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Abstract

A great deal of software is distributed in the form of
executable code. The ability to reverse engineer such
executables can create opportunities for theft of intel-
lectual property via software piracy, as well as security
breaches by allowing attackers to discover vulnerabil-
ities in an application. The process of reverse engi-
neering an executable program typically begins with
disassembly, which translates machine code to assem-
bly code. This is then followed by various decompila-
tion steps that aim to recover higher-level abstractions
from the assembly code. Most of the work to date on
code obfuscation has focused on disrupting or confus-
ing the decompilation phase. This paper, by contrast,
focuses on the initial disassembly phase. Our goal is
to disrupt the static disassembly process so as to make
programs harder to disassemble correctly. We describe
two widely used static disassembly algorithms, and
discuss techniques to thwart each of them. Experimen-
tal results indicate that significant portions of executa-
bles that have been obfuscated using our techniques
are disassembled incorrectly, thereby showing the ef-
ficacy of our methods.

1 Introduction

Advances in program analysis and software engineer-
ing technology in recent years have led to significant
improvements in tools for program analysis and soft-�This work was supported in part by the National Science
Foundation under grants EIA-0080123 and CCR-0113633.

ware development. Unfortunately, this same technol-
ogy can, in many cases, be subverted to reverse en-
gineer software systems with the goal of discovering
vulnerabilities, making unauthorized modifications, or
stealing intellectual property. These all require an abil-
ity to take an executable program and reconstruct its
high-level structure to some extent. For example, to
identify vulnerabilities in a software system, a hacker
has to be able to figure out how it works and where it
may be attacked. Similarly, to steal a piece of software
with an embedded copyright notice or software water-
mark, a pirate must reconstruct enough of its internal
structure to be able to identify and delete the copyright
notice or watermark without affecting the functional-
ity of the program.

The problem can be addressed by maintaining the
software in encrypted form and decrypting it as needed
during execution [1], or using specialized hardware
(e.g., see [16]). While effective, such approaches have
the disadvantages of high performance overhead or
loss of flexibility because the software can no longer
be run on stock hardware. An alternative approach,
which we focus on, is to use code obfuscation tech-
niques to enhance software security [9, 10, 11, 12, 28].
The goal is to deter attackers by making the cost of the
reconstructing the high-level structure of the program
prohibitively high.

The processes of compilation and reverse engineer-
ing are illustrated in Figure 1. Compilation refers to
the translation of a source-language program to ma-
chine code; it consists of a series of steps, each pro-
ducing successively lower-level program representa-
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Figure 1: The processes of compilation and reverse
engineering

tions. Reverse engineering is the dual process of re-
covering higher-level structure and semantics from a
machine code program. Broadly speaking, we can di-
vide the reverse engineering process into two parts:
disassembly, which produces assembly code from ma-
chine code; anddecompilation, which reconstructs the
higher-level semantic structure of the program from
the assembly code. Most of the prior work on code
obfuscation and tamper-proofing focus on various as-
pects of decompilation. For example, a number of re-
searchers suggest relying on the use of difficult static
analysis problems, e.g., involving complex Boolean
expressions, pointers, or indirect control flow, to make
it harder to construct a precise control flow graph for
a program [3, 12, 19, 26, 27].

The work described in this paper, by contrast, fo-
cuses on the disassembly process. Our goal is to in-
crease the difficulty of statically disassembling a pro-
gram. As such, our approach is independent of, and
complementary to, current approaches to code obfus-
cation. It is independent of them because our tech-
niques can be applied regardless of whether or not any
of these other obfuscating transformations are being
used. It is complementary to them because, by making
a program harder to disassemble accurately, we add
yet another barrier to recovering high-level semantic
information about a program.

header

sections text section

program entry point
text section size

size

Figure 2: The structure of an executable file

2 Background: Disassembly

A machine code file typically consists of a number
of different sections, e.g.,text, read-only data, etc.,
that contain various sorts of information about the pro-
gram, together with a header describing these sections.
Among other things, the header contains information
about the program entry point, i.e., the location in the
file where the machine instructions begin (and where
program execution begins), and the total size or extent
of these instructions1 (see Figure 2) [15]. Disassem-
bly refers to the process of recovering a sequence of
assembly code instructions from such a file, e.g., in a
textual format readable by a human being.

Broadly speaking, there are two approaches to dis-
assembly:static disassembly, where the file being dis-
assembled is examined by the disassembler but is not
itself executed during the course of disassembly; and
dynamic disassembly, where the file is executed on
some input and this execution is monitored by an ex-
ternal tool (e.g., a debugger) to identify the instruc-
tions that are being executed. Static disassembly has
the advantage of being able to process the entire file
all at once, while dynamic disassembly only disas-
sembles a “slice” of the program, i.e., those instruc-
tions that were executed for the particular input that
was used. Another advantage of static disassembly is
that it takes time proportional to the size of the pro-
gram, while the time taken by dynamic disassembly
is typically proportional to the number of instructions

1This applies to most file formats commonly encountered in
practice, including Unixa.out, ELF, COFF, and DOS EXE files.
The information about the entry point and code section size is im-
plicit in DOS COM files.
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executed by the program at runtime—the former tends
to be considerably less than the latter (often by several
orders of magnitude), making static disassembly con-
siderably more efficient than dynamic disassembly.

This paper focuses on static disassembly. There are
two generally used techniques for this:linear sweep
and recursive traversal[22]. The remainder of this
section sketches each of them.

2.1 Linear Sweep

The linear sweep algorithm begins disassembly at
the input program’s entry point, and simply sweeps
through the entire text section disassembling each in-
struction as it is encountered:

global startAddr, endAddr;
proc DisasmLinear(addr)
begin

while (startAddr� addr� endAddr) do
I := decode instruction at addressaddr;
addr += length(I);

od
end

proc main()
begin

ep:= program entry point;
size:= text section size;
startAddr:= ep; endAddr:= ep+ size;
DisasmLinear(ep);

end

This method is used by programs such as the GNU
utility objdump[18] as well as a number of link-time
optimization tools [8, 17, 24].

The main weakness of this algorithm is that it is
prone to disassembly errors resulting from the misin-
terpretation of data that is embedded in the instruction
stream. Only under special circumstances, e.g., when
an invalid opcode is encountered, can the disassembler
become aware of such disassembly errors.

2.2 Recursive Traversal

The problem with the linear sweep algorithm is that,
because it does not take into account the control flow
behavior of the program, it cannot “go around” data
(e.g., alignment bytes, jump tables, etc.) embedded
in the instruction stream, and mistakenly interprets
them as executable code. An obvious fix would be to

take into account the control flow behavior of the pro-
gram being disassembled in order to determine what
to disassemble. Intuitively, whenever we encounter a
branch instruction during disassembly, we determine
the possible control flow successors of that instruc-
tion, i.e., addresses where execution could continue,
and proceed with disassembly at those addresses (e.g.,
for a conditional branch instruction we would consider
the branch target and the fall-through address):

global startAddr, endAddr;
proc DisasmRec(addr)
begin

while (startAddr� addr� endAddr) do
if (addrhas been visited already)return ;
I := decode instruction at addressaddr;
markaddras visited;
if (I is a branch or function call)

for eachpossible targett of I do
DisasmRec(t);

od
return ;

elseaddr+= length(I);
od

end

proc main()
begin

ep:= program entry point;
size:= text section size;
startAddr:= ep; endAddr:= ep+ size;
DisasmRec(ep, startAddr, endAddr);

end

Variations on this basic approach to disassembly,
which we termrecursive traversal, are used by a num-
ber of binary translation and optimization systems
[4, 23, 25].

A virtue of this algorithm is that, by following the
control flow behavior of the program being processed,
it is able to “go around” and thus avoid disassembly of
data embedded in the text section. Its main weakness
is that its key assumption, that we can precisely iden-
tify the set of control flow successors of each control
transfer operation in the program, may not always hold
in the case of indirect jumps. Imprecision in determin-
ing the set of possible targets of such a jump will result
either in a failure to disassemble some reachable code
(if the set of targets is underestimated) or erroneous
disassembly of data (if the set of targets is overesti-
mated).
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Figure 3: A example of a Cswitch statement and its implementation using a jump table

Some researchers have proposedad hocextensions
to the basic algorithm outlined above to handle com-
mon cases of indirect jumps. As an example, one of
the commonest uses of indirect jumps involvesjump
tables, a construct used by compilers to implement
C-styleswitch statements [2]. This is illustrated in
Figure 3. The jump table itself is a contiguous array
of N code addresses, corresponding to theN cases in
the switch statement. The code to access the jump
table evaluates the index expressioni; checks to see
whether this expression falls within the bounds of the
table, i.e., whether 0� i < N; adds the scaled value
of the index expression to the base address of the ta-
ble to obtain the address of theith entry in the table;
then jumps indirectly through this location. The check
of whether the index expression falls within the table
bounds can be accomplished using a single unsigned
comparison (denoted by�u in instruction (2) in Figure
3(b)) [2]. To determine the possible target addresses
of an indirect jump through a jump table, a disassem-
bler needs to know the base address of the table and
its extent, i.e., the values ofBaseAddr andN in Fig-
ure 3(b). This can be done by scanning back from
the indirect jump instruction to find the instruction that
adds the scaled index to the base address (instruction
(4) in Figure 3(b)), whence the base address can be
extracted; and the unsigned compare of the index (in-
struction (2) in Figure 3(b)), whence the table size can
be determined. Once this has been done, disassembly

can continue at each target identified from theN table
entries starting at locationBaseAddr [6].

Code that is reachable only through indirect control
transfers may not be found using the basic algorithm
above. To handle this problem, some systems, e.g., the
UQBT binary translation system [5], resort to “spec-
ulative disassembly.” The idea is to process undisas-
sembled portions of the text segment that appear to
be code, in the expectation that they might be the tar-
gets of indirect function calls; a “speculative bit” is set
when this is done, and speculative disassembly of a
particular region of memory is abandoned if an invalid
instruction is encountered.

3 Thwarting Disassembly

It is easy to see that in order to thwart a disassembler,
we have to somehow confuse, as much as possible, its
notion of where the instruction boundaries in a pro-
gram lie. This section discusses some ways in which
this can be achieved. We first discuss a phenomenon
that we had not expected: that of disassembly errors
that “repair” themselves within a relatively short dis-
tance. This is followed by a discussion of a general
technique we use to inject “junk bytes” into the in-
struction stream to introduce disassembly errors. Af-
ter this we discuss specific details of the way in which
this is done to confuse the two disassembly algorithms
discussed in the previous section.
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Figure 4: An example of self-repairing disassembly

3.1 Self-Repairing Disassembly

One way to understand the process of static disassem-
bly, and what happens when a disassembly error oc-
curs, is to compare the set of instruction start addresses
(i.e., the addresses where each statically disassembled
instruction begins) identified by a static disassembler
with the “actual” instruction addresses that would be
encountered when the program is actually executed. If
the static disassembly is completely correct, these two
sets will be identical. The effect of a disassembly error
is to cause these sets to become different. The goal of
the techniques discussed in this paper is to maximize
this difference.

It turns out that on some instruction sets—most no-
tably, that of the Intel IA-32 architecture (i.e., the x86
and Pentium)—the instruction structure is such that,
very often, the disassembly process is self-repairing:
even when a disassembly error occurs (e.g., due to the
disassembly of data), the disassembler eventually ends
up re-synchronizing with the actual instruction stream.
In other words, with such instruction sets the disas-
sembly error results in a nonzero difference between
the instruction start addresses identified by the dis-
assembler and the “actual” instruction addresses, but
this difference typically goes to zero as the disassem-
bly continues, and after some time the instruction start
addresses identified by the disassembler begin to coin-
cide with the actual instruction addresses.

This is illustrated by the example in Figure 4, which
shows a typical byte sequence in memory, together

with the actual disassembly (on the left), and the disas-
semblies we obtain if the disassembler is off by 1, 2, or
3 bytes, on the right. When the disassembly is initially
off by a single byte, the disassembler produces two er-
roneous instructions but is back in synchrony with the
original disassembly by the second instruction in the
actual disassembly sequence. A similar phenomenon
occurs when the disassembler is initially off by two
bytes: it resynchronizes with the second instruction
in the actual disassembly after producing a single in-
correctly disassembled instruction. If the disassembler
is initially off by three bytes, it generates three incor-
rectly disassembled instructions but resynchronizes by
the third instruction in the actual disassembly.

Obviously, the actual resynchronization behavior on
a particular program will depend on its particular dis-
tribution of instructions. In practice, however, we have
found that disassembly errors usually resynchronize
quite quickly—often within just one or two instruc-
tions beyond the point at which the disassembly error
occurred. Efforts to confuse disassembly have to take
this self-repairing aspect of disassembly into account.

3.2 Junk Insertion

We can introduce disassembly errors by inserting
“junk” bytes at selected locations in the instruction
stream where the disassembler is likely to expect code.
(An alternative approach involves partially or fully
overlapping instructions, e.g., see [7]: this is discussed
in Section 5.) It is not difficult to see that any such
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junk bytes must satisfy two properties. First, in order
to actually confuse the disassembler, the junk bytes
must be partial instructions, not complete instructions.
Second, in order to preserve program semantics, such
partial instructions must be inserted in such a way
that they are unreachable at runtime. To this end, de-
fine a basic block as acandidate blockif it can have
such junk bytes inserted before it. In order to ensure
that any junk so inserted is unreachable during exe-
cution, a candidate basic block cannot have execution
fall through into it. In other words, the basic block
immediately before a candidate block must end in an
unconditional control transfer, e.g., an unconditional
jump or a return from a function. Candidate blocks
can be identified in a straightforward way by scanning
the basic blocks of the program after their final mem-
ory layout has been determined.

As mentioned in Section 3.1, the static disassem-
bly process very often manages to “re-synchronize”
itself after a disassembly error. Once a candidate
block B has been identified, we have to determine
what junk bytes to insert before it so as to confuse the
disassembler as much as possible, i.e., delay this re-
synchronization for as long as possible. To do this, we
take a particularn-byte instructionI (our current im-
plementation considers a 6-byte bitwise-OR instruc-
tion, but it is easy to extend this to other instructions),
and determine how far away this re-synchronization
would occur if the firstk bytes ofI were to be inserted
immediately before the candidate blockB, for eachk,
0< k< n. To determine the re-synchronization point,
for each suchk we simulate disassembly for the candi-
date block, assuming that the disassembler encounters
the firstk bytes ofI at the beginning ofB, then contin-
uing with the byte sequence comprising the machine-
level encodings of the instructions actually inB. Us-
ing this approach we determine the valuekmax of k for
which the re-synchronization distance is maximized,
and insert the firstkmax bytes ofI immediately before
block B.

3.3 Thwarting Linear Sweep

As observed in Section 2.1, linear sweep disassembly
is generally unable to distinguish data embedded in the
text section. We can exploit this weakness by insert-
ing “junk” bytes at selected locations in the instruction
stream, as discussed in Section 3.2. One point to note

here is that since the simulation of disassembly scans
forward from each candidate to determine the number
of “junk” bytes to be inserted there, it is important to
ensure that such decisions made for one candidate are
not subsequently invalidated by the insertion of junk
into subsequent candidates. To avoid such effects, we
consider candidate blocks in a backwards order when
inserting junk.

With the approach described thus far, we find that
we are typically able to attain a “confusion factor” of
about 26%–30% on average—i.e., 26%–30% of the
instructions in a program are incorrectly disassembled
(confusion factors are discussed in more detail in Sec-
tion 4). The reason that it is not higher is that candi-
dates for the insertion of junk bytes cannot have exe-
cution fall through into them: the preceding block has
to end in an unconditional control transfer. We have
found that, in programs obtained from a typical opti-
mizing compiler, candidate blocks tend to be around
30 instructions apart on average.2 This distance, com-
bined with the self-repairing nature of disassembly,
means that when disassembly goes wrong after the in-
sertion of junk before a candidate, it typically man-
ages to re-synchronize before the next candidate is en-
countered. We increase the number of candidates by
a transformation calledbranch flipping. The idea is
to invert the sense of conditional jumps, by converting
code of the formbcc Addr

wherecc represents a condition, e.g., ‘eq’ or ‘ne’, tobcc L0
jmp Addr

L0:
wherecc is the complementary condition tocc, e.g.,
a ‘beq ...’ is converted to a ‘bne ...’. The ba-
sic block atL0 now becomes a candidate. With this
transformation, the distance between candidate blocks
drops to about 12 instructions on average, and the con-
fusion factor rises to about 70%.

2These data reflect the SPECint-95 benchmark suite compiled
usinggccat optimization level-O3. The averages given here were
computed as geometric means.
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3.4 Thwarting Recursive Traversal

The main strength of the recursive disassembly
algorithm—its ability to deal intelligently with control
flow and thereby disassemble around data embedded
in the text segment—also turns out to be a weakness
that we can take advantage of to confuse the disassem-
bly process. There are two (related) aspects of recur-
sive traversal that we can exploit. The first is that when
it encounters a control transfer, disassembly continues
at those locations that are deemed to be the possible
control transfer targets. In this context, disassemblers
typically assume that commonly encountered control
transfers, such as conditional branches and function
calls, behave “reasonably.” For example, a conditional
branch is assumed to have two possible targets: the
branch target and the fall through to the next instruc-
tion. Similarly, a function call is assumed to return to
the instruction immediately following the call instruc-
tion.

The second aspect of recursive traversal is that iden-
tifying the set of possible targets of indirect control
transfers is difficult. Recursive traversal disassemblers
therefore generally resort toad hoctechniques, such as
examining bounds checks associated with jump tables,
or disassembling speculatively, to handle commonly
encountered situations involving indirect jumps.

Below we discuss different ways in which these
characteristics can be exploited to confuse recursive
traversal disassembly.

3.4.1 Branch Functions

The assumption that a function returns to the instruc-
tion following the call instruction can be exploited us-
ing what we termbranch functions. The idea is illus-
trated in Figure 5. Given a finite mapϕ over locations
in a program

ϕ = fa1 7! b1; : : : ;an 7! bng
a branch functionfϕ is a function such that, whenever
it is called from one of the locationsai , causes control
to be transferred to the corresponding locationbi , 1�
i � n. Given such a branch functionfϕ, we can replace
n unconditional branches in a program,

a1 : jmp b1

. . .

a2 : jmp b2

. . .
an : jmp bn

by calls to the branch function:

a1 : call fϕ
. . .

a2 : call fϕ
. . .

an : call fϕ

The code for the branch function is responsible for de-
termining the target locationbi based on the location
ai it was called from, then branching to the appropriate
bi . Moreover, it has to do this in such a way that the
program state is that which would have been encoun-
tered at the locationbi in the original code with uncon-
ditional branches. Note that a branch function does
not behave like “normal” functions, in that it typically
does not return to the instruction following the call in-
struction, but instead branches to some other location
in the program that depends, in general, on where it
was called from.3

Branch functions serve two distinct purposes. The
first is to obscure the flow of control in the program:
by sufficiently obscuring the computation of the target
addressbi within the branch function, we can make
it difficult for an attacker to reconstruct the original
mapϕ it realizes. The second is to create opportuni-
ties for misleading a disassembler: since a disassem-
bler will typically continue disassembly at the instruc-
tion following the call instruction, we can introduce
errors in the disassembly by inserting junk bytes at the
point immediately after each ‘call fϕ’ instruction in
a manner similar to that discussed in Section 3.3.

Branch functions can be implemented in a number
of ways. Trivial implementations involve looking up
a table (via a simple linear or binary search) using
the return address passed to the branch function to
determine the target address. Such implementations
have the disadvantage of being relatively straightfor-
ward to reverse engineer. A more sophisticated ap-
proach might use perfect hashing, e.g., as discussed
by Fredmanet al. [14], or other schemes that are dif-
ficult to reverse engineer. Indeed, the complexity of

3This can, however, have adverse performance implications on
some architectures, e.g., the Intel Pentium, by interfering with the
branch prediction and/or return stack buffer mechanisms.
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Figure 5: Branch functions

a branch function’s implementation, and the way in
which it is accessed, offer an interesting tradeoff be-
tween execution speed, on the one hand, and difficulty
of reverse engineering, on the other. For example, we
can choose different branch function implementations
for jump instructions depending on their execution fre-
quencies: frequently executed jump instructions might
be directed to a lightweight branch function, less fre-
quently executed ones to a more complex branch func-
tion, and so on. Moreover, a particular jump instruc-
tion in a program can be made part of the branch map-
ping for several different branch functions, with one of
them being chosen in some arbitrary (and dynamically
variable) manner at runtime.

Our current implementation uses a scheme where
the callee passes, as an argument to the branch func-
tion, the offset from the instruction immediately after
it (whose address is passed to the branch function as
the return address) to the targetbi . The branch func-
tion simply adds the value of its argument to the return
address, so that the return address becomes the address
of the original targetbi . The code we use for this, on
the Intel IA-32 architecture, is as follows:4

xchg %eax, 0(%esp) # I1
add 8(%esp), %eax # I2
pop %eax # I3
ret # I4

Instruction I1 exchanges the contents of register%eax
with the word at the top of the stack, effectively saving
the contents of%eax and at the same time loading the

4If any of the condition code flags is live at the call point, they
have to be saved by the caller just before the call, and restored at
the target.

displacement to the target (passed to the branch func-
tion as an argument on the stack) into%eax. Instruc-
tion I2 then has the effect of adding this displacement
to the return address. I3 restores the previously saved
value of%eax, and I4 then has the effect of branching
to the address computed by the function. Since the re-
sulting code is nevertheless quite a bit more expensive,
in execution cost, than the single branch instruction in
the original program, we use execution profile infor-
mation to apply the transformation only to code that
is not “hot,” i.e., that is not frequently executed; the
details are discussed in Section 4.

3.4.2 Opaque Predicates

The assumption that a conditional branch has two pos-
sible targets can be exploited by disguising an uncon-
ditional branch as a conditional branch that happens,
at runtime, to always go in one direction—i.e., either it
is always taken, and never falls through; or it is never
taken, and always falls through. This technique relies
on using predicates that always evaluate to either the
constanttrue or the constantfalse, regardless of the
values of their inputs: such predicates are known as
opaque predicates[12]. Other researchers have dis-
cussed techniques for synthesizing opaque predicates;
their ideas translate in a straightforward way to our
context, so we do not discuss this issue further.

Once an unconditional branch has been replaced by
a conditional branch that uses an opaque predicate, we
have a location—either the branch target or the fall
through, depending on whether the opaque predicate
is always false or always true—that appears to be a
legitimate continuation for execution from the condi-

8



tional branch but, in fact, is not. We can then insert
junk bytes at this point, as discussed earlier, to mis-
lead the disassembly.

3.4.3 Jump Table Spoofing

We can generalize the notion of opaque predicates to
that of opaque expressions—i.e., expressions that al-
ways evaluate to the same constant value, but where it
is difficult to discern this from an examination of the
code to evaluate the expression. Letmem[a℄ denote the
contents of a memory location with addressa. Then,
given an opaque predicatee that always evaluates to 0
(i.e., false), and a setS of arbitrary but legal memory
addresses, we can construct an opaque expression that
always evaluates to 0 as

( ∑` 2 S

mem[`℄ ) & e

where& denotes a bitwise-AND operation. The actual
value of the sum expression∑`2Smem[`℄ is unimpor-
tant here, since the only purpose of the memory loads
is to confuse an attacker or a disassembler about the
value that is being computed; we care only that the
addresses in the setS be legal readable addresses, so
that the memory references do not generate any excep-
tions. Since the opaque predicatee always evaluates
to 0, the result of the bitwise-AND operation is also
0. Similarly, given an opaque predicatee0 that always
evaluates to 1 (i.e.,true), the expression

( ∑` 2 S

mem[`℄ ) & (1�e0)
will always evaluate to 0. To obtain an opaque expres-
sion that evaluates to some other valuec, we can then
simply add the numberc to the result of an opaque
expression that evaluates to 0.

We can use the values of opaque expressions with
artificial jump table constructs to mislead a disassem-
bler. We refer to this technique asjump table spoof-
ing. Recall that, as discussed in Section 2.2, recur-
sive traversal disassemblers attempt to use the bounds
check for a jump table to identify its size, and thereby
determine the set of possible targets of an indirect
jump through a jump table. The basic idea is that we
take an unconditional jump to an address` and con-
vert it to an indirect jump through a jump table where
the address̀ appears as thekth table entry. The table

is indexed by the value of an opaque expression that
always evaluates tok. However, the bounds check for
the table uses a table sizem> k, leading the disassem-
bler to believe that the jump table containsm entries.
Only one of thesem entries contains a real code ad-
dress: we can put “junk addresses”—text segment ad-
dresses that do not correspond to actual instructions—
into each of the other entries, thereby confusing the
disassembler.

3.5 Implementation Status

We have implemented our ideas using PLTO, a binary
rewriting system developed for Intel IA-32 executa-
bles running Linux [21]. The system reads in stati-
cally linked executables,5 disassembles the input bi-
nary, and constructs a control flow graph (eliminating,
in the process, unreachable code such as unused li-
brary routines that have been linked in). This control
flow graph is then processed in one of two ways. If the
user specifies that profiling is to be carried out, instru-
mentation code is inserted to generate an edge profile
when the resulting binary is executed. If, on the other
hand, the user requests obfuscating transformations to
be carried out, the system reads in edge profile infor-
mation if available, generates a memory layout for the
code using the profile data [20], carries out branch flip-
ping to increase the number of candidate blocks (Sec-
tion 3.3), applies various obfuscating transformations,
and writes out the resulting executable.

The transformations currently implemented in the
system are junk insertion (Section 3.2) and transfor-
mation of unconditional jumps to branch function calls
(Section 3.4.1). We expect to have additional transfor-
mations, such as jump table spoofing (Section 3.4.3),
implemented in the near future.

4 Experimental Evaluation

We evaluated the efficacy of our techniques using the
SPECint-95 benchmark suite. Our experiments were
run on an otherwise unloaded 2 GHz Pentium IV
system with 1 GB of main memory running RedHat

5The requirement for statically linked executables is a result of
the fact that PLTO relies on the presence of relocation information
to distinguish addresses from data. The Unix linkerld refuses to
retain relocation information for executables that are notstatically
linked.
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Linux 7.3. The programs were compiled withgccver-
sionegcs-2.91.66at optimization level-O3. The pro-
grams were profiled using the SPEC training inputs
and these profiles were used to identify any hot spots
during our transformations. The final performance of
the transformed programs were then evaluated using
the SPEC reference inputs. Each execution time re-
ported was computed as the average of three runs.

We experimented with three different “attack disas-
semblers” to evaluate our techniques. Two of these are
disassemblers we wrote ourselves: a straightforward
linear sweep disassembler, and a recursive disassem-
bler that uses bounds checks to handle indirect jumps
through jump tables and which incorporates specula-
tive disassembly (see Section 2). In order to avoid un-
duly optimistic results, we provide the recursive disas-
sembler with additional information about the address
and size of each jump table in the program as well as
the start and end address of each function. The re-
sults obtained from this disassembler therefore serve
as a lower bound estimate of the extent of obfuscation
achieved. Our third disassembler is IDA Pro [13], a
commercially available disassembly tool that is gener-
ally regarded to be among the best disassemblers avail-
able.

For each of these, the efficacy of obfuscation was
measured by computing “confusion factors” for the
instructions, basic blocks, and functions. Intuitively,
the confusion factor measures the fraction of program
units (instructions, basic blocks, or functions) in the
obfuscated code that were incorrectly identified by a
disassembler. For instructions, we compare the actual
instruction sequence produced by our tool with that
obtained by applying a conventional disassembler to
the output of our tool, and use a minimal edit distance
computation (in essence, adiff ) to count the number of
instructions that were incorrectly disassembled. The
computations for functions and basic blocks are sim-
ilar, the only conceptual difference being that a ba-
sic block or function is counted as being “incorrectly
disassembled” if any of the instructions in it is incor-
rectly disassembled. The reason for computing confu-
sion factors for basic blocks and functions as well as
for instructions is to determine whether the errors in
disassembling instructions are clustered in a small re-
gion of the code, or whether they are distributed over
significant portions of the program.

EXECUTION TIME (SECS)
PROGRAM Original Obfuscated Slowdown(T0) (T1) (T1=T0)
compress 44.45 75.70 1.70
gcc 26.08 37.61 1.44
go 57.89 75.52 1.30
ijpeg 44.15 52.27 1.18
li 29.13 48.18 1.65
m88ksim 31.66 56.90 1.80
perl 30.46 68.46 2.24
vortex 55.40 63.47 1.14

Geo. mean 1.52

Figure 8: Effect of obfuscation on execution speed
(θ = 0:98)

As mentioned in Section 3.4.1, we transform jumps
to branch function calls only if the jump does not oc-
cur in a “hot” basic block. The first questions we have
to address, therefore, are: how are hot basic blocks
identified, and what is the effect of different choices of
what consititutes a “hot” block on the extent of obfus-
cation achieved and the performance of the resulting
code? To identify the “hot,” or “frequently executed,”
basic blocks, we start with a (user-defined) fractionθ
(0:0 < θ � 1:0) that specifies what fraction of the to-
tal number of instructions executed at runtime should
be accounted for by “hot” basic blocks. For example,
θ = 0:8 means that hot blocks should account for at
least 80% of all the instructions executed by the pro-
gram. More formally, let theweightof a basic block be
the number of instructions in the block multiplied by
its execution frequency, i.e., the block’s contribution
to the total number of instructions executed at runtime.
Let tot instr ct be the total number of instructions ex-
ecuted by the program, as given by its execution pro-
file. Given a value ofθ, we consider the basic blocks
b in the program in decreasing order of execution fre-
quency, and determine the largest execution frequency
N such that

∑
b:freq(b)�N

weight(b) � θ � tot instr ct:
Any basic block whose execution frequency is at least
N is considered to be hot.

The effect of varying the hot code thresholdθ on
performance (both obfuscation and speed) is shown in
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Figure 6: Effect of “hot code threshold” on branch function conversion and execution speed

Figure 6. Figure 6(a) shows the fraction of candidates
that are converted to branch function calls at differ-
ent thresholds; this closely tracks the overall confu-
sion factors achieved. Figure 6(b) shows the concomi-
tant degradation in performance. It can be seen, from
Figure 6(a), that most programs have a small and well-
defined hot spot, and as a result varying the threshold
from a modest 0.70 to a value as high as 0.98 does
not dramatically affect the number of candidates con-
verted. The benchmark that is affected the most is
gcc, and even here over 90% of the candidates are
converted atθ = 0:98. On average, about 97% of the
candidates are converted atθ = 0:98. However, as il-
lustrated in Figure 6(b), varying the hot code thresh-
old has a significant effect on execution speed. For
example, atθ = 0:70 the programs slow down by a
factor of 5.3� on average, with them88ksimbench-
mark experiencing the largest slowdown, by a factor
of 7.7�. However, asθ is increased the slowdown
factor drops off quickly, to 2.6� at θ = 0:9 and 1.5�

at θ = 0:98. In summary, choosing a thresholdθ that
is close to 1.0 still results in most of the candidate
blocks in the program being converted to branch func-
tion calls without excessive performance penalty. For
the purposes of this paper, therefore, we give measure-
ments forθ = 0:98.

Figure 7 shows the efficacy of our obfuscation trans-
formations for both of the disassembly methods dis-
cussed in Section 2. The confusion factors achieved
for linear sweep disassembly are quite high: on aver-
age, 75% of the instructions, 56% of the basic blocks,
and 88% of the functions are incorrectly disassembled.
For recursive traversal, the confusion factors attained
are somewhat lower because in this case the disassem-
bler can understand and deal with control flow some-
what better than with linear sweep. Nevertheless, we
find that, on average, over 40% of the instructions in
the program incur disassembly errors. As a result, over
21% of the basic blocks and close to 48% of the func-
tions, on average, are incorrectly disassembled using

11



Confusion factor (%)
PROGRAM L INEAR SWEEP RECURSIVE TRAVERSAL

Instructions Basic blocks Functions Instructions Basic blocks Functions

compress 82.0 59.6 88.0 47.6 26.7 51.1
gcc 70.5 52.8 86.7 34.1 15.1 50.7
go 75.5 55.7 92.7 38.3 19.2 50.1
ijpeg 75.4 58.2 88.5 39.8 22.4 47.7
li 77.5 57.3 77.1 44.4 24.6 39.8
m88ksim 80.0 59.3 90.0 44.2 24.2 51.1
perl 75.2 56.5 89.0 44.0 24.3 49.9
vortex 65.4 50.6 92.9 34.5 17.8 43.4

Geo. mean 75.0 56.2 88.0 40.6 21.4 47.8

Figure 7: Efficacy of obfuscation: confusion factors (θ = 0:98)

this disassembly method. This is achieved at the cost
of a 52% penalty in execution speed (see Figure 8);
we are currently working on techniques to reduce this
performance penalty by significant amounts.

The reason the confusion factors for basic blocks
are lower than those for instructions and functions, for
both disassembly methods, is that basic blocks can
vary quite widely in size, ranging from a single in-
struction in many cases to several instructions in oth-
ers. When a disassembly error occurs, there is a high
likelihood that several nearby instructions will be in-
correctly disassembled. However, if a group of such
incorrectly disassembled instructions falls within a ba-
sic block, that will count as just a single incorrectly
disassembled block. On the other hand, when a basic
block consists of just a single instruction, and this in-
struction is correctly disassembled, it counts as a cor-
rectly disassembled block. In other words, when we
view the distribution of disassembly errors at the gran-
ularity of basic blocks, the clustering effects of incor-
rect disassembly result in a smaller confusion factor.
By contrast, when viewed at the level of functions, the
clustering effects are less significant (because func-
tions rarely get as small in size as basic blocks), and
the resulting confusion factors are higher.

The data reported in Figure 7 are actually quite con-
servative: in an effort to avoid unduly optimistic re-
sults, we supply our disassemblers with additional in-
formation, e.g., the size and extent of all the jump ta-
bles in the program, that helps with disassembly. To
evaluate the efficacy of our techniques in a more realis-

tic situation, we used a commercial disassembly tool,
IDA Pro version 4.3x [13], which is widely consid-
ered to be the most advanced disassembler available.
The results of this experiment are reported in Figure
9. It can be seen that this tool fails on most of the pro-
gram: close to 94% of the instructions, and about 83%
of the functions in the program, are disassembled in-
correctly. Part of the reason for this high degree of
failure is that IDA Pro only disassembles addresses
that (it believes) can be guaranteed to be instruction
addresses. This has two effects: first, large portions of
the code that are reached by branch function addresses
are simply not disassembled, being presented instead
to the user as a jumble of hex data; and second, the lo-
cation immediately following a branch function call is
treated as an address to which control returns, and this
causes some junk bytes to be erroneously disassem-
bled. Overall, this shows that our techniques are ef-
fective even against state-of-the-art disassembly tools.

Finally, Figure 10 shows the impact of obfuscation
on code size, both in terms of the number of instruc-
tions (which increases, for example, due to branch
flipping), as well as the number of bytes occupied
by the text section. The latter includes the effects of
the new instructions inserted as well as all junk bytes
added to the program. Overall, it can be seen that there
is a 42% increase in the total number of instructions,
and a 34% increase in the size of the text section of the
resulting executables.

The techniques described here apply to a wide vari-
ety of architectures. The insertion of partial instruc-
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NO. OF INSTRUCTIONS TEXT SECTION SIZE(BYTES)
PROGRAM Original Obfuscated Change Original Obfuscated Change

(I0) (I1) (I1=I0) (S0) (S1) (S1=S0)

compress 74785 108794 1.455 265975 360793 1.356
gcc 327131 463982 1.418 1128263 1514985 1.343
go 124422 176296 1.417 468527 616494 1.316
ijpeg 105764 148328 1.402 363159 483349 1.331
li 89307 127816 1.431 310291 418347 1.348
m88ksim 104209 150078 1.440 368788 498547 1.352
perl 137945 198231 1.437 484184 653461 1.350
vortex 174958 241583 1.381 592066 783316 1.323

Geo. mean 1.422 1.340

Figure 10: Effect of obfuscation on code size (θ = 0:98)

PROGRAM Confusion factor (%)
Instructions Basic blocks Functions

compress 98.5 73.2 83.8
gcc 91.0 66.2 82.2
go 93.1 68.7 89.6
ijpeg 94.1 72.4 83.9
li 93.9 70.2 70.8
m88ksim 96.8 71.8 85.1
perl 95.8 71.8 84.6
vortex 87.3 68.1 88.6

Geo. mean 93.8 70.3 83.4

Figure 9: Efficacy of obfuscation: IDA Pro disassem-
bler (θ = 0:98)

tions to confuse disassembly, as discussed in Sec-
tion 3.2, is applicable to variable-length instruction
sets, such as those on the widely used Intel Pen-
tium and Motorola 680x0, as well as the StrongArm
(together with the Thumb 16-bit instruction encod-
ing) and other mixed-mode architectures such as the
MIPS32/MIPS16. Branch functions and jump table
spoofing can be used on any architecture.

5 Related Work

The only work we are aware of that addresses the
problem of making executable programs harder to dis-
assemble is by Cohen, who proposes overlapping ad-
jacent instructions to fool a disassembler [7]. We are
not aware of any actual implementations of this pro-

posal. We implemented this idea as well as a num-
ber of variations on the basic scheme, but found the
results disappointing: the resulting confusion factors
were typically less than 1%. The reason for this is that
in order to overlap two adjacent instructionsI andJ,
we have to satisfy several conditions, among them:(i) execution cannot fall through fromI to J; and(ii) the trailingk bytes ofI must be identical with the

leadingk bytes ofJ for somek> 0.

There tend to be relatively very few candidates satisfy-
ing these criteria (e.g., the largest number of overlaps
we achieved was for thegcc benchmark, where we
found only 27 overlaps out of 360,152 instructions;
by contrast, our approach can use 11,205 candidates
before branch flipping on this program, and 38,927
candidates after branch flipping). Variations on this
theme, e.g., by judicious insertion, immediately before
the instructionJ, of no-ops or dead code that satisfy
the second condition above, do not seem to help mat-
ters significantly either. This scarcity of candidates for
overlapping, together with the self-repairing property
of disassembly errors discussed in Section 3.1, results
in poor confusion factor numbers using this approach.

There is a considerable body of work on code obfus-
cation that focuses on making it harder for an attacker
to decompile a program and extract high level seman-
tic information from it [3, 12, 19, 26, 27, 28]. Typi-
cally, these authors rely on the use of computationally
difficult static analysis problems, e.g., involving com-
plex Boolean expressions, pointers, or indirect control
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flow, to make it harder to construct a precise control
flow graph for a program. Of the references cited,
only Wroblewski focuses specifically on obfuscation
of executable programs [28]. Our work is orthogo-
nal to these proposals, and complementary to them.
We aim to make a program harder to disassemble cor-
rectly, and to thereby sow uncertainty in an attacker’s
mind about which portions of a disassembled program
have been correctly disassembled and which parts may
contain disassembly errors. If the program has already
been obfuscated using any of these higher-level ob-
fuscation techniques, our techniques add an additional
layer of protection that makes it even harder to deci-
pher the actual structure of the program.

Even greater security may be obtained by maintain-
ing the software in encrypted form and decrypting it as
needed during execution, as suggested by Aucsmith
[1]; or using specialized hardware, as discussed by
Lie et al. [16]. While extremely effective, such ap-
proaches have the disadvantages of high performance
overhead (in the case of runtime decryption in the ab-
sence of specialized hardware support) or a loss of
flexibility because the software can no longer be run
on stock hardware.

6 Conclusions

A great deal of software is distributed in the form of
executable code. Such code is potentially vulnera-
ble to reverse engineering, in the form of disassem-
bly followed by decompilation. This can allow an
attacker to discover vulnerabilities in the software,
modify it in unauthorized ways, or steal intellectual
property via software piracy. This paper describes
and evaluates techniques to make executable programs
harder to disassemble. Our techniques are seen to be
quite effective: applied to the widely used SPECint-
95 benchmark suite, they result in disassembly er-
rors over much of the program; the best commercially
available disassembly tool fails to correctly disassem-
ble over 93% of the instructions, and 83% of the func-
tions, in the obfuscated binaries.
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Storing a sparse table withO(1) worst case ac-
cess time.Journal of the ACM, 31(3):538–544,
July 1984.

[15] J. R. Levine. Linkers and Loaders. Morgan
Kaufman Publishers, San Francisco, CA, 2000.

[16] D. Lie, C. Thekkath, M. Mitchell, P. Lincoln,
D. Boneh, J. Mitchell, and M. Horowitz. Ar-
chitectural support for copy and tamper resistant
software. InProc. 9th. International Conference
on Architectural Support for Programming Lan-
guages and Operating Systems (ASPLOS-IX),
pages 168–177, November 2000.

[17] R. Muth, S. K. Debray, S. Watterson, and K. De
Bosschere.alto : A link-time optimizer for the
Compaq Alpha.Software—Practice and Experi-
ence, 31:67–101, January 2001.

[18] Objdump. GNU Manuals Online. GNU
Project—Free Software Foundation.
http://www.gnu.org/manual/binutils-
2.10.1/html chapter/binutils 4.html.

[19] T. Ogiso, Y. Sakabe, M. Soshi, and A. Miyaji.
Software obfuscation on a theoretical basis and
its implementation.IEEE Trans. Fundamentals,
E86-A(1), January 2003.

[20] K. Pettis and R. C. Hansen. Profile-guided code
positioning. InProc. ACM SIGPLAN Conference
on Programming Language Design and Imple-
mentation, pages 16–27, June 1990.

[21] B. Schwarz, S. K. Debray, and G. R. Andrews.
Plto: A link-time optimizer for the Intel IA-32
architecture. InProc. 2001 Workshop on Binary
Translation (WBT-2001), 2001.

[22] B. Schwarz, S. K. Debray, and G. R. Andrews.
Disassembly of executable code revisited. In
Proc. IEEE 2002 Working Conference on Re-
verse Engineering (WCRE), pages 45–54, Octo-
ber 2002.

[23] R. L. Sites, A. Chernoff, M. B. Kirk, M. P.
Marks, and S. G. Robinson. Binary transla-
tion. Communications of the ACM, 36(2):69–81,
February 1993.

[24] A. Srivastava and D. W. Wall. A practical system
for intermodule code optimization at link-time.
Journal of Programming Languages, 1(1):1–18,
March 1993.

[25] H. Theiling. Extracting safe and precise control
flow from binaries. InProc. 7th Conference on
Real-Time Computing Systems and Applications,
December 2000.

[26] C. Wang, J. Davidson, J. Hill, and J. Knight.
Protection of software-based survivability mech-
anisms. InProc. International Conference of De-
pendable Systems and Networks, July 2001.

[27] C. Wang, J. Hill, J. Knight, and J. Davidson.
Software tamper resistance: Obstructing static
analysis of programs. Technical Report CS-
2000-12, 12 2000.

[28] G. Wroblewski. General Method of Program
Code Obfuscation. PhD thesis, Wroclaw Uni-
versity of Technology, Institute of Engineering
Cybernetics, 2002.

15


