Jan. 2007, Vol.22, No.1, pp.79-87 J. Comput. Sci. & Technol.

Improved Collision Attack on Hash Function MD5

Jie Liang (¥ 7&) and Xue-Jia Lai (k22 %)
Department of Computer Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
E-mail: luckyaa@sjtu.edu.cn; lai-xj@cs.sjtu.edu.cn

Received November 29, 2005; revised June 7, 2006.

Abstract In this paper, we present a fast attack algorithm to find two-block collision of hash function MD5. The
algorithm is based on the two-block collision differential path of MD5 that was presented by Wang et al. in the Conference
EUROCRYPT 2005. We found that the derived conditions for the desired collision differential path were not sufficient to
guarantee the path to hold and that some conditions could be modified to enlarge the collision set. By using technique of
small range searching and omitting the computing steps to check the characteristics in the attack algorithm, we can speed
up the attack of MD5 efficiently. Compared with the Advanced Message Modification technique presented by Wang et al.,
the small range searching technique can correct 4 more conditions for the first iteration differential and 3 more conditions
for the second iteration differential, thus improving the probability and the complexity to find collisions. The whole attack

on the MD5 can be accomplished within 5 hours using a PC with Pentium4 1.70GHz CPU.

Keywords

1 Introduction

The hash function MD5[! was designed by Ronald
Rivest in 1992 as a strengthened version of MD4[2l.
Though some weakness has been found by B. den Boer,
A. Bosselaers®! and H. Dobbertin/* since its publica-
tion, MD5 is widely implemented in cryptography such
as digital signature, data integrity, user authentication,
key agreement, e-cash and many other cryptographic
schemes and protocols. Consequently, MD5 also have
been used in almost all commercial security systems and
products.

In the past few years, there have been significant ad-
vances in the analysis of hash function MD5. At the
rump session of Crypto’04, Wang et al.l’l presented the
first collision of MD5. In EUROCRYPT 2005, Wang et
al. presented a two-block collision differential of MD5[6!
that allowed us to search collisions efficiently. They
state that the complexity of finding one collision does
not exceed the time of running 23° MD5 operations us-
ing the attack algorithm presented in [6]. In March 2005,
Klima presented Multi-message modifications method
to find collision of MD5 on a standard notebook PC in
roughly 8 hours!”~9), the estimated complexity is about
233 MD5 operations. However, considering the extra
conditions that will be discussed in Section 4, the com-
plexity of the algorithm presented in [6] should be about
241 MD5 operations and the algorithm presented in |7,
8] should be about 236 MD5 operations.

In this paper, we show that the conditions in Tables
4 and 6 of [6] are not sufficient to ensure the occurrence
of the desired differential characteristics (which was also
found in [10, 11] with a different approach) and specify
a set of truly sufficient conditions by adding some extra
conditions. Additionally, we modify some conditions in
Tables 4 and 6 of [6] to enlarge the collision set. Finally

MD5, collision, differential attack, hash function

we propose small range searching technique to correct
more conditions in round 2 but keep all the conditions
in round 1 hold. By using the small range searching
technique and constructing algorithm based on the truly
sufficient conditions to omit the steps of checking char-
acteristics like algorithms in [6-8], we can reduce the
searching complexity to about 23*% MD5 operations for
the first block and about 22® MDS5 operations for the
second block.

2 MD5 Algorithm

The MD5 Message-Digest Algorithm!! is composed
of integer modular addition, four auxiliary Boolean
functions and left shift rotation. The processing of MD5
involves 64 steps, and can be described as follows:

The chaining variables are initialized as:

ap = 0267452301; dy = 0210325476;

co = 0298badcfe; by = Oxe fcdabl9;

S1: 37, = ao + F(bo, co, do) + mo + 0xd76aad 78
ar=bo+) K7

52: Zz =do + F(a1,bo,co) + m1 + 0ze8c7b756
di=a1+), K12

$3: 3, = co + F(da, a1,bo) + ma + 02242070db
a=d+y, K17

S4: 24 =bo + F(c1,d1,a1) + ms + Ozclbdceee
bi=c+), K22

5612 261 = Q15 + I(b15, C15, d15) + ma —|— 0mf7537682
a1 = bis +), K 6, aao = a6 + ao

S62: 262 = di5 + I(a1e, b1s, c15) + m11 + 0zbd3a f235
dig = ai6 + 262 <K 10, ddo = di6 + do

S63: 263 = C15 + I(dlﬁ, aie, b15) + mo + 0m2ad7d2bb
c16 = dis + Y5y <K 15, cco = c16 + Co

S64: 264 =b1s + I(C16, die, als) + mg + 0xeb86d391
bis = c16 + 264 <K 21, bbg = bis + bo

where << K is cyclically left-shift by K bit positions.

Regular Paper

Supported by the National Natural Science Foundation of China under Grant No. 60573032.

80

Let aaq, bbg, cco and ddy be the outputs of com-
pressing one 512-bit message block. If there are more
than one message block for compression, repeat the
above 64 steps with the next 512-bit message block and
(aag, bby, cco, ddp) as inputs.

The four auxiliary Boolean functions used for MD5
are the following:

F(z,y,2) = (x Ay) V(- A z),

G(z,y,z) = (x A z)V (y A—z),

H(z,y,2) =2 Dy d z,

I(z,y,z) =y ® (z V —z),
where z,y, z are 32-bit words.

In the above iterating process, we omit the padding
method because it has no influence on the attack.

3 Collision Differential for MD5

The collision differential for MD5 with two iterations
that Wang et al. presented in EUROCRYPT 2005 is as
follows:

AH — 0 MM A g A N

such that

AMy = M} — M,
=(0,0,0,0,%2%',0,0,0,0,0,0,2%,0,0,
AM, = M| — M,
=(0,0,0,0,%2%',0,0,0,0,0,0,—2'%,0,0, %23, 0),
AHl :(*231’ *231 + 225’ *231 + 225’ *231 + 225)

%2°1,0),

where *23! means it can be —23! or 423!, which is lim-
ited to +23' in [6]. We found that it can be relaxed
to —231 or 423! but the collision differential still hold.
My, M, My and M each is one 512-bit message block.
Non-zero entries of AMy and AM; are located at po-
sitions 5, 12 and 15. AH; = (Aa, Ab,Ac,Ad) is the
difference of the four chaining values (a, d, ¢, b) after the
first iteration.

4 Sufficient Conditions for the Collision
Differential to Hold

In order to construct a fast attack algorithm with-
out the need to test whether the characteristics really
hold in every step, we first derive a set of truly sufficient
conditions that guarantee the differential characteristics
described in Tables 3 and 5 of [6] to hold. Base on
experiments, Yajima and Shimoyamal'!] have proposed
partial correction about sufficient conditions in August
2005.

4.1 Modified Conditions

During our research, we found that some conditions
in Tables 4 and 6 of [6] could be modified to enlarge

J. Comput. Sci. & Technol., Jan. 2007, Vol.22, No.1

the collision set. This claim has also been discussed in
[11], but limiting in the second iteration differential. We
show our new modification as follows.

1) Conditions in bits ¢4 32, ba 32, a5 32, d5 32, C5,32, b5 32,
ag,32 and dg 32 are not necessary to be zeros, they just
need to be equal to one another for the first iteration
differential and the second iteration differential.

2) Conditions a3 32 = digz = c132 = b1z = 1,
@232 = dozp = 0, ca30 = bozs = azzz = dz3 =
C3.32 = b3732 = 1, a4,32 = d4732 = 0 can be modified
to bboss =a132+1=diga+1l=ciga+1l=big+1=
G232 = dozz = ca32+1 = by3o+1 = azz +1 =
d3zz +1=c332 +1=0b33z2+1=as3z2 = dy3z for the
second iteration differential.

These conditions’ modifications do not have any in-
fluence on the differential characteristic in Tables 3 and
5 of [6] except some positive distortions at the higher-
order (most significant) bit. We can make these modi-
fications, because of the properties!!2! of Boolean func-
tions F(z,y,2) = (z Ay) V (mz A 2z) and G(z,y,2) =
(x A z) V (y A nz) and the useless carry of bit 32. Re-
gardless the carry of bit 32, the differential output of
the Boolean functions F' and G have no influence at all
after these modifications.

4.2 Derive Extra Conditions

In this Subsection, we show with examples that it
is necessary to add some extra conditions into Tables
4 and 6 of [6] in order to keep the desired differential
characteristics attained. More detailed explanation is
also discussed in [10], where they show the lack of con-
ditions independently.

By computing the 5th step of MD5 in the first iter-
ation:

as =by + a1 + F(b1,c1,d1) + my + 02 f57c0faf] < 7.

Let Y o = a1+ F (b1, c1,d1)+my+0xf57c0faf, then the
output difference in the 5th step caused by Am, = %231
should depend on the value of bit 32 in }.: if the bit
32 in) . is zero, then the output difference in the 5th
step is 2%; if the bit 32 in > 5 is one, then the output
difference in the 5th step is —2°. Thus, we need to add
the necessary condition 25’32 = 1 to keep the output
difference —2°¢ in Table 3 of [6]. In order to use basic
modification techniquel®!, we add conditions bis =1,
big =1 and as 5 = 0 (these conditions are not neces-
sary) instead of condition } s, = 1 to the set of suf-
ficient conditions. We show the 5th step computation
of the first iteration in Table 1. According to binary
addition properties, for Z = X + Y, we have:

1) if bit n in X is unknown, bit n in YV is 1 and bit
nin Z is 0, then X + Y will have carry to bit n + 1;

2) if bit n in X is unknown, bit n in Y is 0 and bit
nin Z is 1, then X +Y will have no carry to bit n + 1.

So we can ensure condition 25732 =1 occur if con-
ditions by 5 = 1, by g = 1 and az 5 = 0 hold (see Table

1).

Jie Liang et al.: Improved Collision Attack on Hash Function MD5 81

Table 1. Compute the 5th Step of the First Iteration

bit NO. 1 5 9
L s KT ot 7w
by 7277 1107 7771
= az 1717 0100 0000

From the example, we see that it is necessary to con-
sider the left shift rotation operation when we derive
sufficient conditions for keeping the collision differen-
tial. Extra conditions for other steps are derived using
the same method.

We note that there is one important lemma of the
extra conditions that we prove as follows.

Lemma. FEzxtra conditions azor = 0, azz9 = 0,
az,30 = 0 and az 31 = 0 of the first iteration are not only
sufficient but also mecessary conditions for the collision
differential described in Section 3 to hold.

Proof. According to the collision differential of MD5
presented in [6], we know the differential characteristic
in Step 7 of MD5 should be:

(Adg, Aag, Abl, ACl) — ACQ
where Ac; =c¢} —¢; =0, Aby =b, —b; =0,

[7,8,9,10,11,12,13,14,15,16,17, 18,

19,20, 21,22, —23],
=[-7,24,32],
=(1,2,3,4,5,—6,7,8,9,10,11, —1

— 25,-26,27,28,29, 30,31, 32].

Aas = a2 az =

Ady = d) — dy

Acy = ch — co 2,—24,

The operation of Step 7 of MD5:

> =1+ F(dz, a2,b1) + mg + 02a8304613, (1)
7
cr=dy+ Y <17, (2)

1) We need the differential characteristic of cq is
Acs = [1,2,3,4,5,—6,7,8,9,10,11, 12, —24, —25, —26,
27,28,29,30,31,32], thus ¢y first need to be satisfied
conditions: ¢31 = 0,c02 = 0, c23 = 0,c24 = 0,
co5 =0,c06=1,...,c231 =0, ca32 =0.

2) As differential Ady[—7,24,32], so the differential
Ac2[7,8,9,10,11,—12, —24, —25 —26,27,32] is passed
(or satisfied) from the differential of Ady[—7,24, 32], see
(2).

3) According to the differential characteris-
tics of MDS5 presented in [6], the differential
Acs[1,2, 3,4,5,—6,28,29,30,31] is passed (or sat-
isfied) from the differential of Aay[11,12,13,14,
16,17,18,19,20,21,22, —23] after cyclically left-shift
by 17 bit positions, see (1). So the differen-
tial Aas[11,12,13,14,16,17,18,19,20,21,22, 23] in
F(d3,a2,b1) should be kept. Through the prop-
erties of Boolean function F(z,y,z) = (z A
y) V (-z A z), conditions for keeping differen-
tial Aas[11,12,13,14,16,17,18,19,20, 21,22, —23] are:
dogr = 1, d2o = 1, doyz = 1, doig = 1, da 16 = 1,

dei7 = 1, da1s = 1, da19g = 1, d22o = 1, d221 = 1,
dyos =1, dy3 =1.
4) The differential of Ady[—7,24,32] and

Aa3[7,8,9,10,15] in F(d2,az2,b1) should be removed
or deleted. According to the properties of Boolean
function F[12], conditions for canceling differential
Ads[—7,24,32] and Aas[7,8,9,10,15] in the Boolean
function F' are: byy; = 0,a224 = b4, G232 =
b1 32,d2g =0, dag = 0,d210 =0, d215 = 0.

5) As the differential Aay[11,12,13,14,16,17,18,19,
20,21,22,—23] has been kept (see Step 3), we still need
to make sure that this differential can really be passed to
satisfy differential Acs[l1,2,3,4,5,—-6,28,29,30,31] af-
ter the left shift operation.

Notice that Y, = ¢ + F(d2,a2,b1) + mg +
02a8304613, and the differential of)", passed from
Aay[11,12,13,14,16,17, 18,19, 20,21,22, —23] can be
expressed in many kinds, such as:

AY".[11,12,13,14,16,17,18,19,20,21,22, —23],

[
AY.[-11,15,16,17,18,19, 20,21, 22, —23],
AY.[-11,15,-16],
Ay [-11,-15],
AY,[11,12,13,14, —16],

What kinds of differential of), may be depended
on the value of ¢y,ds,as,b; and mg. We can find
out that some kinds of expressions should be for-
bidden in order to guarantee the desired differen-
tial characteristics. ~ For this instance, expressions
like pattern A)".[...,—15] cannot get the differential
Acs[1,2,3,4,5,-6,28,29,30,31] at all after cyclically
left-shift by 17 bit positions.

6) Now we prove that only the expression:
AY",[11,12,13,14,—16] is satisfied for the whole dif-
ferential. For ¢y = dy + 27 < 17, some bit value of
dy and ¢y have been used to keep the differential char-
acteristics, thus part bit value of) . can be computed
out as in Fig.1.

16 32 11 12 15
' ' ThEy
>, 1217|7011 |1101]1100| 1111|1110 | 7077 | 7222
+ o+ 1707|2010 0011 | 1101|1111]1110{?170 | 7270
cz : 0000[0100[0001[1111[0111[1111[1100] 0000

t y

1 32

Fig.1. Compute the 7th step of the first iteration.

From Fig.l, we know that > ., = 1, so
only nine expressions of dlfferentlal of o left,

they are: AZ7[—-15], A .[11,-12,-15],

AZ7[11 12, 13,15, AY,[11.12,13, 14, 15|

A1 12 13,14,-16], AY,[-11,15,—16],

AS[11,-12,15, ~16], A (11, 12, 13,15, —16] and

AZ7[11 12,13, —14,15,-16], but A [—11,—15],

AS 11, -12,-15], AY[11,12, —13,~15] and
[

AN, 11 12,13, —14,—15] can not get the differential

82

Acs1,2,3,4,5,—6,28,29,30,31] at all after cyclically
left-shift by 17 bit positions. For A .[-11,15,—-16],
it needs extra condition: 27711 = 1; then according to
the binary addition property (2), ¢; =dy + >, < 17
will have carry at bits 28, 29, 30, 31, 32; the carry
of bit 31 and condition dy3; = 0 can make sure
that bit 32 of >, <« 17 should be one or doras =
1. For 2715 = 1, expression A .[-11,15, —16]
will not hold at all. For AY"-[11,12,13,14, —16],
AYL[11,-12,15,—16], AY-[11,12,—13,15,—16] and
A -[11,12,13,-14,15, —16], they all need extra con-
dition: 27 11 = 0; see Flg 1, binary addition operation:
do+ >, <& 17 will have no carry at bit 28, so we can
ensure that 27712 =0, da29 =0, 27’13 = 0,d230 =0,
dir1a = 0:d2z1 =0, 2715 = 0 hold. For 32, ,, =0,

27 13 =0, 27 12=0 and 27 15 = 0, only the expres-
sion: AZ7[11 12,13,14, —16] is satisfied for the whole

differential.

7) Now we prove that the extra conditions as 27 =
0,a2’29 = O, az30 = 0 and az31 = 0 of the first it-
eration are not only sufficient but also necessary condi-
tions. In other words, we need to prove that the only ex-
pression: A)".[11,12,13,14, —16] need the conditions
az,27 = 0,a329 =0, az 30 = 0 and as 31 = 0 to make sure
it occurs. It is easy to be proved according to the binary
addition properties. For A)".[11,12,13,14,—16], we
need extra conditions: >, ,; =0,37, 1, =0,>,,3=0
and 27714 =0, see Fig.2.

1112 15
_ vy

>, 07070 | 0007
T dy: 02170 7220

co : 111100 1 0000
4 4
24 32

Fig.2. Part of the 7th step computing of the first iteration.

If dy.o7 = 1, then carry will happen at bit 27 and

cause 27 11 = 1; as there is no carry happemng at
bit 26, condition dz27 = 0 can ensure 27 =20
hold. If 27711 = 0 then d2729 = O d2’30 = 0 and

d231 = 0 happen. So we need conditions door =
0,d229 = 0, da30 = 0 and dy 31 = 0 to make sure that
AY°.[11,12,13,14, ~16] hold. For the next step differ-
ential computing of MD5, we need conditions: as 27 =
d2,27, az29 = d2,29, az30 = d2,30 and az31 = d2,31 to
keep the differential characteristic of by, so we have

completely proved that conditions ap o7 = 0,a229 =
0,a2,30 = 0 and a 31 = 0 of the first iteration are not
only sufficient but also necessary conditions. O

For the other steps of MD5, maybe there is more
than one expression of the differential about 3 that
can satisfy to keep the whole collision differential. In
this case, we choose the extra conditions that can max-
imize the satisfied set of differential expressions of >, .
Generally, the higher order bits are prior to choose as
extra conditions for maximizing the satisfied set.

J. Comput. Sci. & Technol., Jan. 2007, Vol.22, No.1

In [11], Jun Yajima and Takeshi Shimoyama also
discover the lack of conditions in [6] basing on experi-
ments. They claim that if we omit one of the conditions
ag o7 = 0,a2729 = 0,&2’30 =0 and a231 = 0 of the first
iteration, the success rate of the modification become
extremely low. In this paper, we have proved that these
4 extra conditions are not only sufficient but also nec-
essary conditions for the collision differential described
in Section 3. They also try to present a set of sufficient
conditions. By comparing, we found that the sufficient
condition set they showed still lacked of conditions. Here
we show out a counterexample with standard IV that
satisfies all the conditions for First Message Block listed
n [11] as follows:

mg = 0x72bcc7d2;
mg = OxcTeeT2f1;
my = 0xb3 fbb6d4;
mg = 0295879481,
mg = 02633ed41;
mqg = 0x7f80f83b;
myo = 0290e148cl; my3 = 0x129c¢f f6;
myg = 0z fffc2018; my5 = 02809c01cl.

Through verification, we know that b; 5 = 1,b;6 = 0
and a5 = 0. These three conditions ensure) . 5, =0
occur to break the collision differential.

my = 0x87felf fc;
m3 = 0x5¢92b535;
ms = 0xc03 f68¢8;
my = 0z f148bd6;
mg = 0x3d3 f800;
mq1 = 0293410102;

4.3 Lacked Conditions and Incorrect
Conditions

Now we give out a set of truly sufficient conditions
in Tables A1 and A2 (in Appendix) that guarantee the
desired differential characteristics to occur. The extra
conditions in Tables A1 and A2 are just one of the pos-
sible extra condition sets derived from)_,; we choose
them out as they are optimal. Comparing with the Ta-
ble 4 of [6], besides the modified conditions and the ex-
tra conditions derived from)., we also add conditions
d16,26 = 0, C16,26 — 0, correct condition C16,32 — d16732 to
c16,32 = 16,32 and delete condition aj6,27 = 0 in Table
Al. The same to adding extra condition bi596 = 0 in
Table A2. We confirm that these 5 conditions are lacked
conditions or incorrect conditions in [6], see the deriving
conditions details as follows:

In Table Al, we derive conditions dig2s =
0,262716 ~ 262’22 not all ones and aj632 = 15,32 to
make sure that the differential Adyg = [26, *32] occur;
conditions C16,26 = 0, d16732 = b15732 and b15726 =0to
make sure that the differential Acig = [26,x32] occur;
conditions aig26 = 1 and ci6,32 = a16,32 to make sure
that only the differential Acjg = [26, *32] can be passed
to differential Ab;g. Condition aq6,27 = 0 is no need at
all for keeping the differential characteristics.

In Table A2, we derive conditions dig26 = 1,
D 6216 ~ g0 DOt all zeros and aig32 = ci5,32 to
make sure that the differential Adyg = [—26, %32] occur;
conditions ci6,26 = 1, dig,32 = b15,32 and by5 26 = 0 to
make sure that the differential Acig = [—26,%32] oc-
cur; conditions aq6,26 = 1 and cig,32 = 16,32 to make

Jie Liang et al.: Improved Collision Attack on Hash Function MD5 83

sure that only the differential Acjg = [—26,*32] can be
passed to differential Abyg.

In fact, the output differential characteristics for
Adig and Acig in the first iteration differential
can be randomly chosen to be [26,*32],[—26,27,%32],
[—26, —27,28,%32], [~26,—27, —28,29,%32], [—26, —27,
—28,—29, 30, %32], [—26, —27, —28, —29, —30, 31, %32] or
[—26,—27,—28,—29,—30, —31] (the same to the output
differential characteristics for Adig and Acyg in the sec-
ond iteration differential). So conditions dig 26 = O,
C16,26 = 0, d16,32 = b15,327 and C16,32 = Q16,32 are not
necessary conditions in Table A1 (conditions dig26 = 1,
C16,26 — 1, d16,32 = 515732 and C16,32 = Q16,32 are also
not necessary conditions in Table A2). But here the dif-
ferential characteristics for Adyg and Acyg chosen to be
[26, x32] ([—26, #32] for the second iteration differential)
is the best in the sense that it needs the least number
of conditions for keeping the differential characteristics.

4.4 How to Construct Sufficient Conditions

From the condition-deriving method described in [6]
and the extra-condition deriving method described in
the above section, we can summarize the method of con-
structing sufficient conditions for a collision differential
of MD5. These sufficient conditions are derived to en-
sure that the collision differential and its corresponding
differential characteristics will always hold. When de-
riving sufficient conditions there are three aspects need
to be considered:

1) Necessary conditions of the differential charac-
teristic itself. ~For example, AX, = X! — X, =
[1,2,3,4,-5,—6,7], then the necessary conditions for
this differential characteristic are X,; = 0, X, = 0,
X*’g = 0, X*!4 = O, X*75 = 1, X*’ﬁ = 1, and X*’7 =0.

2) Necessary conditions to control the differential
output of the Boolean function for the need of the next
differential characteristic.

3) Extra conditions to control the differential output
of left shift rotation operation for the need of the next
differential characteristic. The necessary conditions (see
Steps 1 and 2) should be derived first, then consider the
extra conditions to control the differential output of left
rotation operation.

A set of conditions like Tables A1 and A2 derived
from the three aspects must be the sufficient conditions
set, as it makes sure that the collision differential always
holds.

5 Construct a Fast Attack Algorithm

In this section, we propose small range searching
technique to obtain a faster attack algorithm. The ba-
sic idea of this technique is that for N = U + [L +
F(X,Y,Z)+ M + Constant] << k, we can change the
value of bit n in N by searching bit n in U and bit n—k
in L, X,Y,Z, M; we can also search the bits lower than

n in U and bits lower than n — k in L, X,Y, Z, M to
change the value of bit n in N by carry.

Through the experiment, we found that the basic
message modification technique described in [6] was not
always success because of the Carry or Borrow in bit 32.
Our basic message modification technique shown below
is different from the one presented in [6], and we can
make the modification always succeed.

5.1 Fast Attack Algorithm for First Block

(a) Select random 32-bit value for mg, mq, ma, ...,
mis.

(b) Compute Step 1 and Step 2 of MD5 algorithm,
modify mag,...,mi3,m14 and mys by basic message
modification technique. For example, ms should be
modified to ensure the conditions of dy in Table A1l hold
(see Table 2):

Step 6: do = as + [di + F(a2,b1,c1) + ms +
0x4787c62a] < 12;

Table 2. Conditions of do for the First Iteration Differential
dz1 =1,d22=azp2,d23=0,d24=azs,dzs=azs,dz6 =0,
da7=1,d28=0,d29=0,d210=0,d211 =1,d2,12 =1,
d2,;13 = 1,d2,14 = 1, d2,15 = 0,d2,16 = 1, d2,17 = 1, d2,18 = 1,

d2,19 = 1,d2,20 = 1,d2,21 = 1,d2,22 = 1,d223 = 1,d2,24 = 0,
dz,25 = az,25,d2,26 = 1,d2,27 = a2, 27,dz2,28 = 0,d2,29 = a2, 29,
d2 30 = a2,30,d2,31 = a2,31,d2,32 =0

Basic Modification:

dy = {(d2) A [(d2)&(0z fd8043be)] A [(a2)&
(027500001a)]}| (02027 fbedl),
my = [(d2 — az) >].2] — d1 — F(ag, bl, Cl) — 0x4787c62a.

In order to use small range searching technique in the
next step, we add three extra conditions c4.9 = 0,c4,21 =
0 and c423 = 0 in ¢4 when modifying mq4.

(c) Randomly select 32-bit value for a5 but make the
conditions as4 = by 4,as5,16 = b4,16,0518 = 0,a531 = 1
and as 32 = by 32 hold, then compute the 18th step:

218 = d4 + G(as, b4, 64) + meg + 0.’,ECO40b340,
ds =as +) 15 K 9.

If conditions d5718 = 1, d5730 = a5,30 and d5732 = Q5,32 are
not all hold, we use small range searching technique to
correct them. According to the 18th step computation
and extra conditions ¢y 9 = 0,c421 = 0 and c423 = 0
in c4, we notice that by searching bits by g, bs 21, b4,23 in
by, we can change the value of bits ds 15,ds 30,ds5,32 in
ds to make the conditions ds 18 = 1,d5.30 = as,30 and
ds 32 = as 32 hold, then we need to update the value of
mis5:

mi5 = [(b4 - 04) > 22] 7b3 - F(C4, d4, a4) —0x49b640821.
(d) Compute the 19th step:

219 =cq4 + G(d5, as, b4) +mq1 + 0x265e5ab1
cs =ds +) 9 K 14.

84

If conditions 21974 ~ 219,8 not all ones, ¢5 15 = 0 and
c5,32 = ds 32 are not all fulfilled, we use small range
searching technique to correct them. By searching bits
b3,4, b3,5, b3,6, b377, b3,21, b3,22, 53723, b3724 in b3 and update
the value of my; (my1 = [(bs — ¢3) > 22] — by —
F(cs,ds,as) — 02895¢d7be), we can affect the value of
cs to make the conditions > ;9,4 ~ > ¢ not all ones,
¢s,18 = 0 and c¢5 32 = d5 32 hold. Finally, we update the
values of miy, m13, M14, M15:

=[(as — b3) >> 7] — ag — F (b3, c3,d3) — 0266901122,

[(ds — as) >> 12] — d3 — F(aa, b3, cs) — 0z fd9I87193,
=[(ca — ds) >> 17] — c3 — F(da, as,bs) — 02ab79438e,
[(bs — ca) =>> 22] — bs — F(ca,da,as) — 0249b40821.

(e) Randomly select 32-bit value for b5 but make
the conditions }) 4 > 2032 Dot all zeros and
bs32 = c532 hold, then update the values of
my, mg, ay,di, mg, msg, my and ms:

my =[(as — ba) 3> 5] — as — G(bs, ca,ds) — 0z f61€2562,
mo =[(bs — ¢5) > 20] — bs — G(cs,ds, as) — 0ze9b6cTaa,
a; =bg + [ao + F(bo7 co, dg) + mg + 0a:d76aa478] K7,

di = a1 + [do + F(a1,bo, co) + m1 + 02e8c7b756] < 12,

mg =[(c1 —di) 3> 17] — co — F(d1, a1, bo) — 02242070db,
mg =[(b1 — c1) 3> 22] — bg — F(c1,d1,a1) — Ozclbdceee,
my =[(az —b1) 3> 7] —a1 — F(bi,c1,d1) — 0z f57c0faf,
ms =[(d2 — a2) 3> 12] — d1 — F(az2,b1,c1) — 0x4787c62a.

(f) Continuing compute with the remaining steps, if
any condition in Table A1l is not satisfied, jump to Step
(c). If all the conditions are satisfied, go to the sec-
ond block attack algorithm. We pass the output value
aag, bbg, cco and ddy to the second block attack algo-
rithm.

5.2 Fast Attack Algorithm for Second Block

(a) Select random 32-bit value for mg, my, my ... my3.

(b) Modify mg,mi, my...my3 by basic message
modification technique. We add three extra conditions
dy21 = 1,d422 = 1 and dy 23 = 1 in d4 for small range
searching technique when modifying m3.

(c) Randomly select 32-bit value for ¢4 but make the
conditions Cq4 = 0, Cq,16 = 0, Ca17 = 0, Cq25 = 1,
C426 = 0, Cq27 = 1, Cq28 = 1, Cq29 = 1, Ca.30 = 1 and
c4,31 = 1 hold, then compute the value of m4:

mig4 = [(C4—d4) > 17]—03—F(d4, ayg, b3)—0$a6794386
Randomly select 32-bit value for by but make the con-
ditions b474 = 1, b4’16 =]., b4717 =]., b4729 = 0 and
bs32 = c4,32 hold, then compute the value of mys:

mi5 = [(b4 —64) > 22] —b3 —F‘(C47 d4, a4) —0x49b40821.

J. Comput. Sci. & Technol., Jan. 2007, Vol.22, No.1
(d) Compute the 17th step:

Y17 =04 + G(bs,ca,ds) + mq + Oz f61e2562¢
as =by +), K 5.

If conditions 217 05 ™ 217 o7 not all ones and as 30 =
by 32 are not all fulﬁlled we search bits dy 4,d; 5 in dl
and bits b472]_, 64122, b4723, b4’24 in b4, then update the
values of my, my5 (my = [(d1 —a1) >> 12| — ddo — F(ay,
bbg, cco) — 0xe8cTb756, mys = [(by — cq) > 22| —
bs — F(c4,dg,aq) — 0249b40821) to correct them. Com-
pute the 17th step again, if conditions as4 = b4,
as,16 = bsa,16 and as 13 = 0 are not all attained, we search
bits dq 11, d1,23 and d; 25 in d; and update the value of
miq (m1 = [(dl — al) >].2] — ddo — F(al, bbo, CCO) —
0ze8¢7b756) to correct them.
(e) Compute the 18th step:

218 = d4 + G(a5, b4, 64) + mg + 0xc040b340
ds =a5 + > 15 K 9.

If conditions ds,18 = 1 and ds 32 = as,32 are not all at-
tained, jump to Step (c). If d530 # as30, we change
bit c26 in ¢y and update the values of mg (mg =
[(Cg — dg) > 17] — C1 — F(dg,a2,b1) — 0%0,8304613) to
correct it. Then we also need to update the values of
my, mg, Mg and mqg:

[(b2 — c2) >> 22] — by — F(c2,d2,a2) — 0z fd469501,
[(ag — b2) >> 7] — az — F(bz, c2,d2) — 02698098d8,

[(d3 — a3) >> 12] — d2 — F(as, bz, c2) — 0z8b44fTaf,
[(es — d3) >> 17] — ca — F(ds,as,b2) — Oz f f f f5bb1.

(f) Compute the 19th step:

219 =c4 + G(d5, as, b4) +my; + 02265e5a51
s =ds+ > 9 K 14.

If conditions 219,4 ~ 219718 not all ones, c515 = 0
and c532 = ds32 are not all attained, we use small
range searching technique to correct them. By search-
ing bits b3 4, bz s, b3e, b3 7, b3 21, bz 22, b3o3, b324 in
bs and update the value of my1 (mq1 = [(bs — c3) >
22] — by — F(cs,d3,a3) — 02895¢d7be), we can affect the
value of c¢5 to make the conditions »>,, ~ > g 5 DOt
all ones, ¢5,18 = 0, ¢5,32 = d5 32 hold. Finally, we update
the values of mi3, mi3, my4 and mqs:

miz =[(as — bs) 3> 7] — as — F(bs, c3,d3) — 0260901122,

mis =[(da — aa) > 12] — ds — F(aa, bs, c3) — 0z fd987193,
mis =[(ca — da) 3> 17] — c3 — F(d4,a4,b3) — 02a679438e,
mis =[(ba — ca) > 22] — bs — F(ca,da,as) — 0249540821.

(g) Compute the 20th step:

Y 90 =ba + G(cs,d5, as) + mg + 0ze9b6cTaa

Jie Liang et al.: Improved Collision Attack on Hash Function MD5

bs =c5 + D 59 K 20.

If conditions 220730 ~ 220732 not all zeros and b5 32 =
¢5,32 are not all attained, jump to Step (c).

(h) In order to speed up the attack, we want to
change the value of mqy without updating the value of
myq, as updating the value of my will cause the conditions
in the 17th step not hold. By randomly select the value
of d1,7 = a7, dl,s = a1z3, d1,13 = 01,13, d1,18
d1719 = ai,19, d1720 = @120, d1,21 = @121, d1,29 = @129,
di130 = a1 30 and dq 31 = a1,31 (see Table A2), we may
change the value of mg without updating the value of
my if the value of F'(ay, bbo, cco) is unchanged. For ex-
ample, according to the properties of Boolean Function
F(z,y,2) = (x Ay) V (~x A 2)12] if bbg 7 = cco 7, ran-
domly choose the value of dy 7 = aq,7 will not change
the value of F(ay, bbg, ccg), then the value of my (m; =
[(d1 —ay) >> 12] — ddy — F(ay, bbg, cco) — 0xe8cTH756)
will not change at all. After randomly select the values
of d1,7 = ai,7, dl,s = @18, d1,13

= 01,18,

= 41,13, dl,ls = a1,18,
d1719 = @119, d1720 = @1,20, d1721 = @1,21, d1729 = @1,29,
di30 = a130 and dy 31 = a;31 without changing the
value of my, we update the values of mg, ms, ms, my
and ms:

[

[(e1 —d1) >> 17] — cco — F(d1, a1, bbo) — 02242070db,
[(b1 — c1) >> 22] — bbg — F(c1,d1,a1) — Ozclbdceee,
[
[

(a2 —=b1) > 7] — a1 — F(b1,c1,d1) — 0z f57c0faf,
(dz — az) >>> 12] — d1 — F(az, bl, Cl) — 0334787062(1

mo
ma
ms
n
ms

(i) Continuing with the remaining steps of MD5 from
Step 20, if any condition in Table A2 is not satisfied,
jump to Step (h). If all the possible selections in Step
(h) fail, then jump to Step (c).

5.3 Speed of Our Algorithm

By using the basic message modification technique
and small range searching technique, about 35 condi-
tions in Rounds 2~4 are undetermined in Table A1, and
about 31 conditions in Rounds 2~4 are undetermined in
Table A2. Consider the extra conditions: the attack al-
gorithm described in [6] should have about 39 conditions
in Rounds 2~4 undetermined in Table A1 and about 34
conditions in Rounds 2~4 undetermined in Table A2.
So, using out attack algorithm can speed up the attack
of MD5 about 16 times. For each random selection of
as and bs in Fast Attack Algorithm for First Block or
c4 and by in Fast Attack Algorithm for Second Block,
we can reasonably assume that each random selection
for searching takes about 32 steps of MD5 algorithm on
average, then the first iteration differential holds within
234 MD5 operations, and the second iteration differen-
tial holds within 228 MD5 operations if ignore condi-
tions ds 18 = 1 and ds 32 = a5,32 because of their high

(a1 — bbg) >> 7] — aao — F(bbo, cco, ddo) — 02d76aad T8,

85

success probability. The complexity of finding a 1024-
bit collision message of MD5 does not exceed the time
of running 23° MD5 operations.

Compared with the Multi-message Modification
technique!”, our small range searching technique should
be more efficient for only searching some bits to correct
the same conditions in round 2. It seems that the small
range searching technique integrates the other two tech-
niques to speed up the attack of MD5. Additionally, our
attack algorithm is based on the truly sufficient condi-
tions, we do not need test whether the characteristics
really hold in every step like [6, 8], thus our attack al-
gorithm could be considered at least 2 times faster than
the algorithm present in [7, §].

In the experiment, the running time for determin-
ing the first block is within 4 hours using a PC with
1.70GHz Pentium4 CPU, and within 20 minutes for the
second block. Thus, we can find an example of MD5
collision within 5 hours. A collision example is given
in Table 3 with C4,32 = b4732 = G532 = d5732 = C532 =
bs 32 = ag,32 = dg 32 = 1 for the first iteration.

Table 3. Collision Example for MD5

IV 67452301 efcdab89 98badcfe 10325476
055a604a a3461df0 12221694 6c449744
25c44d2c alb99a33 92681957 3c554e32

Mo 0g32ed41 03f3f7fc 805eb737 1300a 02
be fc06c7 0099e€023 ff80803f 0000bd93
c0e83a00 37f3afde 95243bff f2el6edf

M b4cc3b03 fcbaaba3 852088e8 c00d7bd1
fe32fffd a7e84fe0 30803ffe dc833c85
5f1330ed 088bde83 6f89b53d 819a57f0
055a604a a3461df0 12221694 6c449744

M abcddde alb99a33 92681957 3c554e32

0 0632ed41 03f3f7fc 805eb737 1301202
befc06cT 0099023 780803 f 0000bd93
c0e83a00 37f3afde 95243bff f2el6edf

M 34¢cc3b03 febaaba3 852088e8 c00d7bd1

L fe32fffd aTe84fe0 30803ffe dc82bc85
5f1330ed 088bde83 ef89b53d 819a57f0
H 9cd5a4f9 3b375002 8ca3c9T2 901209¢ f

6 Summary

In this paper, we present an algorithm to speed up
the attack of hash function MD5. In order to construct
the algorithm, we also discuss the sufficient conditions
for keeping the two-block collision differential. By using
small range searching technique and omitting the com-
puting steps to check the characteristics, the probability
and the complexity to find a collision of MD5 are greatly
improved. The small range searching technique can also
be used to speed up the attack of other hash functions
such as MD4 and RIPEMD.

When we are summarizing our research results, we
find that Yu Sasaki et al. present their new message
modification techniques in [13], they claim that their
modification techniques can correct 14 conditions in
Round 2 with success probability about 1/2. Thus,
use the same complexity estimation method described
in [6], we claim that the complexity is about 233 MD5

86

operations considering the extra conditions in Tables
Al and A2. In fact, by random selection of as and
bs in Fast Attack Algorithm for First Block, the con-
ditions 6,18 = b5,18, d6732 = Q6,32 = b5732, cs32 = 0,
be,32 = cg,32 + 1 in Round 2 can be easily fulfilled with
high probability.

References

[1] Ronald Rivest. The MD5 message digest algorithm.
RFC1321, April 1992, http://rfc.net/rfc1321.html.

[2] Ronald Rivest. The MD4 message digest algorithm.
RFC1320, April 1992, http://rfc.net/rfc1320.html.

[3] B den Boer, A. Bosselaers. Collisions for the compression
function of MD5. In Proc. Advances in Cryptology, EURO-
CRYPT’93, LNCS 765, Helleseth T (ed.), Springer-Verlag,
Berlin, Germany, 1994, pp.293-304.

[4] Dobbertin H. Cryptanalysis of MD5 compress. Rump session
of Eurocrypt’96, http://www.cs.ucsd.edu/users/bsy/dobbe-
rtin.ps, 1996.

[5] Xiaoyun Wang, Dengguo Feng, Xuejia Lai, Hongbo
Yu. Collisions for hash functions MD4, MD5, HAVAL-
128 and RIPEMD. Rump session of Crypto’04, Cryp-
tology ePrint Archive, Report2004/199, http://eprint.iacr.
org/2004/199.pdf, 2004.

[6] Xiaoyun Wang, Hongbo Yu. How to break MD5 and
other hash functions. In Proc. Advances in Crytolog—
EUROCRYPT 2005, LNCS8494, Cramer R (ed.), Springer-
Verlag, pp.19-35.

[7] Vlastimil Klima. Finding MD5 collisions on a notebook
PC using multi-message modifications.
national Scientific Conference Security and Protection of
Information 2005, Brno, Czech Republic, May 3-5, 2005,
http://eprint.iacr.org/2005/102.pdf.

[8] Patrick Stach. MD5 Collision Generator. (pstach@stachliu.

com), http://www.stachliu.com. nyud.net:8090/md5coll.c.

Vlastimil Klima. Finding MDS5 collisions—A toy for a note-

book. Cryptology ePrint Archive, Report2005/075, March,

2005, http://eprint.iacr.org/2005/075.pdf.

Zhang-Yi Wang, Huan-Guo Zhang, Zhong-Ping Qin, Qing-

Shu Meng. A fast attack on the MD5 hash function. Journal

of Shanghai Jiaotong University, 2006, 11(2): 140-145, 151.

Jun Yajima, Takeshi Shimoyama. Wang’s sufficient condi-

tions of MD5 are not sufficient. Cryptology ePrint Archive,

Report2005/263, 2005, http://eprint.iacr.org/2005/263.pdf.

In Proc. Inter-

[9

[10]

[11]

Appendix

J. Comput. Sci. & Technol., Jan. 2007, Vol.22, No.1

[12] Xiaoyun Wang, Xuejia Lai, Dengguo Feng. Cryptanalysis of
the hash functions MD4 and RIPEMD. In Proc. Advances
in Cryptology— EUROCRYPT 2005, LNCS 3494, Cramer R
(ed.), Springer-Verlag, 2005, pp.1-18.

Yu Sasaki, Yusuke Naito, Noboru Kunihiro,
Ohta. Improved collision attack on MD5. Cryptology
ePrint Archive, Report2005/400, Nov, 2005, http://eprint.
iacr.org/2005/400.pdf.

[13] Kazuo

Jie Liang was born in 1980. He
received his B.Sc. degree in July
2004 from Dept. Electronic Science
and Engineering, Jilin Univ., China.
He is currently a master candidate of
Shanghai Jiao Tong University in the
Dept. Computer Science and Engi-
neering, working in computer infor-
mation security and cryptography un-
der the superb supervision of Prof.
His research interests are hash function,

Dr. Xuejia Lai.
trusted computing and DRM scheme.

Xue-Jia Lai received his B.Sc.
degree in El. Ing. in 1982 and M.Sc.
degree in math. from the Xidian
Univ., China, 1984. He received his
Ph.D. degree of Sc. Techn. in 1992
from the Swiss Federal Institute of
Technology, Zurich. He is a profes-
sor of Shanghai Jiao Tong University
since 2004. His work has been concen-
trated in cryptography and PKI dur-
ing the past 20 years, especially in the design and analy-
sis of practical cryptosystems (including block ciphers and
stream ciphers), differential cryptanalysis of block ciphers,
and analysis hash functions. He is a co-inventor (together
with Prof. J. L. Massey) of the IDEA cipher. In 1994,
he joined r3 security engineering ag which became Entrust
Technologies Switzerland since June 1998. He was senior
consultant S.W.I.S. GROUP, Switzerland since 2001. He
was editor of 3 ISO IT-security standards. He has pub-
lished a book “On the Design and Security of Block Ciphers”
(Hartung-Gorre Verlag, 1992) and more than 40 papers.

Table Al. A Set of Sufficient Conditions for the First Iteration Differential

c1,7 =0,c1,12 =0,¢c120=0

Extra conditions derived from Zz

b1,7 =0,b18 =c1,8,b1,0 =c1,9,b1,10 = c1,10, b1,11 = €1,11,b1,12 = 1,b1,13 = c1,13,

b1,14 = c1,14, b1,15 = c1,15,b1,16 = C1,16, b1,17 = C1,17, b1,18 = €118, b1,19 = C1,19,

25 =bis5=1b1g=1a25=0

b1 20 = 1,b1 21 = c1,21,b1,22 = ¢1,22,b1,23 = ¢1,23,b124 =0,b1 32 =1

az1 = l,a2,3 = 1l,a26 = 1,a2,7 = 0,a2,8 = 0,a29 = 0,a2,10 = 0,a211 =0,

D, = azar =0,a229 =0

az,;12 = 0,a2,13 = 0,a2,14 = 0,a2,15 = 0,a2,16 = 0,a2,17 = 0,a2,18 = 0,a2,19 = 0,a2,20 =0,)

az,30 = 0,a2,31 =0
az21 =0,az22 = 0,a223 =1,a224 =0,a2 26 = 0,a228 = 1,a2 32 =1

dz1 =1,d22 =az2,d23=0,d24 =az4,d25 =azs,d26 =0,da7=1,d2g=0,dz9=0,d210=0,d211 =1,d212 =1,
d213 = 1,d2,14 = 1,d2,15 = 0,d2,16 = 1,d2,17 = 1,d2,18 = 1,d2,19 = 1,d2,20 = 1,d2,21 = 1,d2,22 = 1,d2,23 = 1,d2,24 = 0,
dz,25 = az,25, d2,26 = 1,d2,27 = a2,27,d2,28 = 0,d2 29 = a2,29,d2,30 = a2,30,d2,31 = a2,31,d2,32 =0

c2,1 =0,c22=0,c2,3=0,c2,4 =0,c2,5 =0,c26 =1,c2,7 =0,c2,8 =0,c2,9 =0,c2,10 =0,c2,11 = 0,c2,12 = 1,c2,13 = 1,
c2,14 = 1,215 = 1,c2,16 = 1,c2,17 = 0,¢c2,18 = L,¢c2,19 = 1,c2,20 = 1,c221 = 1,¢c2,22 = 1,c2,23 = 1,c2,24 = 1,c225 = 1,
c2,26 = 1,c2,27 = 0,c2,28 = 0,c2,29 = 0,c2,30 = 0,c2,31 = 0,c232 =0

ba,1 =0,b22 =0,b23 =0,b24 =0,b25 =0,b2,6 =0,b27 =1,b28 =0,b2,9 =1,b210 =0,b2,11 = 1,b2,12 =0,
b214 = 0,b216 = 0,b2,17 = 1,b2,18 = 0,b219 = 0,b2 20 = 0,b2 21 = 1,b2 24 = 1,b2 25 = 1,b3 26 = 0,b2 27 = 0,
b2 28 = 0,b2 29 = 0,b2 30 = 0,b2 31 =0,b2 32 =0

To be continued on the next page

Jie Liang et al.: Improved Collision Attack on Hash Function MD5 87

Continuing from the previous page

az,1 = 1,a32 =0,a33 =1,a3,4 = 1,a35 = 1,a3,6 = 1,a3,7 = 0,a3,8 =0,a3,9 = 1,a3,10 = 1,

az;11 = 1,a3,12 = 1,a3,13 = b2,13,a3,14 = 1,a3,16 = 0,a3,17 = 0,a3,18 = 0,a3,19 = 0,a3,20 = 0,

az,;21 = 1,a3,25 = 1,a3,26 = 1,a3,27 = 0,a328 = 1,a3,29 = 1,a3,30 = 1,a3,31 = 1,a3 32 =1

d3,1 =0,d32 =0,d37 =1,d3,8 =0,d3,9 =0,d3,13 = 1,d3,14 = 0,d3,16 = 1, 211 = d329 = 1,d3,30 =1,
d317 =1,d3,;18 = 1,d3,19 = 1,d3,20 = 1,d3,21 = 1,d3,24 = 0,d3,31 = 1,d332 =0 3,209 =0,c330=1

c3,1 =0,c32=1,c37 =1,c38 =1,c3,9=0,c3,13 =0,c3,14 = 0,c3,15 = d3,15, 3,16 = 1,

c3,17 = 1,¢3,18 = 0,¢c3,19 = 0,c3,20 = 0,c3,31 = 0,c3 32 =0

bz g =0,b39 =1,b3,13 = 1,b3,14 = 0,b3,15 = 0,b3,16 = 0,b3,17 = 0,b3,18 =0, E = by g0 = 0

b3,20 = 1,b3 25 = c3,25,b3,26 = ¢3,26,03,19 = 0,b3,31 = 0,b3.32 =0 12 ’

ag,a =1,a4,8 =0,a4,9 =0,a4,14 =1,a4,15 =1,a4,16 = 1,a4,17 = 1,a4,18 = 1,a4,190 = 1,a4,20 = 1,a4,25 = 1,a4,26 = 0,

ag31 =1,a432=0
dyg=1,dyg=1,dg9=1,dg14=1,dg15 =1,dg16 = 1,dg,17 = 1,dg18 = 1,d4,19 = 0,dg,20 = 1,d4 25 = 0,

da,26 = 0,d4,30 = 0,da,32 =0

ca,a =0,ca16 = 1,c4,25 = 1,c426 =0,ca30 =1 215 = c415 =0

by 30 = 1,b4 32 = cq,32 216 = c431 = 1,bg 22 =cq22+1,b431 =0
as,4 = bg,4,a5,16 = b4,16,a5,18 = 0,a5,32 = by 32 217 =a531 =bg31+1=1

ds,18 = 1,ds5,30 = as5,30,d5,32 = a5,32,¢5,18 = 0,¢5,32 = d5,32 219,4 ~ 219 1g Dot all ones

bs,32 = c5,32 20,30 ~ 220 3o DOt all zeros

ae,18 = bs,18,d6,32 = ag,32 = b5,32,¢6,32 = 0,bg,32 = cg,32 + 1,b12,320 = d12,32 223@8 =0, 235 16=0

a13,32 = €12,32,d13,32 = b12,32 + 1,¢13 32 = a13,32,b13 32 = d13,32,a14,32 = C13,32,d14,32 = b13,32,C14,32 = a14,32,b14,32 = d14 32,
a15,32 = €14,32,d15,32 = b14,32, C15,32 = a15,32, b15,26 = 0,b15,32 = d15,32 + 1,a16,26 = 1,a16,32 = c15,32

ddo,zs =0, d16,26 =0, d16’32 = b]_5y32 262,16 ~ 262 29 not all ones

cco26 = 1,cco27 = 0,c16,26 = 0, C16,32 = @16,32, bbo,26 = 0, bbo 27 = 0, bbg 6 = 0, bbg 32 = cco 32 = ddo 32

Table A2. A Set of Sufficient Conditions for the Second Iteration Differential

a1,5 = 0,0,1’12 = 0,(11722 = 17“1,26 = 0, a1127 = 17‘11,28 = 0,(11’32 = bboﬁgz + 1 Extra Conditions Derived from 21
d12=0,d13=0,d16=0,d17 =a1,7,d1,g =a18,d1,12 = 1,d1,13 = a113,
di17 = 1,d1,18 = a1,18,d1,19 = a1,19,d1,20 = a@1,20,d1,21 = a1,21,d1,22 = 0,d1,26 = 0, 23 =a117 =1,d116 =0,c1,16 = 1

dy,27 =1,d1 28 = 1,d1 29 = a1,209,d1,30 = a1,30,d1,31 = a1,31,d1,32 = a1 32

cip=1lci3=1,c14=dy4,c15=d15,c16 =1,c1,7=1,c18=0,c19 =1,
c1,12 = 1,c113 =0,c117 = 1l,c118 = 1l,c1;19 = 1,c120 = 1,c1,21 = 1,c1,22 = 0,c126 = 1, 25 =c,1=1
c127 =1,c128 =1,c129 = 1,¢1,30 = 1,131 =0,c1,32 = d1 32

b11=1,b12=0,b13=0,b14=0,by5=1,b16=0,b17=0,b18=0,b19=0,b1,10=c1,10,b1,11 = €1,11,b1,12 =0,b1,13 =0,
b1,17 = 0,b1,18 = 0,b1,19 = 1,b1 20 = 0,b1,21 = 0,b1 22 = 0,b1 26 = 1,b1,27 = 0,b1,28 = 1,b1,29 = 1,b1,30 = 1,b1,31 = 0,b1,32 = c1,32

a2,1 = 0,(12’2 = 0, a2,3 = 0,(12,4 = 0,(12’5 = 1,(12’6 = 0,&2,7 = 17‘12,8 = 0, a2,9 = 0,
az,10 =1,a2,11 = 1,a212 = 1,a213 = 0,a217 = 1,a2,18 = 1,a2,19 = 1,a2 20 = 1,a2,21 =0, 27 =dz15 =1,c2)15=0
az,22 = l,a2,27 = 0,a2,28 = 1,a2,29 = 0,a2,30 = 0,a2,31 = 1,a2,32 = by 32 +1

dy1 =0,d22=1,dy3=1,d24=0,d25 =1,d26 =0,da7 =1,d28 =0,d29=0,d210=0,d211 =1,d212 =1,
da,13 = 0,d2,17 = 0,d2,18 = 1,d2,21 = 0,d2, 22 = 1,d2,26 = 0,d2,27 = 1,d2,28 = 0,d2 29 = 0,d2 32 = a2,32

c2,1 =1,c27 =0,c28 =0,¢c2,0 =0,c2,10 =1,c2,11 = 1,¢c2,12 = 1,¢2,13 = 1,¢2,16 = d2,16,¢2,17 = 1,¢2,18 = 0,¢c2,21 = 0,
c2,22 = 0,c.24 = dp 24,¢2,25 = da,25,c2,26 = 1,c0.27 = 1,298 = 0,229 = 1,c232 =do 32 + 1

ba1 =0,b22=rc22,bo7=1,byg=1,ba9=1,b210=1,b216 = 1,b2,17 = 0,b218 = 1,
> , > , > , > > s) :>b2’6:1 aze =0
b221 =1,b3 22 =1,b224 = 0,b2 25 = 0,b2 26 =0,b2 27 =1,b2 28 =0,b23 29 =0,b2 32 = c2,32 29 ’

as;1 = l,a3,2 =0,a3,7 =1,a38 = 1,a3,0 = 1,a3,10 = 0,a3,13 = b2,13,a3,16 = 0,a3,17 = 1,a3,18 = 0,a3,24 = 0,a3,25 = 0,
a3 26 = 0,a327 = 1,a3 28 = 1,a3 29 = 1,a3 32 = bz 32

d31 =0,d32=0,d37=1,d3 s =1,d39 =1,d310 =1,d313 =0,d316 = 1, E = dsq1a=1,c319=0
) ’)
d3,17 = 1,d3,18 = 1,d3,19 = 0,d3,24 = 1,d3 25 = 1,d3,26 = 1,d3,27 = 1,d3 32 = a3 32 11

c3,1 = 1,c32 =1,c37=1,c38 =1,c3,0 = 1,c3,10 = 1,c3,13 = 0,¢3,14 = d3,14,¢3,15 = d3,15,¢3,16 = 1,¢c3,17 = 1,
c3,18 = 0,c3,19 = 1,¢3 20 = d3,20, 3,32 = d3,32

b3,s = 1,b3,13 = 1,b3,14 = 0,b3,15 = 0,b3,16 = 0,b3,17 = 0,b3,18 = 0,b3,19 = 0,b3 20 = 1, b3,25 = 3,25, b3,26 = 3,26,
b3 27 = c3,27,b3,28 = c3,28, b3,20 = 3,20, b3,30 = ¢3,30, 3,31 = ¢3,31,b3,32 = 3,32

ag4 = 1,a48 =0,a4,14 = 1,a4,15 = 1,a4,16 = 1,a4,17 = 1,a4,18 = 1,a4,19 = 1,a420 = 1, Z = a404=0,dsos =1
, ,
ag25 = 1,a4 26 = 1,a4 27 = 1,a428 = 1,a4 29 = 1,a4 30 = 1,a431 = 0,a432 = b3 32 + 1 14

dyg=1,dgg=1,dg14 =1,dg15 =1,dsg16 = 1,dg,17 = 1,d4,18 = 1,dg,190 = 0,d4 20 = 1,dg,25 = 0,d4 26 = 0,dq,27 = 0,
dy28 = 0,d4,20 = 0,dg 30 = 0,dq,31 = 1,dy,32 = aq,32

cq,a =0,cq16 =0,ca,25 =1,ca,26 =0,ca,27 =1,ca28 = 1,ca29 =1,c430 =1,cq431 =1 215 = c417=0
ba,30 = 1,b4,32 = cq,32 216 = bg,16 = 1,b4,17 =1,b429 =0
as,4 = bg4,a5,16 = b4,16,a5,18 = 0,a5,32 = by 32 1705 ™ 217 , 1ot all ones

.
ds,18 = 1,d5,30 = as,30,d5,32 = as5,32,¢5,18 = 0,¢5,32 = ds 32 ~ not all ones

19,4 19,18

b5 32 = c5,32 20.30 ~20,32 not all zeros

,
ag,18 = bs,18,d6,32 = a6,32, 6,32 = 0,b6,32 = cg,32 + 1,b12,32 = d12,32 2318 = 0,235 16 =1

a13,32 = €12,32,d13,32 = b12,32 + 1,c13,32 = a13,32, b13,32 = d13,32,a14,32 = C13,32,d14,32 = b13,32, C14,32 = a14,32,
b14,32 = d14,32,015,32 = C14,32,d15,32 = b14,32, C15,32 = a15,32,b15,26 = 0,b15 32 = d1532 + 1,016,26 = 1,016,32 = C15,32

di1s,26 = 1,d16,32 = b15,32, 16,26 = 1, 16,32 = a16,32,b16,26 = 1 262 6™ 262 5o DOt all zeros
.

