
Abstract Modular Systems and Solvers

Yuliya Lierler1 and Miroslaw Truszczynski2

1 University of Nebraska at Omaha
ylierler@unomaha.edu

2 University of Kentucky
mirek@cs.uky.edu

Abstract. Integrating diverse formalisms into modular knowledge representa-
tion systems offers increased expressivity, modeling convenience and computa-
tional benefits. We introduce concepts of abstract modules and abstract modu-
lar systems to study general principles behind the design and analysis of model-
finding programs, or solvers, for integrated heterogeneous multi-logic systems.
We show how abstract modules and abstract modular systems give rise to tran-
sition systems, which are a natural and convenient representation of solvers pi-
oneered by the SAT community. We illustrate our approach by showing how it
applies to answer set programming and propositional logic, and to multi-logic
systems based on these two formalisms.

1 Introduction

Knowledge representation and reasoning (KR) is concerned with developing formal
languages and logics to model knowledge, and with designing and implementing cor-
responding automated reasoning tools. The choice of specific logics and tools depends
on the type of knowledge to be represented and reasoned about. Different logics are
suitable for common-sense reasoning, reasoning under incomplete information and un-
certainty, for temporal and spatial reasoning, and for modeling and solving boolean
constraints, or constraints over larger, even continuous domains. In applications in areas
such as distributed databases, semantic web, hybrid constraint modeling and solving, to
name just a few, several of these aspects come to play. Accordingly, often diverse logics
have to be accommodated together. Similar issues arise in research on multi-context
systems where the major task is to model contextual information and the flow of in-
formation among contexts [17, 7]. The contexts are commonly modeled by theories in
some logics.

Modeling convenience is not the only reason why diverse logics are combined into
modular hybrid KR systems. Another major motivation is to exploit in reasoning the
transparent structure that comes from modularity, computational strengths of individual
logics, and synergies that may arise when they are put together. Constraint logic pro-
gramming [8] and satisfiability modulo theories (SMT) [20, 2] are well-known exam-
ples of formalisms stemming directly from such considerations. More recent examples
include constraint answer set programming (CASP) [13], which integrates answer set
programming (ASP) [6, 15, 18]) with constraint modeling languages [22], and “multi-
logic” formalisms PC(ID) [16], SM(ASP) [14] and ASP-FO [4] that combine modules



expressed as logic theories under the classical semantics with modules given as answer-
set programs.

The key computational task arising in KR is that of model generation. Model-
generating programs or solvers, developed in satisfiability (SAT) and ASP proved to be
effective in a broad range of KR applications. Accordingly, model generation is of crit-
ical importance in modular multi-logic systems. Research on formalisms listed above
resulted in fast solvers that demonstrate gains one can obtain from their heterogeneous
nature. However, the diversity of logics considered and low-level technical details of
their syntax and semantics obscure general principles that are important in the design
and analysis of solvers for multi-logic systems.

In this paper we address this problem by proposing a language for talking about
modular multi-logic systems that (i) abstracts away the syntactic details, (ii) is expres-
sive enough to capture various concepts of inference, and (iii) is based only on the
weakest assumptions concerning the semantics. The basic elements of this language
are abstract modules. Collections of abstract modules constitute abstract modular sys-
tems. We define the semantics of abstract modules and show that they provide a uni-
form language capable of capturing different logics, diverse inference mechanisms, and
their modular combinations. Importantly, abstract modules and abstract modular sys-
tems give rise to transition systems of the type introduced by Nieuwenhuis, Oliveras,
and Tinelli [20] in their study of SAT and SMT solvers. We show that as in that ear-
lier work, our transition systems provide a natural and convenient representation of
solvers for abstract modules and abstract modular systems. We demonstrate that they
lend themselves well to extensions that capture such important solver design techniques
as learning (which here comes in two flavors: local that is limited to single modules,
and global that is applied across modules). Throughout the paper, we illustrate our ap-
proach by showing how it applies to propositional logic and answer set programming,
and to multi-logic systems based on these two formalisms.

The results of our paper show that abstract modular systems and the corresponding
abstract framework for describing and analyzing algorithms for modular declarative
programming tools relying on multi-logics are useful and effective conceptualizations
that can contribute to (i) clarifying computational principles of such systems and to (ii)
the development of new ones.

The paper is organized as follows. We start by introducing one of the main concepts
in the paper – abstract modules. We then proceed to formulating an algorithm (a family
of algorithms) for finding models of such modules. We use an abstract transition system
stemming from the framework by Nieuwenhuis et al. [20] for this purpose. Section 4
presents the definition of an abstract modular system and a corresponding solver based
on backtrack search. We then discuss how this solver maybe augmented by such ad-
vanced SAT solving technique as learning. Section 6 provides an account on related
work.

2 Abstract Modules

Let σ be a fixed finite vocabulary (a set of propositional atoms). A module over the
vocabulary σ is a directed graph S whose nodes are ⊥ and all consistent sets of literals,



and each edge is of the form (M,⊥) or (M,Ml), where l /∈ M and Ml is a shorthand
for M ∪ {l}. If S is a module, we write σ(S) for its vocabulary. For a set X of literals,
we denote X+ = {a : a ∈ X} and X− = {a : ¬a ∈ X}.

Intuitively, an edge (M,Ml) in a module indicates that the module supports infer-
ring l whenever all literals in M are given. An edge (M,⊥), M 6= ∅, indicates that
there is a literal l ∈ M such that a derivation of its dual l̄ (and hence, a derivation of a
contradiction) is supported by the module, assuming the literals inM are given. Finally,
the edge (∅,⊥) indicates that the module is “explicitly” contradictory.

A node in a module is terminal if no edge leaves it. A terminal node that is consistent
and complete is a model node of the module. A set X of atoms is a model of a module
S if for some model node Y in S, X ∩ σ(S) = Y +. Thus, models of modules are not
restricted to the signature of the module. Clearly, for every model node Y in S, Y + is a
model of S.

a

(a)

∅

⊥
¬a a

(b)
⊥

∅

¬a a

(c)
⊥

∅

¬a

Fig. 1: Three modules over the vocabulary {a}.

A module S entails a formula ϕ, written S |= ϕ, if for every model I of S we
have I |= ϕ. It is immaterial what logic the formula ϕ comes from as long as (i) the
vocabulary of the logic is a subset of the vocabulary of S, and (ii) the semantics of the
logic is given by a satisfiability relation I |= ϕ. A module S entails a formula ϕ wrt a
set M of literals (over the same vocabulary as S), written S |=M ϕ, if for every model
I of S such that M+ ⊆ I and M− ∩ I = ∅, I |= ϕ.

Clearly, if two modules over the same signature have the same model nodes, they
have the same models. Semantically the three modules in Figure 1 are the same. They
have the same models (each has {a} as its only model in the signature of the module)
and so they entail the same formulas. We call modules with the same models equivalent.

Modules represent more than just the set of their models. As already suggested
above, the intended role of edges in a module is to represent allowed “local” inferences.
For instance, given the empty set of literals, the first module in Figure 1 supports in-
ferring a and the third module ¬a. In the latter case, the inference is not “sound” as it
contradicts the semantic information in the module as that module does not entail ¬a
with respect to the empty set of literals.

Formally, an edge from a node M to a node M ′ in a module S is sound if S |=M

M ′.3 Clearly, if M ′ has the form Ml then S |=M M ′ if and only if S |=M l. Similarly,
if M ′ = ⊥ then S |=M M ′ if and only if no model of S is consistent with M (that is,
contains M+ and is disjoint with M−). A module is sound if all of its edges are sound,

3 In the paper, we sometimes identify a set of literals with the conjunction of its elements. Here
M ′ is to be understood as the conjunction of its elements.



that is, if all inferences supported by the module are sound with respect to the semantics
of the module given by its set of models. The modules in Figures 1(a) and (b) are sound,
the one in Figure 1(c) is not. Namely, the inference of ¬a from ∅ is not sound.

Given two modules S and S′ over the same vocabulary, we say that S is equivalently
contained in S′, S v S′, if S and S′ are equivalent (have the same model nodes) and the
set of edges of S is a subset of the set of edges of S′. Maximal (wrt v) sound modules
are called saturated. We say that an edge from a node M to ⊥ in a module S is critical
if M is a complete and consistent set of literals over σ(S). The following properties are
evident.

Proposition 1. Every two modules over the same signature and with the same critical
edges are equivalent. For a saturated module S, every sound module with the same
critical edges as S is equivalently contained in S. A module S is saturated if and only
if it is sound and for every set M of literals and for every literal l 6∈M , (M,Ml) is an
edge of S whenever S |=M l.

Clearly, only the module in Figure 1(a) is saturated. The other two are not. The
one in (b) is not maximal with respect to the containment relation, the one in (c) is
not sound. We also note that all three modules have the same critical edges. Thus, by
Proposition 1, they are equivalent, a property we already observed earlier. Finally, the
module in Figure 1(b) is equivalently contained in the module in Figure 1(a).

a

a b a ¬b

¬b

∅

⊥

¬a

¬a b

b

¬a ¬b

Fig. 2: An abstract module over the vocabulary {a, b} related to the theory (1).

In practice, modules (graphs) are specified by means of theories and logics (more
precisely, specific forms of inference in logics). For instance, a propositional theory T
over a vocabulary σ and the inference method given by the classical concept of en-
tailment determine a module over σ in which (i) (M,Ml) is an edge if and only if
T ∪M |= l; and (ii) (M,⊥) is an edge if and only if no model of T is consistent with
M . Figure 1(a) shows the module determined in this way by the theory consisting of
the clause a. Similarly, Figure 2 presents such a module for the theory

a ∨ b, ¬a ∨ ¬b. (1)

This module is saturated. Also, theory (1) and the inference method given by the unit
propagate rule, a classical propagator used in SAT solvers, determines this module. In
other words, for the theory (1) the unit propagation rule captures entailment.



We say that a module S is equivalent to a theory T in some logic if the models of
S coincide with the models of T . Clearly, the module in Figure 2 is equivalent to the
propositional theory (1).

Modules are not meant for modeling. Representations by means of logic theories are
usually more concise (the size of a module is exponential in the size of its vocabulary).
Furthermore, the logic languages align closely with natural language, which facilitates
modeling and makes the correspondence between logic theories and knowledge they
represent direct. Modules lack this connection to natural language.

The power of modules comes from the fact that they provide a uniform, syntax-
independent way to describe theories and inference methods stemming from different
logics. For instance, they represent equally well both propositional theories and logic
programs under the answer-set semantics. Indeed, let us consider the logic program

{a},
b← not a,

(2)

where {a} represents the so-called choice rule [23]. This program has two answer sets
{a} and {b}. Since these are also the only two models of the propositional theory (1),
it is clear that the module in Figure 2 represents the program (2) and the reasoning
mechanism of entailment with respect to its answer sets. Two other modules associated
with program (2) are given in Figure 3. The module in Figure 3(a) represents program
(2) and the reasoning on programs based on forward chaining; we call this moduleMfc .
We recall that given a set of literals, forward chaining supports the derivation of the
head of a rule whose body is satisfied. We note that the module Mfc is not equivalent to
program (2). Indeed, {a, b} is a model ofMfc whereas it is not an answer set of (2). This
is due to the fact that the critical edge from a b to⊥ is unsupported by forward chaining
and is not present in Mfc . On the other hand, all edges due to forward chaining are
sound both in the module in Figure 2, which we callMe, andMfc . In the next section we
discuss a combination of inference rules that yields a reasoning mechanism subsuming
forward chaining and resulting in a module, shown in Figure 3(b), that is equivalently
contained inMe and so, equivalent to the program (2). This discussion indicates that the
language of modules is flexible enough to represent not only the semantic mechanism
of entailment, but also syntactically defined “proof systems” — reasoning mechanisms
based on specific inference rules.

(a)

a

a b a ¬b

¬b

∅

⊥

¬a

¬a b

b

¬a ¬b

a

a b

(b)

a ¬b

¬b

∅

⊥

¬a

¬a b

b

¬a ¬b

Fig. 3: Two abstract modules over the vocabulary {a, b} related to the logic program (2).



3 Abstract Modular Solver: AMS

Finding models of logic theories and programs is a key computational task in declarative
programming. Nieuwenhuis et al. [20] proposed to use transition systems to describe
search procedures involved in model-finding programs commonly called solvers, and
developed that approach for the case of SAT. Their transition system framework can
express DPLL, the basic search procedure employed by SAT solvers, and its enhance-
ments such as conflict driven clause learning. Lierler [12] proposed a similar framework
for specifying an answer set solver SMODELS. Lierler and Truszczynski [14] extended
that framework to capture such modern ASP solvers as CMODELS and CLASP, as well
as a PC(ID) solver MINISAT(ID).

An abstract nature (independence from language and reasoning method selection)
of modules introduced in this work and their relation to proof systems makes them a
convenient, broadly applicable tool to study and analyze solvers. In this section, we
adapt the transition system framework of Nieuwenhuis et al. [20] to the case of abstract
modules. We then illustrate how it can be used to define solvers for instantiations of
abstract modules such as propositional theories under the classical semantics and logic
programs under the answer-set semantics.

A state relative to σ is either a special state ⊥ (fail state) or an ordered consis-
tent set M of literals over σ, some possibly annotated by ∆, which marks them as
decision literals. For instance, the states relative to a singleton set {a} of atoms are
∅, a, ¬a, a∆, ¬a∆, ⊥.

Frequently, we consider a state M as a set of literals, ignoring both the annotations
and the order between its elements. If neither a literal l nor its complement occur in M ,
then l is unassigned by M .

Each module S determines its transition graph AMS : The set of nodes of AMS

consists of the states relative to the vocabulary of S. The edges of the graph AMS are
specified by the transition rules listed in Figure 4. The first three rules depend on the
module, the fourth rule, Decide, does not. It has the same form no matter what module
we consider. Hence, we omit the reference to the module from its notation.

PropagateS : M −→ M l if S has an edge from M to M l

FailS : M −→ ⊥ if
{
S has an edge from M to ⊥,
M contains no decision literals

BacktrackS : P l∆ Q −→ P l if
{
S has an edge from P l Q to ⊥,
Q contains no decision literals

Decide: M −→ M l∆ if l is unassigned by M

Fig. 4: The transition rules of the graph AMS .

The graph AMS can be used to decide whether a module S has a model. The fol-
lowing properties are essential.



Theorem 1. For every sound module S,

(a) graph AMS is finite and acyclic,
(b) for any terminal state M of AMS other than ⊥, M+ is a model of S,
(c) state⊥ is reachable from ∅ in AMS if and only if S is unsatisfiable (has no models).

Thus, to decide whether a sound module S has a model it is enough to find in
the graph AMS a path leading from node ∅ to a terminal node M . If M = ⊥, S is
unsatisfiable. Otherwise, M is a model of S.

For instance, let S be a module in Figure 2. Below we show a path in the transition
graph AMS with every edge annotated by the corresponding transition rule:

∅ Decide−→ b∆
PropagateS−→ b∆ ¬a. (3)

The state b∆ ¬a is terminal. Thus, Theorem 1 (b) asserts that {b,¬a} is a model of S.
There may be several paths determining the same model. For instance, the path

∅ Decide−→ ¬a∆ Decide−→ ¬a∆ b∆. (4)

leads to the terminal node¬a∆ b∆, which is different from b∆ ¬a but corresponds to the
same model. We can view a path in the graph AMS as a description of a process of search
for a model of module S by applying transition rules. Therefore, we can characterize a
solver based on the transition system AMS by describing a strategy for choosing a path
in AMS . Such a strategy can be based, in particular, on assigning priorities to some or
all transition rules of AMS , so that a solver will never apply a transition rule in a state if
a rule with higher priority is applicable to the same state. For example, priorities

BacktrackS ,FailS >> PropagateS >> Decide

on the transition rules of AMS specify a solver that follows available inferences (mod-
eled by edges in the module S) before executing a transition due to Decide. The path (3)
in the transition graph of the module from Figure 2 follows that strategy, whereas the
path (4) does not.

We now review the graph DPF introduced for the classical DPLL algorithm by Nieu-
venhuis et al. [20], adjusting the presentation to the form convenient for our purposes.
We then demonstrate its relation to the AMS graph. The set of nodes of DPF consists of
the states relative to the vocabulary of a CNF formula (a set of clauses) F . The edges of
the graph DPF are specified by the transition rule Decide of the graph AMS and the rules
presented in Figure 5. For example, let F1 be the theory consisting of a single clause a.
Figure 6 presents DPF1

.
For a CNF formula F , by µ(DPF ) we denote the graph (abstract module) con-

structed from DPF by dropping all nodes that contain decision literals. We note that
for the graph DPF1

in Figure 6, the module µ(DPF1
) coincides with the module in Fig-

ure 1(a). This is a manifestation of a general property.

Proposition 2. For every CNF formula F , the graph µ(DPF ) is a sound abstract mod-
ule equivalent to F . Furthermore, the graphs AMµ(DPF ) and DPF are identical.



UnitPropagateF : M −→ M l if
{
C ∨ l ∈ F and M |= ¬C,
l is unassigned by M

FailF : M −→ ⊥ if
{
C ∈ F and M |= ¬C,
M contains no decision literals

BacktrackF : P l∆ Q −→ P l if
{
C ∈ F and P l∆ Q |= ¬C,
Q contains no decision literals

Fig. 5: Three transition rules of the graph DPF .

a∆

∅

¬a∆ a

¬a

⊥

UnitPropagateF1Decide Decide FailF1

BacktrackF1

Fig. 6: The DPF1 graph where F1 is a single clause a.

Theorem 1 and the fact that the module µ(DPF ) is equivalent to a CNF formula F
(Proposition 2) imply that the graph DPF can be used for deciding the satisfiability of F .
It is enough to find a path leading from node ∅ to a terminal node M : if M = ⊥ then F
is unsatisfiable; otherwise, M is a model of F . For instance, the only terminal states
reachable from the state ∅ in DPF1

are a and a∆. This translates into the fact that a is a
model of F1. This is exactly the result that Nieuwenhuis et al. [20] stated for the graph
DPF :

Corollary 1. For any CNF formula F ,

(a) graph DPF is finite and acyclic,
(b) for any terminal state M of DPF other than ⊥, M is a model of F ,
(c) state⊥ is reachable from ∅ in DPF if and only if F is unsatisfiable (has no models).

We now introduce the graph ASΠ that extends the DPLL graph by Nieuwenhuis
et al. so that the result can be used to specify an algorithm for finding answer sets
of a program. The graph ASΠ can be used to form a sound module equivalent to a
program Π in the same way as we used DPF to form a sound module equivalent to a
CNF formula F .

We assume the reader to be familiar with the concept of unfounded sets [26, 10].
For a set M of literals and a program Π , by U(M,Π) we denote an unfounded set on
M w.r.t. Π . It is common to identify logic rules of a program with sets of clauses. By
Πcl we denote the set of clauses corresponding to the rules of Π . For instance, let Π
be (2), then Πcl consists of clauses a ∨ ¬a, a ∨ b.

The set of nodes of ASΠ consists of the states relative to the vocabulary of pro-
gram Π . The edges of the graph ASΠ are specified by the transition rules of the graph
DPΠcl and the rules presented in Figure 7.

For a program Π , by µ(ASΠ) we denote the graph (abstract module) constructed
from ASΠ by removing all nodes that contain decision literals.



UnfoundedΠ : M −→ M ¬a if
{
a ∈ U(M,Π) and
¬a is unassigned by M

FailΠ : M −→ ⊥ if
{
a ∈ U(M,Π), a ∈M , and
M contains no decision literals

BacktrackΠ : P l∆ Q −→ P l if
{
a ∈ U(P l Q,Π), a ∈ P l Q, and
Q contains no decision literals

Fig. 7: Transition rules of the graph ASΠ .

Proposition 3. For every program Π , the graph µ(ASΠ) is a sound abstract module
equivalent to a program Π under the answer set semantics. Furthermore, the graphs
AMµ(ASΠ) and ASΠ are identical.

From Theorem 1 and the fact that µ(ASΠ) is an abstract module equivalent to an
answer-set program Π it follows that the graph ASΠ can be used for deciding whether
Π has an answer set. It is enough to find a path in ASΠ leading from the node ∅ to a
terminal node M . If M = ⊥ then Π has no answer sets; otherwise, M is an answer set
of Π .

Corollary 2. For any program Π ,

(a) graph ASΠ is finite and acyclic,
(b) for any terminal state M of ASΠ other than ⊥, M+ is an answer set of Π ,
(c) state ⊥ is reachable from ∅ in ASΠ if and only if Π has no answer sets.

Let Π be the program (2). Figure 3(b) presents the module µ(ASΠ). It is easy to
see that this module is equivalently contained in the saturated module for Π presented
in Figure 2. For program Π the inference rules of UnitPropagate and Unfounded are
capable to capture all but one inference due to the entailment (the missing inference
corresponds to the edge from b to ¬a b in Figure 2).

Let us now consider the graph AS−Π constructed from ASΠ by either dropping the
rules UnfoundedΠ , BacktrackΠ , FailΠ or the rules UnitPropagateΠcl , BacktrackΠcl ,
FailΠcl . In each case, the module µ(AS−Π) in general is not equivalent to a program Π .
This demonstrates the importance of two kinds of inferences for the case of logic pro-
grams: (i) those stemming from unit propagate and related to the fact that an answer set
of a program is also its classical model; as well as (ii) those based on the concept of
“unfoundedness” and related to the fact that every answer set of a program contains no
unfounded sets. We note that forward chaining mentioned in earlier section is subsumed
by unit propagate.

The graph ASΠ is inspired by the graph SMΠ introduced by Lierler [11] for specify-
ing an answer set solver SMODELS [19]. The graph SMΠ extends ASΠ by two additional
transition rules (inference rules or propagators): All Rules Cancelled and Backchain
True. We chose to start the presentation with the graph ASΠ for its simplicity. We now
recall the definition of SMΠ and illustrate how a similar result to Proposition 3 is appli-
cable to it.



IfB is a conjunction of literals then byB we understand the set of the complements
of literals occurring in B.

The set of nodes of SMΠ consists of the states relative to the vocabulary of pro-
gram Π . The edges of the graph SMΠ are specified by the transition rules of the graph
ASΠ and the following rules:

All Rules Cancelled : M −→ M ¬a if
{
B ∩M 6= ∅ for all B ∈ Bodies(Π, a)
¬a is unassigned by M

Fail ARC: M −→ ⊥ if
{
B ∩M 6= ∅ for all B ∈ Bodies(Π, a),
a ∈M , M contains no decision literals

Backtrack ARC: P l∆ Q −→ P l if
{
B ∩M 6= ∅ for all B ∈ Bodies(Π, a),
a ∈ P l Q, Q contains no decision literals

Backchain True : M −→ M l if


a← B ∈ Π , a ∈M , l ∈ B
B′ ∩M 6= ∅ for all B′ ∈ Bodies(Π, a) \B
l is unassigned by M

Fail BT: M −→ ⊥ if


a← B ∈ Π , a ∈M , l ∈ B
B′ ∩M 6= ∅ for all B′ ∈ Bodies(Π, a) \B
l ∈M , M contains no decision literals

Backtrack BT: P l∆ Q −→ P l if


a← B ∈ Π , a ∈ P l Q, l′ ∈ B
B′ ∩ P l Q 6= ∅ for all B′ ∈ Bodies(Π, a) \B
l′ ∈ P l Q, Q contains no decision literals

The graph SMΠ shares the important properties of the graph ASΠ . Indeed, Propo-
sition 3 and Corollary 2 hold if one replaces ASΠ with SMΠ . Corollary 2 in this form
was one of the main results stated in [11]4.

Let Π be the program (2). Figure 3(b) presents the module µ(ASΠ). The module
µ(SMΠ) coincides with the saturated module for Π presented in Figure 2. For pro-
gram Π , the inference rule Backchain True captures the inference that corresponds to
the edge from b to ¬a b, which the transition rules of the graph ASΠ are incapable to
capture.

The examples above show that the framework of abstract modules uniformly en-
compasses different logics. We illustrated this point by means of propositional logic and
answer-set programming. Furthermore, it uniformly models diverse reasoning mecha-
nisms (entailment and its proof theoretic specializations). The results also demonstrate
that transition systems proposed earlier to represent and analyze SAT and ASP solvers
are special cases of general transition systems for abstract modules introduced here.

4 In [11], Lierler presented the SMΠ graph in a slightly different from: the states of that graph
permitted inconsistent states of literals, which in turn allowed to unify the Fail and Backtrack
transition rules for different propagators.



4 Abstract Modular System and Solver AMSA

By capturing diverse logics in a single framework, abstract modules are well suited
for studying modularity in declarative formalisms, and principles underlying solvers
for modular declarative formalisms. We now define an abstract modular declarative
framework that uses the concept of a module as its basic element. We then show how
abstract transition systems for modules generalize to the new formalism.

An abstract modular system (AMS) is a set of modules. The vocabulary of an
AMS A is the union of the vocabularies of modules of A (they do not have to have
the same vocabulary); we denote it by σ(A).

An interpretation I over σ(A) (that is, a subset of σ(A)) is a model of A, written
I |= A, if I is a model of every module S ∈ A. An AMS A entails a formula ϕ (over
the same vocabulary as A), written A |= ϕ, if for every model I of A we have I |= ϕ.
We say that an AMS A is sound if every module S ∈ A is sound.

Let S1 be a module presented in Figure 1(a) and S2 be a module in Figure 3(b). The
vocabulary of the AMS {S1, S2} consists of the atoms a and b. It is easy to see that the
interpretation {a,¬b} is its only model.

For a vocabulary σ and a set of literals M , by M |σ we denote the maximal subset
of M consisting of literals over σ. For example, {¬a,¬b}|{a} = {¬a}.

Each AMS A determines its transition system AMSA. The set of nodes of AMSA
consists of the states relative to σ(A). The transition rules of AMSA comprise the rule
Decide and the rules PropagateS , FailS , and BacktrackS , for all modules S ∈ A. The
latter three rules are modified to account for the vocabulary σ(A) and are presented in
Figure 8.

PropagateS : M −→ M l if S has an edge from M |σ(S) to M l|σ(S)

FailS : M −→ ⊥ if
{
S has an edge from M |σ(S) to ⊥,
M contains no decision literals

BacktrackS : P l∆ Q −→ P l if
{
S has an edge from P l Q|σ(S) to ⊥,
Q contains no decision literals

Fig. 8: The transition rules of the graph AMSA.

Theorem 2. For every sound AMS A,

(a) the graph AMSA is finite and acyclic,
(b) any terminal state of AMSA other than ⊥ is a model of A,
(c) the state ⊥ is reachable from ∅ in AMSA if and only if A is unsatisfiable.

This theorem demonstrates that to decide a satisfiability of a sound AMS A it is
sufficient to find a path leading from node ∅ to a terminal node. It provides a foundation
for the development and analysis of solvers for modular systems.



For instance, let A be the AMS {S1, S2}. Below is a valid path in the transition
graph AMSA with every edge annotated by the corresponding transition rule:

∅ Decide−→ ¬a∆
PropagateS2−→ ¬ a∆ b

BacktrackS1−→ a
Decide−→ a ¬b∆.

The state a ¬b∆ is terminal. Thus, Theorem 2 (b) asserts that {a,¬b} is a model of A.
Let us interpret this example. Earlier we demonstrated that module S1 can be regarded
as a representation of a propositional theory consisting of a single clause a whereas
S2 corresponds to the logic program (2) under the semantics of answer sets. We then
illustrated how modules S1 and S2 give rise to particular algorithms for implementing
search procedures. The graph AMSA represents the algorithm obtained by integrating
the algorithms supported by the modules S1 and S2 separately.

The results presented above imply, as special cases, earlier results on the logics
PC(ID) and SM(ASP), and their solvers [14].

5 Learning in Solvers for AMSs.

Nieuwenhuis et al. [20, Section 2.4] defined the DPLL System with Learning graph
to describe SAT solvers’ learning, one of the crucial features of current SAT solvers
responsible for rapid success in this area of automated reasoning. The approach of
Nieuwenhuis, Oliveras, and Tinelli extends to our abstract setting. Specifically, the
graph AMSA can be extended with “learning transitions” to represent solvers for AMSs
that incorporate learning.

The intuition behind learning in SAT is to allow new propagations by extending
the original clause database as computation proceeds. These “learned” clauses provide
new “immediate derivations” to a SAT solver by enabling additional applications of
UnitPropagate. In the framework of abstract modules, immediate derivations are repre-
sented by edges. Adding edges to modules captures the idea of learning by supporting
new propagations that the transition rule Propagate may take an advantage of. We now
state these intuitions formally for the case of abstract modular systems.

Let S be a module and E a set of edges between nodes of S. By SE we denote the
module constructed by adding to S the edges in E. A set E of edges is S-safe if the
module SE is sound and equivalent to S. For an AMS A and a set of edges E over the
vocabulary ofA, we defineAE = {SE|S : S ∈ A} (where E|S is the set of those edges
in E that connect nodes in S). We say that E isA-safe ifA andAE are equivalent, and
each module SE in AE is sound.

An (augmented) state relative to an AMS A = {S1, . . . , Sn} is either a distin-
guished state ⊥ or a pair of the form M ||Γ1, . . . , Γn where M is an ordered consistent
setM of literals over σ, some possibly annotated by∆; and Γ1, . . . , Γn are sets of edges
between nodes of modules S1, . . . , Sn, respectively. Sometimes we denote Γ1, . . . , Γn
by G. For any AMS A = {S1, . . . , Sn}, we define a graph AMSLA. Its nodes are the
augmented states relative to A. The rule Decide of the AMSA graph extends to AMSLA
as follows

Decide: M ||G −→ M l∆||G if l is unassigned by M .

Figure 9 presents the transition rules of AMSLA that are specific to each module Si
in A. We note that the set E of edges in the rule Learn LocalSi is required to consist of



edges that run between the nodes of Si. The transition rule

Learn Global: M || . . . , Γj , . . . −→ M || . . . , Γj ∪ E|Si , . . . if E is A-safe

where E is a set of edges between nodes over the vocabulary σ(A), concludes the
definition of AMSLA.

PropagateSi : M ||G −→ M l||G if SΓii has an edge from M to M l

FailSi : M ||G −→ ⊥ if
{
SΓii has an edge from M to ⊥,
M contains no decision literals

BacktrackSi : P l∆ Q||G −→ P l||G if
{
SΓii has an edge from P l Q to ⊥,
Q contains no decision literals

Learn LocalSi : M || . . . , Γi, . . . −→ M || . . . , Γi ∪ E, . . . if E is Si-safe

Fig. 9: Transition rules of AMSLA for module Si ∈ S.

We refer to the transition rules Propagate, Backtrack, Decide, and Fail of the graph
AMSLA as basic. We say that a node in the graph is semi-terminal if no basic rule is
applicable to it. The graph AMSLA can be used for deciding whether an AMS A has an
answer set by constructing a path from ∅||∅, . . . , ∅ to a semi-terminal node.

Theorem 3. For any sound AMS A,

(a) there is an integer m such that every path in AMSLA contains at most m edges due
to basic transition rules,

(b) for any semi-terminal state M ||G of AMSLA reachable from ∅||∅, . . . , ∅, M is a
model of A,

(c) state ⊥ is reachable from ∅||∅, . . . , ∅ in AMSLA if and only if A has no models.

It follows that if we are constructing a path starting in ∅||∅, . . . , ∅ in a way that guar-
antees that every sequence of consecutive edges of the path labeled with Learn Local
and Learn Global eventually ends (is finite), then the path will reach some semi-terminal
state. As soon as a semi-terminal state is reached the problem of finding a model is
solved.

There is an important difference between Learn Local and Learn Global. The first
one allows new propagations within a module but does not change its semantics as the
models of the module stay the same (and it is local, other modules are unaffected by it).
The application of Learn Global while preserving the overall semantics of the system
may change the semantics of individual modules by eliminating some of their models
(and, being global, affects in principle all modules of the system). SAT researchers have
demonstrated that Learn Local is crucial for the success of SAT technology both in prac-
tice and theoretically. Our initial considerations suggest that under some circumstances,
Learn Global offers additional substantial performance benefits.



We stress that our discussion of learning does not aim at any specific algorith-
mic ways in which one could perform learning. Instead, we formulate conditions that
learned edges are to satisfy (S-safety for learning local to a module S, andA-safety for
the global learning rule), which ensure the correctness of solvers that implement learn-
ing so that to satisfy them. In this way, we provide a uniform framework for correctness
proofs of multi-logic solvers incorporating learning.

6 Related Work

In an important development, Brewka and Eiter [3] introduced an abstract notion of
a heterogeneous nonmonotonic multi-context system (MCS). One of the key aspects
of that proposal is its abstract representation of a logic and hence contexts that rely
on such abstract logics. The independence of contexts from syntax promoted focus on
semantic aspect of modularity exhibited by multi-context systems. Since their inception,
multi-context systems have received substantial attention and inspired implementations
of hybrid reasoning systems including DLVHEX [5] and DMCS [1]. Abstract modular
systems introduced here are similar to MCSs as they too do not rely on any particular
syntax for logics assumed in modules (a counterpart of a context). What distinguishes
them is that they encapsulate some semantic features stemming from inferences allowed
by the underlying logic. This feature of abstract modules is essential for our purposes
as we utilize them as a tool for studying algorithmic aspects of multi-logic systems.
Another difference between AMS and MCS is due to “bridge rules.” Bridge rules are
crucial for defining the semantics of an MCS. They are also responsible for “information
sharing” in MCSs. They are absent in our formalism altogether. In AMS information
sharing is implemented by a simple notion of a shared vocabulary between the modules.

Modularity is one of the key techniques in principled software development. This
has been a major trigger inspiring research on modularity in declarative programming
paradigms rooting in KR languages such as answer set programming, for instance.
Oikarinen and Janhunen [21] proposed a modular version of answer set programs called
lp-modules. In that work, the authors were primarily concerned with the decomposi-
tion of lp-modules into sets of simpler ones. They proved that under some assumptions
such decompositions are possible. Järvisalo, Oikarinen, Janhunen, and Niemelä [9], and
Tasharrofi and Ternovska [24] studied the generalizations of lp-modules. In their work
the main focus was to abstract lp-modules formalism away from any particular syntax
or semantics. They then study properties of the modules such as “joinability” and an-
alyze different ways to join modules together and the semantics of such a join. We are
interested in building simple modular systems using abstract modules – the only com-
position mechanism that we study is based on conjunction of modules. Also in contrast
to the work by Järvisalo et al. [9] and Tasharrofi and Ternovska [24], we define such
conjunction for any modules disregarding their internal structure and interdepencies
between each other.

Tasharrofi, Wu, and Ternovska [25] developed and studied an algorithm for pro-
cessing modular model expansion tasks in the abstract multi-logic system concept de-
veloped by Tasharrofi and Ternovska [24]. They use the traditional pseudocode method
to present the developed algorithm. In this work we adapt the graph-based framework



for designing backtrack search algorithms for abstract modular systems. The benefits
of that approach for modeling families of backtrack search procedures employed in
SAT, ASP, and PC(ID) solvers were demonstrated by Nieuwenhuis et al. [20], Lier-
ler [11], and Lierler and Truszczynski [14]. Our work provides additional support for
the generality and flexibility of the graph-based framework as a finer abstraction of
backtrack search algorithms than direct pseudocode representations, allowing for con-
venient means to prove correctness and study relationships between the families of the
algorithms.

7 Conclusions

We introduced abstract modules and abstract modular systems and showed that they
provide a framework capable of capturing diverse logics and inference mechanisms in-
tegrated into modular knowledge representation systems. In particular, we showed that
transition graphs determined by modules and modular systems provide a unifying rep-
resentation of model-generating algorithms, or solvers, and simplify reasoning about
such issues as correctness or termination. We believe they can be useful in theoretical
comparisons of solver effectiveness and in the development of new solvers. Learning, a
fundamental technique in solver design, displays itself in two quite different flavors, lo-
cal and global. The former corresponds to learning studied before in SAT and SMT and
demonstrated both theoretically and practically to be essential for good performance.
Global learning is a new concept that we identified in the context of modular systems.
It concerns learning across modules and, as local learning, promises to lead to perfor-
mance gains. In the future work we will conduct a systematic study of global learning in
abstract modular systems and its impact on solvers for practical multi-logic formalisms.

References

1. Bairakdar, S.E.D., Dao-Tran, M., Eiter, T., Fink, M., Krennwallner, T.: The dmcs solver for
distributed nonmonotonic multi-context systems. In: 12th European Conference on Logics
in Artificial Intelligence (JELIA). pp. 352–355 (2010)

2. Barrett, C., Sebastiani, R., Seshia, S., Tinelli, C.: Satisfiability modulo theories. In: Biere,
A., Heule, M., van Maaren, H., Walsch, T. (eds.) Handbook of Satisfiability, pp. 737–797.
IOS Press (2008)

3. Brewka, G., Eiter, T.: Equilibria in heterogeneous nonmonotonic multi-context systems. In:
Proceedings of National conference on Artificial Intelligence (AAAI). pp. 385–390 (2007)

4. Denecker, M., Lierler, Y., Truszczynski, M., Vennekens, J.: A Tarskian informal semantics
for answer set programming. In: Dovier, A., Costa, V.S. (eds.) International Conference on
Logic Programming (ICLP). LIPIcs, vol. 17. Schloss Dagstuhl - Leibniz-Zentrum fuer Infor-
matik (2012)

5. Eiter, T., Ianni, G., Schindlauer, R., Tompits, H.: A uniform integration of higher-order rea-
soning and external evaluations in answer set programming. In: Proceedings of International
Joint Conference on Artificial Intelligence (IJCAI). pp. 90–96 (2005)

6. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In: Kowal-
ski, R., Bowen, K. (eds.) Proceedings of International Logic Programming Conference and
Symposium. pp. 1070–1080. MIT Press (1988)



7. Giunchiglia, F.: Contextual reasoning. Epistemologia XVI, 345–364 (1993)
8. Jaffar, J., Maher, M.: Constraint logic programming: A survey. Journal of Logic Program-

ming 19(20), 503–581 (1994)
9. Järvisalo, M., Oikarinen, E., Janhunen, T., Niemelä, I.: A module-based framework for multi-

language constraint modeling. In: Proceedings of the 10th International Conference on Logic
Programming and Nonmonotonic Reasoning. pp. 155–168. LPNMR ’09, Springer-Verlag,
Berlin, Heidelberg (2009), http://dx.doi.org/10.1007/978-3-642-04238-6 15

10. Lee, J.: A model-theoretic counterpart of loop formulas. In: Proceedings of International
Joint Conference on Artificial Intelligence (IJCAI). pp. 503–508. Professional Book Center
(2005)

11. Lierler, Y.: Abstract answer set solvers. In: Proceedings of International Conference on Logic
Programming (ICLP). pp. 377–391. Springer (2008)

12. Lierler, Y.: Abstract answer set solvers with backjumping and learning. Theory and Practice
of Logic Programming 11, 135–169 (2011)

13. Lierler, Y.: On the relation of constraint answer set programming languages and algorithms.
In: Proceedings of the AAAI Conference on Artificial Intelligence. MIT Press (2012)

14. Lierler, Y., Truszczynski, M.: Transition systems for model generators — a unifying ap-
proach. Theory and Practice of Logic Programming, 27th Int’l. Conference on Logic Pro-
gramming (ICLP’11) Special Issue 11, issue 4-5 (2011)

15. Marek, V., Truszczyński, M.: Stable models and an alternative logic programming paradigm.
In: The Logic Programming Paradigm: a 25-Year Perspective, pp. 375–398. Springer Verlag
(1999)

16. Mariën, M., Wittocx, J., Denecker, M., Bruynooghe, M.: SAT(ID): Satisfiability of proposi-
tional logic extended with inductive definitions. In: SAT. pp. 211–224 (2008)

17. McCarthy, J.: Generality in Artificial Intelligence. Communications of the ACM 30(12),
1030–1035 (1987), reproduced in [?]

18. Niemelä, I.: Logic programs with stable model semantics as a constraint programming
paradigm. Annals of Mathematics and Artificial Intelligence 25, 241–273 (1999)

19. Niemelä, I., Simons, P.: Extending the Smodels system with cardinality and weight con-
straints. In: Minker, J. (ed.) Logic-Based Artificial Intelligence, pp. 491–521. Kluwer (2000)

20. Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Solving SAT and SAT modulo theories: From
an abstract Davis-Putnam-Logemann-Loveland procedure to DPLL(T). Journal of the ACM
53(6), 937–977 (2006)

21. Oikarinen, E., Janhunen, T.: Modular equivalence for normal logic programs. In: 17th Euro-
pean Conference on Artificial Intelligence(ECAI). pp. 412–416 (2006)

22. Rossi, F., van Beek, P., Walsh, T.: Constraint programming. In: van Harmelen, F., Lifschitz,
V., Porter, B. (eds.) Handbook of Knowledge Representation, pp. 181–212. Elsevier (2008)

23. Simons, P., Niemelä, I., Soininen, T.: Extending and implementing the stable model seman-
tics. Artificial Intelligence 138, 181–234 (2002)

24. Tasharrofi, S., Ternovska, E.: A semantic account for modularity in multi-language mod-
elling of search problems. In: Frontiers of Combining Systems, 8th International Symposium
(FroCoS). pp. 259–274 (2011)

25. Tasharrofi, S., Wu, X.N., Ternovska, E.: Solving modular model expansion tasks. CoRR
abs/1109.0583 (2011)

26. Van Gelder, A., Ross, K., Schlipf, J.: The well-founded semantics for general logic programs.
Journal of ACM 38(3), 620–650 (1991)


