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In this paper we propose a variant of the continuous-time Markowitz mean-variance
model by incorporating the Earnings-at-Risk measure in the portfolio optimization prob-
lem. Under the Black-Scholes framework, we obtain closed-form expressions for the opti-

mal constant-rebalanced portfolio (CRP) investment strategy. We also derive explicitly
the corresponding mean-EaR efficient portfolio frontier, which is a generalization of the
Markowitz mean-variance efficient frontier.
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1. Introduction

The seminar work of Markowitz [17] on the portfolio selection mean-variance effi-
cient frontier has become the foundation of modern finance theory. This result has
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generated a proliferation of research. In term of its generations, two challenges can
be identified from theoretical point of view. First is the extension of a classical single-
period model to a multi-period or continuous-time model. A common approach
along the dynamic mean-variance model is to focus on maximizing some time-
additive utility of terminal wealth and/or consumption (see, e.g. [18, 19, 22, 23]).
This technique however is intractable (see, e.g., [4]). Using embedding techniques,
explicit-form optimal strategies of the dynamic mean-variance problems was finally
solved in recent years by Li and Ng [13] and Zhou and Li [25], respectively, in the
discrete-time and continuous-time frameworks.

The second challenge lies on the correct measure of risk. While there is no
ambiguity on the definition of return, the measure of risk is more subjective. Conse-
quently, many variants of risk measures have been proposed. These include absolute
deviation, semi-variance, shortfall probability, safety-first, etc. Many of these mea-
sures are typically based on the notion of downside risk concepts such as the lower
partial moments. More recently, risk measures such as the value at risk (VaR) [12],
the coherence risk measure [1] and the limited expected loss [2] have been advocated.

Among these risk measures, VaR remains the most prominent risk measure in
recent years and its importance continues to grow since regulators accept it as a
benchmark for controlling market risk, despite several problems have been reported
associated with such risk measure. In addition to quantifying the market risk, VaR
has also been proposed as a measure of downside risk in the context of portfolio
optimization. For example, Litterman [14, 15] and Lucas and Klassen [16] discussed
the problems of portfolio optimization using VaR as a constraint. Emmer et al. [8, 9]
defined a VaR-based related concept known as Capital-at-Risk (CaR) and demon-
strated how to incorporate such measure in the portfolio optimization problem.
In particular, by formulating the dynamic portfolio optimization as a constant-
rebalanced portfolio (CRP) investment strategy, Emmer et al. [8, 9] derived analyt-
ically the solution to the portfolio optimization problem as well as the mean-CaR
efficient portfolio frontier.

We now explain what is a CRP strategy. A CRP strategy is an investment
strategy which ensures that the proportion of total wealth invested in each of the
underlying securities is the same at any time point, regardless of the level of wealth.
These strategies, also known as the constant mix strategies, are widely studied
in the literature; see for example, Perold and Sharpe [20], Black and Perold [3],
Cover [5] and Helmbold et al. [11]. There are a number of advantages of adopting
CRP strategies. Merton [18, 19] showed that this form of strategies is optimal to the
portfolio selection problems of maximizing expected utility with constant relative
risk-aversion. Furthermore, these strategies are widely used in asset allocation prac-
tice (see, for example, [3, 20]). However, since such strategies may not be feedback
strategies under general models, the optimal CRP strategy to our model or to the
models in [8, 9] may not be a globally optimal feedback strategy. For further discus-
sions of feedback controls and optimal feedback policies, see Fleming and Soner [10].
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It should be emphasized that a CRP strategy is a dynamic investment strategy
in that it requires trading over time. As the stock prices evolve randomly, one has
to trade at every instant to ensure the fraction of wealth for each security remains
constant. Note that this rebalancing requires selling an asset when its price rises
relative to the other prices, and conversely, buying an asset when its price drops rel-
ative to the others. The example in Helmbold et al. [11] exemplifies the significance
of a CRP strategy. To illustrate this, let us assume that there are only two securities.
The first security is a riskless asset whose price never changes. The second asset is
extremely volatile whose price doubles (its initial price) on even days and halves (its
initial price) on odd days. Consequently, the price processes can be described by the
sequences {1, 1, 1, . . .} and { 1

2 , 2, 1
2 , 2, . . .} for the first and second asset, respectively.

By construction, strictly investing in either of these securities cannot increase its
initial wealth by more than twice. On the other hand, a CRP with equal propor-
tion invested in each of these assets will increase its wealth exponentially. To see
this, let us recall that a CRP strategy rebalances the portfolio whenever these is a
change in the underlying asset. For the portfolio which maintains an equal wealth
in each security, the portfolio value decreases by a factor of 1

2 × 1 + 1
2 × 1

2 = 3
4 on

odd day and increases by 1
2 × 1 + 1

2 × 2 = 3
2 on even day. Hence with rebalancing,

the investor’s wealth grows by a factor of 3
4 × 3

2 = 9
8 after two consecutive trading

days. It is easy to show that in general the wealth increases by a factor of
(

9
8

)n
after 2n trading days. Consequently it only takes twelve days to double the initial
wealth.

While VaR-based measure has become a standard measure in quantifying market
risk, it is important to note that as pointed out by Basak and Shapiro [2] and
Vorst [24], using VaR as a constraint in portfolio optimization can induce some
perverse incentives so that in some circumstances it can lead to an increase in risk
taking. On the other hand when the downside risk is measured by the expected
shortfall (e.g., tail-VaR), these perverse incentives disappear. This is also the key
motivation for proposing the tail-VaR based Earning-at-Risk (EaR) measure in
this paper in the context of portfolio optimization. This is in contrast to the model
considered by Emmer et al. [8, 9] which uses a VaR-based Capital-at-Risk measure.
Our proposed formulation of the portfolio optimization model in connection with
the risk measure EaR is described in Sec. 2. Its analytical results are derived in
Sec. 3. Section 4 provides a comparison between the mean-EaR portfolio model and
the mean-variance model. Section 5 concludes the paper.

Note that both VaR and tail-VaR can be applied to risk with asymmetric distri-
butions. In particular, VaR and tail-VaR as a risk measure for dependent risks and
risks with heavy-tailed distributions have generated considerable interests in recent
years; see for example, Embrechts et al. [6], Embrechts et al. [7] and references
therein. In this paper, we focus on issue related to the portfolio selection policy. In
the interest of obtaining analytic and tractable results, we confine our model to the
popular Black-Scholes type geometric Brownian motion framework.
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2. The Dynamic Portfolio Selection Model

In this section, we consider a dynamic portfolio selection model. Our framework
involves (i) the Black-Scholes type financial market, (ii) a CRP investment strategy,
and (iii) a mean-EaR trade-off. Consider a standard Black-Scholes type financial
market in which n + 1 assets (or securities) are traded continuously in the horizon
[0, T ]. For convenience, we index these assets by i = 0, 1, . . . , n with i = 0 denotes
the riskless bond whose price process P0(t) evolves according to the following (deter-
ministic) ordinary differential equation:

dP0(t) = P0(t)rdt for t ∈ [0, T ], P0(0) = 1, (2.1)

where r is a constant rate of interest. The remaining n assets are risky stocks
whose price processes P1(t), . . . , Pn(t) governed by the following stochastic differ-
ential equations:

dPi(t) = Pi(t)

(
bidt +

n∑
j=1

σijdBj(t)

)
for t ∈ [0, T ], i = 1, . . . , n, (2.2)

where b = (b1, . . . , bn)′ is the vector of stock-appreciation rate, σ = (σij)n×n is
the matrix of stock-volatilities and B(t) = (B1(t), . . . , Bn(t))′ is a standard n-
dimensional Brownian motion. Here b and σ are assumed to be constant in time.
As usual, we further assume that σ is invertible and that bi ≥ r for all i.

Let Wπ(t) be the wealth at time t for a given portfolio strategy π(t) =
(π1(t), . . . , πn(t))′ ∈ R

n, where πi(t) is the fraction of the wealth Wπ(t) invested in
asset i at time t. Then π0(t) = 1− π(t)′1, where 1 = (1, . . . , 1)′ is the vector whose
components are all units. By definition, the number of units at time t invested in
riskless bond and risky assets are:

N0(t) = Wπ(t)(1 − π(t)′1)/P0(t),

Ni(t) = Wπ(t)πi(t)/Pi(t), i = 1, . . . , n

}
. (2.3)

Hence,

Wπ(t) =
n∑

i=0

Ni(t)Pi(t). (2.4)

Throughout the paper, we further assume that there is no transaction costs nor
consumption and that the portfolio strategy π(t) is self-financing. Thus

dW π(t) =
n∑

i=0

Ni(t)dPi(t)

=
{

rN0(t)P0(t) +
n∑

i=1

biNi(t)Pi(t)
}

dt +
n∑

i=1

Ni(t)Pi(t)
n∑

j=1

σijdBj(t)

= Wπ(t) {((1 − π(t)′1)r + π(t)′b)dt + π(t)′σdB(t)} , (2.5)

with Wπ(0) = w > 0 being the initial wealth of an investor.
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As consistent with [8]–[11] and many others, in what follows we restrict ourselves
to constant-rebalanced portfolio (CRP) strategies. As noted in the introduction, a
CRP strategy implies that the portfolio π(t) does not change over time; i.e., π(t) =
π = (π1, . . . , πn)′ for all t ∈ [0, T ]. But such portfolio is continuously rebalanced in
order to restore a constant proportion of wealth in each asset.

It follows from standard Itô integral and that E[esBj(t)] = ets2/2, where E is the
expectation operator, it is easy to establish the following explicit formulae for the
wealth process Wπ(t) for all t ∈ [0, T ] (see, e.g., [8]):

Wπ(t) = w exp((π′(b − r1) + r − ‖π′σ‖2/2)t + π′σB(t)), (2.6)

E[Wπ(t)] = w exp((π′(b − r1) + r)t), (2.7)

V ar[Wπ(t)] = w2 exp(2(π′(b − r1) + r)t)[exp(‖π′σ‖2t) − 1], (2.8)

where w denotes the initial wealth, ‖ · ‖ denotes the Euclidean norm in R
n and V ar

is the variance operator.
We now use the notation ρ(π) to denote the relevant risk measure over time

horizon T on a portfolio with position π and initial wealth w. As discussed earlier
there exists various representations of this measure. For instance, the popular α-
quantile based VaR (ρ0(π) := ρ(π)) is defined as

Pr(Wπ(T ) ≤ ρ0(π)) = α, (2.9)

where Pr(·) is the probability and α ∈ (0, 1). The tail-VaR, or more precisely the
conditional tail expectation or the expected shortfall of Wπ(T ) is defined as

ρ1(π) := ρ(π) = E[Wπ(T )|Wπ(T ) ≤ ρ0(π)]. (2.10)

Hence tail-VaR gives the expected severity of the shortfall given that the loss exceeds
the corresponding VaR. See for example Artner et al. [1].

For a given risk measure ρ(π), we formally define a general class of Earnings-at-
Risk as follows:

Definition 2.1. The Earnings-at-Risk (EaR) of a CRP investment strategy π rel-
ative to a risk measure ρ is defined as the difference between the mean terminal
wealth and its associated risk measure; i.e.,

EaR(π) := E[Wπ(T )] − ρ(π). (2.11)

Note that EaR depends on a chosen risk measure. In this paper, we confine
the discussion of EaR by assuming tail-VaR as the relevant risk measure. Hence our
subsequent reference to EaR refers to EaR relative to tail-VaR. Intuitively, tail-VaR
is a more appealing risk measure than the quantile-VaR. Tail-VaR gives the average
severity of the loss given that the loss exceeds its quantile-VaR. Quantile-VaR, on
the other hand, only provides a probabilistic statement for which the loss exceeds
the quantile-VaR. Additional theoretical justification of tail-VaR over quantile-VaR
can be found in Artzner et al. [1].
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Note that there are important distinctions between the proposed EaR and the
Capital-at-Risk (CaR) considered by Emmer et al. [9]. CaR is defined as the differ-
ence between the terminal wealth of the pure bond (riskless) investment strategy
and the risk measure ρ(π). For a given risk measure ρ(π), EaR measures risk relative
to mean terminal wealth E[Wπ(T )] while CaR measures risk relative to pure bond
investment strategy. The mean terminal wealth depends explicitly on the adopted
investment strategy π while the pure bond strategy is independent of π. EaR there-
fore provides a trade-off between investing in the portfolio with position π and its
expected shortfall as a result of adopting such an investment strategy. When for-
mulated as an optimization problem, both the mean return and its risk measure are
considered jointly. Hence it is a more relevant measure over CaR which only pro-
vides a trade-off between the risk-free investment and its associated risk measure.
More critically, CaR is VaR based measure while our proposed EaR is tail-VaR
based. As pointed in the introduction (see [2, 24]) the VaR-based measure can lead
to undesirable situation in the context of portfolio optimization.

Let zα be the α-quantile of the standard normal distribution and Φ be the distri-
bution function of a standard normal random variable. Since π′σB(T )/(‖π′σ‖√T )
is a standard normal random variable, it follows from (2.6), (2.9) and (2.10) that
we can express explicitly the risk measures ρ0 and ρ1 as

ρ0(π) = w exp
(
(π′(b − r1) + r − ‖π′σ‖2/2)T + zα‖π′σ‖

√
T
)
, (2.12)

ρ1(π) = w exp
(
(π′(b − r1) + r)T )

Φ(zα − ‖π′σ‖√T )
α

, (2.13)

respectively (see [9]). Therefore, a closed-form representation of EaR(π) (relative
to tail-VaR) is given by

EaR(π) = w exp((π′(b − r1) + r)T )

(
1 − Φ(zα − ‖π′σ‖√T )

α

)
. (2.14)

To avoid some subcases in the results of this paper, we make the following
assumption.

Assumption 2.1. The parameter α satisfies α < 0.5, hence zα < 0.

Our formulation of the dynamic portfolio selection model follows the classical
Markowitz model. Recall that one approach of deriving the mean-variance efficient
portfolio is to minimize the variance of the portfolio return for a given level of the
expected portfolio return. Analogously, our optimization problem involves minimiz-
ing the EaR for a given level of the expected terminal wealth. In other words, we
solve the following optimization problem:

(P ) min
π∈Rn

EaR(π) subject to E[Wπ(T )] ≥ C,

where C is a predetermined minimum attainable expected terminal wealth
E[Wπ(T )]. We refer the above optimization problem as the mean-EaR problem.
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Since the pure bond policy yields a deterministic terminal wealth of w exp(rT ), it
is natural to assume that the minimum expected wealth C satisfies the following
lower bound condition:

C ≥ w exp(rT ). (2.15)

3. Optimal Strategy and Efficient Frontier

In this section we derive analytically the best CRP investment strategy; i.e., the
optimal solution to portfolio optimization problem (P ). As a by-product, we also
obtain a closed-form expression for the corresponding mean-EaR efficient frontier.

To establish our result, we begin with the following property of Earnings-at-Risk:

Proposition 3.1.

(i) supπ∈Rn EaR(π) =
{

werT if b = r1,

+∞ otherwise.
(ii) minπ∈Rn EaR(π) = 0 and the minimum is only attained at π = 0.

Proof. (i) If b = r1, the conclusions are obvious. Now we assume that b �= r1.
We rewrite expression (2.14) of EaR in the following form:

EaR(π) =
{

wef(π) if ‖π′σ‖ > 0,

0 if ‖π′σ‖ = 0,
(3.1)

where

f(π) = (π′(b − r1) + r) T + ln

(
1 − Φ(zα − ‖π′σ‖√T )

α

)
. (3.2)

Now consider the following optimization problem

max
π

f(π) subject to ‖π′σ‖ = ε, (3.3)

for any given ε > 0. Over the (boundary of the) ellipsoid defined by the constraint
in problem (3.3), the objective function is equivalent to

f(π) = (π′(b − r1) + r) T + ln

(
1 − Φ(zα − ε

√
T )

α

)
. (3.4)

Hence, solving problem (3.3) is equivalent to solving the following problem

max
π

π′(b − r1) subject to π′(σσ′)π = ε2. (3.5)

Using the Lagrangian method, the unique optimal solution to this problem is
given by

π∗
ε = ε

(σσ′)−1(b − r1)
‖σ−1(b − r1)‖ , (3.6)
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with maximum value

f(π∗
ε) = εθT + rT + ln

(
1 − Φ(zα − ε

√
T )

α

)
. (3.7)

In the above expression, we have θ = ‖σ−1(b − r1)‖. Clearly,

lim
ε→+∞ f(π∗

ε ) = +∞, (3.8)

which leads to second part of statement (i).
(ii) Statement (ii) follows directly from the assumption that the matrix σ is

invertible and the fact that EaR(π) > 0 = EaR(0) for all π �= 0 by (2.14).

Proposition 3.1 implies that EaR attains a lower bound of zero for the pure bond
strategy. It is bounded from above by werT in a risk-neural market and unbounded
above otherwise.

We now give the main result of this paper.

Theorem 3.1. Assume that b �= r1. Then the unique optimal policy of problem
(P ) is

π∗ = ε∗
(σσ′)−1(b − r1)
‖σ−1(b − r1)‖ , (3.9)

where

ε∗ =
ln(C/w) − rT

‖σ−1(b − r1)‖T . (3.10)

The corresponding expected terminal wealth is E[Wπ∗
(T )] = C and Earnings-at-

Risk is

EaR(π∗) = C

[
1 − Φ(zα − ε∗

√
T )

α

]
. (3.11)

Proof. We first reformulate problem (P ) as follows:

(P )


minimize w exp((π′(b − r1) + r)T )

[
1 − Φ(zα−‖π′σ‖√T )

α

]
subject to w exp((π′(b − r1) + r)T ) ≥ C.

If C = w exp(rT ), it follows from Proposition 3.1 (ii) that the pure bond policy
π∗ = 0 is a feasible solution to problem (P ), with the global minimal Earnings-
at-Risk EaR(π∗) = 0. Hence, π∗ = 0 is the unique optimal solution of (P ) which
means that the conclusions asserted is true for this special case.

Now we assume that C > w exp(rT ). The feasible set of the problem is

Π =
{

π : (b − r1)′πT ≥ ln
C

w
− rT

}
. (3.12)
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Given ε ≥ 0, the intersection of Π and the ellipsoid ‖π′σ‖ = ε is

Π(ε) =
{

π : ‖π′σ‖ = ε, (b − r1)′πT ≥ ln
C

w
− rT

}
. (3.13)

The hyperplane (b − r1)′πT = ln(C/w) − rT is tangent to the ellipsoid ‖π′σ‖ = ε

if and only if εθT = ln(C/w) − rT , that is ε = ε∗ := ln(C/w)−rT
θT > 0, where

θ = ‖σ−1(b − r1)‖. Consequently Π(ε) = ∅ if ε < ε∗ and hence Π =
⋃

ε≥ε∗ Π(ε).
Thus problem (P ) is equivalent to the following bilevel optimization problem

(P ′) min
ε≥ε∗

min
π∈Π(ε)

w exp((π′(b − r1) + r)T )

[
1 − Φ(zα − ε

√
T )

α

]
.

For each fixed ε ≥ ε∗, we solve the problem

min
π∈Π(ε)

w exp((π′(b − r1) + r)T )

[
1 − Φ(zα − ε

√
T )

α

]
, (3.14)

or equivalently

min
π∈Π(ε)

(b − r1)′πT. (3.15)

When ε = ε∗, the optimal solution is the unique tangent point π∗ = ε∗ (σσ′)−1(b−r1)
‖σ−1(b−r1)‖

of the hyperplane (b − r1)′πT = ln C
w − rT to the ellipsoid ‖π′σ‖ = ε∗, with (b −

r1)′π∗T = ε∗θT . When ε > ε∗, min{(b − r1)′πT : π ∈ Π(ε)} = ln C
w − rT = ε∗θT ,

and every point on both the hyperplane (b − r1)′πT = ln C
w − rT and the ellipsoid

‖π′σ‖ = ε is an optimal solution. Therefore, we can obtain the solution of problem
(P ′) by solving the problem

min
ε≥ε∗

w exp((ε∗θ + r)T )

[
1 − Φ(zα − ε

√
T )

α

]
. (3.16)

Since the function 1 − 1
αΦ(zα − ε

√
T ) is strictly increasing with respect to ε, the

optimal ε for the above problem is the unique ε∗. This completes the proof.

We now make the following remarks:

• The analytic result in Theorem 3.1 provides an explicit relation between the
optimal Earnings-at-Risk and the expected terminal wealth. Letting ξ :=
E[Wπ∗

(T )], we have

EaR(ξ) = ξ

[
1 − 1

α
Φ
(

zα − ln(ξ/w) − rT

‖σ−1(b − r1)‖√T

)]
for ξ ≥ w exp(rT ). (3.17)

The above relationship is known as the efficient frontier in the mean-EaR space.
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• Observe that the mean-EaR efficient frontier depends on the confident level α.
Smaller α is achieved at the expense of a higher EaR risk measure in order to
maintain the same expected terminal wealth.

• Theorem 3.1 also implies that for a given level of expected terminal wealth,
EaR of the best CRP investment strategy is decreasing in time horizon T . This
is consistent with intuition.

• The above mean-EaR efficient frontier is obtained by solving the optimization
problem (P). Equivalently, the same efficient frontier could have obtained by
maximizing the mean terminal wealth for a given level of EaR; i.e.,

(P̃ ) max
π∈Rn

E[Wπ(T )] subject to EaR(π) ≤ C̃,

where C̃ is a given constant.

We now consider the following two examples to highlight our proposed model.

Example 3.1. In this example, we analyze the impact of using EaR measure in
portfolio construction. We use the parameter values n = 1, w = 1000, r = 0.05, α =
0.05, σ = 0.2. Then zα = −1.65, θ = 0.25. Figure 1 demonstrates that the EaR of
a pure stock policy is an increasing function over the time horizon T, 0 < T ≤ 5.
Furthermore, the stock with a higher appreciation rate (b = 0.15) yields higher value
of EaR. This is to be expected since EaR increases with the stock’s appreciation rate
in a pure stock policy. To compare with the optimal CRP investment strategy we
assume the minimum expected terminal wealth of C = werT = 1284, which is the
return from investing in a pure bond policy over 5 year horizon. By construction,
the EaR decreases monotonically over time to 0 in year 5, as confirmed in Fig. 1. It
is interesting to note that to achieve the same expected wealth level of C, the EaR
under the optimal CRP strategy is actually lower for stock with higher appreciation
rate. Figure 2 indicates that in earlier years, the optimal portfolio always contains
a short position in the bond as long as this is tolerated by the EaR measure. In
particular, the cut-off level is 2.5 years for b = 0.15 and 1.7 for b = 0.15. Note
also that in order to attain the same level of expected terminal wealth, the optimal
portfolio for b = 0.10 is constructed at the expense of higher leveraging.

Example 3.2. In the last example, we considered the impact on the EaR and the
optimal portfolios by fixing the expected wealth level. In this example, we held the
upper bound of EaR constant and examine its effects on the expected terminal
wealth. We use the same set of parameter values as in the last example except that
we set EaR to be the respective EaR from the pure stock policy with b = 0.10
and 0.15. The results are depicted in Fig. 3 as a function of the time horizon
T, 0 < T ≤ 5, together with the expected terminal wealth from both pure stock
strategy (with b = 0.10 and 0.15) and pure bond strategy (r = 0.05). The expected
terminal wealth under these investment strategies increases with the time horizon.
Observe that the optimal expected terminal wealth with b = 0.10 and 0.15 exceed
the corresponding pure stock investment.
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Fig. 1. EaR of the optimal CRP investment strategy and the pure stock strategy as functions of
the time horizon T, 0 < T ≤ 5, and for both b = 0.10 and b = 0.15.
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Fig. 2. Optimal portfolios and pure stock portfolio as functions of the time horizon T, 0 < T ≤ 5,
for both b = 0.10 and b = 0.15.

4. A Comparison with Mean-Variance Analysis

In this section we compare the proposed mean-EaR model to the classical portfo-
lio selection mean-variance model. In particular, we consider the following mean-
variance optimization problem:

(P̂ ) min
π∈Rn

V ar[Wπ(T )] subject to E[Wπ(T )] ≥ C,
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Fig. 3. Expected terminal wealth of different investment strategies as function of the time horizon
T, 0 < T ≤ 5.

where C, as in problem (P ), is the predetermined minimum level of the expected
terminal wealth E[Wπ(T )] that satisfies condition (2.15).

The solution to the above optimization problem (P̂ ) is summarized in the
following theorem. We omit the proof since it is very similar to the proof of
Theorem 3.1.

Theorem 4.1. Assume that b �= r1. Then the unique optimal policy of problem
(P̂ ) is

π∗ = ε∗
(σσ′)−1(b − r1)
‖σ−1(b − r1)‖ , (4.1)

where

ε∗ =
ln(C/w) − rT

‖σ−1(b − r1)‖T . (4.2)

The corresponding expected terminal wealth is E[Wπ∗
(T )] = C and variance

V ar[Wπ∗
(T )] = C2

[
exp(ε∗2T ) − 1

]
. (4.3)

It follows immediately from the above result that the efficient frontier for the
mean-variance problem in mean-variance space is given by

ν = ξ2

[
exp

(
[ln(ξ/w) − rT ]2

‖σ−1(b − r1)‖2T

)
− 1
]

for ξ ≥ w exp(rT ). (4.4)

where ν := V ar[Wπ∗
(T )] and ξ := E[Wπ∗

(T )].
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It should be pointed out that the mean-variance model considered by Emmer
et al. [8] maximizes the expected terminal wealth for a given level of variance of
the terminal wealth. Although they also obtained a solution that has the same
representation as (4.1), the parameter ε∗ however was not obtained explicitly as in
(4.2). In fact in their formulation (see [8, Proposition 2.9]), ε∗ is expressed as the
unique positive solution to a nonlinear equation. Consequently, they did not obtain
the mean-variance efficient frontier explicitly.

An interesting consequence of Theorems 3.1 and 4.1 is that for a given minimum
level C of the expected terminal wealth E[Wπ(T )], the optimal CRP investment
strategies for both the mean-EaR and the mean-variance problems are equivalent,
as indicated by (3.9) and (4.1). In fact, it can also be shown that similar opti-
mal π∗ can also be obtained if we had considered the risk measure CaR as in
the mean-CaR optimization problem. This implies all these risk measures yield
similar optimal CRP investment strategies as long as the preselected level C is
identical.

The above observation also provides a linkage between the EaR and the variance
of terminal wealth. For instance, suppose we fix the level of EaR. From the mean-
EaR efficient frontier (3.17), we derive the highest attainable expected return and
hence the optimal portfolio π∗ using (3.9). This in turn allows us to determine the
corresponding minimum variance of terminal wealth using (4.3). Similarly, if the
level of variance of terminal wealth is given, the mean-variance efficient frontier
(4.4) can be used to obtain the corresponding expected terminal wealth and hence
the minimum acceptable EaR using (3.11).

We now draw additional insights based on efficient frontiers (3.17) and (4.4)
derived respectively from the mean-EaR and mean-variance problems:

(i) The global minimal EaR is zero and the minimum EaR portfolio strategy is
the pure bond strategy. This is a consequence of Proposition 3.1. The global
minimal variance is zero and the minimum variance portfolio strategy is the
pure bond strategy.

(ii) Both EaR and V ar[Wπ∗
(T )] are strictly increasing functions of the expected

terminal wealth, as to be expected.
(iii) For the mean-EaR frontier, EaR is a concave function of the expected termi-

nal wealth if θ
√

T ≤ |zα|. If θ
√

T > |zα|, EaR is convex in expected terminal
wealth over interval [w exp(rT ), w exp(rT + (θ

√
T − |zα|)θ

√
T )] and is con-

cave for the range (w exp(rT + (θ
√

T − |zα|)θ
√

T ), +∞). This is in contrast
to the mean-variance frontier whereby the variance is always a convex func-
tion of the expected terminal wealth. These facts imply that the marginal risk
(variance) of the expected terminal wealth is always increasing on the mean-
variance efficient frontier, while the marginal risk (EaR) is decreasing at least
on part of the mean-EaR efficient frontier (max{w exp(rT ), w exp(rT +(θ

√
T −

|zα|)θ
√

T )}, +∞).
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Fig. 4. Mean-EaR efficient frontier with the mean on the horizontal axis and the EaR on the
vertical axis.
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Fig. 5. Mean-Variance efficient frontier with the mean on the horizontal axis and the variance on
the vertical axis.

To end this section, we consider an example to illustrate the difference between
the mean-EaR and the mean-variance efficient frontiers.

Example 4.1. Let n = 1, w = 1000, T = 5, r = 0.05, α = 0.05, b = 0.1, σ = 0.2.
Using these parameters, the mean-EaR efficient frontier is depicted in Fig. 4 with
the mean on the horizontal axis and the EaR on the vertical axis. Similarly, the
mean-variance efficient frontier is plotted in Fig. 5 with the mean on the horizontal
axis and the variance on the vertical axis. Clearly, the mean-EaR efficient frontier is
increasing and concave while the mean-variance efficient frontier is increasing and
convex.
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5. Conclusion

In this paper, we derived closed-form solutions to mean-EaR and mean-variance
dynamic portfolio optimization problems under the Black-Scholes setting. These
results allow us to express explicitly the exact formulae for best CRP investment
strategies and efficient frontiers and hence facilitate the calculation.

The approach of proving Theorem 3.1 and the idea in this paper also provide use-
ful insights for other dynamic portfolio optimization problems. If other risk measure
(as well as Safety-First type problems ( [21]) is appropriate other than the tail-VaR
considered in our mean-EaR model, similar technique can be used to analyze the
assumed model.

As indicated earlier, the CRP strategies lead to a variety of optimality properties
in the context of portfolio optimization, though the optimal CRP strategy in our
model may not be globally optimal in the set of all dynamic strategies. It will be of
interest to generalize our result to other dynamic investment strategies other than
the CRP policy. We leave this for future area of research.
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