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ABSTRACT 
The parallel explosions of interest in streaming data, and data mining of 
time series have had surprisingly little intersection. This is in spite of the 
fact that time series data are typically streaming data. The main reason for 
this apparent paradox is the fact that the vast majority of work on 
streaming data explicitly assumes that the data is discrete, whereas the vast 
majority of time series data is real valued.  
Many researchers have also considered transforming real valued time 
series into symbolic representations, noting that such representations 
would potentially allow researchers to avail of the wealth of data 
structures and algorithms from the text processing and bioinformatics 
communities, in addition to allowing formerly  “batch-only” problems to 
be tackled by the streaming community. While many symbolic 
representations of time series have been introduced over the past decades, 
they all suffer from three fatal flaws. Firstly, the dimensionality of the 
symbolic representation is the same as the original data, and virtually all 
data mining algorithms scale poorly with dimensionality. Secondly, 
although distance measures can be defined on the symbolic approaches, 
these distance measures have little correlation with distance measures 
defined on the original time series. Finally, most of these symbolic 
approaches require one to have access to all the data, before creating the 
symbolic representation. This last feature explicitly thwarts efforts to use 
the representations with streaming algorithms. 
In this work we introduce a new symbolic representation of time series. 
Our representation is unique in that it allows dimensionality/numerosity 
reduction, and it also allows distance measures to be defined on the 
symbolic approach that lower bound corresponding distance measures 
defined on the original series. As we shall demonstrate, this latter feature 
is particularly exciting because it allows one to run certain data mining 
algorithms on the efficiently manipulated symbolic representation, while 
producing identical results to the algorithms that operate on the original 
data. Finally, our representation allows the real valued data to be 
converted in a streaming fashion, with only an infinitesimal time and 
space overhead. 

We will demonstrate the utility of our representation on the classic data 
mining tasks of clustering, classification, query by content and anomaly 
detection.   

Keywords 
Time Series, Data Mining, Data Streams, Symbolic, Discretize 

1. INTRODUCTION 
The parallel explosions of interest in streaming data [4, 8, 10, 18], 
and data mining of time series [6, 7, 9, 20, 21, 24, 26, 34] have 
had surprisingly little intersection. This is in spite of the fact that 

time series data are typically streaming data, for example, stock 
value, medical and meteorological data [30]. The main reason for 
this apparent paradox is the fact that the vast majority of work on 
streaming data explicitly assumes that the data is discrete, whereas 
the vast majority of time series data is real valued [23]. 
Many high level representations of time series have been 
proposed for data mining. Figure 1 illustrates a hierarchy of all the 
various time series representations in the literature [2, 7, 14, 16, 
20, 22, 25, 30, 31, 35]. One representation that the data mining 
community has not considered in detail is the discretization of the 
original data into symbolic strings. At first glance this seems a 
surprising oversight. In addition to allowing the framing of time 
series problems as streaming problems, there is an enormous 
wealth of existing algorithms and data structures that allow the 
efficient manipulations of symbolic representations. Such 
algorithms have received decades of attention in the text retrieval 
community, and more recent attention from the bioinformatics 
community [3, 13, 17, 29, 32, 33]. Some simple examples of 
“tools” that are not defined for real-valued sequences but are 
defined for symbolic approaches include hashing, Markov 
models, suffix trees, decision trees etc. As a more concrete 
example, consider the Jaccard coefficient [13], a distance measure 
beloved by streaming researchers. The Jaccard coefficient is only 
well defined for discrete data (such as web clicks or individual 
keystrokes) as thus cannot be used with real-valued time series. 
There is a simple explanation for the data mining community’s 
lack of interest in symbolic manipulation as a supporting 
technique for mining time series. If the data are transformed into 
virtually any of the other representations depicted in Figure 1, 
then it is possible to measure the similarity of two time series in 
that representation space, such that the distance is guaranteed to 
lower bound the true distance between the time series in the 
original space. This simple fact is at the core of almost all 
algorithms in time series data mining and indexing [14]. However, 
in spite of the fact that there are dozens of techniques for 
producing different variants of the symbolic representation [2, 11, 
20], there is no known method for calculating the distance in the 
symbolic space, while providing the lower bounding guarantee.  
In addition to allowing the creation of lower bounding distance 
measures, there is one other highly desirable property of any time 
series representation, including a symbolic one. Almost all time 
series datasets are very high dimensional. This is a challenging 
fact because all non-trivial data mining and indexing algorithms 
degrade exponentially with dimensionality. For example, above 
16-20 dimensions, index structures degrade to sequential scanning 
[19]. 
 



 

Figure 1: A hierarchy of all the various time series representations in the literature. The leaf nodes refer to the actual representation, and the internal 
nodes refer to the classification of the approach. The contribution of this paper is to introduce a new representation, the lower bounding symbolic 
approach 

None of the symbolic representations that we are aware of allow 
dimensionality reduction [2, 11, 20]. There is some reduction in 
the storage space required, since fewer bits are required for each 
value; however, the intrinsic dimensionality of the symbolic 
representation is the same as the original data. 
In [4], Babcock et. al ask if “there is a need for database 
researchers to develop fundamental and general-purpose 
models… for data streams.” The opinion of the authors is 
affirmative. In this work we take a step towards this goal by 
introducing a representation of time series that is suitable for 
streaming algorithms. It is dimensionality reducing, lower 
bounding and can be obtained in a streaming fashion. 
As we shall demonstrate, the lower bounding feature is 
particularly exciting because it allows one to run certain data 
mining algorithms on the efficiently manipulated symbolic 
representation, while producing identical results to the algorithms 
that operate on the original data. In particular, we will 
demonstrate the utility of our representation on the classic data 
mining tasks of clustering [21], classification [16], indexing [1, 
14, 22, 35], and anomaly detection [9, 24, 31].   
The rest of this paper is organized as follows. Section 2 briefly 
discusses background material on time series data mining and 
related work. Section 3 introduces our novel symbolic approach, 
and discusses its dimensionality reduction, numerosity reduction 
and lower bounding abilities. Section 4 contains an experimental 
evaluation of the symbolic approach on a variety of data mining 
tasks. Finally, Section 5 offers some conclusions and suggestions 
for future work. 

2. BACKGROUND AND RELATED WORK 
Time series data mining has attracted enormous attention in the 
last decade. The review below is necessarily brief; we refer 
interested readers to [30, 23] for a more in depth review. 

2.1 Time Series Data Mining Tasks 
While making no pretence to be exhaustive, the following list 
summarizes the areas that have seen the majority of research 
interest in time series data mining. 
• Indexing: Given a query time series Q, and some 

similarity/dissimilarity measure D(Q,C), find the most 
similar time series in database DB [1, 7, 14,22, 35]. 

• Clustering: Find natural groupings of the time series in 
database DB under some similarity/dissimilarity measure 
D(Q,C) [21,25]. 

• Classification: Given an unlabeled time series Q, assign it to 
one of two or more predefined classes [16]. 

• Summarization: Given a time series Q containing n 
datapoints where n is an extremely large number, create a 
(possibly graphic) approximation of Q which retains its 
essential features but fits on a single page, computer screen, 
executive summary, etc [26]. 

• Anomaly Detection: Given a time series Q, and some model 
of “normal” behavior, find all sections of Q which contain 
anomalies, or “surprising/interesting/unexpected/novel” 
behavior [9, 24, 31].  

Since the datasets encountered by data miners typically don’t fit in 
main memory, and disk I/O tends to be the bottleneck for any data 
mining task, a simple generic framework for time series data 
mining has emerged [14]. The basic approach is outlined in Table 
1. 

1. 
Create an approximation of the data, which will fit in main 
memory, yet retains the essential features of interest. 

2. Approximately solve the task at hand in main memory. 

3. 

Make (hopefully very few) accesses to the original data on 
disk to confirm the solution obtained in Step 2, or to 
modify the solution so it agrees with the solution we 
would have obtained on the original data. 

Table 1: A generic time series data mining approach 
It should be clear that the utility of this framework depends 
heavily on the quality of the approximation created in Step 1. If 
the approximation is very faithful to the original data, then the 
solution obtained in main memory is likely to be the same as, or 
very close to, the solution we would have obtained on the original 
data. The handful of disk accesses made in Step 3 to confirm or 
slightly modify the solution will be inconsequential compared to 
the number of disk accesses required had we worked on the 
original data. With this in mind, there has been great interest in 
approximate representations of time series, which we consider 
below. 

2.2 Time Series Representations  
As with most problems in computer science, the suitable choice of 
representation greatly affects the ease and efficiency of time series 
data mining. With this in mind, a great number of time series 
representations have been introduced, including the Discrete 
Fourier Transform (DFT) [14], the Discrete Wavelet Transform 
(DWT) [7], Piecewise Linear, and Piecewise Constant models 
(PAA) [22], (APCA) [16, 22], and Singular Value Decomposition 
(SVD) [22]. Figure 2 illustrates the most commonly used 
representations. 
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Figure 2: The most common representations for time series data 
mining. Each can be visualized as an attempt to approximate the signal 
with a linear combination of basis functions  

Recent work suggests that there is little to choose between the 
above in terms of indexing power [23]; however, the 
representations have other features that may act as strengths or 
weaknesses. As a simple example, wavelets have the useful 
multiresolution property, but are only defined for time series that 
are an integer power of two in length [7].  
One important feature of all the above representations is that they 
are real valued. This limits the algorithms, data structures and 
definitions available for them. For example, in anomaly detection 
we cannot meaningfully define the probability of observing any 
particular set of wavelet coefficients, since the probability of 
observing any real number is zero [27]. Such limitations have lead 
researchers to consider using a symbolic representation of time 
series. 
While there are literally hundreds of papers on discretizing 
(symbolizing, tokenizing, quantizing) time series [2, 20] (see [11] 
for an extensive survey), none of the techniques allows a distance 
measure that lower bounds a distance measure defined on the 
original time series. For this reason, the generic time series data 
mining approach illustrated in Table 1 is of little utility, since the 
approximate solution to problem created in main memory may be 
arbitrarily dissimilar to the true solution that would have been 
obtained on the original data. If, however, one had a symbolic 
approach that allowed lower bounding of the true distance, one 
could take advantage of the generic time series data mining 
model, and of a host of other algorithms, definitions and data 
structures which are only defined for discrete data, including 
hashing, Markov models, and suffix trees. This is exactly the 
contribution of this paper.  We call our symbolic representation of 
time series SAX (Symbolic Aggregate approXimation), and 
define it in the next section. 

3. SAX: OUR SYMBOLIC APPROACH 
SAX allows a time series of arbitrary length n to be reduced to a 
string of arbitrary length w, (w < n, typically w << n). The 
alphabet size is also an arbitrary integer a, where a > 2. Table 2 
summarizes the major notation used in this and subsequent 
sections. 

C A time series C = c1,…,cn  

C  
A Piecewise Aggregate Approximation of a time series 

wccC ,...,1=   

Ĉ  A symbol representation of a time series wccC ˆ,...,ˆˆ
1=  

w The number of PAA segments representing time series 
C 

a Alphabet size (e.g., for the alphabet = {a,b,c},  a = 3) 

Table 2: A summarization of the notation used in this paper 

Our discretization procedure is unique in that it uses an 
intermediate representation between the raw time series and the 
symbolic strings. We first transform the data into the Piecewise 
Aggregate Approximation (PAA) representation and then 
symbolize the PAA representation into a discrete string. There are 
two important advantages to doing this:  
• Dimensionality Reduction: We can use the well-defined 

and well-documented dimensionality reduction power of 
PAA [22, 35], and the reduction is automatically carried over 
to the symbolic representation. 

• Lower Bounding: Proving that a distance measure between 
two symbolic strings lower bounds the true distance between 
the original time series is non-trivial. The key observation 
that allows us to prove lower bounds is to concentrate on 
proving that the symbolic distance measure lower bounds the 
PAA distance measure. Then we can prove the desired result 
by transitivity by simply pointing to the existing proofs for 
the PAA representation itself [35]. 

We will briefly review the PAA technique before considering the 
symbolic extension. 

3.1 Dimensionality Reduction Via PAA 
A time series C of length n can be represented in a w-dimensional 
space by a vector wccC ,,1 K= . The ith element of C is 
calculated by the following equation: 

∑
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Simply stated, to reduce the time series from n dimensions to w 
dimensions, the data is divided into w equal sized “frames.” The 
mean value of the data falling within a frame is calculated and a 
vector of these values becomes the data-reduced representation. 
The representation can be visualized as an attempt to approximate 
the original time series with a linear combination of box basis 
functions as shown in Figure 3. 

 

Figure 3: The PAA representation can be visualized as an attempt 
to model a time series with a linear combination of box basis 
functions. In this case, a sequence of length 128 is reduced to 8 
dimensions 

The PAA dimensionality reduction is intuitive and simple, yet has 
been shown to rival more sophisticated dimensionality reduction 
techniques like Fourier transforms and wavelets [22, 23, 35].  
We normalize each time series to have a mean of zero and a 
standard deviation of one before converting it to the PAA 

 

0  2 0 4 0  6 0 8 0  1 0 0  1 2 0  

-1 .5

-1

-0 .5

0

0 .5

1

1 .5

c 1  

c 2  

c 3  

c 4  

c 5  

c 6  

c 7  

c 8  

C  

C  

0 50 100 0 50 1000 50 100 0 50 100 

Discrete Fourier 
Transform 

Piecewise Linear 
Approximation 

Haar Wavelet  Adaptive Piecewise 
Constant Approximation 

 



representation, since it is well understood that it is meaningless to 
compare time series with different offsets and amplitudes [23]. 

3.2 Discretization 
Having transformed a time series database into PAA, we can 
apply a further transformation to obtain a discrete representation. 
It is desirable to have a discretization technique that will produce 
symbols with equiprobability [3, 28]. This is easily achieved since 
normalized time series have a Gaussian distribution [27]. To 
illustrate this, we extracted subsequences of length 128 from 8 
different time series and plotted a normal probability plot of the 
data as shown in Figure 4.  

 

Figure 4: A normal probability plot of the cumulative distribution of 
values from subsequences of length 128 from 8 different datasets. The 
highly linear nature of the plot strongly suggests that the data came 
from a Gaussian distribution 

Given that the normalized time series have highly Gaussian 
distribution, we can simply determine the “breakpoints” that will 
produce a equal-sized areas under Gaussian curve [27]. 

Definition 1. Breakpoints: breakpoints are a sorted list of 
numbers Β = β1,…,βa-1 such that the area under a N(0,1) 
Gaussian curve from βi  to βi+1 = 1/a (β0  and βa  are defined as 
-∞ and ∞, respectively). 

These breakpoints may be determined by looking them up in a 
statistical table. For example, Table 3 gives the breakpoints for 
values of a from 3 to 10.  

a  
βi  

3 4 5 6 7 8 9 10 

β1  -0.43 -0.67 -0.84 -0.97 -1.07 -1.15 -1.22 -1.28 

β2 0.43 0 -0.25 -0.43 -0.57 -0.67 -0.76 -0.84 

β3  0.67 0.25 0 -0.18 -0.32 -0.43 -0.52 

β4   0.84 0.43 0.18 0 -0.14 -0.25 

β5    0.97 0.57 0.32 0.14 0 

β6     1.07 0.67 0.43 0.25 

β7      1.15 0.76 0.52 

β8       1.22 0.84 

β9        1.28 

Table 3: A lookup table that contains the breakpoints that 
divide a Gaussian distribution in an arbitrary number (from 3 
to 10) of equiprobable regions 

Once the breakpoints have been obtained we can discretize a time 
series in the following manner. We first obtain a PAA of the time 
series. All PAA coefficients that are below the smallest breakpoint 
are mapped to the symbol “a,” all coefficients greater than or 
equal to the smallest breakpoint and less than the second smallest 
breakpoint are mapped to the symbol “b,” etc. Figure 5 illustrates 
the idea. 

 

Figure 5: A time series is discretized by first obtaining a PAA 
approximation and then using predetermined breakpoints to map the 
PAA coefficients into SAX symbols. In the example above, with n = 
128, w = 8 and a = 3, the time series is mapped to the word baabccbc   

Note that in this example the 3 symbols, “a,” “b,” and “c” are 
approximately equiprobable as we desired. We call the 
concatenation of symbols that represent a subsequence a word. 

Definition 2. Word: A subsequence C of length n can be 
represented as a word wccC ˆ,,ˆˆ

1 K= as follows. Let alphai 
denote the ith element of the alphabet, i.e., alpha1 = a and alpha2 
= b. Then the mapping from a PAA approximation C  to a 

word Ĉ  is obtained as follows: 

jijji ciifalphac ββ <≤= −1,ˆ  (2) 

We have now defined SAX, our symbolic representation (the 
PAA representation is merely an intermediate step required to 
obtain the symbolic representation). 

3.3 Distance Measures 
Having introduced the new representation of time series, we can 
now define a distance measure on it. By far the most common 
distance measure for time series is the Euclidean distance [23, 29]. 
Given two time series Q and C of the same length n, Eq. 3 defines 
their Euclidean distance, and Figure 6.A illustrates a visual 
intuition of the measure. 

( ) ( )∑ −≡
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i
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If we transform the original subsequences into PAA 
representations, Q and C , using Eq. 1, we can then obtain a 
lower bounding approximation of the Euclidean distance between 
the original subsequences by: 

( )∑ =
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w

i iiw
n cqCQDR

1
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This measure is illustrated in Figure 6.B. A proof that DR(Q , C ) 
lower bounds the true Euclidean distance appears in [22] (an 
alterative proof appears in [35] ). 
If we further transform the data into the symbolic representation, 
we can define a MINDIST function that returns the minimum 
distance between the original time series of two words: 

( )∑ =
≡

w

i iiw
n cqdistCQMINDIST

1
2)ˆ,ˆ()ˆ,ˆ(   (5) 

The function resembles Eq. 4 except for the fact that the distance 
between the two PAA coefficients has been replaced with the sub-
function dist(). The dist() function can be implemented using a 
table lookup as illustrated in Table 4.   
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 a b c d 
a 0 0 0.67 1.34 
b 0 0 0 0.67 
c 0.67 0 0 0 
d 1.34 0.67 0 0 

Table 4: A lookup table used by the MINDIST function. This 
table is for an alphabet of cardinality of 4, i.e. a=4. The 
distance between two symbols can be read off by examining 
the corresponding row and column. For example, dist(a,b) = 0 
and dist(a,c) = 0.67. 

The value in cell (r,c) for any lookup table can be calculated by 
the following expression.  
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For a given value of the alphabet size a, the table needs only be 
calculated once, then stored for fast lookup. The MINDIST 
function can be visualized in Figure 6.C.  

 

Figure 6: A visual intuition of the three representations discussed in this 
work, and the distance measures defined on them. A) The Euclidean 
distance between two time series can be visualized as the square root of 
the sum of the squared differences of each pair of corresponding points. 
B) The distance measure defined for the PAA approximation can be seen 
as the square root of the sum of the squared differences between each 
pair of corresponding PAA coefficients, multiplied by the square root of 
the compression rate. C) The distance between two SAX representations 
of a time series requires looking up the distances between each pair of 
symbols, squaring them, summing them, taking the square root and 
finally multiplying by the square root of the compression rate  

There is one issue we must address if we are to use a symbolic 
representation of time series. If we wish to approximate a massive 
dataset in main memory, the parameters w and a have to be 
chosen in such a way that the approximation makes the best use of 
the primary memory available. There is a clear tradeoff between 
the parameter w controlling the number of approximating 

elements, and the value a controlling the granularity of each 
approximating element. 
It is infeasible to determine the best tradeoff analytically, since it 
is highly data dependent. We can, however, empirically determine 
the best values with a simple experiment. Since we wish to 
achieve the tightest possible lower bounds, we can simply 
estimate the lower bounds over all possible feasible parameters, 
and choose the best settings.   

),(
)ˆ,ˆ(

CQD
CQMINDISTBoundLowerofTightness =       (7) 

We performed such a test with a concatenation of 50 time series 
databases taken from the UCR time series data mining archive. 
For every combination of parameters we averaged the result of 
100,000 experiments on subsequences of length 256. Figure 7 
shows the results. 

 

Figure 7: The empirically estimated tightness of lower bounds over the 
cross product of a = [3…11] and w = [2…8]. The darker histogram bars 
illustrate combinations of parameters that require approximately equal 
space to store every possible word (approximately 4 megabytes) 

The results suggest that using a low value for a results in weak 
bounds, but that there are diminishing returns for large values of 
a. The results also suggest that the parameters are not too critical; 
an alphabet size in the range of 5 to 8 seems to be a good choice. 

3.4 Numerosity Reduction 
We have seen that, given a single time series, our approach can 
significantly reduce its dimensionality. In addition, our approach 
can reduce the numerosity of the data for some applications.  
Most applications assume that we have one very long time series 
T, and that manageable subsequences of length n are extracted by 
use of a sliding window, then stored in a matrix for further 
manipulation [7, 14, 22, 35]. Figure 8 illustrates the idea. 

 

Figure 8:  An illustration of the notation introduced in this section: A 
time series T of length 128, the subsequence C67 of length n = 16, and 
the first 8 subsequences extracted by a sliding window. Note that the 
sliding windows are overlapping 
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When performing sliding windows subsequence extraction, with 
any of the real-valued representations, we must store all |T| - n + 1 
extracted subsequences (in dimensionality reduced form). 
However, imagine for a moment that we are using our proposed 
approach. If the first word extracted is aabbcc, and the window is 
shifted to discover that the second word is also aabbcc, we can 
reasonably decide not to include the second occurrence of the 
word in sliding windows matrix. If we ever need to retrieve all 
occurrences of aabbcc, we can go to the location pointed to by the 
first occurrences, and remember to slide to the right, testing to see 
if the next window is also mapped to the same word. We can stop 
testing as soon as the word changes. This simple idea is very 
similar to the run-length-encoding data compression algorithm. 
The utility of this optimization depends on the parameters used 
and the data itself, but it typically yields a numerosity reduction 
factor of two or three. However, many datasets are characterized 
by long periods of little or no movement, followed by bursts of 
activity (seismological data is an obvious example). On these 
datasets the numerosity reduction factor can be huge. Consider the 
example shown in Figure 9. 

 

Figure 9: Sliding window extraction on Space Shuttle Telemetry 
data, with n = 32. At time point 61, the extracted word is aabbcc, and 
the next 401 subsequences also map to this word. Only a pointer to 
the first occurrence must be recorded, thus producing a large 
reduction in numerosity 

There is only one special case we must consider. As we noted in 
Section 3.1, we normalize each time series (including 
subsequences) to have a mean of zero and a standard deviation of 
one. However, if the subsequence contains only one value, the 
standard deviation is not defined. More troublesome is the case 
where the subsequence is almost constant, perhaps 31 zeros and a 
single 0.0001. If we normalize this subsequence, the single 
differing element will have its value exploded to 5.48. This 
situation occurs quite frequently. For example, the last 200 time 
units of the data in Figure 9 appear to be constant, but actually 
contain tiny amounts of noise. If we were to normalize 
subsequences extracted from this area, the normalization would 
magnify the noise to large meaningless patterns. 
We can easily deal with this problem, if the standard deviation of 
the sequence before normalization is below an epsilon ε, we 
simply assign the entire word to the middle-ranged alphabet (e.g. 
cccccc if a = 5). 
We end this section with a visual comparison between SAX and 
the four most used representations in the literature (Figure 10). 
 
 

 

Figure 10:  A visual comparison of SAX and the four most common 
time series data mining representations. A raw time series of length 
128 is transformed into the word 
ffffffeeeddcbaabceedcbaaaaacddee. This is a fair comparison since 
the number of bits in each representation is the same 

4. EXPERIMENTAL VALIDATION OF SAX 
We performed various data mining tasks using SAX.  For 
clustering and classification, we compared the results with the 
classic Euclidean distance, and with other previously proposed 
symbolic approaches.  Note that none of these other approaches 
use dimensionality reduction.   In the next paragraph we 
summarize the strawmen representations that we compare SAX 
to. We choose these two approaches since they are typical 
representatives of symbolic approaches in the literature.  
André-Jönsson, and Badal [2] proposed the SDA algorithm that 
computes the changes between values from one instance to the 
next, and divide the range into user-predefined regions.  The 
disadvantages of this approach are obvious: prior knowledge of 
the data distribution of the time series is required in order to set 
the breakpoints; and the discretized time series does not conserve 
the general shape or distribution of the data values. 
Huang and Yu proposed the IMPACTS algorithm, which uses 
change ratio between one time point to the next time point to 
discretize the time series [20].  The range of change ratios are then 
divided into equal-sized sections and mapped into symbols.  The 
time series is converted to a discretized collection of change 
ratios.  As with SAX, the user needs to define the cardinality of 
symbols.    

4.1 Clustering 
Clustering is one of the most common data mining tasks, being 
useful in its own right as an exploratory tool, and also as a sub-
routine in more complex algorithms [12,15, 21]. 

4.1.1 Hierarchical Clustering 
Comparing hierarchical clusterings is a very good way to compare 
and contrast similarity measures, since a dendrogram of size N 
summarizes O(N2) distance calculations [23]. The evaluation is 
typically subjective; we simply adjudge which distance measure 
appears to create the most natural groupings of the data. However, 
if we know the data labels in advance we can also make objective 
statements of the quality of the clustering. In Figure 11 we 
clustered nine time series from the Control Chart dataset, three 
each from the decreasing trend, upward shift and normal classes. 
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Figure 11: A comparison of the four distance measures’ ability to 
cluster members of the Control Chart dataset. Complete linkage was 
used as the agglomeration technique 

In this case we can objectively state that SAX is superior, since it 
correctly assigns each class to its own subtree. This is simply a 
side effect due to the smoothing effect of dimensionality 
reduction. More generally, we observed SAX closely mimics 
Euclidean distance on various datasets. 

4.1.2 Partitional Clustering 
Although hierarchical clustering is a good sanity check for any 
proposed distance measure, it has limited utility for data mining 
because of its poor scalability. The most commonly used data 
mining clustering algorithm is k-means [15], so for completeness 
we will consider it here.  We performed k-means on both the 
original raw data, and our symbolic representation. Figure 12 
shows a typical run of k-means on a space telemetry dataset. Both 
algorithms converge after 11 iterations on average. 
The results here are quite unintuitive and surprising; working with 
an approximation of the data gives better results than working 
with the original data. Fortunately, a recent paper offers a 
suggestion as to why this might be so. It has been shown that 
initializing the clusters centers on a low dimension approximation 
of the data can improve the quality [12], this is what clustering 
with SAX implicitly does. 

 

Figure 12: A comparison of the k-means clustering algorithm using 
SAX and the raw data. The dataset was Space Shuttle telemetry, 
1,000 subsequences of length 512. Surprisingly, working with the 
symbolic approximation produces better results than working with the 
original data 

4.2 Classification 
Classification of time series has attracted much interest from the 
data mining community. The high dimensionality, high feature 
correlation, and typically high levels of noise found in time series 
provide an interesting research problem [23]. Although special- 
purpose algorithms have been proposed [25], we will consider 
only the two most common classification algorithms for brevity, 
clarity of presentations and to facilitate independent confirmation 
of our findings.  

4.2.1 Nearest Neighbor Classification 
To compare different distance measures on 1-nearest-neighbor 
classification, we used leaving-one-out cross validation.  We 
compare SAX with Euclidean distance, IMPACTS, SDA, and 
LP∞.  Two classic synthetic datasets are used: the Cylinder-Bell-
Funnel (CBF) dataset has 50 instances of time series for each of 
the three clusters, and the Control Chart (CC) has 100 instances 
for each of the six clusters [23].   
Since SAX allows dimensionality and alphabet size as user input, 
and the IMPACTS allows variable alphabet size, we ran the 
experiments on different combinations of dimensionality 
reduction and alphabet size.   For the other approaches we applied 
the simple dimensionality reduction technique of skipping data 
points at a fixed interval.  In Figure 13, we show the results with a 
dimensionality reduction of 4 to 1. 
Similar results were observed for other levels of dimensionality 
reduction. Once again, SAX’s ability to beat Euclidean distance is 
probably due to the smoothing effect of dimensionality reduction; 
nevertheless, this experiment does show the superiority of SAX 
over the other approaches proposed in the literature.    

4.2.2 Decision Tree Classification 
Due to its poor scalability, Nearest Neighbor is unsuitable for 
most data mining applications; instead, decision trees are the most 
common choice of classifier. While decision trees are defined for 
real data, attempting to classify time series using the raw data 
would clearly be a mistake, since the high dimensionality and 
noise levels would result in a deep, bushy tree with poor accuracy. 
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Figure 13: A comparison of five distance measures utility for nearest 
neighbor classification. We tested different alphabet sizes for SAX and 
IMPACTS.  SDA’s alphabet size is fixed at 5. 

In an attempt to overcome this problem, Geurts [16] suggests 
representing the time series as a Regression Tree (RT) (this 
representation is essentially the same as APCA [22], see Figure 
2), and training the decision tree directly on this representation. 
The technique shows great promise. 
We compared SAX to the Regression Tree (RT) on two datasets; 
the results are in Table 5. 

Dataset SAX Regression Tree 
CC 3.04 ± 1.64 2.78 ± 2.11 

CBF 0.97 ± 1.41 1.14 ± 1.02 

Table 5: A comparison of SAX with the specialized 
Regression Tree approach for decision tree classification. 
Our approach used an alphabet size of 6; both approaches 
used a dimensionality of 8 

Note that while our results are competitive with the RT approach, 
The RT representation is undoubtedly superior in terms of 
interpretability [16]. Once again, our point is simply that our 
“black box” approach can be competitive with specialized 
solutions.    

4.3 Query by Content (Indexing) 
The majority of work on time series data mining appearing in the 
literature has addressed the problem of indexing time series for 
fast retrieval [30]. Indeed, it is in this context that most of the 
representations enumerated in Figure 1 were introduced [7, 14, 22, 
35]. Dozens of papers have introduced techniques to do indexing 
with a symbolic approach [2, 20], but without exception, the 
answer set retrieved by these techniques can be very different to 
the answer set that would be retrieved by the true Euclidean 
distance. It is only by using a lower bounding technique that one 
can guarantee retrieving the full answer set, with no false 
dismissals [14].  
To perform query by content, we built an index using SAX, and 
compared it to an index built using the Haar wavelet approach [7].  
Since the datasets we use are large and disk-resident, and the 
reduced dimensionality could still be potentially high (or at least 
high enough such that the performance degenerates to sequential 
scan if R-tree were used [19]), we use Vector Approximation 
(VA) file as our indexing algorithm. We note, however, that SAX 
could also be indexed by classic string indexing techniques such 
as suffix trees.    

To compare performance, we measure the percentage of disk I/Os 
required in order to retrieve the one-nearest neighbor to a 
randomly extracted query, relative to the number of disk I/Os 
required for sequential scan. Since it has been forcibly shown that 
the choice of dataset can make a significant difference in the 
relative indexing ability of a representation, we tested on more 
than 50 datasets from the UCR Time Series Data Mining Archive. 
In Figure 14 we show 4 representative examples. 

 
 

Figure 14: A comparison of indexing ability of wavelets versus SAX. 
The Y-axis is the percentage of the data that must be retrieved from 
disk to answer a 1-NN query of length 256, when the dimensionality 
reduction ratio is 32 to 1 for both approaches 

Once again we find our representation competitive with existing 
approaches. 

4.4 Taking Advantage of the Discrete Nature 
of our Representation 
In the previous sections we showed examples of how our 
proposed representation can compete with real-valued 
representations and the original data. In this section we illustrate 
examples of data mining algorithms that take explicit advantage 
of the discrete nature of our representation. 

4.4.1 Detecting Novel/Surprising/Anomalous Behavior 
A simple idea for detecting anomalous behavior in time series is 
to examine previously observed normal data and build a model of 
it. Data obtained in the future can be compared to this model and 
any lack of conformity can signal an anomaly [9]. In order to 
achieve this, in [24] we combined a statistically sound scheme 
with an efficient combinatorial approach. The statistical scheme is 
based on Markov chains and normalization. Markov chains are 
used to model the “normal” behavior, which is inferred from the 
previously observed data. The time- and space-efficiency of the 
algorithm comes from the use of suffix tree as the main data 
structure. Each node of the suffix tree represents a pattern. The 
tree is annotated with a score obtained comparing the support of a 
pattern observed in the new data with the support recorded in the 
Markov model. This apparently simple strategy turns out to be 
very effective in discovering surprising patterns. In the original 
work we use a simple symbolic approach, similar to IMPACTS 
[20]; here we revisit the work using SAX.  
For completeness, we will compare SAX to two highly referenced 
anomaly detection algorithms that are defined on real valued 
representations, the TSA-tree Wavelet based approach of Shahabi 
et al. [31] and the Immunology (IMM) inspired work of Dasgupta 
and Forrest [9]. We also include the Markov technique using 
IMPACTS and SDA in order to discover how much of the 
difference can be attributed directly to the representation. Figure 
15 contains an experiment comparing all 5 techniques.  
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Figure 15: A comparison of five anomaly detection algorithms on the 
same task. I) The training data, a slightly noisy sine wave of length 
1,000. II) The time series to be examined for anomalies is a noisy sine 
wave that was created with the same parameters as the training 
sequence, then an assortment of anomalies were introduced at time 
periods 250, 500 and 750. III) and IIII) The Markov Model technique 
using the IMPACTS and SDA representation did not clearly discover 
the anomalies, and reported some false alarms. V) The IMM anomaly 
detection algorithm appears to have discovered the first anomaly, but 
it also reported many false alarms. VI) The TSA-Tree approach is 
unable to detect the anomalies. VII) The Markov model-based 
technique using SAX clearly finds the anomalies, with no false alarms 

The results on this simple experiment are impressive. Since suffix 
trees and Markov models can be used only on discrete data, this 
offers a motivation for our symbolic approach. 

4.4.2 Motif discovery 
It is well understood in bioinformatics that overrepresented DNA 
sequences often have biological significance [3, 13, 29]. A 
substantial body of literature has been devoted to techniques to 
discover such patterns [17, 32, 33]. In a previous work, we 
defined the related concept of “time series motif” [26]. Time 
series motifs are close analogues of their discrete cousins, 
although the definitions must be augmented to prevent certain 
degenerate solutions. The naïve algorithm to discover the motifs is 
quadratic in the length of the time series. In [26], we demonstrated 
a simple technique to mitigate the quadratic complexity by a large 
constant factor; nevertheless, this time complexity is clearly 
untenable for most real datasets. 
The symbolic nature of SAX offers a unique opportunity to avail 
of the wealth of bioinformatics research in this area.  In particular, 
recent work by Tompa and Buhler holds great promise [33]. The 
authors show that many previously unsolvable motif discovery 
problems can be solved by hashing subsequences into buckets 
using a random subset of their features as a key, then doing some 
post-processing search on the hash buckets1. They call their 
algorithm PROJECTION.  
We carefully reimplemented the random projection algorithm of 
Tompa and Buhler, making minor changes in the post-processing 
step to allow for the fact that although we are hashing random 
projections of our symbolic representation, we actually wish to 
discover motifs defined on the original raw data.   Figure 16 

                                                 
1 Of course, this description greatly understates the contributions of this 
work. We urge the reader to consult the original paper. 

shows an example of a motif discovered in an industrial dataset 
[5] using this technique. 

 

Figure 16: Above, a motif discovered in a complex dataset by the 
modified PROJECTION algorithm. Below, the motif is best visualized 
by aligning the two subsequences and “zooming in”. The similarity of 
the two subsequences is striking, and hints at unexpected regularity   

Apart from the attractive scalability of the algorithm, there is 
another important advantage over other approaches. The 
PROJECTION algorithm is able to discover motifs even in the 
presence of noise. Our extension of the algorithm inherits this 
robustness to noise.  

5. CONCLUSIONS AND FUTURE DIRECTIONS 
In this work we introduced the first dimensionality reduction, 
lower bounding, streaming symbolic approach in the literature. 
We have shown that our representation is competitive with, or 
superior to, other representations on a wide variety of classic data 
mining problems, and that its discrete nature allows us to tackle 
emerging tasks such as anomaly detection and motif discovery. 
A host of future directions suggest themselves. In addition to use 
with streaming algorithms, there is an enormous wealth of useful 
definitions, algorithms and data structures in the bioinformatics 
literature that can be exploited by our representation [3, 13, 17, 
28, 29, 32, 33]. It may be possible to create a lower bounding 
approximation of Dynamic Time Warping [6], by slightly 
modifying the classic string edit distance. Finally, there may be 
utility in extending our work to multidimensional time series [34]. 
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