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Abstract

The Glasgow Haskell Compiler (GHC) has quite sophisticates

port for concurrency in its runtime system, which is writtemow-

level C code. As GHC evolves, the runtime system becomes in-
creasingly complex, error-prone, difficult to maintain afifficult

to add new concurrency features.

This paper presents an alternative approach to implement co
currency in GHC. Rather than hard-wiring all kinds of comeucy
features, the runtime system is a thin substrate providinly a
small set of concurrency primitives, and the remaining corency
features are implemented in software libraries written askell.
This design improves the safety of concurrency supporisd pro-
vides more customizability of concurrency features, wtdah be
developed as Haskell library packages and deployed mdglular

Categories and Subject Descriptors D.1.1 [Programming Tech-
nique§: Applicative (Functional) Programming; D.1.Bfogram-
ming Techniqugs Concurrent Programming; D.2.1®dftware
Engineering: Design—Methodologies; D.3.%fogramming Lan-
guage§ Language Constructs and Features—Concurrent program-
ming structures; D.4.XJperating SystenisProcess Management—
Concurrency,Scheduling,Synchronization, Threads

General Terms Design, Experimentation, Languages, Perfor-
mance, Measurement.

Keywords Haskell, Concurrency, Thread, Transactional Memory.

1. Introduction

In any programming language supporting concurrency, & gesd

of complexity is hidden inside the implementation of the @on
rency abstractions. Much of this support takes the formrahéime
systenthat supports threads, primitives for thread communigcatio
(e.g. locks, condition variables, transactional memarggheduler,
and much else besides. This runtime system is usually wiittE;

it is large, hard to debug, and cannot be altered except blathe
guage implementors.

That might not be so bad if the task were cut-and-dried. But
it isn’'t: in these days of multicores the concurrency laag&cis
changing fast. For example, a particular application miggne-
fit from an application-specific thread scheduling strategyone
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might wish to experiment with a variety of concurrency abstr
tions; new challenges, such as multi-processor supportar ghr-
allelism [4], place new demands on the runtime system.

An attractive alternative to a monolithic runtime systenitten
by the language implementators is to support concurrenicy &
library written in the language itself. In this paper we explore doin
exactly this for the language Haskell and its implementaiio
the Glasgow Haskell Compiler (GHC). Although concurreasy-
a-library is hardly a new idea, we make several new coninbst

e We describe in detail the interface between tdomcurrency
library written in Haskell, and the underlyingubstrate or
runtime system (RTS), written in C. Whilst the basic idea is
quite conventional, the devil is in the details, especiallyce
we want to support a rich collection of features, including:
foreign calls that may block, bound threads [16], asyncbuasn
exceptions [15], transactional memory [12], parallel &pd24]
and multiprocessors [11].

Concurrency primitives are notoriously slippery topic, \se
provide a precise operational semantics for our implementa
tion.

A key decision is what synchronization primitives are pdad

by the substrate. We propose a simplified transactional memo
as this interface in Section 3.2, a choice that fits partityla
well with a lazy language.

The substrate follows common practice, offering contiimurest

as a mechanism from which concurrency can be built. How-
ever our continuations, which we calfack continuationgre,

by construction, much cheaper than full continuationstterr
more, capturing a continuation and transferring contrcane
other continuation are elegantly combined in a singlétch
primitive introduced in Section 3.4.

The whole issue of thread-local state becomes pressingin us
level threads library, because a computation must be alalgkto
“what is my scheduler?”. We propose a robust interface that
supports local state in Section 3.5.

¢ Interfacing Haskell code to foreign functions, especitltiiose
functions may themselves block, is particularly tricky. Weld

on earlier work to solve this problem in an elegant way.

We illustrate our interface by describing a scheduler emitt
entirely in Haskell in Section 5.

We have implemented most features we describe, in a mature
Haskell compiler, which gives a useful reality check on our
claims.

2. Setting the scene

Our goal is to design aubstrate interfaceon top of which a
variety of concurrency libraries written in Haskell, can be built
(Figure 1). The substrate is implemented by ourselves andehe
so far as possible, it should implemenechanismleavingpolicy
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Figure 1. Components of the new RTS design

to the library. In general, we strive to put as little as pbksin the
substrate, and as much as possible in the concurrencyidibrar
Thesubstrate interfaceonsists of two parts:

1. A set of substrate primitivesn Haskell, including primitive
data typesandoperationsover these types (Section 3).

2. A set of concurrency library callbacksspecifying interfaces
that the concurrency library must implement (Section 4).

The key choices of our design are embodied in the substrate
interface: once you know this interface, everything eldofes. A
good way to think of the substrate interface is that it enakgpes
the virtual machine (or operating system) on which the Hihske

data PTM a
data PVar a
instance Monad PTM

newPVar :: a -> PTM (PVar a)

readPVar :: PVar a -> PTM a

writePVar : PVar a -=> a -> PTM Q)

catchPTM  :: PTM a -> (Exception->PTM a) -> PTM a
atomicPTM : PTM a -> 10 a

data HEC

instance Eq HEC
instance Ord HEC

getHEC : PTM HEC

waitCond :: PTM (Maybe a) -> I0 a
wakeupHEC :: HEC -> I0 ()

data SCont

newSCont : I0 (O -> I0 SCont

switch (SCont -> PTM SCont) -> I0 ()

data SLSKey a

newSLSKey :: a -> IO (SLSKey a)
getSLS : SLSKey a -> PTM a
setSLS :: SLSKey a -> a => I0 O

raiseAsync :: Exception -> I0 ()

program runs.

We intend that a single fixed substrate should support a vari-
ety of concurrency libraries. Haskell's existing concagg inter-
face orkI0, MVars, STM) is one possibility. Another very intrigu-
ing one is a compositional (or “virtualizable”) concurrgriater-
face [19], in which a scheduler may run a thread that itsel is
scheduler... and so on. Another example might be a schefdular
Haskell-based OS [10] or virtual machine (e.g. HALVM) thetds
to give preferential treatment to threads handling urgeteriupts.

In addition to multiple clients, we have in mind multiple ifep
mentations of the concurrency substrate. The primary impte
tation will be based on OS-threads and run atop the ordin&y O
Another possibility is that the RTS runs directly on the heace,
or as a virtualized machine on top of a hypervisor, and manage
access to multiple CPUs.

Although written in Haskell, the concurrency library codeym
require the author to undertake some crucial proof oblgatthat
Haskell will not check; for example, “you may use this conttion
at most once, and a checked runtime error will result if yoa itis
twice”. This is still (much) better than writing it in C!

We take as our starting point the following design choices:

¢ It must be possible to write a concurrency library that sutgpo
pre-emptiveconcurrency ofvery light-weight threadsperhaps
thousands of them. It would be too expensive to use a whole
CPU, or a whole OS thread, for each Haskell thread. Instead,
a scheduler must multiplex many Haskell fine-grain threads
onto a much smaller number of coarse-grain computational
resources provided by the substrate.

Scheduling threads — indeed the very notion of a “thread” —
is the business of the concurrency library. The substrabe/&n
nothing of threads, instead supporting (a flavor of) passive
tinuations. Here we simply follow the path blazed by Mitch
Wand [25].

Since the substrate does not know about Haskell threads)-t ¢
not deal withblocking of threads. Hence, any communication
mechanisms that involMalocking such a#tvars and Software
Transactional Memory (STM), are also the business of the con
currency library.

Figure2: The substrate primitives

e Garbage collection is the business of the substrate, amifesq
no involvement from the concurrency library.

* The system should run on a shared-memory multi-processor, i
which each processor can independently run Haskell computa
tions against a shared heap.

e Because we are working in alazy language, two processors may
attempt to evaluate the same suspended computation (tatink)
the same time, and something sensible should happen.

e The design must be able to accommodate a scheduler that im-
plements the current FFI design [16], including making aR ou
call that blocks (on 1/0, say) without blocking the other kel
threads, out-calls that re-enter Haskell, and asynchmiirou
calls.

3. Substrateprimitives

We are now ready to embark on the main story of the paper,
beginning with the substrate primitives. The type sigreguof
these primitives are shown in Figure 2, and the rest of thit@e
explains them in detail.

The details of concurrency primitives are notoriously difft
to describe in English, so we also give an operational seosant
that precisely specifies their behavior. The syntax of thetesy is
shown in Figure 3, while the semantic rules appear in Figdres
5, 6, 7, 8 and 10. These figures may look intimidating, but wié wi
explain them as we go.

3.1 Haskell Execution Context (HEC)

The first abstraction isldaskell Execution Contert HEC. AHEC
should be thought of as a virtual CPU; the substrate may ntap it
a real CPU, or to an operating system thread (OS thread)hEor t
sake of concreteness we usually assume the latter.

Informally, a HEC has the following behavior:

e A HEC is always in one of three statesinning on a CPU or
OS threadsleeping or making arout-call.



xz,y € Variable r,s,h € Name

SLSKeys k = (r,M)
Terms
MN =7 |z | \a->M | MN | ...

| returnM | M>>=N

| throw M | catch M N | catchPTM M N

| newPVar M | readPVar r | writePVar r M
| getHEC | waitCond M | wakeupHEC h
| newSLSKey M | getSLS k | setSLSk M
| newSCont M D | switch M

|Pure|y-functiona| transitons M — N|

return N>>=M — MN (Bind)
throw N>>=M —  throw N (Throw)
catch (return M) N —  return M (IOCatch)
catch (throw M) N  — NM (IOCatchExp)

Plus the usual rules of the call-by-negetalculus, in
small-step fashion.

‘Top-level program transitions S;0 — S’;©’

M — N
S | (E[M],D,h);©0 = S |(E[N],D,h);©

(IOAdmin)

Program state P == S;0
HECsoup S == 0| (H]|S)
HEC H = (Mvah) | (M7D7h)sleepi"9
| (M7 D7 h)outcall
Heap © = r— M®s— (M,D)
SLSstore D = r—M
Action a = Init
| InCall M | InCallRetr
| OutCallr | OutCallRet M
| Blackhole M h | Tick h
IOcontext E == [] | E>>=M | catchE M

PTM context E, [] | E>>=M

Figure 3: Syntax of terms, states, contexts, and heaps

o A Haskell program initially begins executing on a single OS
thread running a single HEC.

* When an OS thread enters the execution of Haskell code by
making an in-call through the FFI, a fresh HEC is createdén th
running state, and the Haskell code is executed on this HEC.
Note that this is thenly way to create a new HEC.

e When the Haskell code being run by the HEC returns to its
(foreign) caller, the HEC is deallocated, and its resourares
returned to the operating system.

e When a running HEC makes a foreign out-call, it is put into
the outcall state. When the out-call returns, the HEC becomes
running, and the Haskell code continues to run on the same
HEC.

e A HEC can enter theleepingstate voluntarily by executing
waitCond. A sleeping HEC can be woken up by another HEC
executingwakeupHEC. These two primitives are explained in
Section 3.3.

Figure 3 shows the syntax of program states. The program stat
P,isa"“soup”S of HECs, and a heaP. A soup of HECs is simply
an un-ordered collection of HEG$/; | ... | H,). Each HEC is
atriple(M, D, h) whereh is the unique identifier of the HEC, and
M is the term that it is currently evaluating. T&component is
the stack-local state, whose description we defer to Se&tib. A
sleeping HEC has a subscrigéeping; a HEC making a blocking
foreign out-call has a subscrippdttcall’. The heap is a finite map
from names to terms, plus a (disjoint) finite map from names to
paused continuations represented by p@ifs D).

A program makes a transition from one state to the next using a
program transition

S;0 = §;0
whose basic rules are shown in Figure 4. (We will introduceemo
rules in subsequent Figures.)

The (I0Admin) rule says that if any HEC in the soup has a
term of formE[M], andM can make a purely-functional transition
to N, then the HEC moves to a state with teEfiV] without af-
fecting any other components of the state. H&r&s anevaluation

Figure 4: Operational semantics (basic transitions)

context whose syntax is shown in Figure 3, that describes where
in the term the next reduction must take placepukely-functional
transition includes3-reduction, arithmeticcase expressions and
so on, which are not shown in Figure 4. However, we do show the
purely-functional rules that involve the monadic opersigrturn,
(>>=), catch, andthrow. Notice also that a HEC in th&leeping
state or thevutcall state never takesdO Admin) transition.

In implementation terms, each HEC is executed by one, and
only one, OS thread. However, a single OS thread may be respon
sible for more than one HEC, although all but one will be in the
outcall state. For example suppose that OS threadakes a for-
eign in-call to a Haskell functioti1, creating a HEGQI1 to run the
call. Thenf, running onH1 which is in turn running ort, makes
a foreign out-call. Then the state Bf becomesutcall, andT ex-
ecutes the called C procedure. If that procedure in turn make
other foreign in-call to a Haskell procedute, a second HEQj2,
will be allocated, but it too will be executed iy The process is
reversed as the call stack unwinds.

To be even more concrete, a HEC can be represented by a data
structure that records the following information:

¢ The identifier of the OS thread responsible for the HEC.

e An OS condition variable, used to allow the HEC to go sleep
and be woken up later.

¢ Registers of the STG machine.
o The current Haskell execution stack.

* The current heap allocation area; each HEC allocates ina sep
rate area to avoid bottlenecking on the allocator.

¢ A“remembered set” for the garbage collector. It is imporfan
performance reasons that the generational garbage-olfec
write barrier is lock-free, so we have a per-HEC remembered
set. It is benign for an object to be in multiple rememberdd.se

The live HECs (whether running, sleeping or making outsjall
are the roots for garbage collection.

3.2 Primitivetransactional memory (PTM)

Since a program has multiple HECs, each perhaps executilag on
different CPU, the substrate must provide a safe way for th€#l

to communicate and synchronize with each other. The stewaay

to do so, and the one directly supported by most operatirtgsygs

is to use locks and other forms of low-level synchronizasoch

as condition variables. However, while locks provide goedqr-
mance, they are notoriously difficult to use. In particufangram
modules written using locks are difficult tmmposeelegantly and
correctly [12].



‘Top-level program transitions  S;©0 — S’;©’

M;® = return N;©’
D.h

(PAtomic)
E[atomicPTM M],D,h);®0 —

S
S | (E[N], D, h); &'

—_~

M;© = throwN;©’
D.h

(PAtomicExp)
S | (E[atomicPTM M],D,h); © —>
S | (E

(E[throw N],D,h); ©® U (©'\O)

PTM transitons  M;© D:>h N;©’

M _— (PAdmin)
Ep[M];© = ER[N];©
Doh
M;© = return M’;©’
L.l (PCatch)
Ep[catchPTM M NJ; © = Ep[return M']; ©’
M;© = throw M';0’
Db " (PCatchExp)
Ep[catchPTM M NJ; © D:>h Ep[N M'];© U (6/\0)
r & dom(©
‘ ©) (PNew)

Ep[newPVar M]; © = Ep[return r]; Or — M]

Ep[readPVar r|; © e Epreturn O(r)];© (PRead)

Ep[writePVar r M]; © = Ep[return Q];O[r — M| (PWrite)

Figure5: Operational semantics (PTM transitions)

Even ignoring all these difficulties, however, there is aeot
Very Big Problem with using locks as the substrate’s main- syn
chronization mechanism in a lazy language like Haskell. giazl
use of a lock is this: take a lock, modify a shared data stractu
(a global ready-queue, perhaps), and release the lock.cEkad
used only to ensure that the shared data structure is mutated
safe way. Crucially, a HEC never holds a lock for long, beeaus
blocking another HEC on the lock completely stops a virtuallC

Here is how we might realize this pattern in Haskell:

do { takeLock 1k
; rq <- read readyQueueVar
; rq’ <- if null rq then ...
else ...
; write readyQueueVar rq’
; releaselock 1k }

But if rq is a thunk, the evaluation dfnull rq) might take an
arbitrarily long time, so the lockik might be held for a long time.
That does not threaten correctness, but it does mean thtteall
other HECs might be held up waiting ak! One could declare that
the programmer should somehow ensure that this never heppen
but it is far from easy for a programmer to be certain that & loio
code evaluates no thunks.

These observations motivated us to seek an alternativéagync
nization mechanism. One such alternativerdmsactional memory
(TM), which is known to offer a more robust and modular basis
for concurrency [12]. There is a dilemma, however, becahse t

fully-featured software transactional memory supporiscking,
and cannot therefore be part of the substrate!

Fortunately, all we require in terms of low-level synchzation
is the ability to perform atomic transactions; the compteshtock-
ing and choice operators provided by STM can be safely odhitte
Therefore, the substrate offers an interface that we pratitive
transactional memoryPTM) 1, whose type signature is shown in
Figure 2. Like STM, PTM is a monad, and its computations are
fully compositional. Unlike STM, howevea PTM computation is
non-blocking so the question of blocking threads does not arise.

As Figure 2 shows, a PTM transaction may allocate, read, and
write transactional variables of typ&ar a. And that is about all,
exceptions aside! Thus, a PTM transaction amounts to fitthee
than an atomic multi-word read/modify/write operation.ojpera-
tional termsatomicPTM runs a PTM computation while buffering
the reads and writes in a transaction log, and then comnaétkth
all at once. If read-write conflicts are detected at the tifheomn-
mit, the transaction is re-executed immediately.

How does this resolve the Big Problem mentioned earlier? The
transaction runs without taking any locks and hence, if taegac-
tion should happen to evaluate an expensive thunk, no otB€rsH
are blocked. At the end of the transaction, the log must bentibm
ted by the substrate, in a truly-atomic fashidot doing so does
not involve any Haskell computatiaris is as if the PTM compu-
tation generates (as slowly as it likes) a “script” (the leg)ich
is executed (rapidly and atomically) by the substrate. likisly
that a long-running transaction will become invalid befiireom-
pletes because it conflicted with another transaction. Kewin
this case the transaction will be restarted, and any worle éval-
uating thunks during the first attempt is not lost, so thedaation
will run more quickly the second and subsequent times.

3.21 Thesemanticsof PTM

Figure 5 presents the semantics of PTM. A PTM transitiondake
the form

M;©0 = N;0O
D.h

The term) is, as usual, the current monadic term under evaluation.
The heap® gives the mapping fron®Var locationsr to values
M (Figure 3). The subscripD, h on the arrow says that these
transitions are carried out by the HEG with stack-local state
D. We will discuss stack-local state in Section 3.5, dh@an be
ignored until then.

The PTM transitions in Figure 5 are quite conventional. Rule
(PAdmin) is just like (10 Admin) in Figure 4. The three rules
for PVars — (PNew), (PRead), and(PW rite) — allow one to
allocate, read, and writeRvar.

The semantics of exceptions is a little more interestingdn
ticular, (PCatchExp) explains that ifM throws and exception,
thenthe effects of\/ are undone To a first approximation that
means simply that we abandon the modifi&f reverting to©,
but with one wrinkle: anypvars allocated by\/ must be retained,
for reasons discussed by [12]. The he@p)© is that part of®’
whose domain is not i®.

The rules foratomicPTM in Figure 5 link the PTM transitions
to the top-level 10 transitions. Thg? Atomic) rule embodies the
key idea, thamultiple PTM transitions are combined intosingle
program transition. In this way, no HEC can observe anothe€H
half-way though a PTM operation.

3.3 HEC blocking

A PTM transaction allows a HEC safe access to mutable shared
states between HECs. But what if a HEC wants to block? For

1please do not confuse our PTM with “Paged-based Transattidem-
ory” by Chuang et. al., 2006.



‘Top-level program transitons S;0 — S’;©’

M;© D:*> return (Just N); ©’

h (WaitOK)
S | (E[waitCond M],D,h);®0 —
S | (E[N], D, h); ©
M;© = throwN;©’
D.h (WaitExp)
S | (E[waitCond M],D,h);® —
S | (E[throw N], D, h); ©® U (©'\©)
M;©® = return Nothing;©’
D.h (WaitSleep)

S | (E[waitCond M], D, h);©
S | (E[waitCond M], D, h)siceping; ©’

S |(N[,7D,7hl)sleeping ‘ ([E[wakeuPHEC h/LDvh)QQ ==
S | (M’',D',h) | (E[return()], D, h); © (WakeupOK)
V(M',D’,n") € S.n" # h"

(E[wakeupHEC k'], D,h); ® —>
(E[return()], D, h); ©

5 (WakeupNoOP)
S

PTM transitions  M;© D:>h N;©’

Ep[getHEC]; © = Ep[return h];© (PGetHEC)

Figure 6. Operational semantics (HEC blocking)

example, suppose there are four HECs running, but the Haskel

program has only one thread, so that there is nothing for timer o
three HECs to do. They could busy-wait, but that would be a poo

choice if a HEC was mapped to an operating system thread in a

multi-user machine, or in a power-conscious setting. bsteve
want some way for a HEC tolock
The common requirement is that we want to block a HEC until

some conditions are met, for example, when tasks becomé avai

able. Traditionally, such code is often implemented usioigdition

When a running HEC adds a Haskell thread into the queue, it
looks at the list of sleeping HECs and awakens one of them. Of
course, by the time the sleeping HEC actually wakes up arnsl run
the queue may again be empty, butin that case the same seafenc
events takes place again: ti&itCond is re-run, and the HEC will
go to sleep again. In effect, the classic error of forgettmge-test
the condition after blocking on a condition variable is éfiated
by construction.

3.4 Stack continuationsand context switching

A HEC is an abstraction of a virtual processor; in a giveneyst
we expect to have a handful of HECs running, roughly one fohea
physical CPU. To model fine-grain Haskell threads, we neeaban
straction of a Haskell computation, together with a way tovala
HEC to multiplex its resources over such computations.dvoiig
Wand, we use aontinuationto model a (suspended) Haskell com-
putation [25]. Unlike Wand, our continuations are not filsiss —
in particular, they can only be used once — in exchange fockwhi
they are dirt cheap to implement.

We provide one new data type and two new primitive operations
(Figure 2):

data SCont
newSCont :: I0 () -> I0 SCont
switch (SCont -> PTM SCont) -> I0 ()

An SCont, or stack continuationshould be thought of as passive
value representing an 1/O-performing Haskell computattat is
suspended in mid-execution. The céllewSCont io) makes a
new SCont that, when scheduled, will perform the actibe. The
primitive switch is the interesting part. The cgiwitch M) does
the following:

e |t captures the current computation asS@ant, says. We call
s thecurrent continuation

e Then it runs the primitive transactigi\/ s). This transaction
may read and write som&Vars — for example, it may write
s into a ready-queue — before returning $¢ont, says’. We
call s’ the switch target

e Lastly, switch makess’ into the computation that the current
HEC executes.

variables which themselves need to be protected using locks. Since These steps are made precise by the rules of Figure BCAnt

we are now using PTM instead of locks, we desigraasactional
interface,waitCond, to perform blocking based on condition test-
ing. The semantics is shown in Figure 6.

waitCond
wakeupHEC

: PTM (Maybe a) -> I0 a
:: HEC -> I0 Q)

The waitCond operation executes a transaction in nearly the
same way aatomicPTM, except that it checks the resulting value
of the transaction. If the transaction returhsst z, waitCond
simply commits the transaction and returnsOtherwise, if the
result isNothing, the HEC commits the transaction, and puts the
HEC to sleemt the same time

The wakeupHEC operation wakes up a sleeping HEC. After a
HEC is woken up, it re-executes th@itCond operation which
blocked it. If the HEC is not sleepingjakeupHEC is simply
a no-op. The atomicity ofraitCond is important, otherwise a
wakeupHEC might intervene between committing the transaction
and the HEC going to sleep, and the wake-up would be missed.

As an example, suppose that the concurrency library uses a si
gle shared run-queue for Haskell threads. A HEC u&€isCond
to get work from the queue. If it finds the queue empty, it adsls i
own HEC identifier (gotten witlgetHEC) to a list of sleeping HECs
attached to the empty run-queue, and goes to sleep.

is represented by a®Cont identifier (orstack identifie), s. The
heap© maps a stack identifier to a paif/, D) whereM is the
term representing the suspended computation, farnisl its stack-
local state. Again, we defer discussion of the stack-loaksuntil
Section 3.5. Rul¢ NewSCont) simply allocates a ne®Cont in
the heap, returning its identifier

Allthe rules forswitch start the same way, by allocating a fresh
identifier s and running(M s) as a transaction. If the transaction
completes normally, returning, we distinguish two cases. In rule
(SwitchSelf), we haves = s’ so there is nothing to be done.
In the more interesting case, rul§witch), we transfer control to
the new continuation’, storing in the heap the current, but now
suspended, continuation By writing ©'[s’ — (M’, D')] on the
top line of (Switch) we mean tha®’ does not includes’. The
computation proceeds without a binding #drbecause’ is “used
up” by theswitch. Any further attempts to switch to the sarsle
will simply get stuck. (A good implementation should inckud
run-time test for this case.)

Figure 7 also describes precisely hawitch behaves if its
argument throws an exception: theitch is abandoned with no
effect (allocation aside).

Note that, unlike many formulations of continuations, diaick
continuation does not carry a returning value. This desighens it
easier to have a well-typegliitch. No expressiveness is lost, be-



Top-level program transitions

S;0 — 5,0/

S | (E[newSCont M],D,h);® —>

s fresh

>

Ms;© = returns’;©
D.h

S | (E[switch M],D,h);® = S | (E[return()], D, h); ©®’

s fresh Ms;0 =

return s’; O'[s" — (M',D’)]

D,h
S | (E[switch M], D, h); ©

s fresh

S | (E[return s], D, h); O[s — (M, 0)] sfresh (NewSCont)
s=s
(SwitchSelf)
s# s
(Switch)

= S | (M',D',h);0'[s — (E[return()], D)]

M s;© = throw N;©’
D.,h

S | (E[switch M],D,h);® = S | (E[throw N],D,h); ©® U (6'\O)

(SwitchEzxp)

Figure 7. Operational semantics (stack continuations and contextisiwg)

cause values can still be communicated using shared ttéorszic
variables (as we will show in Section 5.1).

3.4.1 Using stack continuations

With these primitives, a number of Haskell computations ban
multiplexed on one HEC in a cooperative fashion: each coaiput
tion runs for a while, captures and saves its continuatiod, \enl-
untarily switches to the continuation of another compotatMore
concretely, here is some typical code for the inner loop afteed-
uler:

switch $ \s -> do
é:;u‘/'e s in scheduler’s data structure
s’ .<— find the next thread to schedule
:.ré‘;urn s’
It captures the current continuatien savess into the scheduler’s

data structure, finds the continuation of the next threadtedhed-
uleds’, and control is transferred & .

3.4.2 Implementing stack continuations

By design,SConts have a particularly cheap representation. In
GHC, a Haskell computation runs on a stack, which itself isl he
in a stack objectllocated in the run-time heap. Initially the stack
object is small, but it can grow by being copied into a largeaa
if it overflows. AnSCont is represented simply by a pointer to the
stack object for its stack. Wheswitch captures ai$Cont, it uses
the pointer to the stack object; no copying is done, as isgsecg
for truly first-class continuations.

We are not, of course, the first to think of the idea of ideimigy
stacks with second-class continuations [6]. However, saurtch
primitive deals rather neatly with a tiresome and non-obsiprob-
lem. Consider the call

switch (\s -> stuff)

The computationstuff must run onsomestack, and it's conve-
nient and conventional for it to run on the current stack. 8ui-
posestuff writess into a mutable variable (the ready queue, say)
and then, whilestuff is still running, another HEC picks up
and tries to run it. Disaster! Two HECs are running two défer
computations on the same stack. Fisher and Reppy recogtized
problem and solved it by putting a flag ersaying “I can’t run yet”,
and arranging that any HEC that picks sigvould busy-wait until
the flag is reset, which is done lwitch whenstuff finishes
[6]. Although this works, it's a bit of a hack, and would corgalte

our semantics. The current GHC runtime deals with this byiens
ing that there is always a lock that prevents the thread fremgo
rescheduled until the switch has finished, and arranginglease
the lock as the very last operation before switching - adaisis
fragile, and has been a rich source of bugs in the curreneimgh-
tation.

However, by integratingwitch with PTM we can completely
sidestep the issue, because the effectstafff are not published
to other HECs untilstuff commits and control transfers to the
new stack. To guarantee this, the implementation shouldndom
the transaction and change the HEC'’s stack in a single, atomi
operation.

The other error we must be careful of is when a stack contin-
uation is the target of more than oseitch — remember that
stack continuations are “one-shot”. To check for this ewemeed
an indirection: arsCont is represented by a pair of a pointer to
a stack and a bit to say when tB€ont is used up. Another al-
ternative would be to keep a sequence number in the stacktpbje
incremented by evergwitch, and store the number in ti$€ont
object.

3.5 Global and stack-local states

Because the concurrency library is written in an coopegdinsh-
ion, the code often needs to query for information like this:

e What is my thread identifier?
e Who is my scheduler?
e Where is the ready queue?

The code in Section 3.4.1 gives a more concrete example, in
which the scheduler’s data structure needs to be locatgatinini-
ple there is nothing to prevent one addin@tereadId parameter
to every function that needs to know the thread identified; im-
ilarly for the other cases like the scheduler’s task quedesiever,
doing so is extremely inconvenient and non-modular. We &re a
ready, in effect, passing the state of the world to everye@fiil)
function via the monad, and we would like all other statespas
to be implicit.

3.5.1 Global state

Suppose the concurrency library wanted a global, readya)oé
threads, shared among all HECs. Haskell provides no supmort
such a thing, so programmers use the well-knawsafePerformI0
hack:

readyQueue ::
readyQueue =

PVar ReadyQueue
unsafePerformI0 $ atomicPTM §
newPVar emptyQueue
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S;0 — 5,0/

S | (E[newSLSKey M],D,h);® —

S | (E[(return (r, M)], D, h); ©

r fresh  (NewSLS)

S | (E[setSLS (r, M) N],D,h);® = S |(E[return ()],D[r+— N|,h); O (SetSLS)
PTM transitons  M;© D:>h N;©’
EplgetsSLs (r, M)]; © = Ep[return D(r)];© r € dom(D) (GetSLS1)
Ep[getsSLs (r, M)]; © D,h Ep[return M]; © r & dom(D) (GetSLS2)

Figure 8: Operational semantics (stack-local state transitions)

This is obviously horrible, and the whole issue of accomntioda
effectful but benign top-level computations in Haskell heeen
frequently and heatedly discussed on the Haskell mailstt For

the purposes of this paper we will simply assume #Huahedecent
solution is available, so that one can write something liks: t

readyQueue :: PVar ReadyQueue
init readyQueue <- newPVar emptyQueue

Here the init” keyword introduces a PTM transaction to be run
once, at module initialization time or at some subsequeiitpo
The effects permitted for such a transaction might be evere me
stricted than usual, perhaps involving only allocatione Binding
should of course be monomorphic to avoid unsoundness, vigich
a well-known problem withunsafePerformIO.

3.5.2 Stack-local states

Now suppose we wanted to implementigrarchical scheduler,

in which any thread can be a scheduler for its child threatienT
there is no global ready queue; instead, each schedulee itreb
maintains its own. This is just one example of a well-knowobpr
lem with multithreaded programming, namely the needfioead-
local state Other examples include: the seed for a random number
generator (sharing a global one is a concurrency bottlgnéog
stdin andstdout handles; and so on.

One might expect that the programmer could implement thread
local states entirely in Haskell, using globally sharedadsttuc-
tures, such as hash tables, indexed by some form of thread ide
tifier. But this approach has a few drawbacks. First, it matyb®o
efficient: accessing a thread-local state could be muchesltwan
performing a regular memory reference, especially if thelen
mentation used purely functional data structures. Moreitgmtly,
automatic garbage collection would not work for such stattes
programmer would have to free them manually when their eorre
sponding threads die, otherwise memory would be leaked.

Thus motivated, we propose to suppstdck-local state§SLS)
directly in the substrate, using the following design showfrig-
ure 2:

data SLSKey a

newSLSKey :: a -> I0 (SLSKey a)
getSLS : SLSKey a -> PIM a
setSLS :: SLSKey a -> a -> I0 ()

Each item of stack-local state is identified by a tyj$td5 keyFor
example, the key fostdin might be of typeSLSKey Handle.
The getSLS operation maps the key to its correspondingly-typed
value, EachsCont carries a distinct mapping of keys to values,

2http://www.haskell.org/haskellwiki/Top_level _mutable_
state

namedD in our semantic rules, and this mapping persists across the
suspensions and resumptions causedwytch; that is, anSCont
now has an identity.

The detailed semantics are given in Figure 8. Several panets
worth noticing:

e An SCont is represented by a pai{tM, D) of a term M to
be evaluated and @ictionary D that maps SLS keys to values
(Figure 3).

e A running HEC(M, D, h) includes the dictionary of the run-

ning computation. Wheewitch switches to a hew computa-

tion, it loads its dictionary into the HEC (rulg&witch) in Fig-

ure 7).

ThenewSCont primitive makes a ne8Cont whose dictionary

is empty (rule( NewSCont)).

The newSLSKey primitive takes arinitial value as its first ar-

gument, and a SLS Key is represented by a pain/) of a

unique identifien- and the the initial valué/. Typically there

will be a handful of SLS keysstdin, the current scheduler,

the random-number seed), but many stack continuations each
with a potentially-different set of bindings for the keyshéel

SLS keys would usually be globally allocated; for example:

stdinKey :: SLSKey Handle
init stdinKey <- newSLSKey stdin

If getSLS is given a key(r, M) whose identifier is not present
in the dictionary for the current computation, it returng th
initial value M. This eliminates the necessity to initialize the
dictionary with a binding for every SLS that could possibly b
used.

Stack-local state is manipulated only by the computatiai th
owns it, and hence does not need to be transacted. Hence
getSLS is a PTM operation, because it is convenient to be
able to read it during a PTM transaction, whiletSLS is an IO
operation because we do not want the complication of having
to undosetSLS operations if the transaction aborts. Note that
setSLS operations are expected to be fairly rare.

If the programmer wants to manipulasbaredstate accessed
via the SLS mechanism, or to treat SLS state transactignally
the right thing to do is to make the SLS valuer and access

it using PTM transactions.

In implementation terms, the identifierof a SLS key(r, M)
can be just a small integer, and the dictionary can be an afray
slots in the stack object. Some overflow mechanism is neeated f
when there are more than a handful of SLS keys in use. Although
not shown in the formal semantics, it is worth noting that the
runtime system should automatically garbage-collect edssack-
local states: a stack and its local state are deallocatdtbatame



time. An implementation is not required to reclaim unusedsSL
key values because such values are supposed to be globailyds
constants, and we don’t expect there to be very many of them.

3.5.3 HEC-local states?

One might naively expect the substrate to suppt#C-localstates
as well. AHEC could use local state to maintain its own schiesgu
data structures, such as task queues. But, in reality, suattiwes
are almost always globally shared by all HECs so that loachean
balanced using work stealing algorithms. In such casesagkates
are often more suitable. Also, HEC-local states only appede
useful when writing the concurrency library. In contratack-local
states have broader applications: end-users can use thbnead-
local states without much change.

More importantly, programming with HEC-local states can be
tricky, because such states atgnamically boundthe execution
of a sequential program can be interleaved on multiple HECs.
sequential code block can access one HEC's local state istepe
pause, be moved to a different HEC, and then access anotli&sHE
state in the next step. In contrast, a sequential code béoakvays
bound to a stack during its execution, so the programmeraiatys
assume that the SLS environment is fixed for a code block.

For these reasons, we do not currently plan to support HEC-
local states, although they could be easily added via anettef
primitives if desired.

4. Pre-emption, foreign calls, and asynchrony

rtsInitHandler : I0 O
inCallHandler :: I0a > 10 a
outCallHandler :: I0 a > 10 a
timerHandler : I0 O
blackholeHandler :: I0 Bool -> I0 ()

Figure 9: The concurrency library callbacks

In addition to the substrate primitives shown in the presiseic-
tion, the substrate interface also includes some callbaoktions,
shown in Figure 9. These are functions supplied by the coaenay
library, that are invoked by the RS

An external 10 transitions; ® == $’;: @', is an 10 transition
tied to an actioru; see Figure 10. The actions include FFl in-calls,
timer events and blocking events.

4.1 Pre-emption

So far, the concurrency primitives introduced allow coepige
scheduling: a Haskell thread can only switch to anotheratthizy
voluntarily callingswitch. This section introduces a mechanism
for pre-emptivescheduling. This mechanism could be generalized
to handle other asynchronous signals too.

The RTS substrate maintains a timer that ticks every 50ms by
default. When a timer event is detected, the RTS substrdi® ca
a timer handler functionimerHandler exported by the concur-
rency library* (This is the first time that the RTS calls the concur-
rency library; most of the calls work the other way aroundjufé 9
summarizes all the call-backs we will discuss.)

3Note that this means the RTS is statically bound to a pasticcbncur-
rency library when the program is linked. Nevertheless, mésage that it
will be possible to choose a concurrency library at linkejror earlier. This
design does not make it possible to compose concurreneyiisrfrom dif-
ferent sources at runtime, however.

4More precisely, the handler is invoked at the first garbadlection point
following the timer event.

The timer handler is triggered on every HEC that is running
Haskell computation; i.e. is natleepingor in anoutcall. When
the timer handler is triggered on a HEC, the state of the ourre
computation is saved on the stack, and the timer handlertbses
top of the stack to execute. The stack layout is set up in a way
as if the timer handler is being explicitly called from therreunt
Haskell computation, so when the timer handler finishesueiat,
the original computation is automatically resumed.

This semantics for the timer handler makes it easy to imple-
ment pre-emption, because a stack continuation captusétkithe
timer handler also contains the current computation on tR€H
Typically the timer handler will simply switch to the nextmable
thread, as if the thread had invokgtle1d manually.

The RTS substrate must guarantee that timer handlers ded cal
only at safe points. For example, the timer handler mustmtet-
rupt the final committing operation of a PTM transaction. &lev
theless, it is safe to call the timer handler during the $driplding
phase of a PTM transaction. The PTM implementation should al
low the timer handler to run a new transaction, even if an r@ldg-
action is already running on the same HEC.

Pre-emption has a slightly tricky interaction with stackdl
state. Because a SLSis initialized by the code running drsthek,
it is possible that the interrupt handler is called beforehsitial-
ization finishes. In such cases the interrupt handler willtbe de-
fault initial value registered byiewSLSKey, and the programmer
must handle such cases explicitly.

4.2

In principle, any attempt to evaluate a thunk may sédaakhole
because the thunk is already being evaluated by anothectfit#].
If a blackhole is found, the best general policy is to pausectir-
rent thread until evaluation the thunk has completed (onwntrate
until there is reason to believe thatnitay have completed). This
implies that thunk evaluation sometimes needs to interétttive
scheduler. In the old RTS design, the scheduler is built theo
RTS, soitis easy to implement this policy. In our new deskgw-
ever, implementing this policy requires a delicate comroaitibn
between the substrate (which alone can detect when a thvakd e
ates a thunk that is already under evaluation) and the Jilfvetnich
alone can perform context switching and blocking of thr¢ads

We propose to solve this problem using a special handler func
tionblackholeHandler exported by the concurrency library. This
function is called by the RTS whenever evaluation sees &htde;
the execution model is the sametdserHandler.

The current runtime system design keeps track of the threads
suspended on thunks in a global list. The list is periodjoztilecked
by the scheduler to see if any conflicting thunk evaluatichdwan-
pleted. To implement this polling design, theackholeHandler
takes an argument of typd0 Bool), which is a function that can
be called by the concurrency library to test whether thesithiegan
be resumed. When evaluation enters a blackhole, the RT8atghs
creates such a function closure and passiifltfickholeHandler.

The (I0 Bool) polling action is purely to allow the thread’s
status to be polled without trying to switch to the threadislt
safe to switch to the thread at any time: if the thunk is stildler
evaluation, the thread will immediately callackholeHandler
again. So the simplest implementatiorbafckholeHandler just
puts the current thread back on the run queue, where it witibe
again in due course.

A caveat of this design is that handlers can re-enter: if elbla
hole is entered inside thglackholeHandler, the program may
enter an infinite loop! One possible solution is that the parow
mer can use stack-local state to indicate whether the thiead
already running &lackholeHandler, andblackholeHandler
falls back to busy waiting if re-entrance occurs.

Interrupting execution at thunks



External IO transitions  $;0 == §’; @’
0;0 Ing (rtsInitHandler, ), h); 0 hfresh (Init)
S;0 InCall M S | (inCallHandler M, 0, h);© hfresh (InCall)
S|(r,D,h);©  Modlergg (InCallRet)
S | (E[outcall ], D, h); © Outlgltr S | (E[outcall 7|, D, h)oytcail; © (OutCall)
S | (Efoutcall rl, D, hoyrca;© M5 | (E[M], D, h);© (OutCallRet)
S | (E[M],D,h); ® Tick b S | (E[timerHandler >> M)],D,h);© (TickEvent)
S | (E[M],D,h);©  Pleckiele Nh g | (E[blackholeHandler N >> M],D,h);© (Blackhole)

Figure 10: Operational semantics (external interactions)

4.3 Asynchronous exceptions

We would like to implement asynchronous exceptions [15hia t
concurrency library. Asynchronous exceptions are intceduby
thethrowTo operation:

throwTo :: ThreadId -> Exception -> I0 ()

which raises the given exception in the context of a targetatth
Implementing asynchronous exceptions is tricky, paréiduylin

a multi-processor context: the target thread may be runoimg
another processor, it may be in the run queue waiting to risoore
processor, or it may be blocked. The implementationlafowTo
must avoid conflicting with any other operation that is tgyito
access the target thread, such as its scheduler, or a thy&aglto
wake it up.

We can divide the execution of an asynchronous exceptian int

two steps:

1. the invoking thread communicates to the target threadaha
exception should be raised; and

2. the target thread actually raises the exception.

Fortunately, only step (2) absolutely requires specidlizgbstrate
support, namely a single operation, given earlier in Figure

raiseAsync :: Exception -> IO ()

The raiseAsync function raises an exception in the context of
the current thread, but in a special way: any thunk evaloatio
currently under way will be suspended [20] rather than sympl
terminated as they would be by a normal, synchronous exsepfi
the suspended thunk is ever forced later, evaluation caedtarted
without loss of work.

Step (1) can be implemented entirely in the concurrencetipr
One possible approach is to have the exception posted taripet t
thread via a PVar that is part of its local state and checked du
ing a context-switch. Compared to the current implemeoiain
GHC'’s RTS, this is not quite as responsive: the target threag
not receive the exception until its time-slice expires, otilut is
next scheduled. We could improve this by providing an addl
substrate primitive to interrupt a remote HEC at its nexé safint.
Such an interrupt could be delivered as a simulated timerrimpt
or as a new, distinct signal with its own handler.

Compared to the implementation ehrowTo in the current
runtime system, implementinghrowTo in Haskell on top of the
substrate is a breeze. PTM means that many complicatechpcki
issues go away, and the implementation is far more likelygo b
bug-free.

4.4 Foreign calls

Foreign calls and concurrency interact in delightfully teivays
[16]. It boils down to the following requirements:

e The Haskell runtime should be able to process in-calls from
arbitrary OS threads.

e An out-call that blocks or runs for a long time should not
prevent execution of the other Haskell threads.

e An out-call should be able to re-enter Haskell by making an
in-call.

e Sometimes we wish to make out-calls in a particular OS thread
(“bound threads”).

Fortunately the substrate interface that makes all thisiples
is rather small, and we can push most of the complexity inéo th
concurrency library.

In-call handler Whenever the foreign code makes a FFl in-call to
a Haskell functiorhFunc, the RTS substrate allocates a fresh HEC
with a fresh stack, and starts executing Haskell code on ¢e n
HEC. But, instead of running the Haskell functinfunc directly,
it needs to hand over this function to the concurrency ligrand
let the concurrency librargcheduleghe execution ohFunc!

For this purpose, the concurrency library exports a calbac
function to accept in-calls from the substrate:

inCallHandler :: I0 a -> I0 a

When an in-call tchFunc is made, the RTS substrate executes
(inCallHandler hFunc) on a fresh HEC with a fresh stack,
using the current OS thread. WhénCallHandler returns, the
HEC is deallocated and control is transferred back to forewge,
passing the return value.

The in-call handler is the entry point of the concurrencydiy:
the schedulers accept jobs from the in-call handler. Indsiane
Haskell program, the RTS makes an in-callitdn .main after the
concurrency library is initialized (Section 4.5).

Out-call handler In order to give the concurrency library control
over the way an out-call is made, the substrate arrangesa&en
the callbackoutCallHandler for each safe out-call. For example,
the following out-call:

foreign import ccall safe "stdio.h putchar"
putChar :: CInt -> IO CInt

would be desugared into a call tmtCallHandler at compile-
time:

putChar arg = outCallHandler (putCharl arg)
putCharl arg = ... [the actual out-calll

The outCallHandler function can then decide how to schedule
the execution of the actual out-cgltChari.

The compiler implementation can choose to bypass the dut-ca
handler for unsafe calls to improve performance.



45 Initialization handler

The concurrency library can be initialized through a calkbfunc-
tion. When a Haskell program is started, the RTS will initial
itself, create a fresh HEC, and run thesInitHandler callback
function. This function should create all the necessarp g#uc-
tures in the concurrency library, initialize the schedsilend make
them ready to accept FFI in-calls.

5. Developing concurrency libraries

The main task of the concurrency library is to implement tbe n
tion of a Haskellthread and to provide application programming
interfaces such agorkI0, MVars and STM. Given the underlying
substrate interface, there are many design choices foraheuc
rency library. Here we discuss some possible designs.

blackholeHandler ::
blackholeHandler

10 Bool -> I0 ()
= yield

A thread suspended on a thunk will just go back on the run
queue, but that's OK; next time it runs it will either immediky
invoke blackholeHandler if the thunk is still under evaluation,
or it will continue. This is a perfectly reasonable, if ineféint,
implementation oblackholeHandler.

The code above forms the very basic skeleton of the concur-
rency library. Next, we implement the populé¥ar synchroniza-
tion interface. AnMvar can be implemented asP&ar containing
its state. If theMvar is full, it has a queue of pending write requests;
if the MVar is empty, it has a queue of pending read requests. Each
pending request is attached with a function closure (of B))
that can be called tonblockthe pending thread.

The substrate design suggests that the concurrency library gata Myar a = MVar (PVar (MVState a))

should be written in a cooperative fashion.S8ont represents
the continuation of a Haskell thread. Threads can be craaed

ing newSCont and make context switches to each other. Thread-

local information, such as thread identifiers, can be impleted
straightforwardly using stack-local states.

The interesting question is how to design the scheduleveMai
the simplest scheduler can consist of a globally sharedstaia-

data MVState a = Full a [(a, PTM ()]
| Empty [(PVar a, PTM ())]

The following code shows how to implemetékeMVar; the
putMvar operation is the dual case. A pending read request is
implemented using a temporapyar. If the MvVar is empty, the
current thread will be blocked, but a function closure isated

ture with some common procedures, such as adding a new threadto unblock the current thread later. If ti¥ar is full and there

switching to the next thread, blocking and unblocking, etow-

are additional threads waiting to write to tMéar, one of them is

ever, the scheduler can be quite complicated when many concu unblocked by executing its corresponding closure.

rency features are implemented. Besides the concurreatyrées
that already exist in the current GHC, it would also be us&ful
make the scheduler code extensible by the end user, so newreon
rency features can be readily added. Thus, the concurréreyy
needs a modular and extensible design. A promising desigerpa
is the concept ofiierarchical schedulerdiscussed in Section 5.2.

5.1 A simpleconcurrency library

This section uses pseudo code to illustrate how to write @lsim
concurrency library. We assume that the scheduler’s daiatste
is globally shared and initialized intsInitHandler. To create a
Haskell thread, we simply create a stack continuation abchgtit
to the scheduler:

forkIO :: I0 () -> I0 Threadld
forkIO action = do
sc <- newSCont action
atomicPTM $ do
(put sc in scheduler’s queue)
id <- (create new thread id)
(initialize the new thread’s SLS)
return $ ThreadId id

To make an context switch by voluntarily yielding controle w
use theswitch primitive together with a PTM transaction:

yield :: I0 O

yield = switch $ \c -> do
(store c into scheduler’s queue)
n <- (get the next thread to run)
(update scheduler’s state and/or SLS)
return n

To support pre-emptive scheduling, we can simply set thertim
handler to berield:

timerHandler :: I0 ()
timerHandler = yield

Every scheduler must providebdackholeHandler, too. The
simplest implementation &flackholeHandler is just this:

takeMVar :: MVar a -> I0 a
takeMVar (MVar mv) = do
buf <- atomicPTM $ newPVar undefined
switch $ \c -> do
state <- readPVar mv
case state of
Full x [] -> do
writePVar mv $ Empty []
writePVar buf x
return c
Full x 1@((y,wakeup):ts) -> do
writePVar mv $ Full y ts
writePVar buf x
wakeup
return c
Empty ts -> do
let wakeup = (put c into scheduler’s queue)
writePVar mv $ Empty (ts++[(buf,wakeup)])
n <- (get the next thread to run)
(update scheduler’s state and/or SLS)
return n
atomicPTM $ readPVar buf

In a real implementation, the above code can be optimized by
using a non-transactional mutable state (such as |IORetf)éaruf
variable, because its operations are guaranteed not taatoAfso,
we should use a double-ended queue to avoid-#hie the Empty
case.

5.2 Developing hierarchical schedulers

An important goal of the new RTS design is to implembigrar-
chical scheduling19, 9] in concurrency libraries. The idea is that
each thread can act as a parentithedulerthat divides its CPU
cycles on its children threads (@gheduledsand manages the in-
terleaving of execution. If a child thread itself can alst¢ as a
parenting scheduler for other threads, all the threadsarsyistem
form a tree-like scheduling hierarchy.

It is not difficult to implement a specific system with some
scheduling hierarchy; the challenge is to make the codehsdsc



ulerscomposablea child thread, without knowing all the imple-
mentation details of its parenting scheduler, can alsossatszhed-
uler itself and have descendants.

A composable design of hierarchical schedulers can be bene-

ficial to applications that have their own scheduling regjuients.
For example, to process a group of concurrent tasks witkreifit
priorities, a thread can act as a priority scheduler andartasks
in children threads. Hierarchical scheduling also givesttogram-
mer more control in concurrent programming: if a thread waat
run some tasks speculatively with a timeout limit and onlgdse
the result of the task that finishes first, it can act as a s¢aednd
monitor the execution of individual tasks in its childremetads.

It would also be appealing to make the scheduler gedsable
so some generic scheduling mechanisms, such as time shaniing
ority scheduling, tentative computing and time-outs, cariniple-
mented in library modules and employed by any thread.

The substrate design introduced in this paper suggestsuhbhat
hierarchical schedulers can be developed in a cooperasiedn,

in which a scheduler and its schedulees work together using a

common interface. The common interfacelsstractin the sense
that the implementation details of the scheduler and thedsdbe
are kept hidden from each other: they can work together agdsn
they both respect the interface. Such an interface canstafdivo
parts:

e Shared data structurassed to communicate between the sched-

| | ghc-6.6] fake-ptm | real-ptm |

spawn-test 18 32 46
producer-consume 4.3 7.0 16.2
cheap-concurrency 6.5 7.1 12.6

chameneos| 6.3 4.8 26

Figure 11: Benchmark results (program execution time ioses)

ple concurrency library that supports single-processamd-robin
scheduling and MVar operations. We then tested its perfocama
and yielded some preliminary results.

For many multithreaded programs that are computatiomsive,
context switching and synchronization is rarely the batlek, so
the concurrency implementation has little impact on theal/per-
formance. To reveal the actual overheads, we picked a feshben
marking programsspawn-tesperforms a stress test on spawning
new threads usingorkIO; producer-consumeperforms a stress
test on synchronizing two threads usitigkeMVar andputMVar;
cheap-concurrencyand chameneosre concurrency benchmarks
from the Computer Language Shootout Benchmarks [23].

The test results are shown in Figure 11. The table shows pro-
gram execution time in three different configurations:

e ghc-6.6 the vanilla GHC 6.6 RTS.

uler and the schedulee. For example, a thread needs to know ® real-ptm our modified GHC RTS substrate prototype with the

“how many time slices do | have”. If the thread runs out of its

allocated time slices, it needs to yield to its scheduleit atso

needs to know “who is my scheduler”. Such shared data can

be implemented using stack-local states and transactianial
ables.

¢ Protocolsthat specify how the scheduler and the schedulee
should cooperate using the shared data structures and the
switch primitive. For example, the protocol may specify that
(i) the scheduler always assigns some time slices to thelsche

ulee before switching to it, and (ii) the schedulee mustdyiel
its scheduler as soon as its time slices are used up.

We explored a few possible designs of hierarchical scheduli
in a prototyping environment that simulates the substraezface
using continuation monads. As a first step, we developed redrou
robin scheduler as a library module. The round-robin scleedan
be parameterized by the size of a time slice, and multiplechalers
can be composed in a tree-like hierarchy. We then developegt a
level, SMP scheduler to distribute work on multiple OS thisa
using work stealing algorithms. The common schedulingriate
is designed such that each round-robin scheduler treg@rignting
scheduler abstractly, without knowing the parent’'s comfigon.

concurrency library written in Haskell. The PTM implementa
tion reused most code in the GHC 6.6 STM implementation.

o fake-ptm same aseal-ptm except that the PTM implementa-
tion is fake. APVar is implemented as atDRef and there is no
transaction control. This configuration only works corlgcin
a single threaded RTS; the only purpose of this configurasion
to reveal the overhead of PTM alone.

In these benchmarks, the new RTS design (colueat-ptm)
is 2-4 times slower than the existing GHC RTS (colugi-6.6.

By comparingreal-ptmandfake-ptm we can see that most of the
additional overheads are caused by using PTM, which is dypure
software implementation of transactional memory.

Although the new RTS design has a significant overhead, the
overall synchronization performance still remains in rodygthe
same order of magnitude—it is still much better than using OS
threads! On the other hand, these results suggest that tfar-pe
mance of software transactional memory needs to be impraved
deliver performance comparable with that of locks.

7. Related work

Thus, a user program can specify the scheduling hierarchy by The idea of usingontinuationsto write a concurrency library in

composing the instances of schedulers at the top-level.

6. Implementation and performance

It is a substantial engineering task to modify the GHC RTSum s
port the substrate interface. Currently, our prototypelémgnta-
tion supports most of the substrate interface, except a fawip
tives such as asynchronous exceptions and blackhole manQigr
prototype implementation is not yet optimized for multipessors
and FFI.

Although there is still much work left to be done, our exigtin
prototype already allows us to to develop simple concugrdiac
braries and obtain performance measurements. Buildimgadur-
rency features on top of a software transactional memoegyfate
certainly adds more overheads to the system, and we hopedt is
too much. On top of our substrate prototype, we developetha si

the language itself is not new [25, 22, 21]. There are tweediff
ent strategies for implementidightweightcontinuations in a lan-
guage: first-class continuations can be made cheap for @B&ib
runtime implementations [1] such as SML/NJ, and one-shitico
uations [3] are more suitable for stack-based implememntatiOur
design uses the latter because the GHC runtime model is-stack

based. In Haskell, the CPS monad can also be used to implement

lightweight concurrency [5], but this approach cannot suppre-
emption and it is thus limited to applications where coopieza
scheduling is suitable.

Morrisett and Tolmach[17] extended continuation-basen- co
currency for SML/NJ to multiprocessors, by adding pringsv
types and operations for virtual processors and synchataiz
The Sting language [13, 14] is a variant of Scheme that stppor
multiple parallel-programming constructs in a unified feamork,
which includes threads and virtual processors as prinmiipes.



Fisher and Reppy designed BOL as a compiler intermediate lan
guage to implement concurrency mechanisms [6]. They obderv
the problem we mentioned in Section 3.4.2, that a contionati
shall not be used until the current thread has yielded cbrizfoL
solves this problem by locking the current thread befordiphb
ing the continuation; our design of tk@itch primitive elegantly
solves this problem by combining context switching with anme
ory transaction.

The recent Manticore project [8, 18, 7] is very similar to our
work. The Manticore language is specifically designed tcettgy
low-level runtime frameworks that support heterogenecarialp
lelism and complex scheduling policies. Manticore is based
strict, ML-like language design; our design uses the Hasaet
guage itself, which is pure and lazy, and also deals withiapec
problems in Haskell such as thunk blackholing. Our HEC algstr
tion is similar to Manticore’s notion of aproc (virtual processor).
Manticore uses theompare-and-swaperation and concurrent
gueues as synchronization primitives. In contrast, oustsate sup-
ports the higher-level notion dfansactional memoryOn the other
hand, the Manticore substrate supports load-balancingragih-
tion across vprocs, whereas we handle these entirely wtitieii-
brary.

Lastly, Berthold et. al. designed a run-time environment fo
implicitly parallel programs, using Concurrent Haskelldathe
existing GHC runtime system as a substrate [2].

8. Summary

This paper proposes the design of a substrate interfacevetap-
ing concurrency libraries in Haskell. This design usessaational
memory as the synchronization primitive, and a special fofm
continuations for implementing lightweight concurrentiis de-
sign simplifies the GHC runtime system; it also improves tfety
and customizability of concurrency implementation.

Up to now, we have a prototype implementation with prelimi-
nary performance results that look promising. Nevertlsliée de-
sign needs to be further validated (and improved as needex)gh
a fullimplementation of the existing concurrency featureGHC,
and some performance tuning is definitely needed. Therallis st
plenty of work left to be done.
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