
A Symbolic Representation of Time Series, with Implications for
Streaming Algorithms

Jessica Lin Eamonn Keogh Stefano Lonardi Bill Chiu

University of California - Riverside

Computer Science & Engineering Department
Riverside, CA 92521, USA

{jessica, eamonn, stelo, bill}@cs.ucr.edu

ABSTRACT
The parallel explosions of interest in streaming data, and data mining of
time series have had surprisingly little intersection. This is in spite of the
fact that time series data are typically streaming data. The main reason for
this apparent paradox is the fact that the vast majority of work on
streaming data explicitly assumes that the data is discrete, whereas the vast
majority of time series data is real valued.
Many researchers have also considered transforming real valued time
series into symbolic representations, noting that such representations
would potentially allow researchers to avail of the wealth of data
structures and algorithms from the text processing and bioinformatics
communities, in addition to allowing formerly “batch-only” problems to
be tackled by the streaming community. While many symbolic
representations of time series have been introduced over the past decades,
they all suffer from three fatal flaws. Firstly, the dimensionality of the
symbolic representation is the same as the original data, and virtually all
data mining algorithms scale poorly with dimensionality. Secondly,
although distance measures can be defined on the symbolic approaches,
these distance measures have little correlation with distance measures
defined on the original time series. Finally, most of these symbolic
approaches require one to have access to all the data, before creating the
symbolic representation. This last feature explicitly thwarts efforts to use
the representations with streaming algorithms.
In this work we introduce a new symbolic representation of time series.
Our representation is unique in that it allows dimensionality/numerosity
reduction, and it also allows distance measures to be defined on the
symbolic approach that lower bound corresponding distance measures
defined on the original series. As we shall demonstrate, this latter feature
is particularly exciting because it allows one to run certain data mining
algorithms on the efficiently manipulated symbolic representation, while
producing identical results to the algorithms that operate on the original
data. Finally, our representation allows the real valued data to be
converted in a streaming fashion, with only an infinitesimal time and
space overhead.

We will demonstrate the utility of our representation on the classic data
mining tasks of clustering, classification, query by content and anomaly
detection.

Keywords
Time Series, Data Mining, Data Streams, Symbolic, Discretize

1. INTRODUCTION
The parallel explosions of interest in streaming data [4, 8, 10, 18],
and data mining of time series [6, 7, 9, 20, 21, 24, 26, 34] have
had surprisingly little intersection. This is in spite of the fact that

time series data are typically streaming data, for example, stock
value, medical and meteorological data [30]. The main reason for
this apparent paradox is the fact that the vast majority of work on
streaming data explicitly assumes that the data is discrete, whereas
the vast majority of time series data is real valued [23].
Many high level representations of time series have been
proposed for data mining. Figure 1 illustrates a hierarchy of all the
various time series representations in the literature [2, 7, 14, 16,
20, 22, 25, 30, 31, 35]. One representation that the data mining
community has not considered in detail is the discretization of the
original data into symbolic strings. At first glance this seems a
surprising oversight. In addition to allowing the framing of time
series problems as streaming problems, there is an enormous
wealth of existing algorithms and data structures that allow the
efficient manipulations of symbolic representations. Such
algorithms have received decades of attention in the text retrieval
community, and more recent attention from the bioinformatics
community [3, 13, 17, 29, 32, 33]. Some simple examples of
“tools” that are not defined for real-valued sequences but are
defined for symbolic approaches include hashing, Markov
models, suffix trees, decision trees etc. As a more concrete
example, consider the Jaccard coefficient [13], a distance measure
beloved by streaming researchers. The Jaccard coefficient is only
well defined for discrete data (such as web clicks or individual
keystrokes) as thus cannot be used with real-valued time series.
There is a simple explanation for the data mining community’s
lack of interest in symbolic manipulation as a supporting
technique for mining time series. If the data are transformed into
virtually any of the other representations depicted in Figure 1,
then it is possible to measure the similarity of two time series in
that representation space, such that the distance is guaranteed to
lower bound the true distance between the time series in the
original space. This simple fact is at the core of almost all
algorithms in time series data mining and indexing [14]. However,
in spite of the fact that there are dozens of techniques for
producing different variants of the symbolic representation [2, 11,
20], there is no known method for calculating the distance in the
symbolic space, while providing the lower bounding guarantee.
In addition to allowing the creation of lower bounding distance
measures, there is one other highly desirable property of any time
series representation, including a symbolic one. Almost all time
series datasets are very high dimensional. This is a challenging
fact because all non-trivial data mining and indexing algorithms
degrade exponentially with dimensionality. For example, above
16-20 dimensions, index structures degrade to sequential scanning
[19].

Figure 1: A hierarchy of all the various time series representations in the literature. The leaf nodes refer to the actual representation, and the internal
nodes refer to the classification of the approach. The contribution of this paper is to introduce a new representation, the lower bounding symbolic
approach

None of the symbolic representations that we are aware of allow
dimensionality reduction [2, 11, 20]. There is some reduction in
the storage space required, since fewer bits are required for each
value; however, the intrinsic dimensionality of the symbolic
representation is the same as the original data.
In [4], Babcock et. al ask if “there is a need for database
researchers to develop fundamental and general-purpose
models… for data streams.” The opinion of the authors is
affirmative. In this work we take a step towards this goal by
introducing a representation of time series that is suitable for
streaming algorithms. It is dimensionality reducing, lower
bounding and can be obtained in a streaming fashion.
As we shall demonstrate, the lower bounding feature is
particularly exciting because it allows one to run certain data
mining algorithms on the efficiently manipulated symbolic
representation, while producing identical results to the algorithms
that operate on the original data. In particular, we will
demonstrate the utility of our representation on the classic data
mining tasks of clustering [21], classification [16], indexing [1,
14, 22, 35], and anomaly detection [9, 24, 31].
The rest of this paper is organized as follows. Section 2 briefly
discusses background material on time series data mining and
related work. Section 3 introduces our novel symbolic approach,
and discusses its dimensionality reduction, numerosity reduction
and lower bounding abilities. Section 4 contains an experimental
evaluation of the symbolic approach on a variety of data mining
tasks. Finally, Section 5 offers some conclusions and suggestions
for future work.

2. BACKGROUND AND RELATED WORK
Time series data mining has attracted enormous attention in the
last decade. The review below is necessarily brief; we refer
interested readers to [30, 23] for a more in depth review.

2.1 Time Series Data Mining Tasks
While making no pretence to be exhaustive, the following list
summarizes the areas that have seen the majority of research
interest in time series data mining.
• Indexing: Given a query time series Q, and some

similarity/dissimilarity measure D(Q,C), find the most
similar time series in database DB [1, 7, 14,22, 35].

• Clustering: Find natural groupings of the time series in
database DB under some similarity/dissimilarity measure
D(Q,C) [21,25].

• Classification: Given an unlabeled time series Q, assign it to
one of two or more predefined classes [16].

• Summarization: Given a time series Q containing n
datapoints where n is an extremely large number, create a
(possibly graphic) approximation of Q which retains its
essential features but fits on a single page, computer screen,
executive summary, etc [26].

• Anomaly Detection: Given a time series Q, and some model
of “normal” behavior, find all sections of Q which contain
anomalies, or “surprising/interesting/unexpected/novel”
behavior [9, 24, 31].

Since the datasets encountered by data miners typically don’t fit in
main memory, and disk I/O tends to be the bottleneck for any data
mining task, a simple generic framework for time series data
mining has emerged [14]. The basic approach is outlined in Table
1.

1.
Create an approximation of the data, which will fit in main
memory, yet retains the essential features of interest.

2. Approximately solve the task at hand in main memory.

3.

Make (hopefully very few) accesses to the original data on
disk to confirm the solution obtained in Step 2, or to
modify the solution so it agrees with the solution we
would have obtained on the original data.

Table 1: A generic time series data mining approach
It should be clear that the utility of this framework depends
heavily on the quality of the approximation created in Step 1. If
the approximation is very faithful to the original data, then the
solution obtained in main memory is likely to be the same as, or
very close to, the solution we would have obtained on the original
data. The handful of disk accesses made in Step 3 to confirm or
slightly modify the solution will be inconsequential compared to
the number of disk accesses required had we worked on the
original data. With this in mind, there has been great interest in
approximate representations of time series, which we consider
below.

2.2 Time Series Representations
As with most problems in computer science, the suitable choice of
representation greatly affects the ease and efficiency of time series
data mining. With this in mind, a great number of time series
representations have been introduced, including the Discrete
Fourier Transform (DFT) [14], the Discrete Wavelet Transform
(DWT) [7], Piecewise Linear, and Piecewise Constant models
(PAA) [22], (APCA) [16, 22], and Singular Value Decomposition
(SVD) [22]. Figure 2 illustrates the most commonly used
representations.

 Time Series Representations
 Data Adaptive Non Data Adaptive

Spectral Wavelets Piecewise
 Aggregate
 Approximation

Piecewise
Polynomial

Symbolic Singular
 Value

 Decomposition
Random

 Mappings

Piecewise
 Linear

 Approximation
Adaptive

 Piecewise
 Constant

 Approxima tion
Discrete

 Fourier
 Transform

Discrete
 Cosine

 Transform Haar

Daubechies
 dbn n > 1

Coiflets Symlets

Sorted Coefficients

Orthonormal Bi-Orthonormal

Interpolation Regression

Trees

Natural
Language

Strings

 Lower
Bounding

Non- Lower
Bounding

Figure 2: The most common representations for time series data
mining. Each can be visualized as an attempt to approximate the signal
with a linear combination of basis functions

Recent work suggests that there is little to choose between the
above in terms of indexing power [23]; however, the
representations have other features that may act as strengths or
weaknesses. As a simple example, wavelets have the useful
multiresolution property, but are only defined for time series that
are an integer power of two in length [7].
One important feature of all the above representations is that they
are real valued. This limits the algorithms, data structures and
definitions available for them. For example, in anomaly detection
we cannot meaningfully define the probability of observing any
particular set of wavelet coefficients, since the probability of
observing any real number is zero [27]. Such limitations have lead
researchers to consider using a symbolic representation of time
series.
While there are literally hundreds of papers on discretizing
(symbolizing, tokenizing, quantizing) time series [2, 20] (see [11]
for an extensive survey), none of the techniques allows a distance
measure that lower bounds a distance measure defined on the
original time series. For this reason, the generic time series data
mining approach illustrated in Table 1 is of little utility, since the
approximate solution to problem created in main memory may be
arbitrarily dissimilar to the true solution that would have been
obtained on the original data. If, however, one had a symbolic
approach that allowed lower bounding of the true distance, one
could take advantage of the generic time series data mining
model, and of a host of other algorithms, definitions and data
structures which are only defined for discrete data, including
hashing, Markov models, and suffix trees. This is exactly the
contribution of this paper. We call our symbolic representation of
time series SAX (Symbolic Aggregate approXimation), and
define it in the next section.

3. SAX: OUR SYMBOLIC APPROACH
SAX allows a time series of arbitrary length n to be reduced to a
string of arbitrary length w, (w < n, typically w << n). The
alphabet size is also an arbitrary integer a, where a > 2. Table 2
summarizes the major notation used in this and subsequent
sections.

C A time series C = c1,…,cn

C
A Piecewise Aggregate Approximation of a time series

wccC ,...,1=

Ĉ A symbol representation of a time series wccC ˆ,...,ˆˆ
1=

w The number of PAA segments representing time series
C

a Alphabet size (e.g., for the alphabet = {a,b,c}, a = 3)

Table 2: A summarization of the notation used in this paper

Our discretization procedure is unique in that it uses an
intermediate representation between the raw time series and the
symbolic strings. We first transform the data into the Piecewise
Aggregate Approximation (PAA) representation and then
symbolize the PAA representation into a discrete string. There are
two important advantages to doing this:
• Dimensionality Reduction: We can use the well-defined

and well-documented dimensionality reduction power of
PAA [22, 35], and the reduction is automatically carried over
to the symbolic representation.

• Lower Bounding: Proving that a distance measure between
two symbolic strings lower bounds the true distance between
the original time series is non-trivial. The key observation
that allows us to prove lower bounds is to concentrate on
proving that the symbolic distance measure lower bounds the
PAA distance measure. Then we can prove the desired result
by transitivity by simply pointing to the existing proofs for
the PAA representation itself [35].

We will briefly review the PAA technique before considering the
symbolic extension.

3.1 Dimensionality Reduction Via PAA
A time series C of length n can be represented in a w-dimensional
space by a vector wccC ,,1 K= . The ith element of C is
calculated by the following equation:

∑
+−=

=
i

ij
jn

w
i

w
n

w
n

cc
1)1(

 (1)

Simply stated, to reduce the time series from n dimensions to w
dimensions, the data is divided into w equal sized “frames.” The
mean value of the data falling within a frame is calculated and a
vector of these values becomes the data-reduced representation.
The representation can be visualized as an attempt to approximate
the original time series with a linear combination of box basis
functions as shown in Figure 3.

Figure 3: The PAA representation can be visualized as an attempt
to model a time series with a linear combination of box basis
functions. In this case, a sequence of length 128 is reduced to 8
dimensions

The PAA dimensionality reduction is intuitive and simple, yet has
been shown to rival more sophisticated dimensionality reduction
techniques like Fourier transforms and wavelets [22, 23, 35].
We normalize each time series to have a mean of zero and a
standard deviation of one before converting it to the PAA

0 2 0 4 0 6 0 8 0 1 0 0 1 2 0

-1 .5

-1

-0 .5

0

0 .5

1

1 .5

c 1

c 2

c 3

c 4

c 5

c 6

c 7

c 8

C

C

0 50 100 0 50 1000 50 100 0 50 100

Discrete Fourier
Transform

Piecewise Linear
Approximation

Haar Wavelet Adaptive Piecewise
Constant Approximation

representation, since it is well understood that it is meaningless to
compare time series with different offsets and amplitudes [23].

3.2 Discretization
Having transformed a time series database into PAA, we can
apply a further transformation to obtain a discrete representation.
It is desirable to have a discretization technique that will produce
symbols with equiprobability [3, 28]. This is easily achieved since
normalized time series have a Gaussian distribution [27]. To
illustrate this, we extracted subsequences of length 128 from 8
different time series and plotted a normal probability plot of the
data as shown in Figure 4.

Figure 4: A normal probability plot of the cumulative distribution of
values from subsequences of length 128 from 8 different datasets. The
highly linear nature of the plot strongly suggests that the data came
from a Gaussian distribution

Given that the normalized time series have highly Gaussian
distribution, we can simply determine the “breakpoints” that will
produce a equal-sized areas under Gaussian curve [27].

Definition 1. Breakpoints: breakpoints are a sorted list of
numbers Β = β1,…,βa-1 such that the area under a N(0,1)
Gaussian curve from βi to βi+1 = 1/a (β0 and βa are defined as
-∞ and ∞, respectively).

These breakpoints may be determined by looking them up in a
statistical table. For example, Table 3 gives the breakpoints for
values of a from 3 to 10.

a
βi

3 4 5 6 7 8 9 10

β1 -0.43 -0.67 -0.84 -0.97 -1.07 -1.15 -1.22 -1.28

β2 0.43 0 -0.25 -0.43 -0.57 -0.67 -0.76 -0.84

β3 0.67 0.25 0 -0.18 -0.32 -0.43 -0.52

β4 0.84 0.43 0.18 0 -0.14 -0.25

β5 0.97 0.57 0.32 0.14 0

β6 1.07 0.67 0.43 0.25

β7 1.15 0.76 0.52

β8 1.22 0.84

β9 1.28

Table 3: A lookup table that contains the breakpoints that
divide a Gaussian distribution in an arbitrary number (from 3
to 10) of equiprobable regions

Once the breakpoints have been obtained we can discretize a time
series in the following manner. We first obtain a PAA of the time
series. All PAA coefficients that are below the smallest breakpoint
are mapped to the symbol “a,” all coefficients greater than or
equal to the smallest breakpoint and less than the second smallest
breakpoint are mapped to the symbol “b,” etc. Figure 5 illustrates
the idea.

Figure 5: A time series is discretized by first obtaining a PAA
approximation and then using predetermined breakpoints to map the
PAA coefficients into SAX symbols. In the example above, with n =
128, w = 8 and a = 3, the time series is mapped to the word baabccbc

Note that in this example the 3 symbols, “a,” “b,” and “c” are
approximately equiprobable as we desired. We call the
concatenation of symbols that represent a subsequence a word.

Definition 2. Word: A subsequence C of length n can be
represented as a word wccC ˆ,,ˆˆ

1 K= as follows. Let alphai
denote the ith element of the alphabet, i.e., alpha1 = a and alpha2
= b. Then the mapping from a PAA approximation C to a

word Ĉ is obtained as follows:

jijji ciifalphac ββ <≤= −1,ˆ (2)

We have now defined SAX, our symbolic representation (the
PAA representation is merely an intermediate step required to
obtain the symbolic representation).

3.3 Distance Measures
Having introduced the new representation of time series, we can
now define a distance measure on it. By far the most common
distance measure for time series is the Euclidean distance [23, 29].
Given two time series Q and C of the same length n, Eq. 3 defines
their Euclidean distance, and Figure 6.A illustrates a visual
intuition of the measure.

() ()∑ −≡
=

n

i
ii cqCQD

1

2, (3)

If we transform the original subsequences into PAA
representations, Q and C , using Eq. 1, we can then obtain a
lower bounding approximation of the Euclidean distance between
the original subsequences by:

()∑ =
−≡

w

i iiw
n cqCQDR

1
2),((4)

This measure is illustrated in Figure 6.B. A proof that DR(Q , C)
lower bounds the true Euclidean distance appears in [22] (an
alterative proof appears in [35]).
If we further transform the data into the symbolic representation,
we can define a MINDIST function that returns the minimum
distance between the original time series of two words:

()∑ =
≡

w

i iiw
n cqdistCQMINDIST

1
2)ˆ,ˆ()ˆ,ˆ((5)

The function resembles Eq. 4 except for the fact that the distance
between the two PAA coefficients has been replaced with the sub-
function dist(). The dist() function can be implemented using a
table lookup as illustrated in Table 4.

0 20 40 60 80 100 120

-1 .5
-1
-0 .5
0
0 .5
1
1 .5

b

a a

b

c c

b

c

-10 0 10
0.001
0.003
0.01
0.02
0.05
0.10

0.25

0.50

0.75

0.90
0.95
0.98
0.99
0.997
0.999

P
ro

ba
bi

lit
y

 a b c d
a 0 0 0.67 1.34
b 0 0 0 0.67
c 0.67 0 0 0
d 1.34 0.67 0 0

Table 4: A lookup table used by the MINDIST function. This
table is for an alphabet of cardinality of 4, i.e. a=4. The
distance between two symbols can be read off by examining
the corresponding row and column. For example, dist(a,b) = 0
and dist(a,c) = 0.67.

The value in cell (r,c) for any lookup table can be calculated by
the following expression.





−
≤−

=
− otherwise

crif
cell

crcr
cr

,
1,0

),min(1),max(
,

ββ
 (6)

For a given value of the alphabet size a, the table needs only be
calculated once, then stored for fast lookup. The MINDIST
function can be visualized in Figure 6.C.

Figure 6: A visual intuition of the three representations discussed in this
work, and the distance measures defined on them. A) The Euclidean
distance between two time series can be visualized as the square root of
the sum of the squared differences of each pair of corresponding points.
B) The distance measure defined for the PAA approximation can be seen
as the square root of the sum of the squared differences between each
pair of corresponding PAA coefficients, multiplied by the square root of
the compression rate. C) The distance between two SAX representations
of a time series requires looking up the distances between each pair of
symbols, squaring them, summing them, taking the square root and
finally multiplying by the square root of the compression rate

There is one issue we must address if we are to use a symbolic
representation of time series. If we wish to approximate a massive
dataset in main memory, the parameters w and a have to be
chosen in such a way that the approximation makes the best use of
the primary memory available. There is a clear tradeoff between
the parameter w controlling the number of approximating

elements, and the value a controlling the granularity of each
approximating element.
It is infeasible to determine the best tradeoff analytically, since it
is highly data dependent. We can, however, empirically determine
the best values with a simple experiment. Since we wish to
achieve the tightest possible lower bounds, we can simply
estimate the lower bounds over all possible feasible parameters,
and choose the best settings.

),(
)ˆ,ˆ(

CQD
CQMINDISTBoundLowerofTightness = (7)

We performed such a test with a concatenation of 50 time series
databases taken from the UCR time series data mining archive.
For every combination of parameters we averaged the result of
100,000 experiments on subsequences of length 256. Figure 7
shows the results.

Figure 7: The empirically estimated tightness of lower bounds over the
cross product of a = [3…11] and w = [2…8]. The darker histogram bars
illustrate combinations of parameters that require approximately equal
space to store every possible word (approximately 4 megabytes)

The results suggest that using a low value for a results in weak
bounds, but that there are diminishing returns for large values of
a. The results also suggest that the parameters are not too critical;
an alphabet size in the range of 5 to 8 seems to be a good choice.

3.4 Numerosity Reduction
We have seen that, given a single time series, our approach can
significantly reduce its dimensionality. In addition, our approach
can reduce the numerosity of the data for some applications.
Most applications assume that we have one very long time series
T, and that manageable subsequences of length n are extracted by
use of a sliding window, then stored in a matrix for further
manipulation [7, 14, 22, 35]. Figure 8 illustrates the idea.

Figure 8: An illustration of the notation introduced in this section: A
time series T of length 128, the subsequence C67 of length n = 16, and
the first 8 subsequences extracted by a sliding window. Note that the
sliding windows are overlapping

0 2 0 4 0 6 0 8 0 1 0 0 1 2 0

-1 .5
-1
-0 .5
0
0 .5
1
1 .5

0 2 0 4 0 6 0 8 0 1 0 0 1 2 0

-1 .5
-1
-0 .5
0
0 .5
1
1 .5

C

= b a a b c c b c

= b a b c a c c a

Q

C

Q

Ĉ

Q̂

(A)

(B)

(C)

2
3

4
5

6
7

8

3
4 5 6 7 8

9
10

11
0

0.2

0.4

0.6

0.8

Word Size w Alphabet size a

Ti
gh

tn
es

s
of

 lo
w

er
 b

ou
nd

0 2 0 4 0 6 0 8 0 1 0 0 1 20

T

C 6 7 C p
p = 1 … 8

When performing sliding windows subsequence extraction, with
any of the real-valued representations, we must store all |T| - n + 1
extracted subsequences (in dimensionality reduced form).
However, imagine for a moment that we are using our proposed
approach. If the first word extracted is aabbcc, and the window is
shifted to discover that the second word is also aabbcc, we can
reasonably decide not to include the second occurrence of the
word in sliding windows matrix. If we ever need to retrieve all
occurrences of aabbcc, we can go to the location pointed to by the
first occurrences, and remember to slide to the right, testing to see
if the next window is also mapped to the same word. We can stop
testing as soon as the word changes. This simple idea is very
similar to the run-length-encoding data compression algorithm.
The utility of this optimization depends on the parameters used
and the data itself, but it typically yields a numerosity reduction
factor of two or three. However, many datasets are characterized
by long periods of little or no movement, followed by bursts of
activity (seismological data is an obvious example). On these
datasets the numerosity reduction factor can be huge. Consider the
example shown in Figure 9.

Figure 9: Sliding window extraction on Space Shuttle Telemetry
data, with n = 32. At time point 61, the extracted word is aabbcc, and
the next 401 subsequences also map to this word. Only a pointer to
the first occurrence must be recorded, thus producing a large
reduction in numerosity

There is only one special case we must consider. As we noted in
Section 3.1, we normalize each time series (including
subsequences) to have a mean of zero and a standard deviation of
one. However, if the subsequence contains only one value, the
standard deviation is not defined. More troublesome is the case
where the subsequence is almost constant, perhaps 31 zeros and a
single 0.0001. If we normalize this subsequence, the single
differing element will have its value exploded to 5.48. This
situation occurs quite frequently. For example, the last 200 time
units of the data in Figure 9 appear to be constant, but actually
contain tiny amounts of noise. If we were to normalize
subsequences extracted from this area, the normalization would
magnify the noise to large meaningless patterns.
We can easily deal with this problem, if the standard deviation of
the sequence before normalization is below an epsilon ε, we
simply assign the entire word to the middle-ranged alphabet (e.g.
cccccc if a = 5).
We end this section with a visual comparison between SAX and
the four most used representations in the literature (Figure 10).

Figure 10: A visual comparison of SAX and the four most common
time series data mining representations. A raw time series of length
128 is transformed into the word
ffffffeeeddcbaabceedcbaaaaacddee. This is a fair comparison since
the number of bits in each representation is the same

4. EXPERIMENTAL VALIDATION OF SAX
We performed various data mining tasks using SAX. For
clustering and classification, we compared the results with the
classic Euclidean distance, and with other previously proposed
symbolic approaches. Note that none of these other approaches
use dimensionality reduction. In the next paragraph we
summarize the strawmen representations that we compare SAX
to. We choose these two approaches since they are typical
representatives of symbolic approaches in the literature.
André-Jönsson, and Badal [2] proposed the SDA algorithm that
computes the changes between values from one instance to the
next, and divide the range into user-predefined regions. The
disadvantages of this approach are obvious: prior knowledge of
the data distribution of the time series is required in order to set
the breakpoints; and the discretized time series does not conserve
the general shape or distribution of the data values.
Huang and Yu proposed the IMPACTS algorithm, which uses
change ratio between one time point to the next time point to
discretize the time series [20]. The range of change ratios are then
divided into equal-sized sections and mapped into symbols. The
time series is converted to a discretized collection of change
ratios. As with SAX, the user needs to define the cardinality of
symbols.

4.1 Clustering
Clustering is one of the most common data mining tasks, being
useful in its own right as an exploratory tool, and also as a sub-
routine in more complex algorithms [12,15, 21].

4.1.1 Hierarchical Clustering
Comparing hierarchical clusterings is a very good way to compare
and contrast similarity measures, since a dendrogram of size N
summarizes O(N2) distance calculations [23]. The evaluation is
typically subjective; we simply adjudge which distance measure
appears to create the most natural groupings of the data. However,
if we know the data labels in advance we can also make objective
statements of the quality of the clustering. In Figure 11 we
clustered nine time series from the Control Chart dataset, three
each from the decreasing trend, upward shift and normal classes.

0 200 400 600 800 1000

aabbcc

Space Shuttle STS-57 Telemetry

aabccb

-3
-2
-1
0
1
2
3

DFT

PLA

Haar

APCA

a b c
d e f

Figure 11: A comparison of the four distance measures’ ability to
cluster members of the Control Chart dataset. Complete linkage was
used as the agglomeration technique

In this case we can objectively state that SAX is superior, since it
correctly assigns each class to its own subtree. This is simply a
side effect due to the smoothing effect of dimensionality
reduction. More generally, we observed SAX closely mimics
Euclidean distance on various datasets.

4.1.2 Partitional Clustering
Although hierarchical clustering is a good sanity check for any
proposed distance measure, it has limited utility for data mining
because of its poor scalability. The most commonly used data
mining clustering algorithm is k-means [15], so for completeness
we will consider it here. We performed k-means on both the
original raw data, and our symbolic representation. Figure 12
shows a typical run of k-means on a space telemetry dataset. Both
algorithms converge after 11 iterations on average.
The results here are quite unintuitive and surprising; working with
an approximation of the data gives better results than working
with the original data. Fortunately, a recent paper offers a
suggestion as to why this might be so. It has been shown that
initializing the clusters centers on a low dimension approximation
of the data can improve the quality [12], this is what clustering
with SAX implicitly does.

Figure 12: A comparison of the k-means clustering algorithm using
SAX and the raw data. The dataset was Space Shuttle telemetry,
1,000 subsequences of length 512. Surprisingly, working with the
symbolic approximation produces better results than working with the
original data

4.2 Classification
Classification of time series has attracted much interest from the
data mining community. The high dimensionality, high feature
correlation, and typically high levels of noise found in time series
provide an interesting research problem [23]. Although special-
purpose algorithms have been proposed [25], we will consider
only the two most common classification algorithms for brevity,
clarity of presentations and to facilitate independent confirmation
of our findings.

4.2.1 Nearest Neighbor Classification
To compare different distance measures on 1-nearest-neighbor
classification, we used leaving-one-out cross validation. We
compare SAX with Euclidean distance, IMPACTS, SDA, and
LP∞. Two classic synthetic datasets are used: the Cylinder-Bell-
Funnel (CBF) dataset has 50 instances of time series for each of
the three clusters, and the Control Chart (CC) has 100 instances
for each of the six clusters [23].
Since SAX allows dimensionality and alphabet size as user input,
and the IMPACTS allows variable alphabet size, we ran the
experiments on different combinations of dimensionality
reduction and alphabet size. For the other approaches we applied
the simple dimensionality reduction technique of skipping data
points at a fixed interval. In Figure 13, we show the results with a
dimensionality reduction of 4 to 1.
Similar results were observed for other levels of dimensionality
reduction. Once again, SAX’s ability to beat Euclidean distance is
probably due to the smoothing effect of dimensionality reduction;
nevertheless, this experiment does show the superiority of SAX
over the other approaches proposed in the literature.

4.2.2 Decision Tree Classification
Due to its poor scalability, Nearest Neighbor is unsuitable for
most data mining applications; instead, decision trees are the most
common choice of classifier. While decision trees are defined for
real data, attempting to classify time series using the raw data
would clearly be a mistake, since the high dimensionality and
noise levels would result in a deep, bushy tree with poor accuracy.

 Euclidean

IMPACTS (alphabet=8) SDA

 SAX

Number of Iterations
220000

225000

230000

235000

240000

245000

250000

255000

260000

265000

1 2 3 4 5 6 7 8 9 10 11

Raw data

Our
Symbolic
Approach

O
bj

ec
tiv

e
Fu

nc
tio

n

Raw data

SAX

Figure 13: A comparison of five distance measures utility for nearest
neighbor classification. We tested different alphabet sizes for SAX and
IMPACTS. SDA’s alphabet size is fixed at 5.

In an attempt to overcome this problem, Geurts [16] suggests
representing the time series as a Regression Tree (RT) (this
representation is essentially the same as APCA [22], see Figure
2), and training the decision tree directly on this representation.
The technique shows great promise.
We compared SAX to the Regression Tree (RT) on two datasets;
the results are in Table 5.

Dataset SAX Regression Tree
CC 3.04 ± 1.64 2.78 ± 2.11

CBF 0.97 ± 1.41 1.14 ± 1.02

Table 5: A comparison of SAX with the specialized
Regression Tree approach for decision tree classification.
Our approach used an alphabet size of 6; both approaches
used a dimensionality of 8

Note that while our results are competitive with the RT approach,
The RT representation is undoubtedly superior in terms of
interpretability [16]. Once again, our point is simply that our
“black box” approach can be competitive with specialized
solutions.

4.3 Query by Content (Indexing)
The majority of work on time series data mining appearing in the
literature has addressed the problem of indexing time series for
fast retrieval [30]. Indeed, it is in this context that most of the
representations enumerated in Figure 1 were introduced [7, 14, 22,
35]. Dozens of papers have introduced techniques to do indexing
with a symbolic approach [2, 20], but without exception, the
answer set retrieved by these techniques can be very different to
the answer set that would be retrieved by the true Euclidean
distance. It is only by using a lower bounding technique that one
can guarantee retrieving the full answer set, with no false
dismissals [14].
To perform query by content, we built an index using SAX, and
compared it to an index built using the Haar wavelet approach [7].
Since the datasets we use are large and disk-resident, and the
reduced dimensionality could still be potentially high (or at least
high enough such that the performance degenerates to sequential
scan if R-tree were used [19]), we use Vector Approximation
(VA) file as our indexing algorithm. We note, however, that SAX
could also be indexed by classic string indexing techniques such
as suffix trees.

To compare performance, we measure the percentage of disk I/Os
required in order to retrieve the one-nearest neighbor to a
randomly extracted query, relative to the number of disk I/Os
required for sequential scan. Since it has been forcibly shown that
the choice of dataset can make a significant difference in the
relative indexing ability of a representation, we tested on more
than 50 datasets from the UCR Time Series Data Mining Archive.
In Figure 14 we show 4 representative examples.

Figure 14: A comparison of indexing ability of wavelets versus SAX.
The Y-axis is the percentage of the data that must be retrieved from
disk to answer a 1-NN query of length 256, when the dimensionality
reduction ratio is 32 to 1 for both approaches

Once again we find our representation competitive with existing
approaches.

4.4 Taking Advantage of the Discrete Nature
of our Representation
In the previous sections we showed examples of how our
proposed representation can compete with real-valued
representations and the original data. In this section we illustrate
examples of data mining algorithms that take explicit advantage
of the discrete nature of our representation.

4.4.1 Detecting Novel/Surprising/Anomalous Behavior
A simple idea for detecting anomalous behavior in time series is
to examine previously observed normal data and build a model of
it. Data obtained in the future can be compared to this model and
any lack of conformity can signal an anomaly [9]. In order to
achieve this, in [24] we combined a statistically sound scheme
with an efficient combinatorial approach. The statistical scheme is
based on Markov chains and normalization. Markov chains are
used to model the “normal” behavior, which is inferred from the
previously observed data. The time- and space-efficiency of the
algorithm comes from the use of suffix tree as the main data
structure. Each node of the suffix tree represents a pattern. The
tree is annotated with a score obtained comparing the support of a
pattern observed in the new data with the support recorded in the
Markov model. This apparently simple strategy turns out to be
very effective in discovering surprising patterns. In the original
work we use a simple symbolic approach, similar to IMPACTS
[20]; here we revisit the work using SAX.
For completeness, we will compare SAX to two highly referenced
anomaly detection algorithms that are defined on real valued
representations, the TSA-tree Wavelet based approach of Shahabi
et al. [31] and the Immunology (IMM) inspired work of Dasgupta
and Forrest [9]. We also include the Markov technique using
IMPACTS and SDA in order to discover how much of the
difference can be attributed directly to the representation. Figure
15 contains an experiment comparing all 5 techniques.

5 6 7 8 9 10

Impacts
SDA
Euclidean
LPmax
SAX

0
0.1
0.2
0.3
0.4
0.5
0.6

5 6 7 8 9 10

Control Chart Cylinder - Bell - Funnel

Er
ro

r R
at

e

Alphabet Size Alphabet Size

0
0.1
0.2
0.3
0.4
0.5
0.6

Ballbeam Chaotic Memory Winding
Dataset

DWT Haar
SAX

Figure 15: A comparison of five anomaly detection algorithms on the
same task. I) The training data, a slightly noisy sine wave of length
1,000. II) The time series to be examined for anomalies is a noisy sine
wave that was created with the same parameters as the training
sequence, then an assortment of anomalies were introduced at time
periods 250, 500 and 750. III) and IIII) The Markov Model technique
using the IMPACTS and SDA representation did not clearly discover
the anomalies, and reported some false alarms. V) The IMM anomaly
detection algorithm appears to have discovered the first anomaly, but
it also reported many false alarms. VI) The TSA-Tree approach is
unable to detect the anomalies. VII) The Markov model-based
technique using SAX clearly finds the anomalies, with no false alarms

The results on this simple experiment are impressive. Since suffix
trees and Markov models can be used only on discrete data, this
offers a motivation for our symbolic approach.

4.4.2 Motif discovery
It is well understood in bioinformatics that overrepresented DNA
sequences often have biological significance [3, 13, 29]. A
substantial body of literature has been devoted to techniques to
discover such patterns [17, 32, 33]. In a previous work, we
defined the related concept of “time series motif” [26]. Time
series motifs are close analogues of their discrete cousins,
although the definitions must be augmented to prevent certain
degenerate solutions. The naïve algorithm to discover the motifs is
quadratic in the length of the time series. In [26], we demonstrated
a simple technique to mitigate the quadratic complexity by a large
constant factor; nevertheless, this time complexity is clearly
untenable for most real datasets.
The symbolic nature of SAX offers a unique opportunity to avail
of the wealth of bioinformatics research in this area. In particular,
recent work by Tompa and Buhler holds great promise [33]. The
authors show that many previously unsolvable motif discovery
problems can be solved by hashing subsequences into buckets
using a random subset of their features as a key, then doing some
post-processing search on the hash buckets1. They call their
algorithm PROJECTION.
We carefully reimplemented the random projection algorithm of
Tompa and Buhler, making minor changes in the post-processing
step to allow for the fact that although we are hashing random
projections of our symbolic representation, we actually wish to
discover motifs defined on the original raw data. Figure 16

1 Of course, this description greatly understates the contributions of this
work. We urge the reader to consult the original paper.

shows an example of a motif discovered in an industrial dataset
[5] using this technique.

Figure 16: Above, a motif discovered in a complex dataset by the
modified PROJECTION algorithm. Below, the motif is best visualized
by aligning the two subsequences and “zooming in”. The similarity of
the two subsequences is striking, and hints at unexpected regularity

Apart from the attractive scalability of the algorithm, there is
another important advantage over other approaches. The
PROJECTION algorithm is able to discover motifs even in the
presence of noise. Our extension of the algorithm inherits this
robustness to noise.

5. CONCLUSIONS AND FUTURE DIRECTIONS
In this work we introduced the first dimensionality reduction,
lower bounding, streaming symbolic approach in the literature.
We have shown that our representation is competitive with, or
superior to, other representations on a wide variety of classic data
mining problems, and that its discrete nature allows us to tackle
emerging tasks such as anomaly detection and motif discovery.
A host of future directions suggest themselves. In addition to use
with streaming algorithms, there is an enormous wealth of useful
definitions, algorithms and data structures in the bioinformatics
literature that can be exploited by our representation [3, 13, 17,
28, 29, 32, 33]. It may be possible to create a lower bounding
approximation of Dynamic Time Warping [6], by slightly
modifying the classic string edit distance. Finally, there may be
utility in extending our work to multidimensional time series [34].

6. REFERENCES

[1] Agrawal, R., Psaila, G., Wimmers, E. L. & Zait, M. (1995).

Querying Shapes of Histories. In proceedings of the 21st Int'l
Conference on Very Large Databases. Zurich, Switzerland, Sept 11-
15. pp 502-514.

[2] André-Jönsson, H. & Badal. D. (1997). Using Signature Files for
Querying Time-Series Data. In proceedings of Principles of Data
Mining and Knowledge Discovery, 1st European Symposium.
Trondheim, Norway, Jun 24-27. pp 211-220.

[3] Apostolico, A., Bock, M. E. & Lonardi, S. (2002). Monotony of
Surprise and Large-Scale Quest for Unusual Words. In proceedings
of the 6th Int’l Conference on Research in Computational Molecular
Biology. Washington, DC, April 18-21. pp 22-31.

[4] Babcock, B, Babu, S., Datar, M., Motwani, R. & Widom, J. (2002).
Models and Issues in Data Stream Systems. Invited Paper in
proceedings of the 2002 ACM Symp. On Principles of Database
Systems. June 3-5, Madison, WI.

 I)

-5
0
5

0 100 200 300 400 500 600 700 800 900 1000-5
0
5

0 100 200 300 400 500 600 700 800 900 1000

II)

III)

IIII)

V)

VI)

VII)

0 500 1000 1500 2000 2500

0 20 40 60 80 100 120

B A
Winding Dataset
(Angular speed of reel 1)

A

B

[5] Bastogne, T., Noura, H., Richard A. & Hittinger, J. .M. (2002).
Application of Subspace Methods to the Identification of a Winding
Process. In proceedings of the 4th European Control Conference,
Vol. 5, Brussels.

[6] Berndt, D. & Clifford, J. (1994) Using Dynamic Time Warping to
Find Patterns in Time Series. In proceedings of the Workshop on
Knowledge Discovery in Databases, at the 12th Int’l Conference on
Artificial Intelligence. July 31-Aug 4, Seattle, WA. pp 229-248.

[7] Chan, K. & Fu, A. W. (1999). Efficient Time Series Matching by
Wavelets. In proceedings of the 15th IEEE Int'l Conference on Data
Engineering. Sydney, Australia, Mar 23-26. pp 126-133.

[8] Cortes, C., Fisher, K., Pregibon, D., Rogers, A. & Smith, F. (2000).
Hancock: a Language for Extracting Signatures from Data Streams.
In proceedings of the 6th ACM SIGKDD Int’l Conference on
Knowledge Discovery and Data Mining. Aug 20-23, Boston, MA. pp
9-17.

[9] Dasgupta, D. & Forrest, S. (1996) Novelty Detection in Time Series
Data using Ideas from Immunology. In proceedings of The
International Conference on Intelligent Systems. June 19-21.

[10] Datar, M. & Muthukrishnan, S. (2002). Estimating Rarity and
Similarity over Data Stream Windows. In proceedings of the 10th
European Symposium on Algorithms. Sep 17-21, Rome, Italy.

[11] Daw, C. S., Finney, C. E. A. & Tracy, E. R. (2001). Symbolic
Analysis of Experimental Data. Review of Scientific Instruments.
(2002-07-22).

[12] Ding, C., He, X., Zha, & Simon., H. (2002). Adaptive Dimension
Reduction for Clustering High Dimensional Data. In proceedings of
the 2nd IEEE International Conference on Data Mining. Dec 9-12.
Maebashi, Japan. pp 147-154.

[13] Durbin, R., Eddy, S., Krogh, A. & Mitchison, G. (1998). Biological
Sequence Analysis: Probabilistic Models of Proteins and Nucleic
Acids. Cambridge University Press.

[14] Faloutsos, C., Ranganathan, M., & Manolopoulos, Y. (1994). Fast
Subsequence Matching in Time-Series Databases. In proceedings of
the ACM SIGMOD Int’l Conference on Management of Data. May
24-27, Minneapolis, MN. pp 419-429.

[15] Fayyad, U., Reina, C. &. Bradley, P. (1998). Initialization of
Iterative Refinement Clustering Algorithms. In proceedings of the 4th
International Conference on Knowledge Discovery and Data
Mining. New York, NY, Aug 27-31. pp 194-198.

[16] Geurts, P. (2001). Pattern Extraction for Time Series Classification.
In proceedings of the 5th European Conference on Principles of
Data Mining and Knowledge Discovery. Sep 3-7, Freiburg,
Germany. pp. 115-127.

[17] Gionis, A. & Mannila, H. (2003). Finding Recurrent Sources in
Sequences. In proceedings of the 7th International Conference on
Research in Computational Molecular Biology. Apr 10-13, Berlin,
Germany. To Appear.

[18] Guha, S., Mishra, N., Motwani, R. & O'Callaghan, L. (2000).
Clustering Data Streams. In proceedings of the 41st Symposium on
Foundations of Computer Science. Nov 12-14, Redondo Beach, CA.
pp 359-366.

[19] Hellerstein, J. M., Papadimitriou, C. H. & Koutsoupias, E. (1997).
Towards an Analysis of Indexing Schemes. In proceedings of the
16th ACM Symposium on Principles of Database Systems. May 12-
14, Tucson, AZ. pp 249-256.

[20] Huang, Y. & Yu, P. S. (1999). Adaptive Query Processing for Time-
Series Data. In proceedings of the 5th Int'l Conference on Knowledge
Discovery and Data Mining. San Diego, CA, Aug 15-18. pp 282-
286.

[21] Kalpakis, K., Gada, D. & Puttagunta, V. (2001). Distance Measures
for Effective Clustering of ARIMA Time-Series. In proceedings of
the 2001 IEEE International Conference on Data Mining, San Jose,
CA, Nov 29-Dec 2. pp 273-280.

[22] Keogh, E., Chakrabarti, K., Pazzani, M. & Mehrotra, S. (2001).
Locally Adaptive Dimensionality Reduction for Indexing Large
Time Series Databases. In proceedings of ACM SIGMOD
Conference on Management of Data. Santa Barbara, CA, May 21-
24. pp 151-162.

[23] Keogh, E. & Kasetty, S. (2002). On the Need for Time Series Data
Mining Benchmarks: A Survey and Empirical Demonstration. In
proceedings of the 8th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining. July 23 - 26, 2002.
Edmonton, Alberta, Canada. pp 102-111.

[24] Keogh, E., Lonardi, S. & Chiu, W. (2002). Finding Surprising
Patterns in a Time Series Database in Linear Time and Space. In the
8th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining. July 23 - 26, 2002. Edmonton, Alberta,
Canada. pp 550-556.

[25] Keogh, E. & Pazzani, M. (1998). An Enhanced Representation of
Time Series Which Allows Fast and Accurate Classification,
Clustering and Relevance Feedback. In proceedings of the 4th Int'l
Conference on Knowledge Discovery and Data Mining. New York,
NY, Aug 27-31. pp 239-241.

[26] Lin, J., Keogh, E., Lonardi, S. & Patel, P. (2002). Finding Motifs in
Time Series. In proceedings of the 2nd Workshop on Temporal Data
Mining, at the 8th ACM SIGKDD Int’l Conference on Knowledge
Discovery and Data Mining. Edmonton, Alberta, Canada, July 23-
26. pp. 53-68.

[27] Larsen, R. J. & Marx, M. L. (1986). An Introduction to
Mathematical Statistics and Its Applications. Prentice Hall,
Englewood, Cliffs, N.J. 2nd Edition.

[28] Lonardi, S. (2001). Global Detectors of Unusual Words: Design,
Implementation, and Applications to Pattern Discovery in
Biosequences. PhD thesis, Department of Computer Sciences,
Purdue University, August, 2001.

[29] Reinert, G., Schbath, S. & Waterman, M. S. (2000). Probabilistic and
Statistical Properties of Words: An Overview. Journal of
Computational. Biology. Vol. 7, pp 1-46.

[30] Roddick, J. F., Hornsby, K. & Spiliopoulou, M. (2001). An Updated
Bibliography of Temporal, Spatial and Spatio-Temporal Data
Mining Research. In Post-Workshop Proceedings of the
International Workshop on Temporal, Spatial and Spatio-Temporal
Data Mining. Berlin, Springer. Lecture Notes in Artificial
Intelligence. Roddick, J. F. and Hornsby, K., Eds. 147-163.

[31] Shahabi, C., Tian, X. & Zhao, W. (2000). TSA-tree: A Wavelet-
Based Approach to Improve the Efficiency of Multi-Level Surprise
and Trend Queries In proceedings of the 12th Int’l Conference on
Scientific and Statistical Database Management. pp 55-68.

[32] Staden, R. (1989). Methods for Discovering Novel Motifs in Nucleic
Acid Sequences. Computer Applications in Biosciences. Vol. 5(5).
pp 293-298.

[33] Tompa, M. & Buhler, J. (2001). Finding Motifs Using Random
Projections. In proceedings of the 5th Int’l Conference on
Computational Molecular Biology. Montreal, Canada, Apr 22-25.
pp 67-74.

[34] Vlachos, M., Kollios, G. & Gunopulos, G. (2002). Discovering
Similar Multidimensional Trajectories. In proceedings of the 18th
International Conference on Data Engineering. Feb 26-Mar 1, San
Jose, CA.

[35] Yi, B, K., & Faloutsos, C. (2000). Fast Time Sequence Indexing for
Arbitrary Lp Norms. In proceedings of the 26st Int’l Conference on
Very Large Databases. Sep 10-14, Cairo, Egypt. pp 385-394.

