
Lightweight Concurrency Primitives for GHC

Peng Li
University of Pennsylvania

lipeng@cis.upenn.edu

Simon Marlow
Microsoft Research

simonmar@microsoft.com

Simon Peyton Jones
Microsoft Research

simonpj@microsoft.com

Andrew Tolmach
Portland State University

apt@cs.pdx.edu

Abstract
The Glasgow Haskell Compiler (GHC) has quite sophisticatedsup-
port for concurrency in its runtime system, which is writtenin low-
level C code. As GHC evolves, the runtime system becomes in-
creasingly complex, error-prone, difficult to maintain anddifficult
to add new concurrency features.

This paper presents an alternative approach to implement con-
currency in GHC. Rather than hard-wiring all kinds of concurrency
features, the runtime system is a thin substrate providing only a
small set of concurrency primitives, and the remaining concurrency
features are implemented in software libraries written in Haskell.
This design improves the safety of concurrency support; it also pro-
vides more customizability of concurrency features, whichcan be
developed as Haskell library packages and deployed modularly.

Categories and Subject Descriptors D.1.1 [Programming Tech-
niques]: Applicative (Functional) Programming; D.1.3 [Program-
ming Techniques]: Concurrent Programming; D.2.10 [Software
Engineering]: Design—Methodologies; D.3.3 [Programming Lan-
guages]: Language Constructs and Features—Concurrent program-
ming structures; D.4.1 [Operating Systems]: Process Management—
Concurrency,Scheduling,Synchronization,Threads

General Terms Design, Experimentation, Languages, Perfor-
mance, Measurement.

Keywords Haskell, Concurrency, Thread, Transactional Memory.

1. Introduction
In any programming language supporting concurrency, a great deal
of complexity is hidden inside the implementation of the concur-
rency abstractions. Much of this support takes the form of aruntime
systemthat supports threads, primitives for thread communication
(e.g. locks, condition variables, transactional memory),a scheduler,
and much else besides. This runtime system is usually written in C;
it is large, hard to debug, and cannot be altered except by thelan-
guage implementors.

That might not be so bad if the task were cut-and-dried. But
it isn’t: in these days of multicores the concurrency landscape is
changing fast. For example, a particular application mightbene-
fit from an application-specific thread scheduling strategy; or, one

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

Haskell’07, September 30, 2007, Freiburg, Germany.
Copyright c© 2007 ACM 978-1-59593-674-5/07/0009. . . $5.00.

might wish to experiment with a variety of concurrency abstrac-
tions; new challenges, such as multi-processor support or data par-
allelism [4], place new demands on the runtime system.

An attractive alternative to a monolithic runtime system written
by the language implementators is to support concurrency using a
library written in the language itself. In this paper we explore doing
exactly this for the language Haskell and its implementation in
the Glasgow Haskell Compiler (GHC). Although concurrency-as-
a-library is hardly a new idea, we make several new contributions:

• We describe in detail the interface between theconcurrency
library written in Haskell, and the underlyingsubstrate, or
runtime system (RTS), written in C. Whilst the basic idea is
quite conventional, the devil is in the details, especiallysince
we want to support a rich collection of features, including:
foreign calls that may block, bound threads [16], asynchronous
exceptions [15], transactional memory [12], parallel sparks [24]
and multiprocessors [11].

• Concurrency primitives are notoriously slippery topic, sowe
provide a precise operational semantics for our implementa-
tion.

• A key decision is what synchronization primitives are provided
by the substrate. We propose a simplified transactional memory
as this interface in Section 3.2, a choice that fits particularly
well with a lazy language.

• The substrate follows common practice, offering continuations
as a mechanism from which concurrency can be built. How-
ever our continuations, which we callstack continuationsare,
by construction, much cheaper than full continuations. Further-
more, capturing a continuation and transferring control toan-
other continuation are elegantly combined in a singleswitch
primitive introduced in Section 3.4.

• The whole issue of thread-local state becomes pressing in user-
level threads library, because a computation must be able toask
“what is my scheduler?”. We propose a robust interface that
supports local state in Section 3.5.

• Interfacing Haskell code to foreign functions, especiallyif those
functions may themselves block, is particularly tricky. Webuild
on earlier work to solve this problem in an elegant way.

• We illustrate our interface by describing a scheduler written
entirely in Haskell in Section 5.

• We have implemented most features we describe, in a mature
Haskell compiler, which gives a useful reality check on our
claims.

2. Setting the scene
Our goal is to design asubstrate interface, on top of which a
variety of concurrency libraries, written in Haskell, can be built
(Figure 1). The substrate is implemented by ourselves and hence,
so far as possible, it should implementmechanism, leavingpolicy

Figure 1: Components of the new RTS design

to the library. In general, we strive to put as little as possible in the
substrate, and as much as possible in the concurrency libraries.

Thesubstrate interfaceconsists of two parts:

1. A set of substrate primitivesin Haskell, including primitive
data typesandoperationsover these types (Section 3).

2. A set of concurrency library callbacks, specifying interfaces
that the concurrency library must implement (Section 4).

The key choices of our design are embodied in the substrate
interface: once you know this interface, everything else follows. A
good way to think of the substrate interface is that it encapsulates
the virtual machine (or operating system) on which the Haskell
program runs.

We intend that a single fixed substrate should support a vari-
ety of concurrency libraries. Haskell’s existing concurrency inter-
face (forkIO, MVars,STM) is one possibility. Another very intrigu-
ing one is a compositional (or “virtualizable”) concurrency inter-
face [19], in which a scheduler may run a thread that itself isa
scheduler... and so on. Another example might be a schedulerfor a
Haskell-based OS [10] or virtual machine (e.g. HALVM) that needs
to give preferential treatment to threads handling urgent interrupts.

In addition to multiple clients, we have in mind multiple imple-
mentations of the concurrency substrate. The primary implemen-
tation will be based on OS-threads and run atop the ordinary OS.
Another possibility is that the RTS runs directly on the hardware,
or as a virtualized machine on top of a hypervisor, and manages
access to multiple CPUs.

Although written in Haskell, the concurrency library code may
require the author to undertake some crucial proof obligations that
Haskell will not check; for example, “you may use this continuation
at most once, and a checked runtime error will result if you use it
twice”. This is still (much) better than writing it in C!

We take as our starting point the following design choices:

• It must be possible to write a concurrency library that supports
pre-emptiveconcurrency ofvery light-weight threads, perhaps
thousands of them. It would be too expensive to use a whole
CPU, or a whole OS thread, for each Haskell thread. Instead,
a scheduler must multiplex many Haskell fine-grain threads
onto a much smaller number of coarse-grain computational
resources provided by the substrate.

• Scheduling threads — indeed the very notion of a “thread” —
is the business of the concurrency library. The substrate knows
nothing of threads, instead supporting (a flavor of) passivecon-
tinuations. Here we simply follow the path blazed by Mitch
Wand [25].

• Since the substrate does not know about Haskell threads, it can-
not deal withblockingof threads. Hence, any communication
mechanisms that involveblocking, such asMVars and Software
Transactional Memory (STM), are also the business of the con-
currency library.

data PTM a
data PVar a
instance Monad PTM
newPVar :: a -> PTM (PVar a)
readPVar :: PVar a -> PTM a
writePVar :: PVar a -> a -> PTM ()
catchPTM :: PTM a -> (Exception->PTM a) -> PTM a
atomicPTM :: PTM a -> IO a

data HEC
instance Eq HEC
instance Ord HEC
getHEC :: PTM HEC
waitCond :: PTM (Maybe a) -> IO a
wakeupHEC :: HEC -> IO ()

data SCont
newSCont :: IO () -> IO SCont
switch :: (SCont -> PTM SCont) -> IO ()

data SLSKey a
newSLSKey :: a -> IO (SLSKey a)
getSLS :: SLSKey a -> PTM a
setSLS :: SLSKey a -> a -> IO ()

raiseAsync :: Exception -> IO ()

Figure 2: The substrate primitives

• Garbage collection is the business of the substrate, and requires
no involvement from the concurrency library.

• The system should run on a shared-memory multi-processor, in
which each processor can independently run Haskell computa-
tions against a shared heap.

• Because we are working in a lazy language, two processors may
attempt to evaluate the same suspended computation (thunk)at
the same time, and something sensible should happen.

• The design must be able to accommodate a scheduler that im-
plements the current FFI design [16], including making an out-
call that blocks (on I/O, say) without blocking the other Haskell
threads, out-calls that re-enter Haskell, and asynchronous in-
calls.

3. Substrate primitives
We are now ready to embark on the main story of the paper,
beginning with the substrate primitives. The type signatures of
these primitives are shown in Figure 2, and the rest of this section
explains them in detail.

The details of concurrency primitives are notoriously difficult
to describe in English, so we also give an operational semantics
that precisely specifies their behavior. The syntax of the system is
shown in Figure 3, while the semantic rules appear in Figures4,
5, 6, 7, 8 and 10. These figures may look intimidating, but we will
explain them as we go.

3.1 Haskell Execution Context (HEC)

The first abstraction is aHaskell Execution Contextor HEC. A HEC
should be thought of as a virtual CPU; the substrate may map itto
a real CPU, or to an operating system thread (OS thread). For the
sake of concreteness we usually assume the latter.

Informally, a HEC has the following behavior:

• A HEC is always in one of three states:running on a CPU or
OS thread,sleeping, or making anout-call.

x, y ∈ Variable r, s, h ∈ Name

SLS Keys k ::= (r,M)

Terms
M, N ::= r | x | \x ->M | M N | . . .

| return M | M >>=N
| throw M | catch M N | catchPTM M N
| newPVar M | readPVar r | writePVar r M
| getHEC | waitCond M | wakeupHEC h
| newSLSKey M | getSLS k | setSLS k M
| newSCont M D | switch M

Program state P ::= S; Θ
HEC soup S ::= ∅ | (H | S)

HEC H ::= (M, D, h) | (M, D, h)sleeping

| (M, D, h)outcall

Heap Θ ::= r →֒ M ⊕ s →֒ (M, D)
SLS store D ::= r →֒ M

Action a ::= Init

| InCall M | InCallRet r
| OutCall r | OutCallRet M
| Blackhole M h | Tick h

IO context E ::= [·] | E >>=M | catch E M
PTM context Ep ::= [·] | E >>=M

Figure 3: Syntax of terms, states, contexts, and heaps

• A Haskell program initially begins executing on a single OS
thread running a single HEC.

• When an OS thread enters the execution of Haskell code by
making an in-call through the FFI, a fresh HEC is created in the
running state, and the Haskell code is executed on this HEC.
Note that this is theonly way to create a new HEC.

• When the Haskell code being run by the HEC returns to its
(foreign) caller, the HEC is deallocated, and its resourcesare
returned to the operating system.

• When a running HEC makes a foreign out-call, it is put into
theoutcall state. When the out-call returns, the HEC becomes
running, and the Haskell code continues to run on the same
HEC.

• A HEC can enter thesleepingstate voluntarily by executing
waitCond. A sleeping HEC can be woken up by another HEC
executingwakeupHEC. These two primitives are explained in
Section 3.3.

Figure 3 shows the syntax of program states. The program state,
P , is a “soup”S of HECs, and a heapΘ. A soup of HECs is simply
an un-ordered collection of HECs(H1 | . . . | Hn). Each HEC is
a triple(M, D, h) whereh is the unique identifier of the HEC, and
M is the term that it is currently evaluating. TheD component is
the stack-local state, whose description we defer to Section 3.5. A
sleeping HEC has a subscript “sleeping”; a HEC making a blocking
foreign out-call has a subscript “outcall”. The heap is a finite map
from names to terms, plus a (disjoint) finite map from names to
paused continuations represented by pairs(M, D).

A program makes a transition from one state to the next using a
program transition

S; Θ =⇒ S
′; Θ′

whose basic rules are shown in Figure 4. (We will introduce more
rules in subsequent Figures.)

The (IOAdmin) rule says that if any HEC in the soup has a
term of formE[M], andM can make a purely-functional transition
to N , then the HEC moves to a state with termE[N] without af-
fecting any other components of the state. Here,E is anevaluation

Purely-functional transitions M −→ N

return N >>=M −→ M N (Bind)
throw N >>=M −→ throw N (Throw)

catch (return M) N −→ return M (IOCatch)
catch (throw M) N −→ N M (IOCatchExp)

Plus the usual rules of the call-by-needλ-calculus, in
small-step fashion.

Top-level program transitions S; Θ =⇒ S′; Θ′

M −→ N

S | (E[M], D, h);Θ =⇒ S | (E[N], D, h); Θ
(IOAdmin)

Figure 4: Operational semantics (basic transitions)

context, whose syntax is shown in Figure 3, that describes where
in the term the next reduction must take place. Apurely-functional
transition includesβ-reduction, arithmetic,case expressions and
so on, which are not shown in Figure 4. However, we do show the
purely-functional rules that involve the monadic operatorsreturn,
(>>=), catch, andthrow. Notice also that a HEC in thesleeping
state or theoutcall state never takes a(IOAdmin) transition.

In implementation terms, each HEC is executed by one, and
only one, OS thread. However, a single OS thread may be respon-
sible for more than one HEC, although all but one will be in the
outcall state. For example suppose that OS threadT makes a for-
eign in-call to a Haskell functionf1, creating a HECH1 to run the
call. Thenf, running onH1 which is in turn running onT, makes
a foreign out-call. Then the state ofH1 becomesoutcall, andT ex-
ecutes the called C procedure. If that procedure in turn makes an-
other foreign in-call to a Haskell proceduref2, a second HEC,H2,
will be allocated, but it too will be executed byT. The process is
reversed as the call stack unwinds.

To be even more concrete, a HEC can be represented by a data
structure that records the following information:

• The identifier of the OS thread responsible for the HEC.
• An OS condition variable, used to allow the HEC to go sleep

and be woken up later.
• Registers of the STG machine.
• The current Haskell execution stack.
• The current heap allocation area; each HEC allocates in a sepa-

rate area to avoid bottlenecking on the allocator.
• A “remembered set” for the garbage collector. It is important for

performance reasons that the generational garbage-collector’s
write barrier is lock-free, so we have a per-HEC remembered
set. It is benign for an object to be in multiple remembered sets.

The live HECs (whether running, sleeping or making out-calls)
are the roots for garbage collection.

3.2 Primitive transactional memory (PTM)

Since a program has multiple HECs, each perhaps executing ona
different CPU, the substrate must provide a safe way for the HECs
to communicate and synchronize with each other. The standard way
to do so, and the one directly supported by most operating systems,
is to use locks and other forms of low-level synchronizationsuch
as condition variables. However, while locks provide good perfor-
mance, they are notoriously difficult to use. In particular,program
modules written using locks are difficult tocomposeelegantly and
correctly [12].

Top-level program transitions S; Θ =⇒ S′; Θ′

M ; Θ
∗

⇒
D,h

return N ; Θ′

S | (E[atomicPTM M],D, h);Θ =⇒
S | (E[N], D, h);Θ′

(PAtomic)

M ; Θ
∗

⇒
D,h

throw N ; Θ′

S | (E[atomicPTM M],D, h);Θ =⇒
S | (E[throw N], D, h);Θ ∪ (Θ′\Θ)

(PAtomicExp)

PTM transitions M ; Θ ⇒
D,h

N ; Θ′

M −→ NEp[M]; Θ ⇒
D,h

Ep[N];Θ
(PAdmin)

M ; Θ
∗

⇒
D,h

return M ′; Θ′Ep[catchPTM M N]; Θ ⇒
D,h

Ep[return M ′]; Θ′
(PCatch)

M ; Θ
∗

⇒
D,h

throw M ′; Θ′Ep[catchPTM M N]; Θ
∗

⇒
D,h

Ep[N M ′]; Θ ∪ (Θ′\Θ)
(PCatchExp)

r 6∈ dom(Θ)Ep[newPVar M]; Θ ⇒
D,h

Ep[return r]; Θ[r 7→ M]
(PNew)Ep[readPVar r];Θ ⇒

D,h
Ep[return Θ(r)]; Θ (PRead)Ep[writePVar r M]; Θ ⇒

D,h
Ep[return ()]; Θ[r 7→ M] (PWrite)

Figure 5: Operational semantics (PTM transitions)

Even ignoring all these difficulties, however, there is another
Very Big Problem with using locks as the substrate’s main syn-
chronization mechanism in a lazy language like Haskell. A typical
use of a lock is this: take a lock, modify a shared data structure
(a global ready-queue, perhaps), and release the lock. The lock is
used only to ensure that the shared data structure is mutatedin a
safe way. Crucially, a HEC never holds a lock for long, because
blocking another HEC on the lock completely stops a virtual CPU.

Here is how we might realize this pattern in Haskell:

do { takeLock lk
; rq <- read readyQueueVar
; rq’ <- if null rq then ...

else ...
; write readyQueueVar rq’
; releaseLock lk }

But if rq is a thunk, the evaluation of(null rq) might take an
arbitrarily long time, so the locklk might be held for a long time.
That does not threaten correctness, but it does mean that allthe
other HECs might be held up waiting onlk! One could declare that
the programmer should somehow ensure that this never happens,
but it is far from easy for a programmer to be certain that a blob of
code evaluates no thunks.

These observations motivated us to seek an alternative synchro-
nization mechanism. One such alternative istransactional memory
(TM), which is known to offer a more robust and modular basis
for concurrency [12]. There is a dilemma, however, because the

fully-featured software transactional memory supports blocking,
and cannot therefore be part of the substrate!

Fortunately, all we require in terms of low-level synchronization
is the ability to perform atomic transactions; the composable block-
ing and choice operators provided by STM can be safely omitted.
Therefore, the substrate offers an interface that we callprimitive
transactional memory(PTM) 1, whose type signature is shown in
Figure 2. Like STM, PTM is a monad, and its computations are
fully compositional. Unlike STM, however,a PTM computation is
non-blocking, so the question of blocking threads does not arise.

As Figure 2 shows, a PTM transaction may allocate, read, and
write transactional variables of typePVar a. And that is about all,
exceptions aside! Thus, a PTM transaction amounts to littlemore
than an atomic multi-word read/modify/write operation. Inopera-
tional terms,atomicPTM runs a PTM computation while buffering
the reads and writes in a transaction log, and then commits the log
all at once. If read-write conflicts are detected at the time of com-
mit, the transaction is re-executed immediately.

How does this resolve the Big Problem mentioned earlier? The
transaction runs without taking any locks and hence, if the transac-
tion should happen to evaluate an expensive thunk, no other HECs
are blocked. At the end of the transaction, the log must be commit-
ted by the substrate, in a truly-atomic fashion,but doing so does
not involve any Haskell computations. It is as if the PTM compu-
tation generates (as slowly as it likes) a “script” (the log)which
is executed (rapidly and atomically) by the substrate. It islikely
that a long-running transaction will become invalid beforeit com-
pletes because it conflicted with another transaction. However in
this case the transaction will be restarted, and any work done eval-
uating thunks during the first attempt is not lost, so the transaction
will run more quickly the second and subsequent times.

3.2.1 The semantics of PTM

Figure 5 presents the semantics of PTM. A PTM transition takes
the form

M ; Θ ⇒
D,h

N ; Θ′

The termM is, as usual, the current monadic term under evaluation.
The heapΘ gives the mapping fromPVar locationsr to values
M (Figure 3). The subscriptD, h on the arrow says that these
transitions are carried out by the HECh, with stack-local state
D. We will discuss stack-local state in Section 3.5, andD can be
ignored until then.

The PTM transitions in Figure 5 are quite conventional. Rule
(PAdmin) is just like (IOAdmin) in Figure 4. The three rules
for PVars — (PNew), (PRead), and(PWrite) — allow one to
allocate, read, and write aPVar.

The semantics of exceptions is a little more interesting. Inpar-
ticular, (PCatchExp) explains that ifM throws and exception,
then the effects ofM are undone. To a first approximation that
means simply that we abandon the modifiedΘ′, reverting toΘ,
but with one wrinkle: anyPVars allocated byM must be retained,
for reasons discussed by [12]. The heapΘ′\Θ is that part ofΘ′

whose domain is not inΘ.
The rules foratomicPTM in Figure 5 link the PTM transitions

to the top-level IO transitions. The(PAtomic) rule embodies the
key idea, thatmultiplePTM transitions are combined into asingle
program transition. In this way, no HEC can observe another HEC
half-way though a PTM operation.

3.3 HEC blocking

A PTM transaction allows a HEC safe access to mutable shared
states between HECs. But what if a HEC wants to block? For

1 Please do not confuse our PTM with “Paged-based Transactional Mem-
ory” by Chuang et. al., 2006.

Top-level program transitions S; Θ =⇒ S′; Θ′

M ; Θ
∗

⇒
D,h

return (Just N); Θ′

S | (E[waitCond M], D, h);Θ =⇒
S | (E[N], D, h); Θ′

(WaitOK)

M ; Θ
∗

⇒
D,h

throw N ; Θ′

S | (E[waitCond M], D, h); Θ =⇒
S | (E[throw N], D, h);Θ ∪ (Θ′\Θ)

(WaitExp)

M ; Θ
∗

⇒
D,h

return Nothing; Θ′

S | (E[waitCond M],D, h);Θ =⇒
S | (E[waitCond M], D, h)sleeping ; Θ′

(WaitSleep)

S | (M ′, D′, h′)sleeping | (E[wakeupHEC h′], D, h);Θ =⇒
S | (M ′, D′, h′) | (E[return()], D, h);Θ (WakeupOK)

∀(M ′, D′, h′′) ∈ S.h′ 6= h′′

S | (E[wakeupHEC h′], D, h); Θ =⇒
S | (E[return()], D, h);Θ

(WakeupNoOP)

PTM transitions M ; Θ ⇒
D,h

N ; Θ′Ep[getHEC]; Θ ⇒
D,h

Ep[return h];Θ (PGetHEC)

Figure 6: Operational semantics (HEC blocking)

example, suppose there are four HECs running, but the Haskell
program has only one thread, so that there is nothing for the other
three HECs to do. They could busy-wait, but that would be a poor
choice if a HEC was mapped to an operating system thread in a
multi-user machine, or in a power-conscious setting. Instead, we
want some way for a HEC toblock.

The common requirement is that we want to block a HEC until
some conditions are met, for example, when tasks become avail-
able. Traditionally, such code is often implemented usingcondition
variables, which themselves need to be protected using locks. Since
we are now using PTM instead of locks, we design atransactional
interface,waitCond, to perform blocking based on condition test-
ing. The semantics is shown in Figure 6.

waitCond :: PTM (Maybe a) -> IO a
wakeupHEC :: HEC -> IO ()

The waitCond operation executes a transaction in nearly the
same way asatomicPTM, except that it checks the resulting value
of the transaction. If the transaction returnsJust x, waitCond
simply commits the transaction and returnsx. Otherwise, if the
result isNothing, the HEC commits the transaction, and puts the
HEC to sleepat the same time.

The wakeupHEC operation wakes up a sleeping HEC. After a
HEC is woken up, it re-executes thewaitCond operation which
blocked it. If the HEC is not sleeping,wakeupHEC is simply
a no-op. The atomicity ofwaitCond is important, otherwise a
wakeupHEC might intervene between committing the transaction
and the HEC going to sleep, and the wake-up would be missed.

As an example, suppose that the concurrency library uses a sin-
gle shared run-queue for Haskell threads. A HEC useswaitCond
to get work from the queue. If it finds the queue empty, it adds its
own HEC identifier (gotten withgetHEC) to a list of sleeping HECs
attached to the empty run-queue, and goes to sleep.

When a running HEC adds a Haskell thread into the queue, it
looks at the list of sleeping HECs and awakens one of them. Of
course, by the time the sleeping HEC actually wakes up and runs,
the queue may again be empty, but in that case the same sequence of
events takes place again: thewaitCond is re-run, and the HEC will
go to sleep again. In effect, the classic error of forgettingto re-test
the condition after blocking on a condition variable is eliminated
by construction.

3.4 Stack continuations and context switching

A HEC is an abstraction of a virtual processor; in a given system
we expect to have a handful of HECs running, roughly one for each
physical CPU. To model fine-grain Haskell threads, we need anab-
straction of a Haskell computation, together with a way to allow a
HEC to multiplex its resources over such computations. Following
Wand, we use acontinuationto model a (suspended) Haskell com-
putation [25]. Unlike Wand, our continuations are not first class —
in particular, they can only be used once — in exchange for which
they are dirt cheap to implement.

We provide one new data type and two new primitive operations
(Figure 2):

data SCont
newSCont :: IO () -> IO SCont
switch :: (SCont -> PTM SCont) -> IO ()

An SCont, or stack continuation, should be thought of as passive
value representing an I/O-performing Haskell computationthat is
suspended in mid-execution. The call(newSCont io) makes a
newSCont that, when scheduled, will perform the actionio. The
primitiveswitch is the interesting part. The call(switch M) does
the following:

• It captures the current computation as anSCont, says. We call
s thecurrent continuation.

• Then it runs the primitive transaction(M s). This transaction
may read and write somePVars — for example, it may write
s into a ready-queue — before returning anSCont, says′. We
call s′ theswitch target.

• Lastly, switch makess′ into the computation that the current
HEC executes.

These steps are made precise by the rules of Figure 7. AnSCont
is represented by anSCont identifier (orstack identifier), s. The
heapΘ maps a stack identifier to a pair(M, D) whereM is the
term representing the suspended computation, andD is its stack-
local state. Again, we defer discussion of the stack-local state until
Section 3.5. Rule(NewSCont) simply allocates a newSCont in
the heap, returning its identifiers.

All the rules forswitch start the same way, by allocating a fresh
identifiers and running(M s) as a transaction. If the transaction
completes normally, returnings′, we distinguish two cases. In rule
(SwitchSelf), we haves = s′ so there is nothing to be done.
In the more interesting case, rule(Switch), we transfer control to
the new continuations′, storing in the heap the current, but now
suspended, continuations. By writing Θ′[s′ 7→ (M ′, D′)] on the
top line of (Switch) we mean thatΘ′ does not includes′. The
computation proceeds without a binding fors′ becauses′ is “used
up” by theswitch. Any further attempts to switch to the sames′

will simply get stuck. (A good implementation should include a
run-time test for this case.)

Figure 7 also describes precisely howswitch behaves if its
argument throws an exception: theswitch is abandoned with no
effect (allocation aside).

Note that, unlike many formulations of continuations, our stack
continuation does not carry a returning value. This design makes it
easier to have a well-typedswitch. No expressiveness is lost, be-

Top-level program transitions S; Θ =⇒ S′; Θ′

S | (E[newSCont M], D, h); Θ =⇒ S | (E[return s], D, h);Θ[s 7→ (M, ∅)] s fresh (NewSCont)

s fresh M s; Θ
∗

⇒
D,h

return s′; Θ′ s = s′

S | (E[switch M], D, h); Θ =⇒ S | (E[return()], D, h); Θ′
(SwitchSelf)

s fresh M s; Θ
∗

⇒
D,h

return s′; Θ′[s′ 7→ (M ′, D′)] s 6= s′

S | (E[switch M], D, h); Θ =⇒ S | (M ′, D′, h);Θ′[s 7→ (E[return()], D)]
(Switch)

s fresh M s; Θ
∗

⇒
D,h

throw N ; Θ′

S | (E[switch M], D, h);Θ =⇒ S | (E[throw N], D, h);Θ ∪ (Θ′\Θ)
(SwitchExp)

Figure 7: Operational semantics (stack continuations and context switching)

cause values can still be communicated using shared transactional
variables (as we will show in Section 5.1).

3.4.1 Using stack continuations

With these primitives, a number of Haskell computations canbe
multiplexed on one HEC in a cooperative fashion: each computa-
tion runs for a while, captures and saves its continuation, and vol-
untarily switches to the continuation of another computation. More
concretely, here is some typical code for the inner loop of a sched-
uler:

switch $ \s -> do
...
save s in scheduler’s data structure
...
s’ <- find the next thread to schedule
...
return s’

It captures the current continuations, savess into the scheduler’s
data structure, finds the continuation of the next thread to be sched-
uleds’, and control is transferred tos’.

3.4.2 Implementing stack continuations

By design,SConts have a particularly cheap representation. In
GHC, a Haskell computation runs on a stack, which itself is held
in a stack objectallocated in the run-time heap. Initially the stack
object is small, but it can grow by being copied into a larger area
if it overflows. AnSCont is represented simply by a pointer to the
stack object for its stack. Whenswitch captures anSCont, it uses
the pointer to the stack object; no copying is done, as is necessary
for truly first-class continuations.

We are not, of course, the first to think of the idea of identifying
stacks with second-class continuations [6]. However, ourswitch
primitive deals rather neatly with a tiresome and non-obvious prob-
lem. Consider the call

switch (\s -> stuff)

The computationstuff must run onsomestack, and it’s conve-
nient and conventional for it to run on the current stack. Butsup-
posestuff writess into a mutable variable (the ready queue, say)
and then, whilestuff is still running, another HEC picks ups
and tries to run it. Disaster! Two HECs are running two different
computations on the same stack. Fisher and Reppy recognizedthis
problem and solved it by putting a flag ons saying “I can’t run yet”,
and arranging that any HEC that picks ups would busy-wait until
the flag is reset, which is done byswitch whenstuff finishes
[6]. Although this works, it’s a bit of a hack, and would complicate

our semantics. The current GHC runtime deals with this by ensur-
ing that there is always a lock that prevents the thread from being
rescheduled until the switch has finished, and arranging to release
the lock as the very last operation before switching - again this is
fragile, and has been a rich source of bugs in the current implemen-
tation.

However, by integratingswitch with PTM we can completely
sidestep the issue, because the effects ofstuff are not published
to other HECs untilstuff commits and control transfers to the
new stack. To guarantee this, the implementation should commit
the transaction and change the HEC’s stack in a single, atomic
operation.

The other error we must be careful of is when a stack contin-
uation is the target of more than oneswitch — remember that
stack continuations are “one-shot”. To check for this errorwe need
an indirection: anSCont is represented by a pair of a pointer to
a stack and a bit to say when theSCont is used up. Another al-
ternative would be to keep a sequence number in the stack object,
incremented by everyswitch, and store the number in theSCont
object.

3.5 Global and stack-local states

Because the concurrency library is written in an cooperative fash-
ion, the code often needs to query for information like this:

• What is my thread identifier?
• Who is my scheduler?
• Where is the ready queue?

The code in Section 3.4.1 gives a more concrete example, in
which the scheduler’s data structure needs to be located. Inprinci-
ple there is nothing to prevent one adding aThreadId parameter
to every function that needs to know the thread identifier; and sim-
ilarly for the other cases like the scheduler’s task queues.However,
doing so is extremely inconvenient and non-modular. We are al-
ready, in effect, passing the state of the world to every (effectful)
function via the monad, and we would like all other state-passing
to be implicit.

3.5.1 Global state

Suppose the concurrency library wanted a global, ready-queue of
threads, shared among all HECs. Haskell provides no supportfor
such a thing, so programmers use the well-knownunsafePerformIO
hack:

readyQueue :: PVar ReadyQueue
readyQueue = unsafePerformIO $ atomicPTM $

newPVar emptyQueue

Top-level program transitions S; Θ =⇒ S′; Θ′

S | (E[newSLSKey M],D, h);Θ =⇒ S | (E[(return (r, M)], D, h); Θ r fresh (NewSLS)

S | (E[setSLS (r, M) N], D, h);Θ =⇒ S | (E[return ()], D[r 7→ N], h);Θ (SetSLS)

PTM transitions M ; Θ ⇒
D,h

N ; Θ′Ep[getSLS (r, M)];Θ ⇒
D,h

Ep[return D(r)]; Θ r ∈ dom(D) (GetSLS1)Ep[getSLS (r, M)];Θ ⇒
D,h

Ep[return M]; Θ r /∈ dom(D) (GetSLS2)

Figure 8: Operational semantics (stack-local state transitions)

This is obviously horrible, and the whole issue of accommodating
effectful but benign top-level computations in Haskell hasbeen
frequently and heatedly discussed on the Haskell mailing list2. For
the purposes of this paper we will simply assume thatsomedecent
solution is available, so that one can write something like this:

readyQueue :: PVar ReadyQueue
init readyQueue <- newPVar emptyQueue

Here the “init” keyword introduces a PTM transaction to be run
once, at module initialization time or at some subsequent point.
The effects permitted for such a transaction might be even more re-
stricted than usual, perhaps involving only allocation. The binding
should of course be monomorphic to avoid unsoundness, whichis
a well-known problem withunsafePerformIO.

3.5.2 Stack-local states

Now suppose we wanted to implement ahierarchical scheduler,
in which any thread can be a scheduler for its child threads. Then
there is no global ready queue; instead, each scheduler in the tree
maintains its own. This is just one example of a well-known prob-
lem with multithreaded programming, namely the need forthread-
local state. Other examples include: the seed for a random number
generator (sharing a global one is a concurrency bottleneck); the
stdin andstdout handles; and so on.

One might expect that the programmer could implement thread-
local states entirely in Haskell, using globally shared data struc-
tures, such as hash tables, indexed by some form of thread iden-
tifier. But this approach has a few drawbacks. First, it may not be
efficient: accessing a thread-local state could be much slower than
performing a regular memory reference, especially if the imple-
mentation used purely functional data structures. More importantly,
automatic garbage collection would not work for such states: the
programmer would have to free them manually when their corre-
sponding threads die, otherwise memory would be leaked.

Thus motivated, we propose to supportstack-local states(SLS)
directly in the substrate, using the following design shownin Fig-
ure 2:

data SLSKey a
newSLSKey :: a -> IO (SLSKey a)
getSLS :: SLSKey a -> PTM a
setSLS :: SLSKey a -> a -> IO ()

Each item of stack-local state is identified by a typedSLS key. For
example, the key forstdin might be of typeSLSKey Handle.
The getSLS operation maps the key to its correspondingly-typed
value, EachSCont carries a distinct mapping of keys to values,

2http://www.haskell.org/haskellwiki/Top_level_mutable_
state

namedD in our semantic rules, and this mapping persists across the
suspensions and resumptions caused byswitch; that is, anSCont
now has an identity.

The detailed semantics are given in Figure 8. Several pointsare
worth noticing:

• An SCont is represented by a pair(M, D) of a termM to
be evaluated and adictionaryD that maps SLS keys to values
(Figure 3).

• A running HEC(M, D, h) includes the dictionary of the run-
ning computation. Whenswitch switches to a new computa-
tion, it loads its dictionary into the HEC (rule(Switch) in Fig-
ure 7).

• ThenewSCont primitive makes a newSCont whose dictionary
is empty (rule(NewSCont)).

• The newSLSKey primitive takes aninitial value as its first ar-
gument, and a SLS Key is represented by a pair(r,M) of a
unique identifierr and the the initial valueM . Typically there
will be a handful of SLS keys (stdin, the current scheduler,
the random-number seed), but many stack continuations each
with a potentially-different set of bindings for the keys. The
SLS keys would usually be globally allocated; for example:

stdinKey :: SLSKey Handle
init stdinKey <- newSLSKey stdin

• If getSLS is given a key(r,M) whose identifierr is not present
in the dictionary for the current computation, it returns the
initial value M . This eliminates the necessity to initialize the
dictionary with a binding for every SLS that could possibly be
used.

• Stack-local state is manipulated only by the computation that
owns it, and hence does not need to be transacted. Hence
getSLS is a PTM operation, because it is convenient to be
able to read it during a PTM transaction, whilesetSLS is an IO
operation because we do not want the complication of having
to undosetSLS operations if the transaction aborts. Note that
setSLS operations are expected to be fairly rare.

• If the programmer wants to manipulatesharedstate accessed
via the SLS mechanism, or to treat SLS state transactionally,
the right thing to do is to make the SLS value aPVar and access
it using PTM transactions.

In implementation terms, the identifierr of a SLS key(r,M)
can be just a small integer, and the dictionary can be an arrayof
slots in the stack object. Some overflow mechanism is needed for
when there are more than a handful of SLS keys in use. Although
not shown in the formal semantics, it is worth noting that the
runtime system should automatically garbage-collect unused stack-
local states: a stack and its local state are deallocated at the same

time. An implementation is not required to reclaim unused SLS
key values because such values are supposed to be globally-shared
constants, and we don’t expect there to be very many of them.

3.5.3 HEC-local states?

One might naively expect the substrate to supportHEC-localstates
as well. A HEC could use local state to maintain its own scheduling
data structures, such as task queues. But, in reality, such structures
are almost always globally shared by all HECs so that load canbe
balanced using work stealing algorithms. In such cases global states
are often more suitable. Also, HEC-local states only appearto be
useful when writing the concurrency library. In contrast, stack-local
states have broader applications: end-users can use them asthread-
local states without much change.

More importantly, programming with HEC-local states can be
tricky, because such states aredynamically bound: the execution
of a sequential program can be interleaved on multiple HECs.A
sequential code block can access one HEC’s local state in onestep,
pause, be moved to a different HEC, and then access another HEC’s
state in the next step. In contrast, a sequential code block is always
bound to a stack during its execution, so the programmer can safely
assume that the SLS environment is fixed for a code block.

For these reasons, we do not currently plan to support HEC-
local states, although they could be easily added via another set of
primitives if desired.

4. Pre-emption, foreign calls, and asynchrony

rtsInitHandler :: IO ()
inCallHandler :: IO a -> IO a
outCallHandler :: IO a -> IO a
timerHandler :: IO ()
blackholeHandler :: IO Bool -> IO ()

Figure 9: The concurrency library callbacks

In addition to the substrate primitives shown in the previous sec-
tion, the substrate interface also includes some callback functions,
shown in Figure 9. These are functions supplied by the concurrency
library, that are invoked by the RTS3.

An external IO transition,S; Θ
a

=⇒ S′; Θ′, is an IO transition
tied to an actiona; see Figure 10. The actions include FFI in-calls,
timer events and blocking events.

4.1 Pre-emption

So far, the concurrency primitives introduced allow cooperative
scheduling: a Haskell thread can only switch to another thread by
voluntarily callingswitch. This section introduces a mechanism
for pre-emptivescheduling. This mechanism could be generalized
to handle other asynchronous signals too.

The RTS substrate maintains a timer that ticks every 50ms by
default. When a timer event is detected, the RTS substrate calls
a timer handler functiontimerHandler exported by the concur-
rency library.4 (This is the first time that the RTS calls the concur-
rency library; most of the calls work the other way around. Figure 9
summarizes all the call-backs we will discuss.)

3 Note that this means the RTS is statically bound to a particular concur-
rency library when the program is linked. Nevertheless, we envisage that it
will be possible to choose a concurrency library at link-time, or earlier. This
design does not make it possible to compose concurrency libraries from dif-
ferent sources at runtime, however.
4 More precisely, the handler is invoked at the first garbage collection point
following the timer event.

The timer handler is triggered on every HEC that is running
Haskell computation; i.e. is notsleepingor in an outcall. When
the timer handler is triggered on a HEC, the state of the current
computation is saved on the stack, and the timer handler usesthe
top of the stack to execute. The stack layout is set up in a way
as if the timer handler is being explicitly called from the current
Haskell computation, so when the timer handler finishes execution,
the original computation is automatically resumed.

This semantics for the timer handler makes it easy to imple-
ment pre-emption, because a stack continuation captured inside the
timer handler also contains the current computation on the HEC.
Typically the timer handler will simply switch to the next runnable
thread, as if the thread had invokedyield manually.

The RTS substrate must guarantee that timer handlers are called
only at safe points. For example, the timer handler must not inter-
rupt the final committing operation of a PTM transaction. Never-
theless, it is safe to call the timer handler during the script-building
phase of a PTM transaction. The PTM implementation should al-
low the timer handler to run a new transaction, even if an old trans-
action is already running on the same HEC.

Pre-emption has a slightly tricky interaction with stack-local
state. Because a SLS is initialized by the code running on that stack,
it is possible that the interrupt handler is called before such initial-
ization finishes. In such cases the interrupt handler will see the de-
fault initial value registered bynewSLSKey, and the programmer
must handle such cases explicitly.

4.2 Interrupting execution at thunks

In principle, any attempt to evaluate a thunk may see ablackhole
because the thunk is already being evaluated by another thread [11].
If a blackhole is found, the best general policy is to pause the cur-
rent thread until evaluation the thunk has completed (or at any rate
until there is reason to believe that itmayhave completed). This
implies that thunk evaluation sometimes needs to interact with the
scheduler. In the old RTS design, the scheduler is built intothe
RTS, so it is easy to implement this policy. In our new design,how-
ever, implementing this policy requires a delicate communication
between the substrate (which alone can detect when a thread evalu-
ates a thunk that is already under evaluation) and the library (which
alone can perform context switching and blocking of threads).

We propose to solve this problem using a special handler func-
tionblackholeHandler exported by the concurrency library. This
function is called by the RTS whenever evaluation sees a blackhole;
the execution model is the same astimerHandler.

The current runtime system design keeps track of the threads
suspended on thunks in a global list. The list is periodically checked
by the scheduler to see if any conflicting thunk evaluation has com-
pleted. To implement this polling design, theblackholeHandler
takes an argument of type(IO Bool), which is a function that can
be called by the concurrency library to test whether the thread can
be resumed. When evaluation enters a blackhole, the RTS substrate
creates such a function closure and pass it toblackholeHandler.

The (IO Bool) polling action is purely to allow the thread’s
status to be polled without trying to switch to the thread. Itis
safe to switch to the thread at any time: if the thunk is still under
evaluation, the thread will immediately callblackholeHandler
again. So the simplest implementation ofblackholeHandler just
puts the current thread back on the run queue, where it will betried
again in due course.

A caveat of this design is that handlers can re-enter: if a black-
hole is entered inside theblackholeHandler, the program may
enter an infinite loop! One possible solution is that the program-
mer can use stack-local state to indicate whether the threadis
already running ablackholeHandler, andblackholeHandler
falls back to busy waiting if re-entrance occurs.

External IO transitions S; Θ
a

=⇒ S′; Θ′

∅; ∅
Init
=⇒ (rtsInitHandler, ∅, h); ∅ h fresh (Init)

S; Θ
InCall M

=⇒ S | (inCallHandler M, ∅, h);Θ h fresh (InCall)

S | (r, D, h);Θ
InCallRet r

=⇒ S; Θ (InCallRet)

S | (E[outcall r], D, h);Θ
OutCall r

=⇒ S | (E[outcall r], D, h)outcall; Θ (OutCall)

S | (E[outcall r], D, h)outcall; Θ
OutCallRet M

=⇒ S | (E[M], D, h); Θ (OutCallRet)

S | (E[M], D, h);Θ
Tick h
=⇒ S | (E[timerHandler >> M)], D, h);Θ (TickEvent)

S | (E[M], D, h);Θ
Blackhole N h

=⇒ S | (E[blackholeHandler N >> M], D, h); Θ (Blackhole)

Figure 10: Operational semantics (external interactions)

4.3 Asynchronous exceptions

We would like to implement asynchronous exceptions [15] in the
concurrency library. Asynchronous exceptions are introduced by
thethrowTo operation:

throwTo :: ThreadId -> Exception -> IO ()

which raises the given exception in the context of a target thread.
Implementing asynchronous exceptions is tricky, particularly in
a multi-processor context: the target thread may be runningon
another processor, it may be in the run queue waiting to run onsome
processor, or it may be blocked. The implementation ofthrowTo
must avoid conflicting with any other operation that is trying to
access the target thread, such as its scheduler, or a thread trying to
wake it up.

We can divide the execution of an asynchronous exception into
two steps:

1. the invoking thread communicates to the target thread that an
exception should be raised; and

2. the target thread actually raises the exception.

Fortunately, only step (2) absolutely requires specialized substrate
support, namely a single operation, given earlier in Figure2:

raiseAsync :: Exception -> IO ()

The raiseAsync function raises an exception in the context of
the current thread, but in a special way: any thunk evaluations
currently under way will be suspended [20] rather than simply
terminated as they would be by a normal, synchronous exception. If
the suspended thunk is ever forced later, evaluation can be restarted
without loss of work.

Step (1) can be implemented entirely in the concurrency library.
One possible approach is to have the exception posted to the target
thread via a PVar that is part of its local state and checked dur-
ing a context-switch. Compared to the current implementation in
GHC’s RTS, this is not quite as responsive: the target threadmay
not receive the exception until its time-slice expires, or until it is
next scheduled. We could improve this by providing an additional
substrate primitive to interrupt a remote HEC at its next safe point.
Such an interrupt could be delivered as a simulated timer interrupt
or as a new, distinct signal with its own handler.

Compared to the implementation ofthrowTo in the current
runtime system, implementingthrowTo in Haskell on top of the
substrate is a breeze. PTM means that many complicated locking
issues go away, and the implementation is far more likely to be
bug-free.

4.4 Foreign calls

Foreign calls and concurrency interact in delightfully subtle ways
[16]. It boils down to the following requirements:

• The Haskell runtime should be able to process in-calls from
arbitrary OS threads.

• An out-call that blocks or runs for a long time should not
prevent execution of the other Haskell threads.

• An out-call should be able to re-enter Haskell by making an
in-call.

• Sometimes we wish to make out-calls in a particular OS thread
(“bound threads”).

Fortunately the substrate interface that makes all this possible
is rather small, and we can push most of the complexity into the
concurrency library.

In-call handler Whenever the foreign code makes a FFI in-call to
a Haskell functionhFunc, the RTS substrate allocates a fresh HEC
with a fresh stack, and starts executing Haskell code on the new
HEC. But, instead of running the Haskell functionhFunc directly,
it needs to hand over this function to the concurrency library, and
let the concurrency libraryschedulethe execution ofhFunc!

For this purpose, the concurrency library exports a callback
function to accept in-calls from the substrate:

inCallHandler :: IO a -> IO a

When an in-call tohFunc is made, the RTS substrate executes
(inCallHandler hFunc) on a fresh HEC with a fresh stack,
using the current OS thread. WheninCallHandler returns, the
HEC is deallocated and control is transferred back to foreign code,
passing the return value.

The in-call handler is the entry point of the concurrency library:
the schedulers accept jobs from the in-call handler. In a standalone
Haskell program, the RTS makes an in-call toMain.main after the
concurrency library is initialized (Section 4.5).

Out-call handler In order to give the concurrency library control
over the way an out-call is made, the substrate arranges to invoke
the callbackoutCallHandler for each safe out-call. For example,
the following out-call:

foreign import ccall safe "stdio.h putchar"
putChar :: CInt -> IO CInt

would be desugared into a call tooutCallHandler at compile-
time:

putChar arg = outCallHandler (putChar1 arg)
putChar1 arg = ... [the actual out-call] ...

The outCallHandler function can then decide how to schedule
the execution of the actual out-call,putChar1.

The compiler implementation can choose to bypass the out-call
handler for unsafe calls to improve performance.

4.5 Initialization handler

The concurrency library can be initialized through a callback func-
tion. When a Haskell program is started, the RTS will initialize
itself, create a fresh HEC, and run thertsInitHandler callback
function. This function should create all the necessary data struc-
tures in the concurrency library, initialize the schedulers and make
them ready to accept FFI in-calls.

5. Developing concurrency libraries
The main task of the concurrency library is to implement the no-
tion of a Haskellthread and to provide application programming
interfaces such asforkIO, MVars and STM. Given the underlying
substrate interface, there are many design choices for the concur-
rency library. Here we discuss some possible designs.

The substrate design suggests that the concurrency library
should be written in a cooperative fashion. ASCont represents
the continuation of a Haskell thread. Threads can be createdus-
ing newSCont and make context switches to each other. Thread-
local information, such as thread identifiers, can be implemented
straightforwardly using stack-local states.

The interesting question is how to design the scheduler. Naively,
the simplest scheduler can consist of a globally shared datastruc-
ture with some common procedures, such as adding a new thread,
switching to the next thread, blocking and unblocking, etc.How-
ever, the scheduler can be quite complicated when many concur-
rency features are implemented. Besides the concurrency features
that already exist in the current GHC, it would also be usefulto
make the scheduler code extensible by the end user, so new concur-
rency features can be readily added. Thus, the concurrency library
needs a modular and extensible design. A promising design pattern
is the concept ofhierarchical schedulersdiscussed in Section 5.2.

5.1 A simple concurrency library

This section uses pseudo code to illustrate how to write a simple
concurrency library. We assume that the scheduler’s data structure
is globally shared and initialized inrtsInitHandler. To create a
Haskell thread, we simply create a stack continuation and submit it
to the scheduler:

forkIO :: IO () -> IO ThreadId
forkIO action = do

sc <- newSCont action
atomicPTM $ do
(put sc in scheduler’s queue)
id <- (create new thread id)
(initialize the new thread’s SLS)
return $ ThreadId id

To make an context switch by voluntarily yielding control, we
use theswitch primitive together with a PTM transaction:

yield :: IO ()
yield = switch $ \c -> do

(store c into scheduler’s queue)
n <- (get the next thread to run)
(update scheduler’s state and/or SLS)
return n

To support pre-emptive scheduling, we can simply set the timer
handler to beyield:

timerHandler :: IO ()
timerHandler = yield

Every scheduler must provide ablackholeHandler, too. The
simplest implementation ofblackholeHandler is just this:

blackholeHandler :: IO Bool -> IO ()
blackholeHandler _ = yield

A thread suspended on a thunk will just go back on the run
queue, but that’s OK; next time it runs it will either immediately
invoke blackholeHandler if the thunk is still under evaluation,
or it will continue. This is a perfectly reasonable, if inefficient,
implementation ofblackholeHandler.

The code above forms the very basic skeleton of the concur-
rency library. Next, we implement the popularMVar synchroniza-
tion interface. AnMVar can be implemented as aPVar containing
its state. If theMVar is full, it has a queue of pending write requests;
if the MVar is empty, it has a queue of pending read requests. Each
pending request is attached with a function closure (of typePTM())
that can be called tounblockthe pending thread.

data MVar a = MVar (PVar (MVState a))
data MVState a = Full a [(a, PTM ())]

| Empty [(PVar a, PTM ())]

The following code shows how to implementtakeMVar; the
putMVar operation is the dual case. A pending read request is
implemented using a temporaryPVar. If the MVar is empty, the
current thread will be blocked, but a function closure is created
to unblock the current thread later. If theMVar is full and there
are additional threads waiting to write to theMVar, one of them is
unblocked by executing its corresponding closure.

takeMVar :: MVar a -> IO a
takeMVar (MVar mv) = do

buf <- atomicPTM $ newPVar undefined
switch $ \c -> do
state <- readPVar mv
case state of
Full x [] -> do

writePVar mv $ Empty []
writePVar buf x
return c

Full x l@((y,wakeup):ts) -> do
writePVar mv $ Full y ts
writePVar buf x
wakeup
return c

Empty ts -> do
let wakeup = (put c into scheduler’s queue)
writePVar mv $ Empty (ts++[(buf,wakeup)])
n <- (get the next thread to run)
(update scheduler’s state and/or SLS)
return n

atomicPTM $ readPVar buf

In a real implementation, the above code can be optimized by
using a non-transactional mutable state (such as IORef) forthebuf
variable, because its operations are guaranteed not to conflict. Also,
we should use a double-ended queue to avoid the++ in theEmpty
case.

5.2 Developing hierarchical schedulers

An important goal of the new RTS design is to implementhierar-
chical scheduling[19, 9] in concurrency libraries. The idea is that
each thread can act as a parentingschedulerthat divides its CPU
cycles on its children threads (or,schedulees) and manages the in-
terleaving of execution. If a child thread itself can also act as a
parenting scheduler for other threads, all the threads in the system
form a tree-like scheduling hierarchy.

It is not difficult to implement a specific system with some
scheduling hierarchy; the challenge is to make the code of sched-

ulerscomposable: a child thread, without knowing all the imple-
mentation details of its parenting scheduler, can also act as a sched-
uler itself and have descendants.

A composable design of hierarchical schedulers can be bene-
ficial to applications that have their own scheduling requirements.
For example, to process a group of concurrent tasks with different
priorities, a thread can act as a priority scheduler and run the tasks
in children threads. Hierarchical scheduling also gives the program-
mer more control in concurrent programming: if a thread wants to
run some tasks speculatively with a timeout limit and only needs
the result of the task that finishes first, it can act as a scheduler and
monitor the execution of individual tasks in its children threads.

It would also be appealing to make the scheduler codereusable,
so some generic scheduling mechanisms, such as time sharing, pri-
ority scheduling, tentative computing and time-outs, can be imple-
mented in library modules and employed by any thread.

The substrate design introduced in this paper suggests thatsuch
hierarchical schedulers can be developed in a cooperative fashion,
in which a scheduler and its schedulees work together using a
common interface. The common interface isabstractin the sense
that the implementation details of the scheduler and the schedulee
are kept hidden from each other: they can work together as long as
they both respect the interface. Such an interface can consist of two
parts:

• Shared data structuresused to communicate between the sched-
uler and the schedulee. For example, a thread needs to know
“how many time slices do I have”. If the thread runs out of its
allocated time slices, it needs to yield to its scheduler, soit also
needs to know “who is my scheduler”. Such shared data can
be implemented using stack-local states and transactionalvari-
ables.

• Protocols that specify how the scheduler and the schedulee
should cooperate using the shared data structures and the
switch primitive. For example, the protocol may specify that
(i) the scheduler always assigns some time slices to the sched-
ulee before switching to it, and (ii) the schedulee must yield to
its scheduler as soon as its time slices are used up.

We explored a few possible designs of hierarchical scheduling
in a prototyping environment that simulates the substrate interface
using continuation monads. As a first step, we developed a round-
robin scheduler as a library module. The round-robin scheduler can
be parameterized by the size of a time slice, and multiple schedulers
can be composed in a tree-like hierarchy. We then developed atop-
level, SMP scheduler to distribute work on multiple OS threads
using work stealing algorithms. The common scheduling interface
is designed such that each round-robin scheduler treats itsparenting
scheduler abstractly, without knowing the parent’s configuration.
Thus, a user program can specify the scheduling hierarchy by
composing the instances of schedulers at the top-level.

6. Implementation and performance
It is a substantial engineering task to modify the GHC RTS to sup-
port the substrate interface. Currently, our prototype implementa-
tion supports most of the substrate interface, except a few primi-
tives such as asynchronous exceptions and blackhole handlers. Our
prototype implementation is not yet optimized for multiprocessors
and FFI.

Although there is still much work left to be done, our existing
prototype already allows us to to develop simple concurrency li-
braries and obtain performance measurements. Building allconcur-
rency features on top of a software transactional memory interface
certainly adds more overheads to the system, and we hope it isnot
too much. On top of our substrate prototype, we developed a sim-

ghc-6.6 fake-ptm real-ptm
spawn-test 18 32 46

producer-consumer 4.3 7.0 16.2
cheap-concurrency 6.5 7.1 12.6

chameneos 6.3 4.8 26

Figure 11: Benchmark results (program execution time in seconds)

ple concurrency library that supports single-processor, round-robin
scheduling and MVar operations. We then tested its performance
and yielded some preliminary results.

For many multithreaded programs that are computation-intensive,
context switching and synchronization is rarely the bottleneck, so
the concurrency implementation has little impact on the overall per-
formance. To reveal the actual overheads, we picked a few bench-
marking programs:spawn-testperforms a stress test on spawning
new threads usingforkIO; producer-consumerperforms a stress
test on synchronizing two threads usingtakeMVar andputMVar;
cheap-concurrencyand chameneosare concurrency benchmarks
from the Computer Language Shootout Benchmarks [23].

The test results are shown in Figure 11. The table shows pro-
gram execution time in three different configurations:

• ghc-6.6: the vanilla GHC 6.6 RTS.
• real-ptm: our modified GHC RTS substrate prototype with the

concurrency library written in Haskell. The PTM implementa-
tion reused most code in the GHC 6.6 STM implementation.

• fake-ptm: same asreal-ptm, except that the PTM implementa-
tion is fake. APVar is implemented as anIORef and there is no
transaction control. This configuration only works correctly on
a single threaded RTS; the only purpose of this configurationis
to reveal the overhead of PTM alone.

In these benchmarks, the new RTS design (columnreal-ptm)
is 2-4 times slower than the existing GHC RTS (columnghc-6.6).
By comparingreal-ptmand fake-ptm, we can see that most of the
additional overheads are caused by using PTM, which is a purely
software implementation of transactional memory.

Although the new RTS design has a significant overhead, the
overall synchronization performance still remains in roughly the
same order of magnitude—it is still much better than using OS
threads! On the other hand, these results suggest that the perfor-
mance of software transactional memory needs to be improvedto
deliver performance comparable with that of locks.

7. Related work
The idea of usingcontinuationsto write a concurrency library in
the language itself is not new [25, 22, 21]. There are two differ-
ent strategies for implementinglightweightcontinuations in a lan-
guage: first-class continuations can be made cheap for CPS-based
runtime implementations [1] such as SML/NJ, and one-shot contin-
uations [3] are more suitable for stack-based implementations. Our
design uses the latter because the GHC runtime model is stack-
based. In Haskell, the CPS monad can also be used to implement
lightweight concurrency [5], but this approach cannot support pre-
emption and it is thus limited to applications where cooperative
scheduling is suitable.

Morrisett and Tolmach[17] extended continuation-based con-
currency for SML/NJ to multiprocessors, by adding primitives
types and operations for virtual processors and synchronization.
The Sting language [13, 14] is a variant of Scheme that supports
multiple parallel-programming constructs in a unified framework,
which includes threads and virtual processors as primitivetypes.

Fisher and Reppy designed BOL as a compiler intermediate lan-
guage to implement concurrency mechanisms [6]. They observed
the problem we mentioned in Section 3.4.2, that a continuation
shall not be used until the current thread has yielded control. BOL
solves this problem by locking the current thread before publish-
ing the continuation; our design of theswitch primitive elegantly
solves this problem by combining context switching with a mem-
ory transaction.

The recent Manticore project [8, 18, 7] is very similar to our
work. The Manticore language is specifically designed to develop
low-level runtime frameworks that support heterogeneous paral-
lelism and complex scheduling policies. Manticore is basedon a
strict, ML-like language design; our design uses the Haskell lan-
guage itself, which is pure and lazy, and also deals with special
problems in Haskell such as thunk blackholing. Our HEC abstrac-
tion is similar to Manticore’s notion of avproc (virtual processor).
Manticore uses thecompare-and-swapoperation and concurrent
queues as synchronization primitives. In contrast, our substrate sup-
ports the higher-level notion oftransactional memory. On the other
hand, the Manticore substrate supports load-balancing andmigra-
tion across vprocs, whereas we handle these entirely withinthe li-
brary.

Lastly, Berthold et. al. designed a run-time environment for
implicitly parallel programs, using Concurrent Haskell and the
existing GHC runtime system as a substrate [2].

8. Summary
This paper proposes the design of a substrate interface for develop-
ing concurrency libraries in Haskell. This design uses transactional
memory as the synchronization primitive, and a special formof
continuations for implementing lightweight concurrency.This de-
sign simplifies the GHC runtime system; it also improves the safety
and customizability of concurrency implementation.

Up to now, we have a prototype implementation with prelimi-
nary performance results that look promising. Nevertheless, the de-
sign needs to be further validated (and improved as needed) through
a full implementation of the existing concurrency featuresin GHC,
and some performance tuning is definitely needed. There is still
plenty of work left to be done.

Acknowledgments
We would like to thank Tim Harris, Norman Ramsey and Olin
Shivers for their warmhearted participation in discussingthe new
RTS design. In addition, we thank all the PL club members at the
University of Pennsylvania and the anonymous reviewers fortheir
valuable comments. This work is supported by NSF grant CCF-
0541040.

References
[1] A. Appel. Compiling with Continuations. Cambridge University

Press, Cambridge, 1992.
[2] J. Berthold, A. Al-Zain, and H.-W. Loidl. Adaptive High-Level

Scheduling in a Generic Parallel Runtime Environment. InSympo-
sium on Trends in Functional Programming (TFP), New York, USA,
April 2007.

[3] C. Bruggeman, O. Waddell, and R. K. Dybvig. Representingcontrol
in the presence of one-shot continuations. pages 99–107, May 1996.

[4] M. M. T. Chakravarty, R. Leshchinskiy, S. Peyton Jones, G. Keller,
and S. Marlow. Data parallel haskell: a status report. InDAMP 2007:
Workshop on Declarative Aspects of Multicore Programming. ACM
Press, 2007.

[5] K. Claessen. A poor man’s concurrency monad.Journal of Functional
Programming, 9(3):313–323, 1999.

[6] K. Fisher and J. Reppy. Compiler support for lightweightconcur-
rency. Technical memorandum, Bell Labs, Mar. 2002.

[7] M. Fluet, M. Rainey, and J. Reppy. Nested schedulers for heteroge-
neous parallelism, submitted for publication, 2007.

[8] M. Fluet, M. Rainey, J. Reppy, A. Shaw, and Y. Xiao. Manticore: A
heterogeneous parallel language. InProceedings of the Workshop on
Declarative Aspects of Multicore Programming (DAMP 2007), pages
37–44, Jan. 2007.

[9] B. Ford and S. Susarla. CPU Inheritance Scheduling. InUsenix
Association Second Symposium on Operating Systems Design and
Implementation (OSDI), pages 91–105, 1996.

[10] T. Hallgren, M. P. Jones, R. Leslie, and A. Tolmach. A principled
approach to operating system construction in haskell. InICFP ’05:
Proceedings of the tenth ACM SIGPLAN international conference
on Functional programming, pages 116–128, New York, NY, USA,
2005. ACM Press.

[11] T. Harris, S. Marlow, and S. Peyton Jones. Haskell on a shared-
memory multiprocessor. InHaskell ’05: Proceedings of the 2005
ACM SIGPLAN workshop on Haskell, pages 49–61. ACM Press,
September 2005.

[12] T. Harris, S. Marlow, S. Peyton Jones, and M. Herlihy. Composable
memory transactions. InACM Symposium on Principles and Practice
of Parallel Programming (PPoPP’05), June 2005.

[13] S. Jagannathan and J. Philbin. A customizable substrate for
concurrent languages. InProceedings of the Conference on
Programming Language Design and Implementation (PLDI), pages
55–67, New York, NY, 1992. ACM Press.

[14] S. Jagannathan and J. Philbin. A foundation for an efficient
multi-threaded scheme system. InProc. LISP and Functional
Programming, pages 345–357, 1992.

[15] S. Marlow, S. Peyton Jones, A. Moran, and J. Reppy. Asynchronous
exceptions in Haskell. InACM Conference on Programming
Languages Design and Implementation (PLDI’01), pages 274–285,
Snowbird, Utah, June 2001. ACM Press.

[16] S. Marlow, S. Peyton Jones, and W. Thaller. Extending the Haskell
foreign function interface with concurrency. InProceedings of the
ACM SIGPLAN workshop on Haskell, pages 57–68, Snowbird, Utah,
USA, September 2004.

[17] J. G. Morrisett and A. Tolmach. Procs and locks: a portable
multiprocessing platform for Standard ML of New Jersey. In
PPOPP ’93: Proceedings of the fourth ACM SIGPLAN symposium
on Principles and practice of parallel programming, pages 198–207,
New York, NY, USA, 1993. ACM Press.

[18] M. Rainey. The Manticore runtime model, Master’s paper, Departent
of Computer Science, University of Chicago, 2007.

[19] J. Regehr. Using Hierarchical Scheduling to Support Soft Real-Time
Applications on General-Purpose Operating Systems, Ph.D.thesis,
University of Virginia, 2001.

[20] A. Reid. Putting the spine back in the Spineless TaglessG-Machine:
An implementation of resumable black-holes. volume 1595 of
Lecture Notes in Computer Science, pages 186–199, 1999.

[21] J. Reppy.Concurrent programming in ML. Cambridge University
Press, 1999.

[22] O. Shivers. Continuations and threads: Expressing machine
concurrency directly in advanced languages. InProceedings of the
Second ACM SIGPLAN Workshop on Continuations, January 1997.

[23] The Computer Language Shootout Benchmarks.
http://shootout.alioth.debian.org/.

[24] P. Trinder, K. Hammond, J. Mattson, A. Partridge, and S.Pey-
ton Jones. GUM: a portable parallel implementation of haskell.
In ACM Conference on Programming Languages Design and Imple-
mentation (PLDI’96). ACM Press, Philadelphia, May 1996.

[25] M. Wand. Continuation-based multiprocessing. InProceedings of the
1980 LISP Conference, pages 19–28, Aug. 1980.

