of monitoring, we conducted a survey of
historical data to characterize the composition of security-sensitive
patches.

We collected all security patches for Fedora Core 10 and 11
from the Fedora Project’s admin website !. The Fedora Core 10
updates consist of security patches between its release date on
November 25, 2008 until October 1, 2009 when we conducted the
study. The Fedora 11 updates were for the same period starting
from its release date on June 6, 2009. To identify which patches
contain security fixes, we used the Fedora Project’s update classifi-
cation scheme, which classifies patches as pending, testing, stable
or security. To be classified as security, the patch must contain at
least one security critical fix.

'https://admin. fedoraproject.org/updates/

[OS [Changed files [Documents | Binaries | Non-binaries |

Top 10 non-binary file extensions]

FC 10 73800 61037 4979 7784 | pyo, pyc, php, js, tmpl, desktop, elc,
info, inc, jar

FC11 29019 24331 1307 3281 | php, pyo, pyc, jar, js, inc, zip, gif,
<none>, py

Table 2. Summary of Fedora Core security patch RPMs.

To characterize the types of files patched, we compared each
security patch with the previous version of the application that
the patch replaced. Fedora uses Red Hat’s RPM package format
to distribute patches. RPMs contain entire binaries, which will
overwrite the binaries of the previous version when the patch is
installed. In addition, patch RPMs can also be installed onto a
system where no previous version of the application exists. Thus,
patch RPMs also contain files that did not change from the previous
version. Thus, to identify which files are patched, we compare the
files in each patch RPM with the RPM of the previous version.
From this, we can characterize the makeup of files that changed in
response to a security vulnerability. We note that while a security
patch must fix at least one security vulnerability, the patch may also
contain fixes for non-security sensitive bugs. Unfortunately, neither
the Fedora Project page nor the RPM package format contains
sufficient information to remove files that contain non-security
sensitive bug fixes from our study, so we assume that any file that
changed due to a security patch contains a security fix.

Table 2 summarizes the data obtained from this survey, includ-
ing the top 10 most common non-binary file types by extension. An
extension of <none> denotes a file with no extension. We analyzed
446 out of the 495 security patches in Fedora Core 10 and 130 out
of the 134 security patches in Fedora Core 11. Not all patches could
be analyzed because we could no longer obtain the matching pre-
vious RPM packages in some cases. For each file in an RPM that
was changed due to a security patch, we determined if it was a bi-
nary file or a non-binary file using the £1i 1e utility, which classifies
any ELF file as a shared object or as an executable, and any other
file as a non-binary file. To get a fair assessment of the percentage
of non-binary files that were modified by security updates, we fil-
tered out man pages, document files stored in /usr/share/doc,
/usr/share/info,... as well as locale files that contain lo-
calization data. We further classified the remaining non-binary files
based on their extension. The results illustrate two important find-
ings. First, 64% of the updates across both distributions were to
non-binary files. This indicates that P2’s ability to monitor the ex-
ecution of non-binary code in an OS-agnostic way is critical to its
success as a patch audit solution. Second, a significant number of
the top 10 non-binary files are executable scripts and byte code:
pyo and pyc are compiled python code, php and inc contain
php code, which is often used to implement websites, jar and
js are for JAVA and JavaScript respectively, and elc files con-
tain Emacs Lisp code. The top 10 non-binary file types make up
77% and 84% of all non-binary, non-document files in Fedora Core
10 and 11 respectively, forming a significant portion of the patched
non-binaries. Thus, many of the non-binary updates are to executa-
bles that are run with the aid of an interpreter or a JIT compiler. In
particular, much of this code appears to be used to implement web
applications. While P2 also has the ability to identify unpatched
configuration or application resource files, patches to these types
of files are not common in practice.

4. System Architecture

We now describe the design and architecture of P2, which provides
accurate, continuous and OS-agnostic detection of unpatched code

in a VM. P2 is most naturally implemented in the virtualization in-
frastructure that manages the cloud VMs or a company’s VMs. As
a result, its operation is administered by the cloud provider in the
public cloud setting, or by the system administrators in charge of
the computing infrastructure in an enterprise private cloud setting.
The architecture of P2 is illustrated in Figure 1. While P2 lever-
ages Patagonix as a component, all other components in the figure
are new contributions of P2. We begin by describing the database
of software information that P2 needs and then describe how P2
uses these databases to detect the execution of unpatched binary
and non-binary software.

4.1 Software databases

To detect and report the execution of vulnerable, unpatched appli-
cations, P2 requires a database of information with which it can
identify these applications. Such an unpatched database can be de-
rived from the files that make up the application. A list of files that
need to be patched can be easily obtained by monitoring the updates
applied by automatic update systems, or manually monitoring se-
curity vulnerability distribution lists. P2 requires the files that each
patch modifies, which can be obtained by comparing the files in the
patch with the software version it was patching. The patch survey
described in Section 3 was performed using scripts written over a
course of 6 days by one of the authors of this paper. Based on this
experience, we believe that building and maintaining a database
of unpatched software would require only modest effort and time.
P2 also requires an interpreter database, which lists applications
that may load and interpret unpatched non-binary files. We use the
term interpreter to denote all interpreters and JIT compilers on the
system, as well as any application that can load unpatched config-
uration files. Each non-binary file in the unpatched database must
be associated with at least one binary in the interpreter database,
which can load the non-binary file and be subject to the vulnerabil-
ity.

P2 also requires a patched database of files that do not need to
be patched. Such a database would be considerably larger than the
database of unpatched files since there are many more of such files.
Maintaining such a database in a homogeneous enterprise setting
where a single entity controls the software environment represents
a tractable undertaking. In a more open setting, building a list of
patched applications is a more difficult task, but not intractable.
For example, anti-virus vendors already maintain large databases
that keep track of information about malicious software. Some anti-
virus vendors have suggested that it may actually be easier to main-
tain a white list of software instead of the current industry practice
of maintaining a black list of malicious software [24]. The adminis-
trator can also leverage existing databases of software that currently
exist. For example, NIST maintains a database of hashes for a large
number of applications [23] and VersionTracker [31] keeps track
of available software updates. Linux vendors also maintain large
repositories of software and track updates to this software.

In a public cloud setting, the cost of the work required from the
cloud provider can be spread amongst cloud customers. The task
of maintaining the database can also be outsourced to third parties.
The exact details of how such databases would be managed are

Unpatched Binary Identification

Unpatched Non-Binary

Interpreter
DB

Patched
binary DB

Patagonix
binary
identification

Unpatched
binary

SARE

Unpatched
binary DB

P2 Binary
identification

Identified
interpreters

Identification
Unpatched

non-binary DB

Disk

monitor
I

Match in DB

v
—\

—
Memory
tracking

Copied into

Jy USer space

Application

is an
interpreter

Unpatched
non-binary

Figure 1. P2 architecture. P2’s binary identification is only invoked if Patagonix’s binary identification fails. P2’s non-binary identification
relies on information from the binary identification to find out which processes are running interpreter binaries.

outside the scope of this work. For the rest of this paper, we assume
that the cloud provider has access to the files that correspond to the
software that need to be monitored.

4.2 Monitoring

Patagonix [17] introduced a mechanism for identifying executing
binaries that is accurate, continuous and OS-agnostic. However, Pa-
tagonix is not suitable for patch monitoring in a cloud environment
for three reasons. First, Patagonix must be invoked before the ap-
plication to be identified is run. Patagonix operates by tracking the
mapping between regions in memory and binary files. For Win-
dows PE binaries, this is problematic because these binaries may
be modified at run time to relocate them to a different virtual ad-
dress. To address this, Patagonix must observe the first instruction
executed for any binary, which it uses to identify the binary using
an entry point database. Second, Patagonix is only applicable to
binaries and cannot identify interpreted or JIT-ed code. P2 extends
Patagonix’s binary monitoring so that it can identify applications in
mid-execution. In addition, P2 adds a completely new monitoring
mechanism for non-binary code based on coarse-grain information
flow tracking.

The database of unpatched files is divided into two databases:
one containing binary files and the other containing non-binary
files. The database of unpatched binary files is then combined with
a database of interpreters and the database of patched binaries. This
combined database is then used for identifying executing binaries.

When P2 detects an executing binary, it first invokes Patagonix
to identify the binary. If Patagonix is able to identify the binary it
takes actions depending on which database the binary is identified
in. If the binary is unpatched, P2 raises an alert and, if running in
reporting mode, reports the alert to the cloud administrator. If P2
is running in prevention mode, it will also prevent the unpatched
code from running using the technique described in Section 5.3. If

P2 matches the executing binary with an entry in the database of
interpreters, then it notes the address space the interpreter occupies
for use in detecting unpatched non-binary file use. If Patagonix
fails to identify the binary, P2 uses the address inference based
binary identification algorithm described in Section 5.1 to identify
the binary.

P2’s mechanism for identifying unpatched non-binary files
starts with a virtual disk monitor that monitors disk blocks being
read by the guest OS. Each block is compared with the database
of unpatched non-binary files. If there is a match, P2 invokes a
coarse-grain, page-based memory tracking mechanism to track the
use of the data read from the file. Here, P2 leverages information
from its binary execution tracking — if it detects that data from the
unpatched non-binary file flows into the memory space of a match-
ing interpreter for the file, then it raises an alert and takes action
depending on its operating mode.

It is crucial that P2 detects that an unpatched non-binary file
is actually loaded into the appropriate interpreter before raising an
alert. For example, consider a simpler system where P2 does not
track data flow through memory, but instead raises an alert when-
ever an unpatched file was read off disk. Such a naive approach
will raise alerts even when the file is accessed in a way that will
not exercise the vulnerability in the unpatched file. Execution of
a file by an interpreter or as a configuration file constitutes vul-
nerable accesses, as it has the potential to exercise the vulnera-
bility in the file. On the other hand, access by applications such
as anti-virus software performing a scan, desktop search software
that is indexing the system, or backup applications constitute non-
vulnerable accesses as the accessing applications do not interpret
the file data in a way that can exercise the unpatched vulnerability.
Without memory information flow tracking, P2 will lose accuracy
and report non-vulnerable accesses as alerts. Unpatched files may
be present on a system and accessed by such applications for a vari-

[Instruction [Encoding
jnz 0x46 7544
push [ebp+0x8] 7508
call [0x76381004] ff1504103876
push [0x76382018] 6818203876
mov [0x76382018],0x94 | ¢7051820387694000000

(a) Example instruction sequence. Preferred address =

0x76380000.
[Instruction [Encoding |
jnz 0x46 7544
push [ebp+0x8] ff7508
call [0x76382004] ff1504203876
push [0x76383018] 6818303876
mov [0x76383018],0x94 | c7051830387694000000

(b) Relocated instruction sequence at address =
0x76381000.

Figure 2. PE binary relocation.

ety of reasons. For example, Windows keeps copies of old libraries
after an update to allow software rollback should the update fail or
result in unforeseen problems.

5. Implementation
5.1 Binary file monitoring
5.1.1 Patagonix background

We use Patagonix [17] as a component to build P2. Patagonix
is able to detect executing binary code and identify it using a
database of known binaries. Patagonix detects code execution by
manipulating page table entries in the hypervisor. Page table entries
on x86 processors provide three permission bits for each memory
page: a readable bit, a writable bit and a non-executable (NX) bit.
Patagonix initially sets the NX bit on all memory pages in the
guest VM. As a result, whenever the CPU executes code on a page
for the first time, a trap is generated and control is transferred to
Patagonix. Patagonix then suspends the guest VM and identifies the
page that caused the fault. After identifying the binary, Patagonix
enables execution on the page by clearing the NX bit and clearing
the writable bit so that the page cannot be modified without its
knowledge. If the page is subsequently modified, Patagonix makes
the page writable and non-executable again. If the new page is
executed, Patagonix is again invoked via a trap and will identify
the new contents of the page.

To identify the binary from which a page originates, Patagonix
uses identity oracles. Identity oracles are binary format specific.
Patagonix contains oracles for the PE format [19], which is used
by all versions of Windows since Windows NT 3.1 and an oracle
for the ELF file format [30] used by many UNIX OSs, including
Linux. In the PE case, dynamically loaded libraries (DLLs) may
be relocated at load time, where the OS adjusts absolute addresses
in the binary depending on the virtual address the library is loaded
at. Consider the example instruction sequence in Figure 2(a). As
we can see, the last 3 instructions have absolute addresses, which
appear in the encoded format of the instructions (note that x86
byte order causes the bytes to appear in reverse order). Every DLL
has a preferred address, which is the default address that all such
absolute references assume the binary is loaded at. If it is loaded at
any address other than the default address, the loader must adjust all
absolute addresses in the binary by the difference. In Figure 2(b),
the binary was loaded at address 0x76380000, which is 0x1000
more than the preferred address. As a result, all absolute addresses
are also increased by 0x1000.

Since relocation causes the image of the binary in memory to be
different from the image on disk, the Patagonix identity oracle must
undo the relocations that were applied when the binary was loaded.
To do this, Patagonix leverages the insight that all DLLs have a
small number of entry points, which must be executed before any
other code in the library. The offsets from the start of a memory
page of these entry points are invariant under relocation and thus
can be used to serve as identifier hints for the DLL. These hints
enable Patagonix to narrow down the number of possible DLLs
to just a small number, at which point Patagonix can identify the
bytes in the page that correspond to relocated absolute addresses,
undo the relocations and then check the true identity of the memory
page.

Unfortunately, the entry point method only works if Patagonix
is active at the time that the entry point is executed. If Patagonix
is applied to a VM after resuming from a checkpoint, some appli-
cations will be in mid-execution. As a result, Patagonix will have
missed the execution of the entry points for these applications and
thus fail at identifying the binary. When Patagonix does fail in this
way, P2 invokes its identification method based on address infer-
ence to identify the locations of absolute addresses in the page and
undo the relocations on them, thus allowing the page to be identi-
fied.

5.1.2 P2 binary identification

To undo relocations in a page of binary code, P2 must infer which
bytes in the page may be absolute addresses. To do this, we make
the observation that absolute addresses used in a binary must fall
within the binary itself. Let S be the size of the binary, and a, the
address at which the code execution is detected. Since we know that
a points to valid code and a is somewhere within a binary of size S,
then all absolute addresses in the code segment of the binary must
fall within the range [a — S, a + S].

While we do not know S, we can use the size of the largest
binary in the database, s, as an upper-bound for S (i.e. S < s).
P2 then identifies any sequence of 4 bytes that fall within the
range [a — s,a + s] as a candidate address. When a RISC design
is used, instructions are aligned and have fixed sized op-codes.
However, there is no alignment restriction for x86 instructions, and
instruction op-codes have a variable length. As a result, it is not
possible to identify which part of the page consists of operands and
which part of the page consists of instructions. Thus, P2 considers
all overlapping 4-byte sequences on the page. For example, in the
example in Figure 2(a), if s is 4MB, this would give a range of
addresses from 0x75c00000 to 0x76400000. This would cause the
three absolute addresses, as well as the first 4 bytes (0x75{f4475)
to be identified as candidate addresses in the sequence of bytes.
While the last three are true addresses, the first 4 bytes is a false
inference because it just happens to fall within the right range, but
is not really an address. To get an idea of the likelihood of such a
false inference in general, assume that the byte values in the page
are randomly distributed. The probability that a 4-byte candidate
address will happen to fall within the range [a — s, a +] is given
by:

EX
= 32
We remark that this probability increases linearly with s and that
this is only an estimate, as code bytes are not randomly distributed.
For example, if we use 4 MB for s, we get a 0.002 probability that
a candidate address is not actually an absolute address.

To identify the binary from which the code originates, P2 makes
a copy of the byte sequence and sets all candidate addresses to zero.
A hash of this sequence is then computed and checked against the
database of binaries, which contains hashes of sequences where
the absolute addresses have also been set to zero. To address false

F—NM VM

wpomain 0
[y

Guest OS DomO)
> 0s Disk Drver
(Xen B
| Hardware m

Figure 3. Basic virtual disk architecture for Xen HVM VMs.

inferences, P2 considers all subsets of the candidate addresses
(i.e., the power set P of candidate addresses). This results in 2k
possibilities, where k is the number of candidate addresses. P2
starts by zeroing out all candidate addresses and searching for a
match in the binary database. If no match occurs, it then tries all
combinations where one candidate address is not zeroed out, then
two candidate addresses and so on. The search stops as soon as the
sequence is matched with a binary in the database. However, in the
worst case, 2% combinations need to be tested.

Since a page consists of 4096 bytes, k£ could be as large as 4096,
causing 2¥ to be extremely large. This would make the algorithm
intractable. Rather than consider the entire page, P2 considers only
substrings of length [within the page. Only considering substrings
also enables P2 to handle pages that contain both code and data.
l should be chosen so that strings will have a small number of
candidates but be long enough to occur only in at most a few
binaries. In our implementation of P2, we used [=64 bytes.

The [-length substrings should be taken at several offsets to
provide a spread of offsets throughout the page so that at least
one will fall in a code region should a page contain a mix of
code and data. At the same time, none of the substrings should
straddle a page boundary. In our implementation, we use offsets o
in the following order: 0x3; 0x1000 - 0x3 - [; 0x103 + i*0x100,
i € [0,14]. The code database is augmented with an index that
contains hashes of the first [-length string at offset o in each binary.
The database construction procedure searches for this string by
trying different o’s in the order given above.

During identification, all combinations of candidate addresses
are searched. If a match occurs, then all relocations in the page are
undone and a hash over the entire page is computed and checked to
verify that the match is indeed correct. Because the hashes on the
substrings are taken frequently, our implementation uses the non-
cryptographic, fast murmur2 hash [1] for the hash on the substring
and a sha256 hash on the whole page to verify the match. The
complete process for trying the candidate addresses is summarized
in Algorithm 1.

5.2 Non-binary file monitoring

P2’s file execution monitor has two components. The first compo-
nent is a disk monitor that listens on requests to the virtual disk and
detects accesses to unpatched non-binary files. The second com-
ponent is the memory tracking component, which tracks the flow
of data from unpatched files through the guest OS. We give some
background on Xen’s virtual disk architecture and then describe the
two components in turn.

Algorithm 1 The P2 binary identification algorithm.

function identify_code(string code, int a, int [, int s)
offset_list = [0x3, 0x1000 - 0x3 -1, 0x103, ..., 0xf03]
for offset € offset_list do
candidates + ()
fori € [0, + 3] do
value = integer value of 4-byte sequence of code from
offset+i — 3 to offset+1
if value € [a — s,a + s| then
candidates < i
end if
end for
for candidate_set € P(candidates) do
candidate_string <— code|offset..offset+1[with sequences
in candidate_set zeroed out
hash < hash of candidate_string
if hash is in database then
candidate_pages <— pages in index that match hash
for candidate_page € candidate_pages do
relocated_code < code with relocations undone ac-
cording to candidate_page relocation information.
if hash of candidate_page stored in database == hash
of relocated_code then
return binary
end if
end for
end if
end for
end for

5.2.1 Xen virtual disk background

In a virtualized environment, persistent storage is provided by vir-
tual block devices. Figure 3 illustrates the Xen virtual disk archi-
tecture. In Xen Hardware Virtual Machines (HVM), virtual block
devices are emulated using a user space QEMU process that runs
in domain 0, which is a special VM that has access to the physical
devices on the machine. The QEMU process faithfully emulates a
physical disk in software. When the guest OS device driver sends
DMA requests to the virtual disk, it is intercepted by Xen and for-
warded to the QEMU disk emulator in domain 0. QEMU services
the requests by accessing the physical disk and responding to the
guest OS via Xen. It is possible to improve virtual I/O performance
by inserting a custom paravirtualized (PV) disk driver into the guest
OS. PV disk drivers are Xen-aware, thus saving domain 0 from hav-
ing to emulate a physical disk and allowing direct communication
between the guest OS driver and the Domain 0 physical disk driver.
We could have implemented P2 to support both HVM and PV, but
for simplicity, our prototype currently only supports HVM drivers.

The P2 disk monitor assumes that the file system block size
is the same as the memory page size (4096 bytes), which is true
for all major file systems today. Hard drives currently use a sector
size of 512 bytes, which is the smallest addressable chunk of data
that can be read from the disk. The memory page size for the x86
architecture is 4096 bytes. Since the sector size is smaller than the
memory page size, it is possible that a single memory page could
contain data from several different files. However, no file system
we know of uses this capability. Instead, file systems match their
minimum addressable block size with that of the CPU memory
system for simplicity and efficiency. In response to this trend, hard
drive manufacturers have agreed on a new standard [7], which
specifies that all disks will eventually use a sector size of 4096 bytes
instead of 512 bytes.

5.2.2 Disk monitor

The architecture of P2’s file monitoring system is summarized in
Figure 4, which shows the disk monitor, memory tracking com-
ponent and binary file monitor from Section 5.1. The purpose of
the disk monitor is to detect when an unpatched non-binary file
is read and convey the address of the access, and the identity and
associated interpreters of the file to the memory tracking compo-
nent. As a result, the most natural place to implement disk mon-
itoring is in the domain 0 QEMU disk emulator. The unpatched
non-binary database contains the identity of each unpatched file
and the associated interpreter(s) that can make vulnerable accesses
to the file. These entries are indexed by hash values computed over
each block-sized chunk of the file. On each disk access, the P2 disk
monitor computes a hash of the block being read and searches the
index in the unpatched non-binary database. If there is a hit, the
disk monitor informs the memory tracking component of the phys-
ical address that the disk data will be read to. The disk monitor is
able to get the destination address from the DMA request protocol,
which includes this information. The disk monitor also conveys the
identity of the file as well as the identity of the associated inter-
preters.

Two cases deserve special attention in the disk monitor: files
may be smaller than a single 4096 block and some blocks appear
in more than one file. For each unpatched non-binary file, the
database stores a hash of a sub-block prefix of each block of the
file along with the amount of space occupied by the file in this
block in a block prefix index. The disk monitor first computes a
non-cryptographic hash of this prefix and searches the block prefix
index for a match. If there is a hit in the block prefix index, either a
hash of the remainder of the block is taken if the file occupies the
entire block, or a hash of the portion of the block that is occupied
by the file is taken if the file does not occupy the entire block.
This serves to verify that the file is indeed a match. If multiple
files exist for a given prefix, then each candidate needs to be tested
individually until a match is found. The length of the prefix is
chosen to minimize the chances of a collision while retaining the
ability to handle even very small files. P2 uses a prefix length of
64 bytes. As a result, only files smaller than 64 bytes cannot be
handled. In our patch study, there were 32 files out of a combined
17351 files across both Fedora Core 10 and 11 that were less than
64 bytes. Due to their short length and simplicity, we also believe
they are unlikely to contain security vulnerabilities. Use of the
prefix index means that for the majority of blocks read from the disk
which do not contain data from unpatched, non-binary files only a
short prefix of the block needs to be hashed before P2 can establish
that the block does not contain data that needs to be tracked.

To handle cases where a file block appears in multiple files,
the disk monitor conveys the set of non-binary files that could
have matched and the monitor component will apply the union
of the associated interpreters in its checking. While rare, we have
observed that different files do occasionally have exactly matching
4096 byte chunks.

5.2.3 Memory tracking component

The memory tracking component is implemented in the Xen hy-
pervisor. When the memory tracking component is notified of an
access to an unpatched non-binary file it clears the “present” bit
of the corresponding page table entries in the shadow page tables,
thus causing the processor to fault anytime the page containing un-
patched file data is accessed. It also marks the page as tracked so
that when a fault occurs on that page, the Xen hypervisor knows
to invoke the P2 memory tracking component. In addition, if the
guest OS creates new mappings to a tracked page, the Xen hyper-
visor will also clear the present bit on the new mappings in the
shadow page table.

Gomain 0 \

QEMU

P2 Disk
Monitor

)

P2 Binary
Monitor

4

¥

Software
Databases

[

HVM Disk
Driver

Physical

Disk Driver

(|)
v
Xen P2 Memory
Tracking
\. J
(Hardware

Figure 4. P2 non-binary file monitoring additions to Xen.

If and when a fault to a tracked page occurs, the P2 memory
tracking component is invoked by Xen. P2 will inspect the instruc-
tion that caused the trap. The instruction can be either in the guest
kernel or in a user space process in the guest VM. If the instruction
is in the guest kernel, then the file data is being accessed by a pro-
cess via a system call such as read. In this case, P2 inspects the
instruction and verifies that the instruction is copying data from the
tracked page into the user space process. If the trapping instruction
is in a user-space process, then the file data has been mapped into
the address space of the user space process. Thus, P2 can infer that
the file data has flowed into the address space of a particular pro-
cess. In either case, the memory tracking component has inferred
that an unpatched non-binary file has been read into a user space
process.

At this time, the memory tracking component queries the P2 bi-
nary file monitor, which tracks executing interpreters. If the current
context (read from the CR3 register) matches that of a cur-
rently executing interpreter that can make a vulnerable access, P2
raises an alert. If running in reporting mode, P2 simply reports the
vulnerable access to the cloud administrator. On the other hand, if
P2 is running in prevention mode, then it will terminate the inter-
preter as described in Section 5.3.

If the accessing process is not a vulnerable interpreter, or is
allowed to proceed because P2 is operating in reporting mode, then
P2 allows the access to the tracked page to proceed by marking
the page as present. It maintains this present marking until the
content of the CR3 is changed by the guest OS, indicating a context
switch. At this point, the memory tracking component must clear
the present bit so that it can detect accesses by other processes.
Since multiple traps may take place between two context switches,
the tracking component maintains a list of page table entries that
need to have their “present” bit cleared upon the next context
switch.

In addition to detecting when a tracked page is being accessed,
P2 needs to detect when the memory page no longer contains
unpatched file data and no longer needs to be tracked. This may
occur as a result of two events: the guest VM modified the content
of the memory page, or it requested that a virtual device performs a
DMA transfer to the memory page. To detect the first scenario, the
tracking component clears the “writable” bit on any tracked page.
As a result, when the page is written to, either because the page
is being reused by the kernel for a different purpose or because

the page content is being modified, a page fault will occur upon
access. At this point, P2 clears the tracked flag from the page and
stops tracking it.

To detect DMA transfers, we extend the disk monitor to inform
the memory tracking component on every DMA transfer, not just
the ones to unpatched files. DMA transfers of regular patched files
are not tracked, but if they overwrite a tracked page, this will cause
P2 to stop tracking the overwritten page.

5.3 Prevention mode

When running in prevention mode, P2 is in a position to prevent
any unpatched code from executing. P2 does this with as few
side-effects as possible. If the unpatched code is a binary, then
P2 replaces the instruction at the faulting address with an illegal
instruction. When the guest VM is resumed, the application will
execute the illegal instruction causing an OS fault, and the guest
OS will terminate the application cleanly.

If the unpatched code is a non-binary file, P2 must terminate the
associated interpreter that is making a vulnerable access to the file.
If the access occurred from user space because the file is mapped
into the interpreter address space, P2 inserts an illegal instruction
at the address that caused the trap and restarts the process just like
above. However, if the accessed occurred from within the kernel,
P2 cannot insert illegal instructions into the kernel as this would
terminate the entire VM. Instead, P2 allows the access to complete
but sets the entire user space address range to non-executable.
When the guest OS returns to user space, a fault will be generated,
at which time P2 can inject an illegal instruction and have the guest
OS terminate the interpreter.

6. Evaluation

We evaluated P2’s effectiveness at detecting unpatched applications
and the performance overhead P2’s monitoring introduces. All ex-
periments were conducted on an AMD Athlon 64 X2 Dual Core
3800+ processor running at 2GHz, with 2GB of RAM. We used the
Xen 3.3.0 VMM and allocated 512MB of RAM to the monitored
VM and 1GB to the domain 0 VM. We pinned the domain 0
VM to the first core and the monitored VM to the second core to
minimize VM scheduling effects. To demonstrate P2’s OS-agnostic
quality, unless otherwise stated, all tests were run on both Windows
and Linux VMs. The Windows VM runs Windows XP SP2. The
Linux VM is a Fedora Core 9 distribution with a 2.6.27.25 Linux
kernel. Timing was recorded using an external time server to elim-
inate clock skew introduced by the hypervisor.

6.1 Effectiveness

We evaluated P2’s ability to detect unpatched binary and non-
binary code. To evaluate the ability of P2 to detect the execution
of binary code, we ran P2 and compared the binaries it reports as
running with that returned by the Task Manager. We also suspended
and resumed the VMs several times and inspected the reported bi-
naries. In all cases, P2 accurately listed the exact same executing
binaries as the respective Linux and Windows tools. This shows
that P2 can accurately identify the exact binary that is executing.
We also installed both patched and unpatched versions of Apache
in both Windows and Linux and executed both. P2 was able to dif-
ferentiate the execution of the patched version from the unpatched
one.

Next, we evaluated the effectiveness of P2 at detecting the ex-
ecution of non-binary code. To do this, P2 must properly detect
access to unpatched files and correctly attribute these accesses to
the appropriate interpreter or JIT compiler. We placed a unique
ruby script in each directory on the file system (4161 ruby scripts
on Windows and 10268 ruby scripts on Linux). To see if P2 cor-

[Setting | Vanilla | P2 | P2, non-binary disabled |

Linux 436.9s | 455.85 (4.3%) 460.9s (5.5%)

Windows | 581.3s | 605.2s (4.1%) 617.7s (6.3%)

Table 3. Compilation time for Apache (overhead).

100000
10000 Average = 45 ms
1000

100

It
[eoNe]

of Invocations

l T T T T T T e T T T T e T T T T

[olololo ol

)
.
Nwmm<r<rmm«:>go§

Execution Time (ms)

Figure 5. Histogram of P2 binary identification execution times.

rectly attributes the accesses to the correct application, we simul-
taneously run an anti-virus scanner (ClamAV 0.95.2 on Linux and
Symantec 10.1.5 on Windows) and a specially crafted application
that would randomly execute one of the ruby scripts every second.
In both cases, P2 was able to identify exactly which scripts were
accessed by which application and in what order, demonstrating its
accuracy. In addition P2, does not miss any access, showing that it
is continuous.

To test whether stress on the OS’s buffer cache might affect P2’s
accuracy, we generated load on the system by creating an extension
that would cause the Firefox web browser on our test system to
randomly crawl websites, thus creating churn in its web cache.
We did this at the same time as running the test above. Again, P2
attributed all accesses correctly. In addition, no access to any script
was recorded for Firefox or any other application running on the
system.

6.2 Performance

P2 is invoked when new code is executed, when data is read from
disk into the OS buffer cache and when data in the buffer cache
is read by a process. To evaluate the overall performance impact
of P2, we measured the time required to compile the Apache web
server on both Windows and Linux. In each case, we ran P2 with an
unpatched database containing 20,532 entries and comprehensive
patched and interpreter databases. We ran P2 twice, once auditing
both unpatched binary and non-binary files and again with non-
binary file auditing disabled. The results are tabulated in Table 3.
In both the Linux and the Windows cases, the overall overhead of
P2 was 4% (mean of 4 runs, standard deviation under 1% of the
mean). Performance of P2 was actually slightly worse when moni-
toring only unpatched binaries, but the difference is comparable to
measurement error in our system. Thus, we surmise that the major-
ity of the overhead is imposed by the auditing and identification of
executing binaries.

P2 binary identification is only invoked when the Patagonix
identity oracle fails to identify an executing binary. To evaluate its
overhead separately from the overhead of the Patagonix identity
oracle, we instrumented the P2 binary identification component to
measure both the number of times it is invoked after a VM resumes
and the amount of time it takes to identify a binary each time it
is invoked. We then perform the Apache compile and suspend the
execution of a Windows VM compiling Apache at 1 minute and
2 minute intervals. We found that on average, the P2 algorithm
was invoked an average of 46 times with a standard deviation of
2.5 when using a 1 minute interval, and an average of 48 times
with a standard deviation of 3 when using a 2 minute interval. This
illustrates that few invocations of the P2 algorithm are necessary
when resuming a suspended machine. This is because at most one
invocation is necessary per binary file that was in the process of
being executed when the machine was suspended. The execution
time of the P2 binary identification is essentially determined by the
number of iterations of the two nested for loops in the algorithm,
which are bounded by the number of candidate addresses that are
wrongly inferred and the number of offsets that must be attempted.
We graph a histogram of execution times in Figure 5. Note that
the y-axis is logarithmic. While the execution times vary widely,
there are two dominant cases, illustrated by the two peaks centered
around 31 ms and 501 ms. The overall average execution time of
the P2 binary identification algorithm is 45+£143 ms. As a result,
combining the average run time of the P2 binary identification
algorithm and the average number of times it needs to be invoked,
we surmise that P2 adds an average of 3 seconds of overhead every
time a VM is resumed.

To more accurately measure the overhead of non-binary file
auditing, we evaluate it in isolation. We ran a micro-benchmark
that sequentially read 2 GB of data from the disk to measure the
disk transfer rate. The vanilla transfer rate was 79 MB/s (mean
of 10 runs, standard deviation under 1% of mean) and 78 MB/s
with auditing. To assess the impact of the software database size
on the file monitoring overhead, we reran the benchmark with a
larger database containing 1,252,977 entries. The transfer rate in
this scenario dropped slightly to 63 MB/s since more time was
required to query the database on each disk access. The modest
overhead incurred by file monitoring on transfer rates explains why
no noticeable overhead is introduced on a macro-benchmark such
as compiling Apache.

7. Related Work

Virtual machine introspection is used to bridge the semantic
gap [6], which exists between the hypervisor and software run-
ning in guest VMs. Many systems have used introspection in the
past to bridge this gap. One of the first, Livewire [10], imple-
ments intrusion detection from the hypervisor, but required de-
tailed, implementation-specific information on the location of code
and data within the guest VM software. Introvirt [16] extends the
concept to be able to detect intrusions that have occurred in the past.
VMWatcher [14], uses introspection to enable standard anti-virus
tools to be run on VMs from within the hypervisor. SBCFI [25]
takes a different approach and uses hypervisor privileges to en-
force control-flow integrity on the guest OS kernel. Finally, Pa-
tagonix [17], on which P2 is based, identifies covertly-executing
binaries in guest VMs in a way that is OS-agnostic. P2 is differ-
ent from these previous systems in two ways. First, all previous
approaches are restricted to monitoring binary code, while P2 is
capable of monitoring non-binary code as well. Second, all pre-
vious approaches focus on detecting intrusions or malicious code.
P2 takes a pro-active approach and tries to detect and prevent un-
patched software with known vulnerabilities from executing and
exposing the system to attack.

Hypervisors have been used for security in general for a num-
ber of systems. Hypervisors offer a smaller trusted computing base,
and higher privileges, making them an attractive platform for im-
plementing security. Terra [12] used a hypervisor to perform attes-
tation for individual VMs, thus isolating attested high integrity code
from unattested low-integrity code. Proxos [29], extended this idea
to permit isolated applications to communicate with other VMs in
a controlled way. There has also been recent research in using hy-
pervisors to monitor and control what code executes in the kernel.
SecVisor [27] is a small hypervisor with fewer than 2000 lines of
code, which can verify the integrity of code executing in the kernel.

Dynamic information flow tracking (DIFT) and related taint
tracking techniques have been extensively used to improve secu-
rity. Suh et al. [28] and Taintcheck [22] both use taint tracking
to detect corruption of critical pointers with external data. Suh’s
method requires specialized hardware but has low runtime over-
head. Taintcheck uses a software-only method, but suffers from
overheads of 30x or greater. Recently, Chang et al. [S] applied
compiler analysis to optimize away some of the instrumentation re-
quired to perform taint tracking, achieving runtime overheads less
than 13% without any specialized hardware. However, their com-
piler pass requires source code to perform the optimizations and
instrument the program. Dalton et al. [9] introduce more complex
security policies and a pointer identification algorithm to improve
the accuracy of taint tracking. However, their technique requires
specialized hardware to be added to the processor to be practical.
P2 differs from previous uses of taint tracking for security in two
respects. First, P2 uses taint tracking to determine if a non-binary
file is accessed in an unsafe way while previous systems used taint
tracking to detect attacks. Second, because P2’s goals are differ-
ent, P2 only needs to track taint at a page granularity, which allows
it to leverage the processor MMU to monitor accesses to tainted
data. This makes P2 far more efficient, allowing it to achieve low
overheads without source code changes or special hardware.

Recently, information flow tracking was leveraged by Ho et
al. [13] in a virtualization context to track data originating from
the network in a virtualized environment. This allows the proposed
system to determine if a VM ever attempts to execute data originat-
ing from the network. Like P2, page table manipulations are used
to track tainted data at the page granularity. However, once tainted
pages are accessed, the system switches to byte-level granularity
and starts running VMs in an emulator, resulting in significant per-
formance overhead. Because P2 uses coarse taint tracking, code can
execute natively on the processor, resulting in modest performance
overheads.

Finally, in a non-security context, others have also leveraged
hypervisor virtualization of the MMU and disk to monitor systems.
monitor the interaction between VMs and storage. Geiger [15] ma-
nipulates page table entries to detect evictions from the OS’s buffer
cache. This information allows optimizing memory allocations to
VMs and helps implement a second-level buffer cache maintained
by the VMM. Satori [20] hashes all disk content accessed by VMs
to identify sharing opportunities between VMs to reduce memory
consumption.

8. Conclusion

We have demonstrated that while virtualization has the potential
to exacerbate the problem of patch management, it also offers
capabilities to improve it. By monitoring only the virtual hardware
interface, P2 is able to efficiently, accurately and continuously audit
the use of unpatched code in both Linux and Windows systems.
While previous systems that implement information flow tracking
at the byte or word granularity have prohibitive overheads, P2 takes
advantage of the fact that it does not need such fine-granularity. We
find that by tracking information flow at a page-level granularity

that matches that of the hardware MMU, P2 is able to infer the
execution of non-binary code with very little overhead. This allows
P2 to accurately detect unsafe uses of unpatched non-binary files.

We also find that to overcome Patagonix’s inability to iden-
tify binaries in mid-execution, P2 must adopt a more expensive
sampling-based approach to infer addresses. Our evaluation con-
cludes that while P2’s binary identification requires several mil-
liseconds on average, it can have wide range of execution times.
We are able to mitigate this shortcoming by combining P2 and Pa-
tagonix into a single system that achieves good performance equiv-
alent to Patagonix, but does not suffer from the limitation of not
being able to identify binaries that have already started execution.
With its applicability across common commodity OSs, low over-
head and high accuracy, we believe P2 is a practical solution to
help IaaS cloud providers audit the patch level of VMs running on
their infrastructure.

Acknowledgements

Support for the work in this paper was provided by the NSERC
ISSNet Strategic Network and an Ontario MRI Early Researcher
Award.

References

[1] A. Appleby. MurmurHash 2.0, 2010. http://murmurhash.
googlepages.com/.

[2] S. Beattie, S. Arnold, C. Cowan, P. Wagle, C. Wright, and A. Shostack.
Timing the application of security patches for optimal uptime. In
Proceedings of the 15th Large Installation Systems Administration
Conference (LISA), pages 233-242, Nov. 2002.

A. Bellissimo, J. Burgess, and K. Fu. Secure software updates: Dis-
appointments and new challenges. In Proceedings of the 1st Usenix
Workshop on Hot Topics in Security (HOTSEC), July 2006.

D. Brumley, P. Poosankam, D. Song, and J. Zheng. Automatic patch-
based exploit generation is possible: Techniques and implications. In
Proceedings of the 2008 IEEE Symposium on Security and Privacy,
May 2008.

W. Chang, B. Streiff, and C. Lin. Efficient and extensible security
enforcement using dynamic data flow analysis. In Proceedings of
the 15th ACM Conference on Computer and Communications Security
(CCS 2008), Oct. 2008.

[6] P. M. Chen and B. D. Noble. When virtual is better than real. In
The 8th Workshop on Hot Topics in Operating Systems (HotOS 2001),
pages 133-138, May 2001.

[7] P. Chicoine, M. Hassner, M. Noblitt, G. Silvus, B. Weber, and E. Gro-
chowski. Hard disk drive long data sector white paper. Technical

report, The International Disk Drive Equipment and Materials Associ-
ation IDEMA), Apr. 2007.

[8] Citrix XenClient, 2010.

xenclient.

[3

—

[4

=

[5

—

http://www.citrix.com/

[9

—

M. Dalton, H. Kannan, and C. Kozyrakis. Real-world buffer overflow
protection for userspace and kernelspace. In Proceedings of the 17th
USENIX Security Symposium, pages 395-410, July 2008.

T. Garfinkel and M. Rosenblum. A virtual machine introspection
based architecture for intrusion detection. In Proceedings of the
10th Symposium on Network and Distributed System Security (NDSS),
pages 191-206, Feb. 2003.

[11] T. Garfinkel and M. Rosenblum. When virtual is harder than real:
Security challenges in virtual machine based computing environments.
In The 10th Workshop on Hot Topics in Operating Systems (HotOS
2005), May 2005.

[12] T. Garfinkel, B. Pfaff, J. Chow, M. Rosenblum, and D. Boneh. Terra: A
virtual machine-based platform for trusted computing. In Proceedings
of the 19th ACM Symposium on Operating Systems Principles (SOSP),
pages 193-206, Oct. 2003.

[10

[13] A. Ho, M. Fetterman, C. Clark, A. Warfield, and S. Hand. Practical
taint-based protection. In Proceedings of the First European Confer-
ence on Systems (EuroSys), Apr. 2006.

[14] X. Jiang, X. Wang, and D. Xu. Stealthy malware detection through
VMM-based “out-of-the-box” semantic view reconstruction. In Pro-
ceedings of the 14th ACM Conference on Computer and Communica-
tions Security (CCS 2007), pages 128—138, Oct. 2007.

[15] S.T.Jones, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau. Geiger:
Monitoring the buffer cache in a virtual machine environment. In Pro-
ceedings of the 12th International Conference on Architectural Sup-
port for Programming Languages and Operating Systems (ASPLOS),
pages 14-24, Oct. 2006.

[16] A. Joshi, S. T. King, G. W. Dunlap, and P. M. Chen. Detecting
past and present intrusions through vulnerability-specific predicates.
In Proceedings of the 20th ACM Symposium on Operating Systems
Principles (SOSP), pages 91-104, Oct. 2005.

[17] L. Litty, H. A. Lagar-Cavilla, and D. Lie. Hypervisor support for
identifying covertly executing binaries. In Proceedings of the 17th
USENIX Security Symposium, July 2008.

[18] L. Litty, H. A. Lagar-Cavilla, and D. Lie. Computer meteorology:
Monitoring compute clouds. In The 12th Workshop on Hot Topics in
Operating Systems (HotOS 2009), May 2009.

[19] Microsoft. Visual Studio, Microsoft Portable Executable and
Common Object File Format specification, May 2006. URL
http://www.microsoft.com/whdc/system/platform/
firmware/PECOFF .mspx. Rev. 8.0.

[20] G. Mito$, D. G. Murray, S. Hand, and M. Fetterman. Satori: Enlight-
ened page sharing. In Proceedings of the 2009 Annual Usenix Techni-
cal Conference, July 2009.

[21] Nessus, Tenable Network Security, 2010. http://www.nessus.
org.

[22] J. Newsome and D. Song. Dynamic taint analysis: Automatic detec-
tion, analysis, and signature generation of exploit attacks on commod-
ity software. In Proceedings of the 12th Symposium on Network and
Distributed System Security (NDSS), Feb. 2005.

[23] NIST. National software reference library, 2010. http://www.
nsrl.nist.gov/.

[24] P. Nowak. Internet security moving toward “white list”, Sept.
2007. Available at http://www.cbc.ca/news/background/
tech/privacy/white-1list.html.

[25] N. L. Petroni, Jr. and M. Hicks. Automated detection of persistent
kernel control-flow attacks. In Proceedings of the 14th ACM Confer-
ence on Computer and Communications Security (CCS 2007), pages
103-115, Oct. 2007.

[26] T. Ristenpart, E. Tromer, H. Shacham, and S. Savage. Hey, you, get
off of my cloud: Exploring information leakage in third-party compute
clouds. In Proceedings of the 16th ACM Conference on Computer and
Communications Security (CCS 2009), pages 199-212, Nov. 2009.

[27] A. Seshadri, M. Luk, N. Qu, and A. Perrig. SecVisor: A tiny hypervi-
sor to provide lifetime kernel code integrity for commodity OSes. In

Proceedings of the 21st ACM Symposium on Operating Systems Prin-
ciples (SOSP), Oct. 2007.

[28] G. E. Suh, J.-W. Lee, D. Zhang, and S. Devadas. Secure program ex-
ecution via dynamic information flow tracking. In Proceedings of the
11th International Conference on Architectural Support for Program-
ming Languages and Operating Systems (ASPLOS), Oct. 2004.

[29] R. Ta-Min, L. Litty, and D. Lie. Splitting interfaces: Making trust
between applications and operating systems configurable. In Proceed-
ings of the 7th Symposium on Operating Systems Design and Imple-
mentation (OSDI), pages 279-292, Nov. 2006.

[30] TIS Committee. Tool Interface Standard (TIS) Executable and Linking
Format (ELF) specification, May 1995. V1.2.

[31] VersionTracker. VersionTracker, 2010.
versiontracker.com/.

[32] VMware View, 2010. http://www.vmware.com/products/
view.

http://

