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ABSTRACT
Recently, there has been considerable interest in providing
“trusted computing platforms” using hardware — TCPA
and Palladium being the most publicly visible examples. In
this paper we discuss our experience with building such a
platform using a traditional time-sharing operating system
executing on XOM — a processor architecture that provides
copy protection and tamper-resistance functions. In XOM,
only the processor is trusted; main memory and the operat-
ing system are not trusted.

Our operating system (XOMOS) manages hardware re-
sources for applications that don’t trust it. This requires a
division of responsibilities between the operating system and
hardware that is unlike previous systems. We describe tech-
niques for providing traditional operating systems services
in this context.

Since an implementation of a XOM processor does not
exist, we use SimOS to simulate the hardware. We modify
IRIX 6.5, a commercially available operating system to cre-
ate XOMOS. We are then able to analyze the performance
and implementation overheads of running an untrusted op-
erating system on trusted hardware.

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Cryptographic Controls, Ac-
cess Controls; D.4.1 [Operating Systems]: Process Man-
agement; C.1.0 [Processor Architectures]: General
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1. INTRODUCTION
There are several good reasons for creating tamper-res-

istant software including combating software piracy, enabling
mobile code to run on untrusted platforms without the risk
of tampering or intellectual property theft, and enabling the
deployment of trusted clients in distributed services such as
banking transactions, on-line gaming, electronic voting, and
digital content distribution. Tamper-resistant software is
also useful in situations where a portable device containing
sensitive software and data may fall into the hands of adver-
saries, and in preventing viruses from modifying legitimate
programs.

Tamper-resistance can be enforced using software or hard-
ware techniques. In the past, techniques such as software ob-
fuscation have been explored, but with limited success [4].
There is a widespread belief that software-based solutions
are relatively easier to attack than hardware-based solu-
tions [3]. Thus, there have been several proposals for creat-
ing systems that rely on hardware, rather than on software
to enforce the security and protection of programs [10, 11,
14, 17, 27, 29].

Trusting the hardware rather than the software has in-
teresting implications for operating systems design. Since
sharing hardware resources among multiple users is a diffi-
cult task, often requiring complex policy decisions, it is most
naturally done in software by an operating system. But, if
one is reluctant to trust anything but the hardware, then
we must somehow arrange for an untrusted agent—the op-
erating system software—to manage a trusted resource—the
hardware.

This paper explores the design of an operating system that
runs on hardware that supports tamper-resistant software.
Our operating system is intended to work with an existing
processor architecture called XOM, which stands for eXe-
cute Only Memory [17]. In the XOM processor architec-
ture, programs do not trust the operating system or external
memory, but instead, trust the processor hardware to pro-
tect their code and data. In trying to design the operating
system for the XOM processor, we found difficulties with
the original architectural specification that made it imprac-
tical to provide certain operating system facilities, such as
time-slicing, process forking, and user-level signal handling.
This paper describes the design changes in the operating
system and the architecture that were required to build a
functioning system.

There is currently no hardware implementation of the
XOM architecture. We therefore modify the SimOS [22]
simulation system to model a XOM processor, based on an



in-order processor model using the MIPS R10000 [12] in-
struction set. XOMOS is implemented by modifying the
IRIX 6.5 [25] operating system from SGI. Using XOMOS
we can execute XOM-protected (and ordinary) programs.
Our experiments demonstrate that it is possible to write an
operating system that not only manages resources for ap-
plications that do not trust it, but also supports most, but
not all, of the traditional services that one expects from an
operating system.

The rest of the paper is organized as follows. Section 2
describes the XOM trust model and its implications for op-
erating systems design in more detail. Section 3 describes
related work. Section 4 provides background and summa-
rizes the basic processor architecture originally described
in [17]. Supporting an operating system on this interface re-
quired significant software and hardware co-design, resulting
in several changes to IRIX and the instruction set architec-
ture. These changes are described in Section 5. Section 6
describes the implementation effort required to create XO-
MOS, and discusses the implementation and performance of
micro-benchmarks as well as two secure applications running
on XOMOS: RSA operations in OpenSSL and mpg123, an
MP3 decoder. In Section 7, we discuss how XOM supports
many of the primitives that trusted computing platforms
such as TCPA and Palladium provide. Finally, we present
our conclusions in Section 8.

2. THE XOM TRUST MODEL
XOM can protect against a sophisticated attacker who

may even have physical access to the hardware. In this
scenario, the attacker either tries to extract secrets from
a program by observing its operation, or she tries to tamper
with the program’s operation to make it reveal secrets. To
this end, the attacker may exploit weaknesses in the operat-
ing system and use its privileged status to attack programs.
To guard against this attack, the XOM model assumes that
the operating system is not trusted. We have formally ver-
ified the XOM architecture using a model checker in pre-
vious work [16]. This work demonstrated that even an ac-
tively malicious operating system can only extract a limited
amount of information about user programs. Because of its
role as resource manager, the only major attack the operat-
ing system could perform is a denial of service attack. The
verification also demonstrated that given a correctly work-
ing operating system, user programs are guaranteed forward
progress.

The XOM attack model also assumes that main memory
may be compromised by an adversary. The XOM processor
not only encrypts values in memory, but also stores hashes of
those values in memory as well. XOM continuously authen-
ticates memory to ensure that an attacker who physically
attacks memory or the memory bus cannot tamper with
data stored off-chip. It will only accept encrypted values
from memory if accompanied by a valid hash. The hash not
only protects the actual value of the data, but also checks
the virtual address that the data was stored to by the ap-
plication, thus ensuring that an adversary cannot copy or
move data from one virtual address to another.

2.1 Implications of the XOM Trust Model
The lack of trust in any software-based resource manager

and external memory makes our system significantly more
robust and quite different from well-known approaches like

microkernels and capability-based systems that try to solve
a similar problem. If one is willing to compromise and lower
the barrier by conceding hardware based attacks on memory,
then solutions such as secure booting [2, 15, 29], TCPA [28]
and Palladium (also known as Next-Generation Secure Com-
puting Base or NGSCB) [6, 7] are viable alternatives to our
design. We defer a fuller discussion of related work to Sec-
tion 3.

The XOM architecture prevents programs from tamper-
ing with each other by placing them in separate compart-
ments [24]. The separation of compartments is enforced by a
combination of cryptography and tagging data in hardware.
The untrusted operating system runs in a separate compart-
ment from user processes. Entities running in a compart-
ment cannot access data in another compartment. However,
to share hardware resources among a set of processes, the
operating system must be able to preempt a process, as well
as save and restore its context. With XOM, a correctly writ-
ten operating system will be able save and restore user data.
Yet, even a malicious operating system should not be able
to read or modify data belonging to a user process.

In principle, an operating system should be able to virtu-
alize and manage resources without having to interpret any
of the values it is moving, but there are practical obstacles
to supporting many of the paradigms that typical operating
systems support, such as signal handlers, memory manage-
ment, process creation and so on. In addition, the operating
system must also manage resources used to store the crypto-
graphic hashes that the XOM hardware uses. The challenge
is to find ways of supporting traditional operating system
functionality under the new division of trust. XOMOS is a
first step at exploring these issues.

XOM does alter the way a certain set of services are sup-
ported by the operating system. For example, security sen-
sitive operations such as shared memory, inter-process com-
munication and program debugging are restricted in their
usage. We discuss this further in Section 5.

3. RELATED WORK
Our work is related to previous work on secure booting [2,

15, 29]. Loosely speaking, secure booting is a technique that
guarantees the integrity of higher level software running on
a machine by ensuring the integrity of each of the lower
layers (e.g., the runtime libraries, operating system kernel,
firmware, hardware) on which it depends. At the bottom of
the chain a secure entity, such as a CPU, is assumed to have
a tamper-resistant secret embedded in it. On power up, this
secure entity takes control of the machine and authenticates
the next layer e.g., the firmware, and transfers control to
that layer, which authenticates the next layer in turn, and
transfers control to it, and so on.

A key difference between secure booting and XOM is that
the latter does not trust the operating system or memory.
As a result, bugs in the operating system cannot under-
mine the security of applications running on it. In a secure
booting system, a determined and sufficiently sophisticated
adversary could exploit the trusted memory to modify the
instruction or data stream of an authenticated program dur-
ing execution (say by using dual ported memory). In con-
trast, XOM encrypts all instructions and data to and from
main memory and can detect tampering of the code or the
data at all times. The details of this technique are described
in Section 4.



Executing trusted code on a secure co-processor is an-
other way of achieving some of the same goals as we do [27,
29]. While a co-processor approach is feasible, it has some
limitations. For example, it is difficult to time-share the co-
processor among mutually suspicious pieces of code. XO-
MOS allows mutually suspicious applications to be securely
multi-tasked on the same processor without any special co-
operation from the applications.

There is much literature on security in the context of se-
curity kernels [23], capability-based operating systems [26],
microkernels [1], and exokernels [8] that is related to our
work. All of these approaches assume that the operating
system and memory are trusted, and as a result are very
different from XOMOS.

The TCPA [28] and Palladium or NGSCB [6, 7] initiatives
are also related to our approach. One difference between
these systems and XOM is that XOM provides the ability
for programs to hide secrets in their binary images. Pro-
grams can use these secrets to authenticate themselves to
third parties. Both TCPA and Palladium rely on a trusted
monitor to perform the attestation (The TPM in the case
of TCPA and the Nexus in the case of Palladium). TCPA
provides a chain of cryptographic hashes so that an a third-
party can reliably determine the complete boot sequence of
the machine until it was loaded. It can therefore decide if
the boot sequence has been tampered with and terminate.
In some ways, TCPA is similar to the authenticated boot
process found in a secure booting system, and neither sys-
tem can protect itself from an attack that modifies memory
contents after attestation. Both TCPA and the Palladium
share the notion of Sealed Storage [6, 28], which uses a mech-
anism similar to XOM to protect data. We discuss sealed
storage in greater detail in Section 7.

4. THE ORIGINAL XOM ARCHITECTURE
The XOM architecture is designed to address a shortcom-

ing with implementing security in software. The problem
is that it is easy to tamper with and observe software, and
as a result, it is impossible to hide secrets in software. In-
stead, the XOM architecture uses the tamper-resistant prop-
erties of hardware, to protect a master secret that is different
for every XOM-enabled processor. This is then used to se-
cure and protect other secrets in software. For example, a
program may want to protect its code and keep it secret.
By hiding the encryption key for the program in the pro-
cessor, adversaries cannot see or modify the program with-
out mounting an attack on the processor hardware. Conse-
quently, the XOM processor never allows the master secret
to leave the chip; so all operations that use the master secret
must be implemented on the processor.

XOM uses its master secret to protect programs by sup-
porting compartments. A compartment is a logical container
that prevents information from flowing into or out of it. A
process in a compartment is immune to both modification
and observation. Preventing unauthorized observation of
the protected process is important because the process code
and data may have secrets that its owner does not want to
divulge. Conversely, by modifying the process data or code,
an adversary may induce the process to leak secrets, so this
must be prevented as well. We rely on the XOM hardware to
implement compartments efficiently using the secret hidden
in the processor. To do this, XOM uses both cryptographic
and architectural techniques.

In this section, we will briefly summarize the original
XOM processor hardware described in [17]. For the most
part, a XOM processor behaves like a typical modern proces-
sor, and is simply a set of extensions to such a processor. It
has registers, memory, and executes instructions in the usual
fashion. The operating system and other processes can ac-
cess the XOM extensions through a set of instructions. The
next two subsections detail how the XOM architecture com-
partments are enforced and how the processor permits the
operating system to handle program state without violating
the security.

4.1 Implementing Compartments
XOM uses both asymmetric and symmetric ciphers to im-

plement compartments1. The master secret hidden in the
XOM processor is actually the private part of an asymmet-
ric cipher pair. To support multiple compartments, each
compartment has a distinct symmetric key, called the com-
partment key, which is used to encrypt its contents. The
compartment key, in turn, is encrypted with the public key
matching the processor, allowing the processor to recover the
compartment key and decrypt the program. The encrypted
compartment key need not be kept in the processor; it can
be stored with the encrypted program code.

The use of compartments affects the software distribution
model. A software producer who wishes to distribute pro-
grams that use compartments will first encrypt the program
with a randomly chosen compartment key. She can then
distribute the encrypted image, but no image will be exe-
cutable until combined with a compartment key encrypted
for that processor. Thus, she must encrypt the compart-
ment key with the public key of the processor she wishes to
allow the program to execute on. In a commercial setting,
this could be done when the customer either purchases or
registers the software online.

Data generated during program execution also must be
isolated in the program’s compartment. This is done by
having the XOM processor encrypt data that a program
stores to memory with the compartment key when it leaves
the CPU chip. However, when data doesn’t leave the chip,
the XOM processor can skip the encryption. All values in
processor caches and registers are stored in plain text2 to
increase efficiency. The XOM processor uses architectural
support to enforce compartments without paying the cryp-
tographic penalty. Hardware ownership tags are added to
on-chip storage, such as registers and caches, to indicate
which compartment data and code belongs to. A hardware
table, called the XOM Key Table, maintains the mapping
between compartment keys and ownership tags. On a cache
eviction, the XOM processor looks up the compartment key
in the XOM Key Table and uses it to encrypt the data to
memory.

If code is encrypted, we say it is in a compartment. Prin-
cipals who don’t know the key cannot access the program
code or data. There is a single distinguished compartment,
called the NULL compartment, which has no compartment
key. Programs that are not encrypted, exist and run in this

1Asymmetric key cryptography uses pairs of keys, a public
key for encryption and a private key for decryption, while
symmetric ciphers use a single key for both encryption and
decryption
2Unencrypted values are referred to as plain text, encrypted
values as cipher text



compartment. Code and data in the NULL compartment
can be accessed from any compartment, and programs may
use this compartment as an insecure channel for sharing data
with other programs within the constraints of traditional op-
erating system address space protection. It is important to
note that the protection provided by XOM compartments is
in addition to traditional address space and virtual memory
protection provided by the operating system and processor
architecture.

To protect against tampering of data while it is in mem-
ory, XOM processors employ a keyed cryptographic hash,
or message authentication code (MAC), to check for the in-
tegrity of data and code stored into memory [13]. Each time
a cache line is written to memory, a hash of it is generated,
and both the hash and the cache line are encrypted. The
hash pre-image contains both the virtual address and the
value of the cache line. When decrypting the cache line, a
matching hash must also be loaded before the XOM proces-
sor will accept the encrypted value as valid. Because the
granularity of encryption is a cache line, it is important to
note that programs cannot store encrypted and unencrypted
data on the same cache line. Similarly, encrypted code and
plain text code must be padded to be placed on separate
cache lines.

The XOM architecture adds a few new instructions to
the instruction set architecture of the base machine. XOM
programs execute the enter xom instruction to enter their
XOM compartment. This instruction causes the proces-
sor to decrypt the compartment key and enter it into the
XOM Key Table. All instructions following enter xom are
in the compartment and must be decrypted before execu-
tion. Programs leave secure execution and return to the
NULL compartment by executing the exit xom instruction.
This causes the compartment key to be unloaded from the
XOM Key Table and following instructions are no longer
decrypted. This pair of instructions allows a program to
execute some code sections in the NULL compartment and
others in a private compartment. This allows for easier ap-
plication development and better program performance as
XOM code incurs the overhead of cryptographic operations.

XOM programs explicitly indicate whether data they store
to memory belongs to the NULL compartment or in their
private compartment. The secure store and secure load

instructions store and load data in a private compartment.
Data thus stored is tagged with the same value as the pro-
gram code when in the on-chip caches and will eventually
be encrypted with the same compartment key as the pro-
gram if flushed to off-chip memory. On the other hand, the
standard load and store instructions save data in the NULL
compartment.

XOM processors provide the move from NULL and move

to NULL instructions to move register data between com-
partments. These instructions simply change the value of
the tag on each register value.

4.2 Handling Program State
When a XOM program is interrupted, the operating sys-

tem needs a way to save the context of the interrupted pro-
gram, and restore it at a later time. However, at interrupt
time, the contents of the registers are still tagged with the
identity of the interrupted program. As a result, the oper-
ating system is unable to read those values to save them.
The XOM processor provides two instructions for the op-
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Figure 1: XOM Key Table Design. The XOM ID

register refers to the Register Key entry for the cur-

rently executing XOM process. The ownership tags

on the registers are used by XOM to encrypt and

decrypt register contents under program control, us-

ing specialized machine instructions described in Ta-

ble 1. The ownership tags on the caches are used by

XOM to encrypt and decrypt cache contents in re-

sponse cache evictions and fills, which are not under

explicit program control.

erating system to use in this situation. A save register

instruction directs the XOM hardware to encrypt the regis-
ter, create a hash of the register, and store both to memory.
A complementary restore register instruction takes the
encrypted register and hash, verifies the hash, and restores
them back to the original register, setting its ownership tags
appropriately. The hashes detect when a malicious operat-
ing system attempts to tamper with register values by either
spoofing in a fake value or restoring valid values back to a
different register. In the event that the register is in the
NULL compartment, these instructions do not perform any
cryptographic operations. These instructions, and the in-
struction discussed in Section 4.1, are summarized in the
first column of Table 1.

A special provision must also be made to prevent the op-
erating system from mounting a replay attack by taking the
register values from one interrupt and repeatedly restoring
it. This is done by revoking the key used to encrypt and
hash register values each time a XOM compartment is in-
terrupted. The hardware performs this revocation by re-
generating a new key for the compartment when it takes a
trap. Since this key is continually changing, we can’t use
the compartment key to encrypt register values; rather, we
use a separate key, called the register key.

Memory values must also be protected against replay at-
tacks. Previous work [16] has shown a way of preventing
replays by storing a hash of memory in a replay-proof reg-
ister. We don’t directly support this scheme in the current
system; instead, we rely on the applications to maintain
the hash themselves. This adds a significant burden to the
applications. We are aware of proposals to add hardware
support to XOM that would maintain hashes with a perfor-
mance penalty of about 25% [9]. The main obstacle to the
addition of such hardware is that there must be a hash tree
per virtual and not physical address. Since it is the operat-
ing system that maintains the virtual to physical mapping,



a new interface must be created to allow the hash tree hard-
ware to retrieve these mappings from the operating system.
Implementing this interface, which involves exception han-
dling, will incur additional operating system and hardware
overheads. We have a preliminary design, but we have not
implemented it yet.

Note that XOM does not prevent incorrectly written pro-
grams from leaking secrets, nor is that its intent. XOM sim-
ply provides the necessary support so that correct programs
can secure their secrets against a range of attacks.

Figure 1 describes some of the important aspects of the
XOM hardware. The XOM Key Table actually consists of
two sub-tables: the Register Key Table, which holds the reg-
ister keys and the Compartment Key Table, which holds the
compartment keys. The Register Key Table is indexed by
a special register called the XOM ID Register that refers
to the register key of the currently executing XOM process.
The value of this register is set and unset via the enter

xom and exit xom instructions. The index of a key in the
Register Key Table is used as a shorthand (instead of the
key itself) to tag the register contents. We call these tags
the register ownership tags. Likewise, cache lines are tagged
with the indices into the Compartment Key Table. These
tags are called the cache ownership tags. When the context
is unambiguous we use the common term ownership tags
to refer to the tags on the registers and the caches. Every
register key in the Register Key Table corresponds to a sin-
gle entry in the Compartment Key Table, although multiple
register keys may point to the same entry in the Compart-
ment Key Table. The reason for this mapping is to allow
multiple instances of the same program to execute as would
occur as a result of a fork. This is discussed in more detail
in Section 5.6.

5. SUPPORTING AN OPERATING SYSTEM
The purpose of the XOM hardware is to protect the mas-

ter private key and to provide the basic functionality to
enforce compartments. Higher-level tasks such as resource
allocation and management, hardware virtualization, and
implementing system call functionality are still the domain
of the operating system. While these tasks may have some
security implications, they are simply too complex to be im-
plemented in the hardware.

XOM programs do not trust the operating system with
their data. On the other hand, the operating system does
not trust XOM programs to behave properly, and must be
able to interrupt and remove resources from a misbehav-
ing XOM program. Accordingly, the contract between the
XOM architecture and the operating system must satisfy
two requirements. First, given a properly working operat-
ing system, it should make resource management efficient
and effective. Second, it should ensure that if the operating
system is malicious, its privileged position does not allow it
to violate the isolation of a compartment.

Given these requirements on the interface between the
hardware and operating system, the hardware must provide
exception and interrupt functionality as is found on ordinary
processors. This allows the operating system to limit the
execution time of programs and interpose when programs
access resources. On the other hand, when the operating
system moves the physical location of resources, it must ad-
here to the XOM compartments. This means, when saving
process state, it must use the special instructions provided

by XOM that encrypt and hash process registers. When
relocating data in memory, the operating system must also
relocate the respective hashes.

As mentioned in Section 1, there are some operating sys-
tem services which cannot be implemented the same way
they are in non-XOM systems. For example, it would be im-
possible to support external debugging or profiling as XOM
would prevent any other program from gaining access to
the state of the program. In addition, shared memory and
inter-procedure communication through memory can only
be implemented in the NULL compartment. To communi-
cate securely, two programs should establish a shared key
and encrypt all communications through the NULL com-
partment.

A significant number of changes to IRIX were required
to implement XOMOS. We classify these changes into three
categories:

• Modifications for XOM Key Table maintenance:

The hardware and operating system must have sup-
port for programs to use the XOM Key Table, and the
operating system must manage the limited number of
entries it has.

• Modifications for dealing with encrypted data:

When the operating system is managing system re-
sources such as CPU time or memory, it must deal
with user data that is encrypted as well as the accom-
panying hashes.

• Modifications for traditional operating system

mechanisms: Various features in a traditional oper-
ating system such as shared libraries, process creation,
and user defined signal handlers require special sup-
port.

For the most part, these modifications were implemented in
the operating system. However, in some cases, we found
that modifications to the XOM hardware architecture were
also necessary. A summary of the hardware modifications
is given in Table 1 and a sketch of the important XOM
hardware data structures is shown in Figure 1.

5.1 XOM Key Table System Calls
The original architecture specifies a single enter xom in-

struction to enter XOM operation. This allocates an entry
in the XOM Key Table, which is freed when the program
executes an exit xom instruction. While this is adequate, it
is inefficient if a program wishes to enter and exit its XOM
compartment frequently, since the hardware would have to
perform an expensive public key operation every time. In
addition, since enter xom is privileged, the program has to
drop into the kernel every time it wishes to enter a compart-
ment. However, if enter xom is unprivileged, the operating
system cannot prevent a malicious application from mount-
ing a denial of service attack by allocating all entries in the
XOM Key Table. To satisfy these conflicting requirements,
we decouple the operations of loading and unloading Key
Table entries from entering and exiting compartments.

We split each of the enter xom and exit xom instruc-
tions into two smaller primitives. The xalloc and xinval

instructions allocate and invalidate XOM Key Table entries,
while xentr and xexit instructions enter and exit a XOM
compartment. When a program wants to enter a new XOM



Original Hardware New Hardware Description

enter xom xalloc $rt,offset($base) Privileged. Decrypt compartment key at memory [$base

+ offset] and enter it into the Compartment Key Table
at the entry $rt. Allocate a new register key in the
Register Key Table and return the index into table in
$rt.

xentr $rt,$rd Use $rt as an index into the Register Key Table and enter
the corresponding compartment. The current register
key is placed in $rd.

exit xom xinval $rt Privileged. Mark the entry in the XOM Register Key
Table indicated by $rt as invalid and disassociate it from
the compartment key. Clear all registers that are tagged
with the tag $rt.

xrclm $rt Privileged. Reclaim the entry $rt in the XOM Com-
partment Key table. (All entries in the Register Key
Table pointing to this compartment key must have been
previously invalidated.) Invalidate caches.

xexit $rt Executed in XOM mode. Exit XOM compartment and
return to the NULL compartment. The hardware sets
the register key of the exited compartment to the value
in $rt.

secure store xsd $rt,offset($base) Executed in XOM mode. Stores $rt into memory [$base

+ offset]. The cache line is tagged with the executing
process’ compartment.

secure load xld $rt,offset($base) Executed in XOM mode. Loads $rt with memory [$base

+ offset]. Validate the accompanying hash. $rt is
tagged with the executing process’ compartment.

save register xgetid $rt,$rd Get the register tag value of $rt and place it in $rd.
xenc $rt,$rd Check that the ownership tag of $rt matches that of $rd.

If so, use the contents of $rd to index the Register Key
Table to locate the corresponding register key. Encrypt
the contents of $rt with this key and place it in XOM
co-processor registers $0...$3

xsave $rt,offset($base) $rt is one of the XOM co-processor registers $0...$3
which store the encrypted register created by xenc.
The register contents are saved to memory [$base +

offset]. The cache line is tagged with the NULL com-
partment, (c.f. xsd).

restore register xrstr $rt,offset($base) $rt is one of the XOM co-processor registers $0...$3 that
stores the encrypted value to be restored. Fill the register
with the value at memory [$base + offset].

xdec $rt,$rd Use the contents of $rd to index the Register Key Table
to locate a register key. Decrypt the 256 bit value set
by xrstr, validate the result and restore to register $rt.
Set the ownership tag on $rt using the contents of $rd.

move to NULL xmvtn $rt Executed in XOM mode. Set the ownership tag of $rt
to NULL.

move from NULL xmvfn $rt Executed in XOM mode. Set the ownership tag of $rt
to the value in the XOM ID register.

Table 1: Summary of modifications to the original XOM hardware architecture. Original hardware represents

the primitives that are in the original XOM specification. New hardware details the instructions that were

added to the ISA of the processor in our simulator implementation of XOM. All instructions, unless otherwise

specified, are executed outside XOM mode.

compartment, XOMOS executes xalloc on behalf of the
program to load a compartment key. XOMOS specifies an
entry in the Compartment Key Table to load the key into.
The XOM hardware also allocates an entry in the Regis-
ter Key Table corresponding to the compartment key and
returns an index into the Register Key Table. This index
is returned by XOMOS to the program, which it then uses

with the xentr instruction to begin execution in that com-
partment. Code following the xentr instruction must be
properly encrypted and hashed to execute properly. Execut-
ing xexit from a compartment exits the compartment, but
the XOM Key Table entry is not removed until the program
invalidates it, so subsequent entries into the compartment
only require an xentr.



Because xalloc and xinval access a limited hardware re-
source, they are privileged instructions, and are executed
on behalf of the program by XOMOS via the system calls
xom alloc() and xom dealloc(). This scheme allows the
operating system to interpose and prevent misbehaving ap-
plications from allocating too many XOM Key Table entries.

5.2 Virtualizing the XOM Key Table
XOMOS manages the XOM Key Table to allow as many

applications as possible to run simultaneously. However, the
table is a limited resource and there must be a mechanism
to reuse its entries. Recall that the internal storage in the
machine is protected by ownership tags that correspond to
indices into the Register Key Table and the Compartment
Key Table, so reusing table entries could compromise the
data of the previous owner, since both new and old owner
would share the same tag value.

To ensure that old entries are not reused inappropriately,
we allow XOMOS to invalidate and reclaim table entries.
xinval invalidates entries in the Register Key Table entry
causing that particular register key to be destroyed, but pre-
serves the Compartment Key Table entry associated with
it. xrclm is used to reclaim entries in the Compartment
Key Table. Recall that multiple Register Key Table entries
may refer to the same entry in the Compartment Key Ta-
ble. As a result, an entry in the Compartment Key Table
can only be evicted with the xrclm instruction if all the Reg-
ister Key Table entries referring to it have been previously
invalidated with the xinval instruction. XOMOS maintains
the necessary data structures in order to do this. It is easy
to maintain the data structures since XOMOS knows which
entries are in the invalid state since all table operations re-
quire system calls into the kernel. When a Compartment
Key Table entry and the corresponding Register Key Ta-
ble entries are reclaimed, the hardware must ensure that no
data protected by the old keys still exists on the processor.

When a Register Key Table entry is invalidated, the pro-
cessor clears all registers in the register file that may be
tagged with the evicted register key. Later, as the Compart-
ment Key Table entry is reclaimed, all register data related
to that compartment key has already been flushed, leaving
only data in the cache. However, it is too complex for the
hardware to check every cache entry so it invalidates all on-
chip caches to prevent old data in the caches from leaking
out. It is the operating system’s responsibility to make sure
any dirty data in the cache is written back first, or it will
be lost.

The operating system maintains a mapping between pro-
cess IDs, Register Key Table indices, and encrypted com-
partment keys. When a process requests a XOM Key Table
entry via the xalloc system call, but none is available for
reclamation, the operating system forcibly reclaims an entry
with the xinval and xrclm instructions. Note that the oper-
ating system should select an entry whose processes are not
interrupted while in a compartment (since invalidating the
register key makes any process state protected by the key
unrecoverable). When the process that just lost its entry is
subsequently restarted, the operating system reallocates the
Key Table entry using the encrypted compartment key.

5.3 Saving and Restoring Context
As discussed in Section 4, the operating system saves the

state of an interrupted process with the aid of additional

li $k1,BASE_OF_EFRAME # save cntxt
xgetid $s0,$at # get tag

# of $s0->$at
xenc $s0,$at # encrypt $s0

# into $x0...$x3
xsave $0,EF_S0($k1) # save
xsave $1,(EF_S0+8)($k1) # encrypted
xsave $2,(EF_S0+16)($k1) # values
xsave $3,(EF_S0+24)($k1)
sw $at,(EF_S0_XID)($k1)
... # restore cntxt
xrstr $0,EF_S0($k1) # restore
xrstr $1,(EF_S0+8)($k1) # from memory
xrstr $2,(EF_S0+16)($k1)
xrstr $3,(EF_S0+24)($k1)
lw $at,(EF_S0_XID)($k1)# load XOM ID
xdec $s0,$at # decrypt

Figure 2: XOMOS context switch code.

hardware instructions. However, the original architecture
overlooked one subtlety. When saving the register value with
the save register instruction, the operating system has no
way of reading the ownership tag of the register it is sav-
ing. When the operating system restores registers with the
restore register instruction, it needs to tell the hardware
which compartment to restore the register to with a suitable
tag. To fix this, we add a new instruction, xgetid that gets
the ownership tag value of the compartment that owns that
register. XOMOS uses this to determine a register’s own-
ership tag before saving it. Without this ability, XOMOS
cannot identify the owner of data, and thus cannot manage
the register.

The encrypted register is larger than a 64-bit memory/reg-
ister word on our processor due to the additional informa-
tion that must be saved. XOM uses a 128-bit cipher text
that contains the encrypted register value, register number,
and the register ownership tag. This is then combined with a
128-bit hash for integrity resulting in a 256-bit value. Saving
the entire value to memory in one instruction would result
in a multi-cycle, multi-memory access instruction, which is
difficult to implement in hardware.

Instead of the single save register instruction, we change
the architecture to implement an xenc instruction that will
encrypt and hash the register contents with the register key
and place them in four special XOM registers. These can
be accessed via the xsave instruction, which takes an index
pointing to one of the four registers and saves it to a mem-
ory location. Similarly, to replace the restore register

instruction, an xrstr instruction restores values in memory
to the four XOM registers and an xdec instruction is used to
decrypt the value in the XOM registers with the register key,
verify the hashes, and return the value to a general-purpose
register.

The low-level trap code in XOMOS includes the XOM
register access instructions. Figure 2 illustrates the code to
save and restore a register. This sequence saves and restores
register $s0. $k1 points to the base of the exception frame
while EF S0 is the offset into the exception frame where the
register value of $s0 is stored. A similar sequence is required
for every register. Processing traps for code in a compart-
ment represents a large instruction overhead — where 2 in-
structions are required to save and restore a register for an
application with no protected registers, 13 instructions are



required to save and restore each protected register. To pre-
serve the performance for applications that are not executing
in a compartment, XOMOS checks if an interrupted process
is in XOM mode, and only executes the extra instructions
if it is required.

Aside from new context switch code, changes are also
required to the exception frame structure, where XOMOS
stores the interrupted process state. The exception frame
must be enlarged to allow room to hold the ownership tag
of each register as well as the larger cipher text.

Some parts of the interrupted process state cannot be pro-
tected by XOM and are left tagged with the NULL compart-
ment. For instance, data such as the fault virtual address
in a TLB miss, or the status bits that indicate whether the
interrupted thread was in kernel mode or not, must be avail-
able to the operating system for it be to handle these ex-
ceptions. While this process state reveals some information
about the application, the nature of such information is lim-
ited. For example, a malicious operating system can obtain
an address trace of every page an application accesses while
in a XOM compartment by invalidating every page in the
TLB and recording every fault address.

5.4 Paging Encrypted Pages
XOM uses cryptographic hashes to check the integrity of

data stored in memory. The operating system also must
virtualize memory, which means that it must be able to re-
locate encrypted data and hashes in physical memory. It is
impossible to store the hashes in the ECC memory bits as
suggested in [17] because to virtualize memory, the operat-
ing system must be able to access the hashes. We store the
hashes on a different page from the data so as to retain a
contiguous address space.

A malicious operating system cannot take advantage of
this separation between the hashes and the data. A XOM
application will not proceed with a secure memory load if a
valid hash is not supplied to it. To tamper with data, the
operating system must be able to create the correct hash
for the fake data. Using sufficiently strong cryptographic
algorithms can make this computationally difficult.

We reserve a portion of the physical address space for the
xhash segment, where the cryptographic hashes for XOM
will be stored. The starting location of the XOMOS ker-
nel is adjusted to be just below the xhash segment. In our
XOM processor, L2 cache lines are 128 bytes long and re-
quire a 128-bit hash, making the xhash segment one-eighth
the size of physical memory. To facilitate data address to
hash address translation, we locate the segment at the top
of the physical address space. The offset of the hash in the
segment can then be calculated by dividing the physical ad-
dress of the first word in the cache line by eight.

Whenever the XOMOS pager swaps a page in physical
memory out to the backing store, it also copies the matching
values in the xhash segment onto a reserved space on swap.
When faulting a page back in, the operating system copies
the hash data of the page being faulted in, and places it
at the correct offset in the xhash segment. The operating
system gives similar treatment to XOM code pages since
XOM code also has hash values protecting it. These are
stored in a separate segment in the executable file. When
a code page is faulted in, the appropriate hash page is also
read in from the executable file image and placed in the
xhash segment.

Since not all applications may actually use XOM facilities,
our simple design is wasteful as it reserves a fixed portion of
memory for hashes. Unencrypted values will not have hash
values that need to be saved. The design could be made
more efficient with additional hardware.

5.5 Shared Libraries
Linking libraries statically is relatively straight forward as

the library code can be placed in the XOM compartment by
encrypting and hashing it with the compartment key after
linking. On the other hand, if linked dynamically, shared
library code cannot be encrypted since it must be linkable
to many applications, and encrypting it with a certain key
would make it linkable to only one. While it is possible
to have code in the compartment encrypt the library code
at run time, thus bringing it into the compartment, this is
complicated, and there is no way to authenticate the unen-
crypted code without additional infrastructure (In the sim-
plest case, the library would have to be signed). Instead,
we chose to design an interface where XOM encrypted code
must call unencrypted library code with the assumption that
the call is insecure — the caller cannot be sure that the li-
brary code has not been tampered with.

To support dynamically linked libraries in a way that is
transparent to the programmer, the compiler must be al-
tered to use a caller-save calling convention to deal with
secure data. To see why, recall that in a callee-save calling
convention, the dynamic library subroutines are expected
to push the caller’s registers on the stack. However, since
the subroutine is not in the same compartment as the XOM
code calling it, it will not have the ability to access those
values. Thus, the caller, rather than the callee, must save all
secure registers. In addition, before calling the subroutine,
the calling XOM code must first move, as necessary, regis-
ter values such as subroutine arguments, the stack pointer,
frame pointer, and global pointer to the NULL compartment
so that the callee can access them. After this it must exit
its XOM compartment with the xexit instruction.

Encrypted data cannot be stored on the same cache line
as unencrypted data. When making a function call across
a XOM boundary, we can either realign the frame pointer
for local variables to cache line boundaries, or simply use
a separate stack when executing in a XOM compartment.
Similarly, the start of the unencrypted code must be aligned
to be on a different cache line than that of the encrypted
code.

When returning from the subroutine call, the above se-
quence must be reversed. The application re-enters its XOM
compartment, moves the stack pointers back from NULL, re-
places them to the values before alignment and restores the
caller saved register values. Similar code must be executed
before a system call since the system call arguments and
program counter must be readable by the kernel.

We have implemented and tested this method by manually
saving the registers and adding the wrapper code around
calls to the C standard library (libc). An example of such
wrapper code is given in Figure 3.

Libraries that perform security sensitive routines should
be statically linked and encrypted. An example of this is
the OpenSSL library, which contains cryptographic routines.
On the other hand, it does not make sense to encrypt shared
libraries that consist of input or output routines. The pro-
gram should check values from these libraries to see if they



# compiler has saved all registers
# ownership tag value is in $s0
sd $fp,0($sp) # push fp
and $fp,$fp,~0xF # align fp
xmvtn $fp # move pointers
xmvtn $sp # to null
xmvtn $gp
xmvtn $a0 # move
xmvtn $a1 # subr. arguments
xmvtn $t9
xexit # exit XOM (aligned)
jal $t9 # subroutine call
...
xentr $s0 # reenter XOM (aligned)
xmvfn $fp # move pointers
xmvfn $gp # back
xmvfn $sp
xmvfn $v1 # move return value
ld $fp,0($sp) # restore old fp
# now compiler restores all
# caller save regs.

Figure 3: Exiting and entering a Compartment.

are sensible since they could potentially be coming from an
adversary.

5.6 Process Creation
Naively implemented, a XOM application that forks will

cause the operating system to create a child that is the ex-
act copy of the parent, with the child inheriting the parent’s
register ownership tag value. If the operating system inter-
rupts one process, say the parent, and restores the other, an
error will occur since the current register key will not match
the register state of the child.

The solution is to allocate a new register ownership tag
for the child. Because there are two different threads of
execution, we need two different register keys (and two dif-
ferent register ownership tags). A new xom fork() library
call is created for programs where both the parent and child
of a fork will be using compartments. xom fork() is similar
to regular UNIX fork() except it will use the xom alloc()

system call to allocate for the child, a second register key
with the same compartment key as the parent. They must
have the same compartment key because the child needs to
access the memory pages it inherits from the parent. After
the new Register Key Table entry is acquired, the parent re-
quests the operating system to do a normal fork(). When
the parent returns, it continues using the old register owner-
ship tag, while the child will use the new register ownership
tag.

Register data is tagged with register ownership tags, which
distinguish ownership between the parent and the child. The
situation with the data in the cache is more subtle. Since
both parent and child have the same compartment key, se-
cure data in the caches must be tagged with the same value
for both. Clearly, we cannot use the register ownership tags,
which are different for each process; instead a different set of
tags, called the cache ownership tags, are used in the caches.
It is this relationship that implies that a single entry in the
compartment key table, which is indexed by a cache own-
ership tag, can have several register keys and register own-
ership tags associated with it. The XOM hardware records
the mapping between register keys and compartment keys.
When a process executes a secure store, the internal XOM

ID register and the mappings between register and compart-
ment keys are used to determine the process’ cache owner-
ship tag, which is then used to tag the data in the cache. If
this cache line is flushed to memory, the value is encrypted
with the compartment key that corresponds to the tag. On
a secure load, a similar translation is done to obtain the cor-
rect cache ownership tag value, which is checked against the
tag in the cache.

5.7 User Defined Signal Handlers
A user defined signal handler may access the state of the

interrupted process. It may also modify that state and then
restart the process with the altered state. However, when
a process executing in its XOM compartment is delivered a
signal, the state of the interrupted thread will be encrypted.
XOMOS saves the register state of the process using xgetid,
xenc, and xsave instructions much like the context switch
code in Figure 2. The interrupted state is copied into a sig-
context structure and delivered to the user-level signal han-
dler. However, to support XOM, the fields of the sigcontext
structure are enlarged the same way the exception frame
is, to accommodate the larger encrypted register values and
hashes.

To process the signal, the signal handler requires the reg-
ister key that the sigcontext structure is encrypted with. To
be secure, the hardware must only release this key to a han-
dler in the same compartment as the interrupted thread,
which means the signal handler code must also be appro-
priately encrypted and hashed with the same compartment
key as the interrupted thread. Entry into the signal han-
dler within the XOM compartment and the retrieval of the
register key must be a single atomic action. Otherwise, we
can get the following race: If the signal handler has entered
the compartment and gets interrupted before it retrieves the
register key, then that key will be destroyed by the hardware
before the handler can ever get to it.

The XOM hardware guarantees the required atomicity by
writing the register key into a general-purpose register when
a program executes a xentr instruction. This way, the signal
handler in the XOM compartment always has the required
register key, even if it is subsequently overwritten in the
key table by an interrupt. With the register key, the signal
handler can then decrypt and verify the cipher texts in the
sigcontext structure, and even modify and re-encrypt them
if necessary.

The simplest way for the signal handler to restart the
thread is to restore the new register state and jump to the
interrupted PC. However, IRIX requires the restart path for
the signal handler to pass through the kernel so that it can
reset the signal mask of the process. The kernel uses the
contents of the sigcontext structure returned by the handler
to restart the process. Thus, the signal handler requires a
way to set the register key so that it matches the key used
in the modified sigcontext structure. To do this, we mod-
ify xexit to take a register value, which the hardware will
use as the current value of the internal XOM ID register.
XOM makes signal restarts that pass through the kernel
more expensive because the signal handler must re-encrypt
all modified register values in the sigcontext structure and
the hardware must decrypt all those values when the oper-
ating system restarts the thread.

In fact, if the signal handler modifies any of the sigcontext
registers, it should select a new register key and re-encrypt



Function Number of

Lines Files

Key Table System Calls 63 2
Key Table Reclamation 28 2
Save and Restore Context 907 16
Paging Encrypted Pages 40 1
Signal Handling 802 2

Table 2: Number of lines and files changed in the

kernel.

Function Num. of Lines

Shared Library Wrappers 64
Signal Handling 136
Fork & Process Creation 72

Table 3: Line count of user level changes.

all of them with that key. Otherwise, if the signal handler
reuses the old key, a malicious operating system may choose
to restore the old value and ignore the new value. In addi-
tion, a malicious operating system may deliver signals with
faulty arguments. This will not pose a security problem the
contents in the sigcontext structure will only be accessible
if they were encrypted and hashed properly.

6. RESULTS
At the time of writing, we are not aware of any applica-

tions that use the security features provided by TCPA or
Palladium. As a result, it is difficult to do a comparison
of application and operating system characteristics between
XOM, Palladium and TCPA. Instead, we attempt to doc-
ument the overheads of XOM by comparing it to the ba-
sic MIPS with IRIX based system that does not implement
XOM. We begin by quantifying the implementation effort
of the modifications discussed in Section 5 is discussed. We
then proceed to examine the performance overheads of our
modifications. The performance impact of XOM appears in
two aspects. First, there is the overhead that results from
the modifications that were performed on the base IRIX
6.5 operating system. The operating system overheads are
studied with a series of micro-benchmarks, which stress the
parts of XOMOS that have been modified. The performance
is compared to the original, unaltered, IRIX 6.5 operating
system. The other source of overhead is the cost of encrypt-
ing and decrypting memory accesses, as well as the cost of
entering and exiting a compartment. Secure compartments
are used by XOM applications, so the cryptographic over-
heads are a factor for them. We thus examine the end-to-end
performance of a XOM-enabled MP3 audio player and RSA
operations in the OpenSSL library.

6.1 Implementation Effort
To implement XOMOS, we added approximately 1900

lines of code to the IRIX 6.5 kernel. The breakdown of these
lines of code is shown in Table 2. In addition to the kernel
changes, dealing with process creation, shared libraries, and
user level signal handling required changes at the user level,
as shown in Table 3.

One qualitative observation we made was that most of the
kernel modifications were limited to the low-level code that
interfaces between the operating system and the hardware.

System Call Cycles Instrs. Cache Misses

xom alloc() 413752 3625 13
xom dealloc() 5691 3841 4.2

Table 4: Overhead due to new system calls in XO-

MOS.

As a result, much of the higher-level functionality of the op-
erating system, such as the resource management policies,
kernel architecture and file system were left unchanged. This
reduced the side effects of these modifications considerably
and suggests that the changes are not operating system de-
pendent. While some modifications such as signal and fork
are UNIX specific, the concepts of saving state to handle a
trap, paging and process creation are common to most mod-
ern operating systems. This suggests that it would also be
possible to port other operating systems to run on the XOM
architecture.

To quantify the overhead of XOMOS and XOM, we now
present the performance of both micro-benchmarks, as well
as complete applications running in the SimOS simulator.

6.2 Basic Processor Model Parameters
Our simulator models an in-order processor where all in-

structions complete in one cycle unless stalled by a cache
miss. The processor model has split 16 KB L1 caches and
a unified 128 KB L2 cache. While these caches are small
for a typical modern processor, the micro-benchmarks that
we simulate are also small, so scaling down the caches helps
put a conservative upper bound on what the performance
will be. In the case of complete applications, we present re-
sults from several larger cache sizes. The memory latency is
set at 150 processor cycles, and the memory system models
bus contention as well as read/write merging. We use the
AES (Rijndael) block cipher [5], which is composed of 14
“rounds.” Each round takes approximately 1 cycle to com-
plete, so we conservatively assume that encryption or de-
cryption will add 15 cycles to the memory access time. This
cost is incurred whenever a XOM memory access misses in
the cache, or when a cache line in a private compartment is
flushed to memory. All the instructions introduced in Ta-
ble 1, execute in a single cycle with the exception of the
xalloc instruction, which requires on the order of 400,0003

cycles to perform the public key decryption. During this
time, the processor is stalled.

6.3 Operating System Overhead
The operating system modifications add overhead in sev-

eral areas; Tables 4 and 5 summarize these overheads.
First, recall that XOMOS introduces two new system calls

to manipulate the XOM Key Table entries. The execution
time for a xom alloc() is dominated by the time to execute
the xalloc instruction, in addition to the standard overhead
of crossing into the kernel. The xom dealloc() system call
has the same execution time as a null system call in IRIX 6.5,
since the kernel only executes an xinval before returning to
the application.

Second, additional instructions are required by the oper-
ating system to save and restore context, resulting in more
executed instructions. In addition, since encrypted regis-

3This is time required to perform an RSA decryption as
measured using the OpenSSL library routines.



Benchmark Total Cycles Total Instructions Kernel Instructions Cache Misses

IRIX XOM OV IRIX XOM OV IRIX XOM OV IRIX XOM OV

System Call 5691 6343 11% 3841 4018 5% 3799 3837 1% 4.2 5.6 33%
Signal Handler 31168 39593 27% 11114 14635 32% 11037 14425 31% 38.4 48.3 26%
XOM Fork 13872170 12610085 -9% 119297 122722 3% 117940 121340 3% 1035 1058 2%

Table 5: Micro-benchmark overhead of XOMOS vs. IRIX. The Signal Handler benchmark performs more

XOM operations and as a result incurs more overhead.

ters are larger than unencrypted registers, operating system
data structures that store process state such as the excep-
tion frame or sigcontext data structures have a larger mem-
ory footprint. This can increase the cache miss rate and
cause more overhead.

Another source of overhead comes from the additional I/O
operations that are performed to save hash pages to disk.
In our implementation, a hash page accompanies every data
page, and thus the I/O requirements for paging operations
are increased by the size of the hash pages. In this case, this
resulted in a bandwidth increase of one eighth. This should
not be an issue for applications that are not memory bound.

Reclaiming XOM Key Table entries also results in some
operating system overhead. Since this requires flushing on-
chip caches, this can be an expensive operation. However,
note that each time a XOM Key Table entry is allocated,
the XOM processor needs to perform an expensive public
key operation (see Section 6.2). Typically, several such op-
erations will occur before the XOMOS needs to reclaim en-
tries, so we have a reasonable assurance that the percentage
of cycles spent on XOM Key Table reclamation will not be
large.

We wrote three micro-benchmarks that exercised the por-
tions of the operating system kernel that had been modified.
These benchmarks exercised a NULL non-XOM system call,
signal handling and process creation in the modified ker-
nel. The NULL system call benchmark makes a system
call in the kernel that immediately returns to the applica-
tion. The signal handling benchmark installs a segmenta-
tion fault (SEGV) signal handler and then causes a SEGV
to activate the handler. The handler simply loads the pro-
gram counter from the sigcontext structure, increments it
to the next instruction and then restarts the main thread.
Finally, the process creation benchmark calls xom fork to
create new XOM processes. The benchmarks do not per-
form any secure memory operations, so the overheads in-
curred are purely from the extra instructions executed and
any negative cache behavior. Table 4 shows the results from
these benchmarks.

The overhead for making (non-XOM) system calls is mod-
est and the number of extra instructions in the kernel is ac-
tually very small. As discussed in Section 5.5, system calls
cannot be made from inside a compartment. To make a
system call, the XOM application must exit the compart-
ment, make the system call and then return to compart-
ment. The kernel only needs to check that the system call
is not made while inside a compartment or the system call
will fail. Because of this, about 95% of the extra instruc-
tions occur in user code. The remaining cycles are caused
by additional cache misses. Each time a program enters or
exits a compartment, an event we call a XOM transition,
the compiler must pad the instruction stream with nop’s so
that encrypted code and unencrypted code boundaries are

aligned to cache lines in the machine. This not only in-
creases the instruction count, but also the code footprint
which may hurt instruction cache behavior.

The signal handler overhead experiences the most kernel
overhead, with the majority of the extra instructions exe-
cuted occurring on the kernel side. Because the signal is de-
livered while the application is in a compartment, the kernel
must use the longer XOM save routines shown in Figure 2
to save every register. In addition, when the kernel popu-
lates the sigcontext structure, the kernel requires more in-
structions to copy the larger encrypted register values. The
additional instructions and larger data structures also result
in an increase in cache misses.

Finally, the xom fork benchmark actually has negative
overhead. Fork is already a long operation in IRIX, so
the overhead imposed by XOM negligible. The majority
of the extra instructions in fork are actually due to the ex-
tra xom alloc() system call that is used to allocate a new
Register Key Table entry. However, in this case more favor-
able behavior in the L1 cache makes up for the additional
instructions and L2 cache misses.

One thing we noticed from these benchmarks is that it
is important to avoid performing unnecessary XOM opera-
tions in the kernel. In our implementation, we were careful
to always test if the interrupted application was running in
a compartment or not. If it wasn’t, the extra instructions to
save and restore the larger encrypted registers were left out.
We can see this in the difference between the kernel instruc-
tions executed for the NULL system call benchmark, which
exits the compartment before trapping into the kernel, and
the signal handling benchmark, which traps while in a com-
partment. Another factor in the overheads is that IRIX is a
highly performance tuned operating system. By increasing
the size of the code and data structures, our modifications
destroyed a part of that tuning and resulted in more cache
misses.

6.4 End-to-end application overhead
To measure the end-to-end application overheads, we add-

ed XOM functionality to two applications that would ben-
efit from secure execution. The first, called XOM-mpg123,
was created by modifying mpg123 — a popular open source
MP3 audio player. This application simulates a scenario
where a software distributor may wish to distribute a de-
coder for a proprietary compression format. The other is
the OpenSSL [20] library, an open source library of crypto-
graphic functions, which is used in an array of security ap-
plications. In OpenSSL, we tested the performance of RSA
encryption and decryption, by using the rsa test bench-
mark that is included in the OpenSSL distribution to create
the XOM-RSA benchmark.

We wished to study the effects of varying the amount
of code in the XOM compartment with these experiments.
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Figure 4: Performance of XOM-mpeg. Percentages

above the bars show the increase relative to the non-

XOM case for each cache size.

XOM slows applications down in two ways. First, each XOM
transition requires padding in the instruction stream, which
can result in extra cache misses. Second, secure accesses to
memory incur encryption or decryption latency. Minimizing
these events will result in lower overhead imposed by using
XOM compartments.

These performance considerations are balanced against se-
curity requirements. Placing a large portion of the applica-
tion in the compartment reduces the amount of code visible
to the adversary. We refer to this as coarse-grained XOM
compartment usage. On the other hand, minimizing the
portion in the compartment reduces the overheads associ-
ated with memory accesses, but may allow the adversary to
infer more information about the application. We refer to
this as fine-grained XOM compartment usage.

To study these effects, we created three versions of XOM-
mpg123 and XOM-RSA, each at a different granularity of
XOM compartment code. The coarse benchmarks encom-
passed the entire application except the initial start-up code.
The fine benchmarks just protect the main algorithms that
the application is using, and try to avoid making any system
calls from inside the compartment to reduce the number of
XOM transitions. For example, in XOM-mpg123, the code
that decodes each frame of data is protected. This would
expose the format of the MP3 file to an attacker, but would
not expose the actual decoding algorithm. The fine grained
version of XOM-RSA has each encryption and decryption
function protected, but the code to setup those operations
is in the clear. Finally the super-fine benchmarks seek a
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Figure 5: Performance of XOM-RSA. Percentages

above the bars show the increase relative to the non-

XOM case for each cache size.

small operation to protect. This operation usually makes
no system calls and has little or no memory accesses. In
XOM-mpg123, only the Discrete Cosine Transform (DCT)
function used in MPG decode is placed in the compartment.
On the other hand, XOM-RSA only embeds the bignum im-
plementation it uses to manipulate large integers. In this
case, neither the cryptographic algorithms nor keys are pro-
tected, only the bignum implementation.

For each application, we identified the sections that were
to be placed in the compartment and inserted xentr and
xexit instructions to delimit the boundaries. In reality, the
programmer must decide which loads and stores within the
compartment code need to be protected, by identifying data
structures that must be kept private. This requires signifi-
cant compiler support, so to approximate the memory bus
overheads due to encryption, the simulator was modified
to mark addresses that had been written to while in the
compartment. Subsequent loads and stores made to those
addresses from the compartment incur cryptographic over-
heads that XOM imposes on memory operations. The ratio-
nale is that any data that is stored while in a compartment
is to be kept secure by XOM until read again by a compart-
ment. All instruction fetches from inside a compartment also
require cryptographic operations. However, when not inside
a compartment, instruction or data loads and stores pro-
ceed as normal without any XOM overhead. As mentioned
in Section 4.2, protection against memory replay attacks is
expected to be implemented by the application itself, but
our ported applications do not implement this.



All three coarseness levels are simulated for each appli-
cation. Both transition overhead and encryption overhead
are affected by the cache behavior of the applications. To
see how dependent it is, we also varied the cache size of
the machine. The execution time results are shown in Fig-
ure 4 and Figure 5, broken down into cycles spent executing
instructions and cycles spent stalled on memory.

The overall execution time is given in processor cycles.
For the most part, the overhead is lower than the previous
section’s micro-benchmarks since the operating system over-
head is diluted over a longer execution time. Adding XOM
functionality adds very little overhead in general. This is
not surprising for the following reasons: The XOM transi-
tions do not result in many extra executed instructions since
number of instructions cycles remain roughly the same, re-
gardless of compartment coarseness. The XOM transitions
may also negatively impact cache behavior, but this effect
is minimal. This is because the number of XOM transitions
is small (less than one for every 3000 instructions executed
in the worst case). As a result, the simulations showed that
the compartment granularity had no effect on the cache miss
rate. For the MP3 application, the cache miss rate was
about 20% for the 64KB L2 cache, about 7% for the 128KB
L2 cache and less than 1% for all other L2 cache sizes. For
the RSA application, the cache miss rate was about 4% for
the 64KB L2 cache, and less than 1% for L2 cache sizes
greater than 128KB. It is interesting to note that coarse
grained security can sometimes result in a larger number of
XOM transitions due to all the system calls that are made
in the compartment.

Similarly, for the memory encryption overhead, note that
both applications spend less than 30% of their execution
time stalled on memory. Since the encryption overhead for
each memory access is 10% of the access time (15 additional
cycles to 150 cycles), this means that at most, the XOM
encryption overhead will add about 3% to the overall execu-
tion time. In reality, this is further reduced by the fact that
on average, only about 30% of the misses in the L2 cache
actually required XOM cryptographic operations. It is inter-
esting to note that in the XOM-RSA benchmark, there is a
small slow-down as the compartment granularity gets finer.
This is in spite of a decrease in the number of XOM mem-
ory operations. The reason for this is the additional cache
misses caused by the larger number of XOM transitions.

On the whole, we noted that neither XOM-mpeg nor XOM-
RSA stressed the memory system heavily. To find the up-
per bound on the XOM encryption overhead, we ported and
simulated the McCalpin STREAM benchmark [19]. This
benchmark is meant to measure memory bandwidth by exe-
cuting sequential reads and writes on a large memory buffer.
We found that the memory stall time made up about 40-
50% of the overall execution time. Since the overhead on a
memory access is about 10%, we expected the benchmark
to have an execution overhead of approximately 4-5%. This
was confirmed by our simulator.

7. SUPPORT FOR TRUSTED COMPUTING
XOM can be used to implement a platform for trusted

computing by protecting software from observation and tam-
pering. Trusted computing offers three key security mecha-
nisms called attestation, curtained memory, and sealed stor-
age. The XOM architecture supports these mechanisms as

well, and many of the techniques used in XOM are directly
applicable to trusted computing.

Attestation is a mechanism that allows a remote party to
verify some properties about a remote program and the plat-
form it is running on. For example, a remote party may want
some guarantees that it is talking to an unmodified version
of a specific program before it continues with communica-
tions. XOM’s support for attestation is subtly different from
the hardware attestation supported by TCPA or Palladium.
In those schemes, the hardware signs a hash of the state of
the machine guaranteeing that the remote machine is in a
known state. Using XOM to make software tamper-resistant
gives software the ability to attest for itself, without the aid
of any other component. The software simply hides a signing
key in its code image and uses this key to sign messages in
a challenge-response protocol. Because XOM applications
can only be decrypted and executed on the correct XOM
processor, the software attestation also attests for the hard-
ware. However, because each piece of software must attest
for itself, software that does not use compartments cannot
attest for itself. Since the OS does not typically run in a
XOM compartment, it cannot attest for itself.

Curtained memory is a mechanism where some portion
of memory is protected from observation and tampering.
Palladium provides this mechanism by making a portion
of physical address space inaccessible to software without
the proper credentials. XOM provides curtained memory
through the use of compartments. Compartments can be
located anywhere in physical or virtual memory and stor-
age for data in compartments can be swapped to a backing
store. In addition, compartments are implemented entirely
in the processor and do not require any modifications to the
memory or memory controller. Compartments are resistant
to direct attacks on the hardware in the memory system, so
even an adversary who has access to the memory bus or who
can emulate memory, cannot compromise a compartment.

Sealed storage is a mechanism that allows programs to
store data in memory or on disk so that only programs
with the proper credentials can access it. XOM implements
sealed storage by having programs hide keys in their pro-
gram image. Programs may then use these keys to encrypt
and decrypt data that is stored in the sealed storage. To au-
thenticate the contents of sealed storage XOM can use hash
trees [18]. The only caveat is that XOM, like Palladium and
TCPA, will require some form of non-volatile RAM to store
the root of the tree.

8. CONCLUSIONS
Currently, there exist various initiatives that place the

trust in modern computing systems in a hardware com-
ponent rather in the operating system. In these systems,
the applications don’t trust the operating system to protect
their data, but the operating system also does not trust the
application to properly use its resources. The result is that
the interface between the operating system and applications
must change to support the hardware security features, and
some of the protection aspects of the operating system must
be moved into the hardware. This paper studied how these
changes can be implemented and what the impact of those
changes on the performance of the system is. To do this, we
modified the original XOM architecture to better support an
operating system and implemented the XOMOS operating
system for study.



We found that XOMOS could be written by modifying
a standard operating system such as IRIX. The size of the
modifications on the original operating system was mod-
est — about 1900 lines in roughly 20 files were modified.
As one would expect, most of the modifications dealt with
the low-level interface between the operating system and the
hardware, and with routines that copied and saved applica-
tion state. Because of this, we feel that the same types of
modifications could be applied to a wide range of operat-
ing systems. Since managing protected data is much more
expensive than normal data, care must be taken to ensure
that this processing is only done when needed, and also that
it is needed infrequently. We were able to find techniques to
achieve this.

Although the basic XOM architecture that was originally
proposed already has the basic primitives required to sup-
port copy and tamper-resistance, we found that certain fea-
tures in hardware are required to enable the implementation
of XOMOS. To virtualize and manage resources, XOMOS
must be able to relocate data in physical space while the
XOM processor checks the integrity of data in virtual space.
As a result, facilities must be provided for the operating sys-
tem to identify the owner of data, and the security hashes
of memory data must be available to the operating system,
so that it may relocate data. Finally, the decomposition
of complex functions into simple primitives, as in the case
of register saves and restores, allows the operating system
to better control resource usage. In the case of XOM Key
Table management, the act of allocating a resource can be
privileged, and thus decoupled from the act of accessing the
resource, which remains unprivileged.

Our preliminary performance numbers look promising. The
hardware overheads are not small — with memory encryp-
tion and decryption costing 15 cycles and saving and restor-
ing a protected register requiring 13 instructions instead of
2. However, these costs are only incurred when the machine
must do an even more expensive operation — either a mem-
ory fetch (which takes 150 cycles) or a trap into the kernel.
As a result, we found that in reality, end-to-end application
overheads are often less than 5%, regardless of the granular-
ity of the XOM compartments. Since coarser compartments
should be more secure, we conclude that the use of coarse
compartments, where the majority of the application is ex-
ecuted securely, is viable. This reduces the burden on the
developer to identify and secure the sensitive portions of an
application.

These results have encouraged us to explore other issues
such as using XOM to increase security in the file system.
We believe with the current trend towards trusted comput-
ing platforms, the techniques explored in this paper will be
valuable as guides to the design and implementation of such
systems.
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