
Preliminary Report. Final version to appear in:
Post-Proceedings of the 5th International Workshop on Logical Frameworks and Meta-languages: Theory and Practice, 2010

A Monadic Formalization of ML5

Daniel R. Licata∗ Robert Harper∗

Carnegie Mellon University

{drl,rwh}@cs.cmu.edu

ML5 is a programming language for spatially distributed computing, based on a Curry-Howard cor-
respondence with the modal logic S5. However, the ML5 programming language differs from the
logic in several ways. In this paper, we give a semantic embedding of ML5 into the dependently
typed programming language Agda, which both explains these discrepancies between ML5 and S5
and suggests some simplifications and generalizations of the language. Our embedding translates
ML5 into a slightly different logic: intuitionistic S5 extended with a lax modality that encapsulates
effectful computations in a monad. Rather than formalizing lax S5 as a proof theory, we embed it
as a universe within the the dependently typed host language, with the universe elimination given by
implementing the modal logic’s Kripke semantics.

1 Introduction

One of the many benefits of formalizing programming languages and logics is that the process of formal-
ization, and the constraints of the particular techniques used, can lead to new insights about the system
being studied. This paper provides a worked example of this phenomenon, investigating the ML5 pro-
gramming language for spatially distributed computing [23]. ML5 has previously been formalized [23]
using syntactic methods in Twelf [26]. However, we wished to give a semantic interpretation of ML5
into a dependently typed programming language, as a first step towards extending work on embeddings
of security typed-languages [22] to account for spatially distributed access control, as in the PCML5
extension of ML5 [7]. Our semantic formalization of ML5 provides insight into several discrepancies
between ML5 and the logic upon which it is based, and suggests some simplifications and generalizations
of the language, as we now describe.

ML5 facilitates distributed programs that deal with located resources, such as a database on a server,
the browser display on a client, or heap references on any particular site. When a distributed program
running at one site attempts to access a resource located at another site, the program must either com-
municate with the other site or fail. Because tacit communication makes it very difficult to reason about
the execution time of a program (e.g. every memory dereference might involve a network communica-
tion), ML5 is based on the stance that all communication should be explicit in the program. However,
rather than letting accesses from the wrong site fail dynamically, ML5 employs a type system based on a
Curry-Howard correspondence with the modal logic S5 to catch these errors statically. ML5 is defined as
an intuitionistic modal logic in the style of Simpson [28], where hypotheses and conclusions are consid-
ered relative to worlds, which represent places on a network. The ML5 typing judgement has the form
x1 : A1[w1], . . . ,xn : An[wn] ` e : C[w], where Ai and C are modal types and wi and w are worlds.

∗This research was sponsored in part by the National Science Foundation under grant number CCF-0702381 and by the
Pradeep Sindhu Computer Science Fellowship. The views and conclusions contained in this document are those of the author
and should not be interpreted as representing the official policies, either expressed or implied, of any sponsoring institution, the
U.S. government or any other entity.

2

Despite being designed by a correspondence with S5 modal logic, the ML5 programming language
differs from S5 in several ways: First, ML5 ensures that all communication is explicit in the program by
providing only a single communication primitive that, operationally, goes to world w′, runs e, and brings
the resulting value back to w:

Γ ` e : A[w′] A mobile

Γ ` get e : A[w]

The condition A mobile rules out instances of get where A is, for example, ref int—which would take
a reference that should be used at w′ and turn it into a reference that should be used at w, violating the
intended typing guarantees.

Second, in the standard presentation of S5, elimination rules for positive connectives such as sums al-
low an arbitrary conclusion, which is unconnected to the principal formula. In ML5, this rule is tethered,
in that the world in the conclusion must be equal to the world in the premise:

Γ ` A∨B[w]
Γ,x : A[w] `C[w′]
Γ,x : B[w] `C[w′]

Γ `C[w′]
untethered case

Γ ` A∨B[w]
Γ,x : A[w] `C[w]
Γ,x : B[w] `C[w]

Γ `C[w]
tethered case

ML5 makes the tethering restriction because the obvious operational interpretation of the untethered rule
requires communication (go to w to run the principal formula). Indeed, the untethered rule is derivable
using get. However, this tethering is at odds with the Kripke semantics of modal logic, where A∨B[w]
is interpreted as A[w] or B[w]—if the interpretation commutes with disjunction, then a disjunction should
be eliminable no matter the conclusion of the sequent.

Third, ML5 includes two different �-like modalities with the same introduction rule. The first is writ-
ten A, while the second, ∀w.A at w, is a composition of the connective ∀ (quantification over worlds)
and the hybrid logic [5] at modality, which internalizes the judgement A[w] as a connective. (Hybrid
logic is between modal logic (truth is relativised to worlds) and first-order logic (propositions may men-
tion worlds)). The two connectives are eliminated differently: ML5 distinguishes a syntactic category of
values from ordinary expressions, and A can be eliminated to construct a value but ∀w.A at w cannot.

In addition to these discrepancies, there is some confusion over the meaning the world in ML5 value
judgements v :: A[w] and expression judgements e : A[w]. An expression judgement means that e is an
expression that must be evaluated at w, and produces a value v :: A[w], but what does the world in the
value judgement mean? One cannot think of values as just a subset of expressions, as the value rules
for certain connectives, such as at and , would violate the property that all communication happens
through get. Additionally, in the dynamic semantics of the ML5 internal language given in Section 3.3
of Murphy [23], get e returns the entire value of e to the calling world, so the value judgement does not
mean that the value v is physically located at w.

In this paper, we propose a new logical foundation for ML5, which explains the differences between
ML5 and S5 and clarifies the role of the world in a value judgement. We translate ML5 into the intuition-
istic logic S5 extended with a lax modality, written © A, that encapsulates effectful computations in a
monad [10, 15, 21]. This monadic distinction between pure terms and effectful computations is already
tacit in ML5’s distinction between values and expressions—and in intermediate languages used in the
ML5 compiler (e.g. the CPS language in Murphy [23]), which include elimination forms for “values” as
“values”. Here, we draw out this distinction by formalizing a monadic interpretation of ML5, and make
some improvements to the language based on this formulation.

3

In our interpretation, ML5 values of type A[w] are interpreted as pure terms of type A∗〈w〉, where A∗

is a monadic translation of A, and we write B〈w〉 for a worlded type in the lax modal logic. On the other
hand, potentially effectful ML5 expressions are interpreted as inhabitants of type (© A∗)〈w〉. The role
of the world in a value judgement, i.e. the role of the world in B〈w〉, is to describe where the resources
in subexpressions of the type A may be used and where the computations in the type A must be run. For
example, the value judgement (ref int ⊃©unit)〈client〉 describes a function that takes a reference that
must be used at the client and produces a computation that must be run at the client.

Our interpretation explains the three discrepancies between ML5 and S5 mentioned above: the get
primitive is an extra operation on the monad© that allows a computation that must be run at one world
to be run from another. The tethered case rule is a derived rule: in ML5, the scrutinee of the case is an
effectful expression, so it is necessary to sequence evaluating this expression with an actual case analysis
on the value produced—and it is the sequencing that requires tethering. Indeed, we show that we can
enrich ML5 with an untethered case rule on values, which would permit simpler code. Finally, the
connective can be eliminated in favor of ∀ and at, given the standard pure elim rules for these types.

Rather than formalizing lax S5 as a proof theory, we embed it inside a dependently typed host lan-
guage, Agda [25]. First, we define a lax logic for distributed programming, L5, which is embedded in
Agda using an indexed monad of computations at a place. Next, we define a universe of hybrid modal
types, HL5, and give them meaning by interpretation into L5—i.e. we define a syntax of HL5 types,
along with a function interpreting them as L5 types. Finally, we translate ML5 into HL5. This technique
saves us the work of defining a proof theory for HL5, and additionally allows us to inherit the equational
theory of the meta-language, which can be exploited in proving that the semantics validates the opera-
tional semantics of ML5. While it is simple to embed type systems specified by standard judgements of
the form x1 : A1, . . . ,xn : An ` e : C as a universe, it requires a bit of thought to adapt these techniques
to languages with modal type systems, such as HL5. In previous work on programming with variable
binding [20], we employed a technique for embedding such modal type systems: intuitionistic modal
logics can be given a Kripke semantics in first-order intuitionistic logic [28], and we can formalize this
semantics in a dependently typed language host language. However, the presentation of this technique
in that paper was somewhat obscured by the particular example. In this paper, we present this technique
in a simpler setting, and apply it to explain the proof theory of ML5. The Agda code for this paper is
available from www.cs.cmu.edu/~drl.

We briefly review Agda’s syntax; see the Agda Wiki(wiki.portal.chalmers.se/agda/) for
more introductory materials. Dependent function types are written with parentheses as (x : A) �
B. An implicit dependent function space is written as {x : A} � B or ∀ {x} � B and arguments to
implicit functions are inferred. Non-dependent functions are written as A � B. Functions are written as
λ x � e. Named functions are defined by clausal pattern-matching definitions. Set is the classifier of
classifiers in Agda, like the kind type in ML or Haskell.

2 L5

In this section, we define an interface for distributed programming in Agda, based on lax logic [10, 15].
We define a type of worlds and a family of monads IO w S indexed by worlds, which represent an
effectful computation that runs at world w and produces a value of type S.

World : Set
server : World
client : World

4

IO : World � Set � Set
return : ∀ {w S} � S � IO w S
»= : ∀ {w S S’} � IO w S � (S � IO w S’) � IO w S’
get : ∀ {w’ w S} � IO w’ S � IO w S

Ref : World � Set � Set
:= : ∀ {w S} � Ref w S � S � IO w Unit
! : ∀ {w S} � Ref w S � IO w S
new : ∀ {w S} � IO w (Ref w S)

The definitions are parametrized by a type of worlds, which we here assume to contain client and server.
IO w S is axiomatized as a monad, with return and bind (»=), along with an additional operation get
that allows the computation to switch to a different world. The command get can be thought of as a
remote procedure call, which goes to w’, runs the given command, and then brings the resulting value
back to w. Next, we define a type Ref w S of heap references located at world w. The operations for
setting (:=), getting (!), and creating (new) references require the reference to be at the same world as
the computation.

Because these types are embedded in Agda, they may interact freely with the host language types—
e.g., a computation may return value of any Agda Set, and we can use Agda Π and Σ types to quantify
over worlds.

In Agda, we use the postulate keyword to assume an implementation of this interface. Under the
hood, these operations can be implemented using foreign-function calls, e.g. interpreting IO k A as the
IO monad in Haskell. A trivial implementation of this interface may run all computations in a single
executable on a single machine. A more realistic implementation would require compiler support for (a)
compiling a single program to run on multiple hosts and (b) marshaling and unmarshaling all values (the
ML5 compiler implements both of these). We also give a high-level abstract operational semantics for
computations in the companion code.

L5 satisfies the design goals of ML5: it ensures that resources are only used by a computation running
at the appropriate world, and it also makes all communication explicit via get.

The following example illustrates the use of the indexed types Ref and IO, as well as the get opera-
tion on the monad:
update : (Ref server (IO server Unit)) � IO client Unit � IO client Unit
update l clicomp = get{server} (l := (get{client} clicomp))

This function takes a reference at the server that stores a callback computation, which itself runs at the
server, as well as a computation that runs on the client, and produces a computation that runs on the
client. This computation goes to the server (the outer get), and updates the callback ref (l) to point to a
computation that goes back to the client and runs clicomp (the inner get). Omitting either get causes
a type error, preventing resources from being used at the wrong location. In fact, nothing about the code
is specific to the worlds client and server, so we can make it polymorphic in the worlds:
update’ : (w1 : World) (w2 : World) � Ref w2 (IO w2 Unit) � IO w1 Unit � IO w1 Unit
update’ w1 w2 l comp1 = get{w2} (l := (get{w1} comp1))

3 HL5

A disadvantage of L5 is that types can be somewhat verbose, as they they repeat the same world multiples
times (e.g. both client and server occur twice in the type of update). A hybrid modal type system,

5

as in ML5, permits more concise specifications: one writes a modal type A, which for the most part does
not mention worlds, and then interprets it relative to a world at the outside by writing A < w >. In this
section, we define HL5, which is a hybrid type system constructed on top of the above lax logic. We
define HL5 by semantic embedding into L5 (which itself is just a library in Agda): we define a syntax
of HL5 types, and then an interpretation function mapping HL5 types to functions from worlds to Agda
Sets (or, thinking constructively, predicates on worlds).

3.1 HL5 Types

The datatype of HL5 types is defined as follows (note that Agda allows multiple datatype constructors
per line):
data Type : Set where
⊃ _∨_ : Type � Type � Type
∀5 ∃5 : (World � Type) � Type
at : Type � World � Type
© : Type � Type
ref : Type � Type

The types ⊃ and ∨ represent functions and sums (the notation _∨_ allows ∨ to be used infix). The types
∀5 and ∃5 represent quantifiers over worlds. Next, at is a connective of hybrid logic, which allows types
to set the world at which the type is interpreted. Finally,© and ref represent monadic computations and
references; note that they are not indexed by a world. Box and diamond can be defined using quantifiers
and at: � A = ∀5 (λ w � A at w) and ♦ A = ∃5 (λ w � A at w).

Below we define the interpretation function A < w >, which takes a modal type and a world and
produces an Agda Set. Using modal types, we can rewrite the type of update as follows:
update : (((ref (© >)) at server) ⊃ © > ⊃ © >) < client >

The type ((ref (© >)) at server) ⊃ © > ⊃ © > says that update takes a reference to a
computation, located at the server, along with a computation, and produces a computation. The Agda
function A < w > takes a Type and a World and produces a Set; here, it is used to say that the whole
type is interpreted relative to the client.

The above polymorphic update’ is typed as follows:
update’ : (�(∀5 (λ w2 � ref (© >) at w2 ⊃ © > ⊃ © >))) <*>

where the postfix symbol <*> : Type � Set means that the proposition is true in all worlds (i.e. A
<*> means the Agda type {w : World} � A < w >). The outer � binds the "client" world (i.e. the
world for the computations in© > ⊃ © >); the inner ∀5 binds the "server" world (i.e. the world of
the ref (© >).

3.2 Interpretation

We define an interpretation function A < w > interpreting a type A and a world w as an Agda classifier (a
Set). Then the proof of an HL5 judgement A1 < w1 > ... ` C < w > is an Agda function of type
A1 < w1 > ... � C < w >. This interpretation is a constructive Kripke semantics—i.e. a Kripke
semantics of an intuitionistic modal logic in intuitionistic first-order logic, relative to the Kripke structure
given by the type World.1 The interpretation is defined as as follows:

1Technically, we omit two of the pieces of a Kripke structure: World is the set of states, but because we are representing S5,
we can elide the accessibility relation, and because we do not have uninterpreted base Types, we do not need an interpretation
of them.

6

<> : Type � World � Set
(ref A) < w > = Ref w (A < w >)
(© A) < w > = IO w (A < w >)
(A at w’) < _ > = A < w’ >
(A ⊃ B) < w > = A < w > � B < w >
(A ∨ B) < w > = Either (A < w >) (B < w >)
(∀5 A) < w > = (w’ : World) � (A w’) < w >
(∃5 A) < w > = Σ \ (w’ : World) � (A w’) < w >

The main action of the translations is to annotate ref and© with the world at which the type is being
interpreted. The hybrid connective at interprets its body at the specified world, ignoring the current
world. Otherwise, the translation interprets each connective as the corresponding Agda Set-former, with
the translation applied recursively. Note that the interpretation of ⊃ is simply �: when giving a Kripke
semantics for intuitionistic logic in a classical meta-language, it is necessary to interpret A ⊃ B as if it
were boxed, by quantifying over future worlds; but because our meta-language is intuitionistic, this is
not necessary here.

The function <*> : Type � Set is defined to be the Agda set {w : World} � A < w >—A is
true in all worlds, with the world itself an implicit argument to the function. Agda verifies that the modal
types of update and update’ reduce to the explicit types given above.

This formalization has several benefits: we can immediately use Agda to program in the modal logic,
and existing Agda code can be used at modal types. For example, one can check that this definition
validates all of the rules of intuitionistic S5 [28], by implementing the proof that the Simpson rules
are sound for the Kripke semantics. The untethered elimination rule for disjunction and a projective
elimination rule for at are defined as follows:

casev : ∀ {A B C w w’} � A ∨ B < w >
� (A < w > � C < w’ >) � (B < w > � C < w’ >)
� C < w’ >

casev (Inl e) b1 b2 = b1 e
casev (Inr e) b1 b2 = b2 e

unatv : ∀ {A w w’} � (A at w’) < w > � A < w’ >
unatv x = x

Additionally, we can see that the return and bind operations on the monad have their expected types
at any world:

hl5ret : ∀ {A} � A ⊃ © A <*>
hl5ret = return

hl5bind : ∀ {A B} � © A ⊃ (A ⊃ © B) ⊃ © B <*>
hl5bind = _»=_

The type of bind insists that all three ©’s be at the same world: sequencing tethers the premise to the
conclusion.

Having considered return and bind, it is natural to ask what hybrid type can we ascribe to the get
operation on the indexed monad IO w A. If we try defining

hl5get : ∀ {A w1 w2} � ((© A) at w1) ⊃ ((© A) at w2) <*>

we see that hl5get must transform IO w1 (A < w1 >) into IO w2 (A < w2 >). L5 get satisfies this
requirement if A is a constant function of its world argument, in which case A < w1 > is the same Agda
Set as A < w2 >.

7

We characterize constant modal types by the property that they yield the same Set for any two
arguments:

Constant : Type � Set1
Constant A = ∀ {w w’} � EqSet (A < w >) (A < w’ >)

Here EqSet is an Agda relation expressing that the two Sets are equal classifiers (in fact, we need a
notion of equality that compares the bodies of Π and Σ on all arguments, which we borrow from OTT [4]);
it is equipped with an operation coerce : ∀ {A B} � EqSet A B � A � B. It is simple to prove
that A at w is constant, and that the connectives ∨ ⊃ ∀5 ∃5 preserve constantness. Neither ref nor©
is constant, as their interpretation directly mentions the world. Thus, the constant types are those where
all refs and©’s are guarded by an at.

Now, we can ascribe get the following monadic type:

hl5get : ∀ {A w1 w2} � Constant A � ((© A) at w1) ⊃ ((© A) at w2) <*>
hl5get con e = get e »= \ v � return (coerce con v)

hl5get is equivalent to get, using the monad laws and the fact that coercion based on a proof of EqSet
is the identity (at least up to extensional equality),

4 ML5

In this section, we give inductive definitions of the syntactic apparatus of ML5: First, we define the syntax
of types. Next, we represent programs using an intrinsic encoding, which represents only well-typed
syntax (i.e. typing derivations or natural deduction proofs). Variables are represented as well-scoped de
Bruijn indices—pointers into a typing context, which is an explicit parameter to the typing judgements.
The static semantics requires an auxiliary definition of a mobility judgement on types, which is defined
below.

4.1 Types

data Type5 : Set where
⇀ _∨_ : Type5 � Type5 � Type5
∀5 ∃5 : (World � Type5) � Type5
at : Type5 � World � Type5
ref : Type5 � Type5

: (World � Type5) � Type5

The type ⇀ represents partial functions, and the type ∨ represents sums. The types ∀5 ∃5 cdat and ref
are the same as in HL5. There is an additional type constructor "shamrock", rendered here as , which
is a �-like modality, but its rules in the ML5 proof theory are subtly different than the rules for ∀5 (λ

w � A at w).
We represent types with free world variables as Agda functions from worlds to types. This is per-

missible because World is defined prior to type (i.e. we are using Weak HOAS[11, 16]). If World is
chosen to be a base type in Agda, then it adequately represents ML5 types as in Murphy [23]. If instead
World is chosen to be an inductive type, this representation yields a language with type-level case anal-
ysis over worlds—i.e. one could define types whose structure varies depending on their world, such as
∃5 (λ w � if w = server then nat else bool); we leave an exploration of the practical uses of
this alternative to future work.

8

4.2 Mobility

ML5’s notion of mobility identifies constant functions, analogously to the Constant relation on HL5
types above.

data Mobile5 : Type5 � Set where
mat5 : ∀ {A w} � Mobile5 (A at w)
m 5 : ∀ {A} � Mobile5 (A)
–– no rule for ⇀ or refs
m∨5 : ∀ {A B} � Mobile5 A � Mobile5 B � Mobile5 (A ∨ B)
m∀5 : ∀ {A} � ((w’ : _) � Mobile5 (A w’)) � Mobile5 (∀5 A)
m∃5 : ∀ {A} � ((w’ : _) � Mobile5 (A w’)) � Mobile5 (∃5 A)

To foreshadow the interpretation: is always mobile, essentially because ∀5 (λ w � (A w) at w) is
constant. Functions are never mobile, because they hide a© in their domain, and© is not constant.

4.3 Typing judgements

ML5 judgements have the form Γ ` e : A [w] and Γ ` v :: A [w]. These judgements mean
that the expression e and the value v are well-formed with modal type A at world w. Here Γ contains
assumptions x:A[w] and u ∼ w.A. The former, a value hypothesis, means that x stands for a value of
type A at world w. The latter, a valid hypothesis, means that u stands for a value of type A that makes sense
at all worlds (w is bound in A). In the operational semantics, we will substitute a proof of the judgement
w:world ` v :: (A w)[w] for a valid variable.

We combine both of the above judgements into one Agda type, defining a relation Γ ` γ . Here Γ is
a list of hypotheses, which are either value (A [w]) or valid (w.A) and γ is a conclusion, which
is either exp (A [w]) (for expressions) or value (A [w]) (for values). As in the syntax of types,
w.A is represented by an Agda function from worlds to types. ` binds more tightly than �, so we can
write e.g. Γ ` C1 � Γ ` C2 for (Γ ` C1) � (Γ ` C2).

We define the notation A [w] to mean the pair of A and w, and we define sum types for hypotheses
and conclusions as follows:

data Hyp : Set where
value : (Type5 × World) � Hyp
valid : (World � Type5) � Hyp

data Conc : Set where
exp : (Type5 × World) � Conc
value : (Type5 × World) � Conc

Ctx = List Hyp

Term variables x and u are represented by well-scoped de Bruijn indices—pointers into Γ:

data _∈_ {A : Set} : A � List A � Set where
i0 : {α : A} {Γ : List A} � α ∈ (α :: Γ)
iS : {α α’ : A} {Γ : List A} � α ∈ Γ � α ∈ (α’ :: Γ)

The typing rules are defined in Figure 1. The first rule says that (. x) is a value if x is a de Bruijn
index for a value assumption in Γ. The next rule represents the application of a valid assumption in Γ

to a world w; we use propositional equality Id to state that the conclusion type is A w because otherwise

9

the higher-order conclusion blocks pattern-matching. lam takes an expression in an extended context
to a value of function type; this rule expresses the idea that a function of type A ⇀ B in a world w is
an expression of type B at w, hypothetically in a variable standing for a value of type A at w. Sums are
introduced by commuting the world with the connective. hold switches worlds to introduce an at; wlam
and wpair introduce quantifiers in the usual way; the world in the conclusion does not change (also, note
the parentheses, which in Agda’s notation for datatype constructors are the only difference between the
two rules: the premise of wlam is a function, whereas wpair has two premises). However, note that the
body of a wlam is a value, not an expression—ML5 has a value restriction on world quantification, to
support type inference in the style of ML. sham both quantifies over a new world and switches the world
of the conclusion—indeed, this is the derived intro rule that one would expect for A = ∀5 (λ w �
(A w) at w).

val injects values into expressions, whereas let sequences the evaluation of two expressions. put
runs an expression of mobile type and then binds the resulting value as a valid assumption. app and wapp
eliminate functions and universals, with the world along for the ride. The remaining rules are pattern-
matching-style elimination rules. In these rules, the world in the conclusion C [w] is tethered to the
world in the principal premise, as discussed in the introduction.

This system is the ML5 internal language described in Section 4.3 of [23] with one minor change:
we have eliminated the syntactic class of valid values, which allowed validity to appear as a conclusion
as well as as a hypothesis—valid values are unnecessary because validity is invertible on the right. An
alternate formalization with valid values is included in the companion code.

5 Semantics

Our semantics explains the meaning of an ML5 program by translation into HL5. As discussed above, our
translation clarifies the essential difference between the role that the world plays in the judgements value
(A [w]) and exp (A [w]): a value hypothesis or conclusion value (A [w]) is interpreted as
a pure term of HL5 type (eff A) < w >, where eff A is a monadic translation of A. Thus, the role of
the world w is only to describe where the resources in A may be used and where the computations must be
run. On the other hand, an expression exp (A [w]) is interpreted as a monadic computation of type
(© (eff A)) < w >, so the world determines both the site at which the effectful computation must be
run and where the resources/computations in A may be used.

5.1 Type Translation

The type translation from ML5 types to HL5 translates to HL5 �, adds a© to the codomain of ⇀ (as
in any monadic translation [21]), and is defined compositionally otherwise. The ML5 connective ∀5 has
a value-restriction, so there is no© inserted in its body. Note that Agda allows datatype constructors to
be overloaded, so we can have both ML5 types and HL5 types in scope at once.

eff : Type5 � Type
eff (A ⇀ B) = eff A ⊃ ©(eff B)
eff (A ∨ B) = eff A ∨ eff B
eff (∀5 A) = ∀5 (λ w � (eff (A w)))
eff (∃5 A) = ∃5 (λ w � eff (A w))
eff (A at w) = (eff A) at w
eff (ref A) = ref (eff A)
eff (A) = ∀5 (λ w � ((eff (A w)) at w))

10

data _`_ (Γ : Ctx) : Conc � Set where

–– values
. : ∀ {A w}
� value (A [w]) ∈ Γ

� Γ ` value (A [w])

.v : ∀ {w A C}
� valid A ∈ Γ � Id C (A w)
� Γ ` value (C [w])

lam : ∀ {A B w}
� (Γ „ value (A [w])) ` exp (B [w])
� Γ ` value (A ⇀ B [w])

inl : ∀ {A B w}
� Γ ` value (A [w])
� Γ ` value (A ∨ B [w])

inr : ∀ {A B w}
� Γ ` value (B [w])
� Γ ` value (A ∨ B [w])

hold : ∀ {A w w’}
� Γ ` value (A [w’])
� Γ ` value ((A at w’) [w])

wlam : ∀ {A w}
� ((w’ : _) � Γ ` value ((A w’) [w]))
� Γ ` value (∀5 A [w])

wpair : ∀ {A w}
� (w’ : World)
� Γ ` value ((A w’) [w])
� Γ ` value ((∃5 A) [w])

sham : ∀ {A w’}
� ((w : _) � Γ ` value (A w [w]))
� Γ ` value (A [w’])

––- expressions

val : ∀ {L}
� Γ ` value L
� Γ ` exp L

lete : ∀ {A C w}
� Γ ` exp (A [w])
� (Γ „ value (A [w])) ` exp (C [w])
� Γ ` exp (C [w])

get5 : ∀ {A w w’}
� Γ ` exp (A [w’]) � Mobile5 A
� Γ ` exp (A [w])

put : ∀ {A C w}
� Γ ` exp (A [w]) � Mobile5 A
� (Γ „ valid (\ _ � A)) ` exp (C [w])
� Γ ` exp (C [w])

app : ∀ {A B w}
� Γ ` exp (A ⇀ B [w]) � Γ ` exp (A [w])
� Γ ` exp (B [w])

wapp : ∀ {A w}
� Γ ` exp (∀5 A [w]) � (w’ : World)
� Γ ` exp ((A w’) [w])

case : ∀ {A B C w}
� Γ ` exp (A ∨ B [w])
� (Γ „ value (A [w]) ` exp (C [w]))
� (Γ „ value (B [w]) ` exp (C [w]))
� Γ ` exp (C [w])

wunpack : ∀ {A w C}
� Γ ` exp ((∃5 A) [w])
� ((w’ : _) �

Γ „ value ((A w’) [w]) ` exp (C [w]))
� Γ ` exp (C [w])

leta : ∀ {A w w’ C}
� Γ ` exp ((A at w’) [w])
� (Γ „ value (A [w’]) ` exp (C [w]))
� Γ ` exp (C [w])

lets : ∀ {A w C}
� Γ ` exp (A [w])
� (Γ „ valid A ` exp (C [w]))
� Γ ` exp (C [w])

Figure 1: ML5 Static Semantics

11

A simple induction verifies that mobile ML5 types translate to constant HL5 types:

eff-mobile : ∀ {A} � Mobile5 A � Constant (eff A)

5.2 Term translation

Next, we interpret hypotheses and conclusions. Values and expressions are interpreted as described
above (note that for L = A [w], fst L = A and snd L = w). A valid hypothesis is interpreted as
the Agda set (w : World) � (interp-hyp (value (A w [w]))), though to appease the termi-
nation checker we have to unroll the definiton of interp-hyp.

interp-hyp : Hyp � Set
interp-hyp (value L) = (eff (fst L)) < (snd L) >
interp-hyp (valid A) = (w : World) � (eff (A w)) < w >

interp-conc : Conc � Set
interp-conc (value L) = interp-hyp (value L)
interp-conc (exp L) = (© (eff (fst L))) < (snd L) >

Next, we interpret the syntax (Figure 2). The Agda type Everywhere P xs represents a list with
one element of type P x for each element x in xs; we use this to represent a substitution of semantic
values for syntactic variables. The usual propositional connectives are interpreted in the standard way, by
sequencing evaluation if necessary and then applying the corresponding Agda introduction or elimination
form. Subexpressions that are under bound variables are interpreted in an extended context (e.g. e in
lam e). List.EW.there looks up a de Bruijn index into Γ in a substitution of type Everywhere P Γ.

sham is interpreted as an Agda function, which is applied in the translation of the .v rule for us-
ing valid variables. There are no Agda term constructors for at, so the translation simply proceeds
inductively. The quantifiers are interpreted by supplying the world arguments in the syntax, rather than
by extending the substitution (recall that the proof terms wlam and wunpack contain Agda functions).
Recall that the body of wlam is already a value, so no further evaluation is necessary.

val and lete are interpreted directly as return and bind. get5 is translated as a get in the target,
followed by a coercion by the mobility proof. put e extends the substitution with the value of e, applying
the mobility proof to the value so it can be used at any other world.

Agda verifies that the interpretation is type correct and total, establishing that the interpretation is
total and type-preserving.

6 Revised ML5

In this section, we simplify and generalize the ML5 source language based on the above semantics. First,
our analysis has shown that Mobile5 A really means that A [w] and A [w’] are equal types for
any w and w’. We can internalize this principle as a value coercion vshift in Figure 3. This makes
it possible to implement some additional programs without communication. For example, consider a
function

move : ∀ {A w w’} � Mobile5 A � (value (A [w]) :: []) ` exp (A [w’])
move m = (get5 (val (. i0)) m)

Operationally, this is quite inefficient: it sends the value of the variable from w’ to w, as the environment
of the val (. i0) closure, and w then returns this value back to w’. This whole process is unnecessary,

12

eval : ∀ {Γ L} � Γ ` L � Everywhere interp-hyp Γ � interp-conc L
–– usual connectives
eval (. x) σ = (List.EW.there σ x)
eval (lam e) σ = λ x � eval e (x E:: σ)
eval (app e1 e2) σ = (eval e1 σ) »= λ f � (eval e2 σ) »= λ a � f a
eval (inl v) σ = Inl (eval v σ)
eval (inr v) σ = Inr (eval v σ)
eval (case e e1 e2) σ = eval e σ »= docase where
docase : Either _ _ � _
docase (Inl x) = eval e1 (x E:: σ)
docase (Inr y) = eval e2 (y E:: σ)

––
eval (.v{w} x Refl) σ = (List.EW.there σ x) w
eval (sham v) σ = λ w’ � (eval (v w’) σ)
eval (lets e e’) σ = eval e σ »= λ x � eval e’ (x E:: σ)
–– at
eval (hold v) σ = eval v σ

eval (leta e e’) σ = eval e σ »= λ x � eval e’ (x E:: σ)
–– ∀ and ∃
eval (wlam v) σ = λ w � eval (v w) σ

eval (wapp e w) σ = eval e σ »= λ f � return (f w)
eval (wpair w v) σ = w , eval v σ

eval (wunpack e e’) σ = eval e σ »= λ p � eval (e’ (fst p)) (snd p E:: σ)
–- monad operations and world movement
eval (val v) σ = return (eval v σ)
eval (lete e1 e2) σ = eval e1 σ »= λ x � eval e2 (x E:: σ)
eval (get5{A} e mob) σ = get (eval e σ) »= λ v � return (coerce (eff-mobile mob) v)
eval (put e mob e’) σ = eval e σ »= λ v � eval e’ ((λ w’ -> coerce (eff-mobile mob) v) E:: σ)

Figure 2: Interpretation of the syntax

as the value was available at w’ to begin with! However, it does not seem possible to implement this
function without communication in ML5. In our revised ML5, as in HL5, it can be implemented as a
simple type coercion:

move : ∀ {A w w’} � Mobile5 A � (value (A [w]) :: []) ` exp (A [w’])
move m = val (vshift (. i0) m)

Second, in HL5, the worlding of values always "gets out of the way" because it commutes with type
constructors down to ref and ©. In Figure 3, we add these non-local elimination rules for values of
each connective to the source. For example, we add the untethered case rule for values of sum type and
a projective elimination rule for at and ∀5 values.

We could additionally add elimination rules like case, split, etc. to the syntactic class of "values"—
i.e. we could admit that we are really dealing with a syntactic class of pure terms:
casev/val : ∀ {A B C w’ w} � Γ ` value (A ∨ B [w])

� (Γ „ value (A [w]) ` val (C [w’])) � (Γ „ value (B [w]) ` val (C [w’]))
� Γ ` val (C [w’])

However, in an operational semantics where worlds and types are erased at run-time, wappv and unatv
will not create any real redexes at run-time, whereas casev/val will. Thus a reasonable design choice
for ML5 would be to allow wappv and unatv but not the corresponding case rule.

13

New value rules:

vshift : ∀ {A w w’} � Γ ` value (A [w]) � Mobile5 A � Γ ` value (A [w’])
wappv : ∀ {A w} � Γ ` value (∀5 A [w]) � (w’ : World) � Γ ` value ((A w’) [w])
unatv : ∀ {A w w’} � Γ ` value ((A at w’) [w]) � Γ ` value (A [w’])

New expression rules:

casev : ∀ {A B L w} � Γ ` value (A ∨ B [w])
� (Γ „ value (A [w]) ` exp L) � (Γ „ value (B [w]) ` exp L)
� Γ ` exp L

wunpackv : ∀ {A w L} � Γ ` value ((∃5 A) [w])
� ((w’ : _) � Γ „ value ((A w’) [w]) ` exp L) � Γ ` exp L

Remove rules put, .v, lets, sham, wapp, leta, case, wunpack.

Figure 3: Revised ML5

It is simple to extend the semantics to these new constructs, as they were derived from it:

eval (vshift e m) σ = coerce (eff-mobile m) (eval e σ)
eval (wappv e w’) σ = eval e σ w’
eval (unatv e) σ = eval e σ

eval (casev v e1 e2) σ = docase (eval v σ) where
docase : Either _ _ � _
docase (Inl x) = eval e1 (x E:: σ)
docase (Inr y) = eval e2 (y E:: σ)

eval (wunpackv v e’) σ = let p = eval v σ in eval (e’ (fst p)) (snd p E:: σ)

Derived Forms Once we have added the aforementioned rules, we can remove rules put, .v, lets,
sham, wapp, leta, case, wunpack, which become derivable. Shamrock is defined using ∀5 and at in
the straightforward way: A = ∀5 (λ w � A w at w). Validity is defined as a value assumption of
shamrock type: valid A = value ((A) [dummy]), where dummy is any arbitrary world— A is
mobile, and therefore constant, but because all value assumptions are worlded, we must pick one.

The term .v, which represents a use of a valid hypothesis, is derived by eliminating a shamrock. The
term put is derived by introducing a shamrock, using vshift to retype the assumption in the body—we
use letv to refer to the substitution principle plugging a value in for a variable, and we use weaken for
weakening in the de Bruijn syntax.

.v : ∀ {Γ A C w} � valid A ∈ Γ � Id C (A w) � Γ ` value (C [w])

.v i Refl = unatv (wappv (. i) _)

put : ∀ {Γ A C w} � Γ ` exp (A [w]) � Mobile5 A
� (Γ „ valid (\ _ � A)) ` exp (C [w]) � Γ ` exp (C [w])

put e m e’ = lete e (letv (wlam (\ w’ � hold (vshift (. i0) m))) (weaken (extend⊆ iS) e’))

The remaining derivabilities show that the old rules for the connectives are derivable using the general-
ized ones.

7 Related Work

Murphy [23] describes ML5 and related languages, such as work by Jia and Walker [19].

14

Altenkirch and McBride [3], Benke et al. [9], Chlipala [12], Crary [14] describe other uses of uni-
verses and semantic embeddings in type theory, though they do not consider embedding a modal type
system. We have used the same technique for embedding a hybrid type system in Agda in previous
work [20]. Our technique is quite similar to that of Allen [2], who defines modal types as display forms
for NuPRL types. The technical difference is that Allen considers the modal types simply as notation,
whereas in our approach the modal types are data, equipped with a translation to meta-language types.
This shows how to achieve similar convenience of notation, without requiring separate display-form
facilities. Avron et al. [8] consider representations of modal logics in LF [18], some of which use world-
indexed judgements to track scoping. We also use a world-indexed type family A < w >, but this relation
is defined semantically (by interpretation into Agda) rather than syntactically (by inference rules).

At the core, our interpretation reduces ML5 to L5, a language with an indexed monad IO w A of
computations at a place. Indexed monads have been studied in a variety of previous work, including
Abadi et al. [1], Atkey [6], Nanevski et al. [24], Russo et al. [27]. However, to interpret ML5, we require
the programming language to provide quantification over the indices to the monad, which DCC [1], for
example, does not provide. It would be interesting to adapt our work to these other settings, using a
modal logic to manage the indices to the monad.

8 Conclusion

While we have used Agda for our development, we conjecture that the work described in this paper
could be carried out with similar effort in Coq [13], as we have not used very complicated dependent
pattern matching. However, in future work we would like to embed proof-based access control following
PCML5 [7], which will require a modal universe with dependent types. Dependently typed universes are
easiest to represent using induction-recursion [17], which Agda supports but Coq does not.

In future work, we also plan to complete a proof that the operational semantics of ML5 are sound for
the denotational semantics. We have formalized the operational semantics of λ5 and an operational se-
mantics for computations. We have also proved soundness, assuming a standard compositionality lemma
(substitution of interpretations is the interpretation of the substitution), which we are in the process of
formalizing. β -reduction in Agda validates the β -steps for functions, sums, etc. in the source. Because
compositionality is really a property only of the binding structure of the language and the semantics, not
of the particular language constructs, it should be possible to implement compositionality in a datatype-
generic manner, as in Chlipala [12]. We also leave the question of full abstraction to future work.

Acknowledgements We thank Jason Reed and Rob Simmons for discussions about this article, and
the anonymous reviewers for their helpful comments.

References
[1] M. Abadi, A. Banerjee, N. Heintze, and J. G. Riecke. A core calculus of dependency. In In Proc. 26th ACM

Symp. on Principles of Programming Languages (POPL, pages 147–160. ACM Press, 1999.
[2] S. F. Allen. From dy/dx to []P: A matter of notation. In Proceedings of the Conference on User Interfaces

for Theorem Provers, 1998.
[3] T. Altenkirch and C. McBride. Generic programming within dependently typed programming. In IFIP TC2

Working Conference on Generic Programming, Schloss Dagstuhl, 2003.
[4] T. Altenkirch, C. McBride, and W. Swierstra. Observational equality, now! In Programming Languages

meets Program Verification Workshop, 2007.

15

[5] C. Areces, P. Blackburn, and M. Marx. Hybrid logics: Characterization, interpolation and complexity. Jour-
nal of Symbolic Logic, 66(3):977–1010, 2001.

[6] R. Atkey. Parameterised notions of computation. Journal of Functional Programming, 19(3–4):335–376,
2009.

[7] K. Avijit, A. Datta, and R. Harper. Distributed programming with distributed authorization. In ACM
SIGPLAN-SIGACT Symposium on Types in Language Design and Implementation, 2010.

[8] A. Avron, F. Honsell, M. Miculan, and C. Paravano. Encoding modal logics in logical frameworks. Studia
Logica, 60(1):161–208, 1998.

[9] M. Benke, P. Dybjer, and P. Jansson. Universes for generic programs and proofs in dependent type theory.
Nordic Journal of Computing, 10(4):265–289, 2003.

[10] P. Benton, G. M. Bierman, and V. C. V. D. Paiva. Computational types from a logical perspective. Journal of
Functional Programming, 8(2):177–193, 1998.

[11] A. Bucalo, M. Hofmann, F. Honsell, M. Miculan, and I. Scagnetto. Consistency of the theory of contexts.
Journal of Functional Programming, 16(3):327–395, May 2006.

[12] A. Chlipala. A certified type-preserving compiler from λ -calculus to assembly language. In ACM SIGPLAN
Conference on Programming Language Design and Implementation, 2007.

[13] Coq Development Team. The Coq Proof Assistant Reference Manual. INRIA, 2007. Available from
http://coq.inria.fr/.

[14] K. Crary. Type Theoretic Methodology for Practical Programming Languages. PhD thesis, Cornell Univer-
sity, 1998.

[15] H. Curry. The elimination theorem when modality is present. Journal of Symbolic Logic, 17:249–265, 1952.
[16] J. Despeyroux, A. Felty, and A. Hirschowitz. Higher-order abstract syntax in Coq. In M. Dezani-Ciancaglini

and G. Plotkin, editors, International Conference on Typed Lambda Calculi and Applications, volume 902
of Lecture Notes in Computer Science, pages 124–138, Edinburgh, Scotland, 1995. Springer-Verlag.

[17] P. Dybjer and A. Setzer. Indexed induction-recursion. In Proof Theory in Computer Science, pages 93–113.
Springer, 2001.

[18] R. Harper, F. Honsell, and G. Plotkin. A framework for defining logics. Journal of the Association for
Computing Machinery, 40(1), 1993.

[19] L. Jia and D. Walker. Modal proofs as distributed programs. In European Symposium on Programming,
volume 2986 of Lecture Notes in Computer Science. Springer, April 2004.

[20] D. R. Licata and R. Harper. A universe of binding and computation. In ACM SIGPLAN International
Conference on Functional Programming, 2009.

[21] E. Moggi. Notions of computation and monads. Information And Computation, 93(1), 1991.
[22] J. Morgenstern and D. R. Licata. Security-typed programming within dependently-typed programming.

Available from http://www.cs.cmu.edu/~drl, April 2010.
[23] T. Murphy, VII. Modal Types for Mobile Code. PhD thesis, Carnegie Mellon, January 2008. URL http:

//tom7.org/papers/. Available as technical report CMU-CS-08-126.
[24] A. Nanevski, G. Morrisett, and L. Birkedal. Polymorphism and separation in Hoare Type Theory. In ACM

SIGPLAN International Conference on Functional Programming, pages 62–73, Portland, Oregon, 2006.
[25] U. Norell. Towards a practical programming language based on dependent type theory. PhD thesis, Chalmers

University of Technology, 2007.
[26] F. Pfenning and C. Schürmann. System description: Twelf - a meta-logical framework for deductive systems.

In H. Ganzinger, editor, International Conference on Automated Deduction, pages 202–206, 1999.
[27] A. Russo, K. Claessen, and J. Hughes. A library for light-weight information-flow security in haskell. In

Haskell ’08: Proceedings of the first ACM SIGPLAN symposium on Haskell, pages 13–24, New York, NY,
USA, 2008. ACM. ISBN 978-1-60558-064-7. doi: http://doi.acm.org/10.1145/1411286.1411289.

[28] A. Simpson. The Proof Theory and Semantics of Intuitionistic Modal Logic. PhD thesis, University of
Edinburgh, 1993.

http://tom7.org/papers/
http://tom7.org/papers/

	Introduction
	L5
	HL5
	HL5 Types
	Interpretation

	ML5
	Types
	Mobility
	Typing judgements

	Semantics
	Type Translation
	Term translation

	Revised ML5
	Related Work
	Conclusion

