Int J Parallel Prog
DOI 10.1007/s10766-013-0252-y

Boosting CUDA Applications with CPU-GPU
Hybrid Computing

Changmin Lee - Won Woo Ro - Jean-Luc Gaudiot

Received: 10 September 2012 / Accepted: 14 May 2013
© Springer Science+Business Media New York 2013

Abstract This paper presents a cooperative heterogeneous computing framework
which enables the efficient utilization of available computing resources of host CPU
cores for CUDA kernels, which are designed to run only on GPU. The proposed
system exploits at runtime the coarse-grain thread-level parallelism across CPU and
GPU, without any source recompilation. To this end, three features including a work
distribution module, a transparent memory space, and a global scheduling queue are
described in this paper. With a completely automatic runtime workload distribution,
the proposed framework achieves speedups of 3.08 x in the best case and 1.42x on
average compared to the baseline GPU-only processing.

Keywords Heterogeneous computing - Parallel processing - GPGPU - CUDA

1 Introduction

General-Purpose computing on Graphics Processing Units (GPGPU) has recently
emerged as a powerful computing paradigm because of the massive parallelism pro-
vided by several hundreds of processing cores [5,18]. Under the GPGPU concept,
NVIDIA has developed a C-based programming model, Compute Unified Device

C.Lee - W. W. Ro (X)
Yonsei University, Seoul 120-749, Republic of Korea
e-mail: wro@yonsei.ac.kr

C. Lee
e-mail: exahz@yonsei.ac.kr

J.-L. Gaudiot
University of California, Irvine, CA 92697-2625, USA
e-mail: gaudiot@uci.edu

Published online: 22 May 2013 &\ Springer

Int J Parallel Prog

Architecture (CUDA), which provides greater programmability for high-performance
graphics devices. As a matter of fact, general-purpose computing on graphics devices
with CUDA helps improve the performance of many applications under the concept
of a Single Instruction Multiple Thread model (SIMT).

Although the GPGPU paradigm successfully provides significant computation
throughput, its performance could still be improved if we could utilize the idle CPU
resource. Indeed, in general, the host CPU is being held while the CUDA kernel exe-
cutes on the GPU devices; the CPU is not allowed to resume execution until the GPU
has completed the kernel code and has provided the computation results. The main
motivation of our research is to exploit parallelism across the host CPU cores in addi-
tion to the GPU cores. This will eventually provide additional computing power for the
kernel execution while utilizing the idle CPU cores. Our ultimate goal is thus to pro-
vide a technique which eventually exploits sufficient parallelism across heterogeneous
processors.

The paper proposes Cooperative Heterogeneous Computing (CHC), a new com-
puting paradigm for explicitly processing CUDA applications in parallel on sets of
heterogeneous processors including x86 based general-purpose multi-core proces-
sors and graphics processing units. There have been several previous research projects
which have aimed at exploiting parallelism on CPU and GPU. However, those previous
approaches require either additional programming language support or API develop-
ment. As opposed to those previous efforts, our CHC is a software framework that
provides a virtual layer for transparent execution over host CPU cores. This enables the
direct execution of CUDA code, while simultaneously providing sufficient portability
and backward compatibility.

To achieve an efficient cooperative execution model, we have developed three
important techniques:

— A workload distribution module (WDM) for CUDA kernel to map each kernel
onto CPU and GPU

— A memory model that supports a transparent memory space (TMS) to manage the
main memory with GPU memory

— A global scheduling queue (GSQ) that supports balanced thread scheduling and
distribution on each of the CPU cores

We present a theoretical analysis of the expected performance to demonstrate the
maximum feasible improvement of our proposed system. In addition, the performance
has been evaluated on a real system, and the results show that speedups as high as
3.08x (in the best case) could be achieved. On average, the complete CHC system
shows a performance improvement of 1.42x over GPU-only computation with 14
CUDA applications.

Therest of the paperis organized as follows. Section 2 introduces the existing CUDA
programming model and the related background. Section 3 describes a motivation
and an experimental analysis of this work. In Sect. 4, we present the design and
implementation of the CHC framework. Section 5 gives preliminary results for CUDA
applications by adopting the CHC framework. Section 6 discusses the experimental
results of our CHC framework and Sect. 7 summarizes the major differences between
our system and related work. Finally, we conclude the work in Sect. 8.

@ Springer

Int J Parallel Prog

2 Background

Originally designed as special hardware for real-time and high-definition 3D graphics,
GPUs have evolved into many-core processors to accelerate highly parallel computa-
tions. The GPU is designed such that more transistors are devoted to processing cores
rather than the sophisticated control hardware, and therefore able to address problems
that can be represented as data-parallel computations.

Many applications with data-parallelism can map data elements to processing
threads. For each data element we can only read from the input, execute some opera-
tions on it, and write to the output; it is possible to have multiple inputs and multiple
outputs. For example, video processing applications such as video encoding and decod-
ing can map image frames, blocks, and pixels to processing threads with dedicated
inputs and outputs.

The CUDA technology [19] introduced by NVIDIA in 2006 has become the most
effective solution for general-purpose parallel computing on GPUs. It is designed to
leverage processing cores (or Streaming Multiprocessors, SMs) in NVIDIA GPUs to
execute data-parallel functions, called kernels. To this end, CUDA provides a pro-
gramming model to deliver an efficient way to express the kernels with a minimal
language extension.

The CUDA programming model consists of three abstractions, including a thread
hierarchy, a memory hierarchy, and barrier synchronization (as shown in Fig. 1). A
CUDA thread is the smallest unit of the GPU processing, and therefore can provide
fine-grained data parallelism and thread-level parallelism (TLP). During a kernel exe-
cution, a thread has per-thread local memory to store its private data, and they may
access data from the shared memory or the global memory.

A block of threads can provide coarse-grained data parallelism. Each block of
threads can be executed independently in parallel, so that this independence allows
thread blocks to be scheduled in any order across any available SMs. In fact, threads
within a block cooperate with each other by sharing data through shared memory,
which is dedicated to an SM.

4 N
GPU with 2 SMs
Grid 0
Block 0 SM 0: ; Block 1 SM 1
Local Local Local Local
Memory Memory Memory Memory
Thread Thread Thread Thread
(0,00 |l (N,N) 0,0) [(N,N)
Shared Memory | | Shared Memory |
I I I [
v v v v
| Global Memory |
U J

Fig. 1 The CUDA architecture: thread hierarchy and memory hierarchy

@ Springer

Int J Parallel Prog

Synchronization between threads to control memory accesses is allowed by explic-
itly specifying synchronization points in the kernel. The synchronization point,
called a barrier, keeps all threads in the block from proceeding to the next instruc-
tion until all other threads reach the barrier. It is necessary to prevent race condi-
tions, and thus to ensure that all threads are reading the correct values from shared
memory.

Based on these core abstractions, CUDA provides a heterogeneous programming
model that enables to use the right core for the right job in order to achieve high
performance.

3 Motivation

In the current heterogeneous computing models such as CUDA and OpenCL, CPU
cores and GPU cores cooperate with each other (e.g., co-processing). They assume
that a parallel portion of a code (i.e., CUDA kernels) runs on a GPU and a serial
portion of a code (i.e., the rest of the C program) runs on a CPU [18]. This hetero-
geneity across different processing units is a similar concept to that of the heteroge-
neous chip multiprocessor which exploits both large cores and small cores to address
a much wider spectrum of system workloads [13]. In CUDA applications, then, a
critical question is how to structure a certain portion of codes to expose as much
data parallelism. We have observed that CUDA applications are typically designed
to leverage the massive parallelism only with GPUs. Exploiting the massive paral-
lelism with host threads is not a concern for the program design, so that CPU cores
are held in the idle state even at runtime. We believe that it is interesting to increase
the performance of a CUDA application at a given time by using all the processing
units.

3.1 Problem Observation

One of the major roles of the host CPU for the CUDA kernel is limited to controlling
and accessing the graphics devices, while the GPU device provides a massive amount
of data parallelism. Figure 2a shows an example where the host controls the execution

CPU GPU CPU GPU
Serial code ———/l —————————— Serial code ---["- —————————
Kernel func<<<>>> () mmmm mm o o - - ———— Kernel func<<<>>> ()) mmmm mm mm - -

waiting ééﬁ éﬁﬁﬁs

Serial code 00— ——————— — -
Serial code 00— ———————— — - - a
/; Execution time reduction
(@) (b)

Fig. 2 Execution flow of CUDA program: a limitation where CPU stalls and b cooperative execution in
parallel

@ Springer

Int J Parallel Prog

Threads

A

WA

Initialization Post-processing
Kernel Kernel
Execution 1 Execution 2

> Execution Time

Fig. 3 Average CPU load during a CUDA application runtime

flow of the program only, while the device is responsible for executing the kernel. Once
a CUDA program is started, the host processor executes the program sequentially until
the kernel code is encountered. As soon as the host calls the kernel launch function,
the device starts to execute the kernel with a large number of hardware threads on the
GPU device. In fact, the host thread is held in the idle state until the device reaches
the end of the kernel execution.

Certainly, CUDA is capable of enabling asynchronous concurrent execution
between host and device, which returns a control to the host before the device has
completed a requested task (i.e., non-blocking). In addition, it is possible to use any
other programming languages such as OpenMP and Pthreads to allow host threads to
consume the CPU time. However, the concurrent execution gives the control that can
only perform operations such as memory copy, setting other input data, and kernel
launches using streams, and using an additional programming language in addition to
CUDA can make harder to design the program structure.

Figure 3 illustrates a result of our motivation experiment, which shows the CPU
utilization during application runtime. Since the CUDA applications used in this
experiment has very short execution time, we have modified the code of the pro-
gram by increasing the number of iterations for the kernel launch statement, and
the input data size in order to measure the CPU utilization value correctly; we have
measured the utilization every 10 milliseconds by using the time stamp counter
instruction (i.e., rdtscp). In this experiment, most of CUDA applications uses just
one CPU thread for the data initialization and the post-processing, and the CPU
thread is held in the idle state during the kernel execution. A few of the CUDA
applications, such as kmeans from Rodinia benchmark suite [6], is designed such
that they use a multithreaded language (e.g., OpenMP) for using multiple CPU
threads.

In most of the cases, as a result, the idle time causes an inefficient utilization of the
CPU hardware resource of the host machine. However, there is an opportunity to boost
CUDA applications if the idle cores participate in the computations of kernels. The
execution time could be reduced as much as the participation core count. This paper
focuses on allowing the idle cores to cooperate with GPUs for the kernel execution in
order to reduce the execution time of CUDA applications (as depicted in Fig. 2b), and
thus maximizing system throughput at a given time.

@ Springer

Int J Parallel Prog

3.2 Problem Analysis

As mentioned briefly, CUDA threads within a single block may access a shared
memory space to communicate with each other (i.e., inter-thread synchronization),
and threads across multiple thread blocks may access the global memory space (i.e.,
inter-block synchronization). However, CUDA supports inter-thread synchronization
method only. The reason for this restriction is to allow flexibility in the hardware
thread scheduler, and to enable the code to be scalable. The only supported inter-block
synchronization method is to launch another kernel within the same stream.

In addition, thread blocks within a kernel are required to execute independently.
Each of them can get allocated to any available SM so that the GPU can execute them in
any order, in parallel or in series. For thread blocks with inter-thread synchronization
only, it would be possible to execute thread blocks on any processing unit: CPUs,
GPUs, or coprocessors.

The three computational kernels used in this experimental analysis are selected
from the CUDA Software Development Kit (SDK) (see Table 1 which also shows
the initial execution time for each). For the initial analysis, we have measured the
execution delay using only the GPU device and the delay using only the host CPU
(through the LLVM JIT compilation technique [7,8,14]). In addition, the workload
has been configured either as executing only one thread block or as executing the
complete set of thread blocks.

Figure 4a shows the way to find an optimal workload ratio; the x-axis represents
the workload ratio in terms of thread blocks assigned to the CPU cores against thread
blocks on the GPU device. With having more thread blocks on the CPU cores, fewer
thread blocks would be assigned to the GPU device. Therefore, the execution delay
for GPU is proportionally reduced along the x-axis. For example, 176:80 as shown
in Fig. 4c means that 176 thread blocks are executed on the GPU device, and the
remaining 80 thread blocks are assigned to the CPU cores, which means that GPU
takes 68.75 % of the workload of the kernel and CPU takes 31.25 %.

From the above analysis, the maximum value between the CPU execution delay
and the GPU execution delay at a given workload ratio can be considered as the total
execution delay. Thus, each of the crossing points of two lines in Fig. 4 gives the

Table 1 Initial investigation on three CUDA applications

Application # Thread Workload Execution time (ms) Initial analysis
blocks
CPU only GPU only The best Perf. Optimal ratio
(CPU:GPU)

Binomial options 512 1 17.43 1.15 556.06 (x1.06) 6.2:93.8

512 8926.6 593.0
matrixMul 128 1 44.23 12.84 1274.15 (x1.29) 22.5:77.5

128 5661.8 1644.1
Transpose 256 1 0.20 0.25 28.81 (x2.19) 55.5:44.8

256 52.21 64.29

@ Springer

Int J Parallel Prog

-
3
3

10000 Maximum reduction in execution time

—_ when using the cooperation computing m
g £ 600
- @® 500
£ £
- = 40 Fo /
s 100 S 300 /_<
5 S 200 { OmEO=EO
g 10 8
2 2 100
w Optimal work distribution ratio w °
14 511:1 5102 508:4 504:8 5039 496:16 495:17 488:24 487:25 480:32
GPU=100 CPU=100 GPU: CPU
io (Y e GPU Onl . —O=CPU
Workload Ratio (%) epy om;, Workload Ratio oru
(a) (b)
3000
—_— [2)
g 35 £ 2500
< 3 o
O o5 £ 2000
£ =
= 20 c 150
< S
e " E 1000
g 10 14
8 5 3 500
5 w p——
w o 0
T Y 3 2 oe 8§ 3 LR 8 3 08 1271 1262 1244 1208 112116 10424 96:32 64:64
& & & & § § g8 8 g B 8 GPU:CPU =0 GPU
GPU: CPU —0=GPU Workload Ratio o CPU
Workload Ratio e CPU
(©) d)

Fig.4 Initial analysis: a a prediction method of theoretical performance improvement with initial execution
time b Binomial options ¢ transpose d matrixMul

optimal distribution ratio as well as the maximum performance with the initial data
and the mathematical analysis.

4 Software Framework Design

The CHC framework is to use the idle computing resource with concurrent execution of
the CUDA kernel on both CPU and GPU (as described in Fig. 2b). An overview of our
proposed CHC system is shown in Fig. 5. It contains two runtime procedures for each
kernel launched. Each kernel execution undergoes those procedures. The first includes
the Workload Distribution Module (WDM), designed to apply the distribution ratio to
the kernel configuration information. Then, the modified configuration information is
delivered to both the CPU Loader and the GPU Loader. Two sub-kernels (Kernelc py
and Kernelg py) are loaded and executed, based on the modified kernel configurations
produced by the WDM.

The second procedure is designed to translate the parallel thread execution code,
a virtual instruction set architecture [20], into the LLVM intermediate representation
(LLVM IR). As seen in Fig. 5, this procedure extracts the PTX code from the CUDA
binary to prepare the LLVM code for cooperative computing. On the GPU device,
our runtime system passes the PTX code through the CUDA device driver, which
means that the GPU executes the kernel in the original manner using the PTX-JIT
compilation. On the CPU core side, CHC uses the PTX translator provided in Ocelot
in order to convert PTX instructions into LLVM IR [8]. This LLVM IR is used for a
kernel context of all thread blocks running on CPU cores, and LLVM-JIT is utilized
to execute the kernel context [14].

@ Springer

Int J Parallel Prog

CUDA Executable Binary
Kernel Conﬂguratlon PTX Assembly Code
Information
"
e \
Workload i / 7 X / A 7
Distribution Module / L/LVM/'_| PTX-to-LLVM | / PIX /
. } .
o
(Sl
5 E “» CPU Loader ->» GPU Loader
©
w ~ [Abstraction Layer for TMS]
| LLVM-JIT | | CUDA Diriver (PTX-JIT) |
I
_ I Global Scheduling Queue | |
I

Global Memory |

(o)(om] | | G230

CPU GPU

| Main Memory |

Fig. 5 An overview of the CHC runtime system: the shaded boxes represent our implementations

The CUDA kernel execution typically needs some start-up time to initialize the
GPU device. In the CHC framework, the GPU start-up process and the PTX-to-
LLVM translation are simultaneously performed to hide the PTX-to-LLVM translation
overhead.

4.1 Workload Distribution Module and Method

The input of WDM is the kernel configuration information and the output specifies
two different portions of the kernel, each for CPU cores and the GPU device. The
kernel configuration information contains the execution configuration which provides
the dimension of a grid and that of a block. The dimension of a grid can be efficiently
used for our workload distribution module.

In order to divide the CUDA kernel, the workload distribution module determines
the amount of the thread blocks to be detached from the grid considering the dimension
of the grid and the workload distribution ratio as depicted in Fig. 6. As a result, WDM
generates two additional execution configurations, one for CPU and the other for
GPU. WDM then delivers the generated execution configurations (i.e., the output of
the WDM) to the CPU and GPU loaders. With these execution configurations, each
loader now can make a sub-kernel by using the kernel context such as LLVM and
PTX.

Typically, WDM assigns the front portion of thread blocks to the GPU-side, while
the rest is assigned to the CPU-side. Therefore, the first identifier of the CPU’s

@ Springer

Int J Parallel Prog

Kernel Grid
%% %é‘ %[‘ kernel_func<<<dGrid, dBlock>>>();
55515561555
[derdtx v} Work Distribution Flow
v v
sub1_dGrid.x := dGrid.x sub2_dGrid.x := dGrid.x
sub1_dGrid.y := dGrid.y x CPUgq, sub2_dGrid.y := dGrid.y x GPUgq,
¥ sub1_dGrid ¥ sub2_dGrid
(cPULoader J«—/LLvM/ [GPULoader J«—/ PTX /

Abstraction Layer

Sub-Kernel 1 Sub-Kernel 2
55515551555 5551565565
,,, """" " Queue for Work Sharing %%é %%L Q%L
65015650686l [[|

Core1| =mmm

Fig. 6 Work distribution flow and kernel mapping to CPU and GPU

sub-kernel will be (dGrid.y x GPURrqatio) + 1. Then, each thread block can identify
the assigned data with the identifier since both sides have an identical memory space.

In order to find the optimal workload distribution ratio, we can probably predict the
runtime behavior such as the execution delay on CPU cores. However, it is quite hard to
predict characteristics of a CUDA program since the runtime behavior strongly relies
on dynamic characteristics of the kernel [2, 12]. For this reason, Qilin used an empirical
approach to achieve their proposed adaptive mapping [17]. In fact, our proposed CHC
also adopts a heuristic approach to determine the workload distribution ratio. Then,
the CHC framework performs the dynamic work distribution at runtime based on this
ratio. The proposed work distribution can split the kernel according to the granularity
of thread block.

4.2 Memory Consolidation for Transparent Memory Space

A programmer writing CUDA applications should assign memory spaces in the device
memory of the graphics hardware. These memory locations (or, addresses) are used
for the input and output data. In the CUDA model, data can be copied between the host
memory and the dedicated memory on the device. For this purpose, the host system
should preserve pointer variables pointing to the location in the device memory.

As opposed to the original CUDA model, two different memory addresses exist
for one pointer variable in our proposed CHC framework. The key design problem is
caused by the fact that the computation results of the CPU side are stored into the main
memory that is different from the device memory. To address this problem, we propose
and design an abstraction layer, Transparent Memory Space (TMS), to preserve two
different memory addresses in a pointer variable at a time.

@ Springer

Int J Parallel Prog

Mapping Table

pointers values
- Abstraction Layer
float *h_in; d_in TMSO
float *h_out; d_out T™™S1 TMS
N ; Y d_in
cudaMalloc(d_in, size); d_out points to address of TMS1 -
cudaMalloc(d_out, size); _OxA:-_l--OxB:-
cudaMemcpy (d_in, h_in, size, ...); _@‘
kernel_func<<<...>>>(d_in, d_out);— d_out
cudaMemcpy (h_out, d_out, size, ...); M 0xD
(cPU Loader]<—‘j>{ GPU Loader |
Abstraction layer
Main Memory GPU Dedicated Memory

1 0xC 1 0xD
Output by CPU computation Output by GPU computation |:|

Fig. 7 Anatomy of transparent memory space

4.2.1 Accessing Memory Addresses

The abstraction layer uses double pointers data structures (similar to [26]) for pointer
variables to map one pointer variable onto two memory addresses: for the main memory
and the device memory. As seen in Fig. 7, we have declared the abstraction layer that
manages a list of the TMS data structures. Whenever a pointer variable is referenced,
the abstraction layer translates the pointer to the memory addresses, for both CPU and
GPU. For example, when a pointer variable (e.g., d_out) is used to allocate device
memory using cudaMalloc (), the framework assigns memory spaces both on the
device memory and the host memory. The addresses of these memory spaces are stored
in a TMS data structure (e.g., TMSI), and the framework maps the pointer variable
on the TMS data structure. Thus, the runtime framework can perform the address
translation for a pointer variable.

4.2.2 Launching CUDA Kernels

For launching a kernel, pointer variables defined in advance may be used as arguments
of the kernel function. At that time, the CPU and GPU loaders obtain each translated
address from the mapping table so that each sub-kernel could retain actual addresses
on its memory domain.

4.2.3 Merging Separated Data
After finishing the kernel computation, the computation results are copied to the host

memory (cudaMemcpy ()) to perform further operations. Therefore, merging the
data of two separate memory domains is required. To reduce memory copy over-

@ Springer

Int J Parallel Prog

head, the framework traces memory addresses which are modified by the CPU-side
computation.

4.3 Global Scheduling Queue for Thread Scheduling

GPU is a throughput-oriented architecture which shows outstanding performance with
applications having a large amount of data parallelism [9]. However, to achieve mean-
ingful performance from the CPU side, scheduling thread blocks with an efficient
policy is important.

Ocelot uses a locality-aware stfatic partitioning scheme in their proposed thread
scheduler, which assigns each thread block considering load balancing between neigh-
boring worker threads [8]. However, this static partitioning method probably causes
some cores to finish their execution early. In our scheduling scheme, we allow a thread
block to be assigned dynamically to any available core. For this purpose, we have
implemented a work sharing scheme using a Global Scheduling Queue (GSQ) [1,4].
This scheduling algorithm enqueues a task (i.e., a thread block) into a global queue so
that any worker thread on an available core can consume the task. Thus, this schedul-
ing scheme allows a worker thread in each core to pick up only one thread block and
achieve load balancing. In addition, any core which finishes the assigned thread block
so early would handle another thread block without being idle.

5 Experimental Evaluation

The CHC framework has been implemented on a Linux (2.6.28 kernel) system with
two-socket Intel Xeon X5550 quad-core processors at 2.66 GHz, 16 GB DDR3 main
memory, and an NVIDIA GeForce 9400 GT device. The GPU has 2 SMs, 8 CUDA
cores for each SM (total 16 CUDA cores), the GPU clock speed is 1.35 GHz, and
256 MB device memory size. This low-end GPU has a computing capacity that is
analogous to that of integrated GPUs. The hardware configuration we have used could
ultimately demonstrate the feasibility of the CHC technique on single-chip heteroge-
neous multicore processors, which have an integrated GPU.

We adapt 14 CUDA applications; twelve from the NVIDIA CUDA SDK [19],
SpMYV [3], and MD5 hashing [11]. Table 2 summarizes these applications and kernel
configurations. From left to right the columns represent the application name, the num-
ber of computation kernels, the grid dimension in the kernels, and a brief description
of the kernels.

5.1 Performance Improvements

In this experiment, we have measured the execution time of kernel launches and
compared CHC framework against the GPU-only computing. All of the validity of
the CHC results was compared to computation results that have been executed on a
CPU. Figure 8 shows the performance improvements of CHC normalized to GPU-
only computations; as expected, the performance of CHC improves in general com-

@ Springer

Int J Parallel Prog

Table 2 List of test applications and the workload used in evaluation

Application (abbreviation) # Kernels Grid dim Description
3DFD (3DFD) 1 (20 x 20) 3D finite difference computation
Binomial options pricing 1 S12x 1) European options under binomial
(BINO) model
Black Scholes (BLKS) 1 (480 x 1) European options by Black-Scholes
formula
Mersenne twister (MERT) 2 32x1) Mersenne twister random number

generator and Cartesian
Box-Muller transformation

Matrix multiplication (MAT) 1 (128 x 128) Matrix multiplication: C := A x B
Monte Carlo (MONT) 2 (256 x 1) European options using Monte Carlo
approach
Scalar product (SCALAR) 1 (128 x 1) Scalar products of input vector pairs
Scan (SCAN) 3 (256 x 1) Parallel prefix sum
Convolution texture (CONV) 2 (192 x 128) Image convolution filtering
Transpose (TRANS) 2 (128 x 256) Matrix transpose
Sobol QRNG (QRNG) 1 (1 x 100) Sobol’s quasi-random number
generator

Vector addition (VEC) 1 (196 x 1) Vector addition: C := A + B
Sparse matrix-vector 2 (1,024 x 1) Matrix-vector multiplication:

multiplication (SPMV) y+=A XX
MDS5 hashing (MDS5) 2 (33,312 x 1) MDS5 calculation and search

35

@ 30 q

§ 25 i

g & 1

T 20

[=3

g 15 | |

% 10 i S i | : 1 i

E | [l | ' | |

gosi ML I H | T

o

3DFD BIND BLKS MERT MAT MONT SCALAR SCAN CONV TRANS QRNG VEC SPMY MD5 Average
089400GT ®mMCHC @ldeal

Fig. 8 Normalized performance speedup of CHC over the GPU-only processing

pared to the execution delay using only GPU. The speedup is achieved, ranging from
0.46x for MERT up to 3.08x for VEC. The average speedup of the CHC framework
is 1.42x.

In fact, the applications with exponential, trigonometric, or power arithmetic opera-
tions (BINO, BLKS, MERT, MONT, and CONV) show little performance improvement.
In fact, the execution time of these applications on CPU is much higher compared
to the execution time on GPU. This is due to the fact that the GPU device normally
provides special functional units for those operations. In the case of MERT, specifi-
cally, the workload of the kernel is so small that launching the kernel on the CPU
side has a relatively large cost compared to the GPU, and therefore the speedup
is the worst result in all of the tested applications (will be discussed in Sect. 5.4).

@ Springer

Int J Parallel Prog

Table 3 Initial analysis and CHC results

Abbreviation Grid dim

Workload Execution time

Initial analysis

CHC results

(ms)
CPU GPU Max. Optimal Actual Actual
only only Perf. ratio Perf. ratio
3DFD 20x20 20x1 19.468 7.144 104.52 26.8:73.2 117.32 10.0:90.0
20 x 20 389.36 142.88
BINO 512 x 1 1x1 17.43 1.15 556.06 6.2:93.8 559.44 4.7:953
512 x 1 8926.6 593.0
BLKS 480 x 1 1x1 1.08 0.03 16.98 3.3:96.7 17.02 0.6:99.4
480 x 1 520.20 17.557
MERT 32x1 1x1 13.62 1.55 44.73 10.3:89.7 108.26 3.1:96.9
32x1 435.94 49.85
MAT 128 x 128 128 x 1 4423 12.84 1274.15 22.5:77.5 1453.19 18.0:82.0
128 x 128 5661.8 1644.1
MONT 256 x 1 I x1 8.47 0.28 69.90 3.2:96.8 79.39 3.1:96.9
256 x 1 2170.1 72.23
SCALAR 128 x 1 1x1 0.22 0.04 4.79 16.6:83.4 4.86 25.0:75.0
128 x 1 28.86 5.74
SCAN 256 x 1 1x1 0.014 0.004 0.87 23.2:76.8 1.01 9.4:90.6
256 x 1 3.75 1.13
CONV 192 x 128 192 x 1 8.45 0.15 19.51 1.8:98.2 19.51 0.8:99.2
192 x 128 1082.3 19.53
TRANS 128 x 256 128 x 1 0.20 0.25 28.81 55.5:44.8 29.29 50.0:50.0
128 x 256 52.21 64.29
QRNG 1 x 100 1x1 0.05 0.01 0.87 21.8:78.2 0.90 16.0:84.0
1 x 100 5.22 1.46
VEC 196 x 1 1x1 0.005 0.011 0.68 68.5:31.5 0.70 44.9:55.1
196 x 1 1.01 2.17
SPMV 1024 x1 1x1 0.003 0.001 1.17 38.2:61.8 1.45 25.0:75.0
1024 x 1 3.07 1.90
MDS5 33312x1 Ix1 0.002 0.004 52.14 64.7:35.3 56.34 64.0:36.0
33312 x 1 80.55 147.84

On the other hand, the applications without those arithmetic operations (TRANS,
VEC, SPMV, and MD5) show relatively higher speedups due to the simplicity of their

operations.

More in detail, Table 3 shows the maximum performance and the optimal distribu-
tion ratio obtained from the initial analysis. The actual execution time and the actual
work distribution ratio using CHC are also presented; each of the speedup shown in
Fig. 8 can be obtained by dividing the execution time on GPU only by the actual
CHC performance. In fact, the optimal distribution ratio is used to determine the work

distribution ratio on the CHC framework.

@ Springer

Int J Parallel Prog

e II. . -.'-r_

§ \ ;- s

§ Wil LA

E - i

E i 1e

& 3 H
(a) (b) ()

Fig. 9 Impact of the actual distribution ratio on the performance improvement: a 256 x 1, b 512 x 1,
1,024 x 1

Based on the fourth column, which shows the execution time, we observe that the
speed gap between the CPUs and the GPU directly affects the performance improve-
ment. In the case of BINO that shows 1.06x speedup, the CPU side is about 15.05x
slower than the GPU. In contrast, TRANS, VEC, and MD5, in which the CPU side is
quite faster than the GPU even if the kernels are translated to LLVM IR codes, achieve
a significant speedup.

5.2 Impact of Workload Distribution Ratio on CHC Performance

We now show the impact of the actual distribution ratio on the performance improve-
ment. The actual distribution ratio for a kernel is obtained from the optimal ratio of the
initial analysis. Then, we can assign the portions of thread blocks for the CPU cores to
WDM (as described in Sect. 4). Figure 9 shows the speedup and the execution delay of
the CPU and the GPU according to the workload distribution ratio. In Fig. 9a, at which
the workload (i.e., grid dimension of the kernel) is 256 x 1, the actual performance
peaks when the workload distribution ratio of GPU to CPU is 248:8. Interestingly,
the experimental speedup is rapidly degraded when the workload of the CPU cores is
above eight. The reason for the significant performance degradation is that the number
of CPU cores participated in the kernel computation is limited to eight. As mentioned
in Sect. 4, a thread block get allocated on a single CPU core, so that execution time
on CPU cores is increased significantly whenever the number of thread blocks is a
multiple of the CPU core count. In Fig 9b, the runtime behavior due to the CPU core
count is observed more in detail. There is a substantial increase in execution time
according to the workload of CPU (from 8 to 9, from 16 to 17, and from 24 to 25).
As a result, this runtime behavior implies that the maximum experimental speedup is
generally obtained when the number of CPU cores is a multiple of eight, which means
the GSQ efficiently distributes thread blocks to each of CPU cores.

Figure 10 shows a comparison between the ideal performance obtained from the
theoretical analysis and the actual results. On average, experimental results on actual

@ Springer

Int J Parallel Prog

|8a8

Achieved Performance (%)

3DFD BINO BLKS MERT MAT MONT SCALAR SCAN CONV TRANS QRNG VEC SPMV MDS Average
Oldeal mCHC

Fig. 10 Comparison between the optimal performance improvements and experimental results

machines show a performance which is 89.6 % of the theoretically predicted perfor-
mance. This demonstrates that the proposed framework successfully utilizes the CPU
resource for the CUDA kernels.

5.3 Impact of Workload Characteristics

The PTX code which corresponds to a CUDA kernel has a great impact on the perfor-
mance of the CHC runtime system. The runtime system extracts PTX instructions of
the kernel from the CUDA binary to generate the corresponding LLVM IR code. Since
the LLVM IR code corresponds to the computational workload for the CPU side, the
execution time of the workload is highly dependent on the computational complexity
of the LLVM IR code; therefore, the performance of the kernel execution essentially
depends on the complexity of the original PTX code.

We have investigated the PTX assembly codes of all the CUDA applications to
determine which types of PTX instructions are the dominant factors in the runtime
performance of the CHC framework. To this end, we classified the PTX instructions
according to their opcodes, into eight types of instructions: integer arithmetic, floating
point, special function (cos, sin, exp, and 1og), logic and shift, load, store, data
movement, control, and synchronization instructions. For example, add is an integer
arithmetic instruction that operates on the integer types in register, and cos that finds
the cosine of a value is a special instruction, exploited by special function units (SFUs)
on GPUs.

Figure 11a presents the PTX instruction breakdown and the speedups for the pre-
vious results in Sect. 5.1 (Fig. 11b on average). Each bar shows the fraction of PTX
instructions for a CUDA application, and the line across all bars represents the nor-
malized performance improvements for all the CUDA applications. For those kernels
in which the cooperative execution performs well, the number of floating-point arith-
metic and store instructions is relatively small. VEC, which shows the best performance
improvement, has three dominant types of the instructions: 28.6 % integer arithmetic,
28.6 % load, 19.0 % data movement instructions, whereas floating-point arithmetic,
special, and store instructions show the same value of 4.8 %. On the other hand, BLKS
and MONT, which show poor performance gains, have a significant portion of floating-
point instructions (36.7 and 25.1 %, respectively). This suggests that floating-point

@ Springer

Int J Parallel Prog

Control, 9.0

Normalized portions of instruction

3DFD BINO BLKS MERT ~MAT MONT SCALAR SCAN CONV TRANS QRNG VEC ~SPMV ~ MD5

Cinteger mmFloat E3Special Emlogicishift =Iload EmStore IData movementiconversion mmControl -O-Speedup

Fig. 11 The fraction of PTX instructions: a PTX instruction breakdown and speedups of the CUDA
applications b on average (in percent)

instructions directly impact the runtime performance on the CPUs due to the fact that
the theoretical upper bound on 32-bit floating-point multiply-accumulate instructions
(e.g., fma) is one-third times lower than that of 32-bit integer instructions (in addi-
tion, special instruction throughput are two orders of magnitude lower than fma) [8].
Attacking this challenge in translation efficiency will be a part of our future work. It
may be overcome with an advanced compilation technique (see Sect. 6).

5.4 Composition Effect of PTX Instructions

We now describe the effect of the PTX instruction count according to their types.
The normalized fraction of PTX instruction types shows only the relative portions of
the instructions between the kernels and does not represent the effect of the actual
number of the instructions on the runtime performance. For example, BLKS has 47
floating-point instructions, 36.7 % of the total number of PTX instructions, while
MONT has 53 floating-point instructions, 25.1 % of the total instructions; however,
BLKS shows better performance improvement (1.03x) than MONT (0.9x) due to a
smaller instruction count. This introduces an incremental experiment that evaluates
the effect of individual types of PTX instructions (Fig. 12).

We find that the upper bound of the CHC throughput is generally limited by memory
access latency. In case of GPUs, TLP can effectively handle and hide most memory
access latencies since GPU cores have significantly higher TLP. On the other hand,
CPU cores which have lower TLP hardly run the translated LLVM IR codes due to
the massive data parallelism. From both Fig. 12b, ¢, we can see a tendency for a lower
performance improvement as the number of load/store instructions increases.

In addition, Fig. 12e presents the ratio of store instructions to load instructions for
all the kernels. Interestingly, MERT, the worst case, shows a remarkable ratio of 2.3;
however, the others are lower than 1. This implies that MERT is not suitable to run
on CPUs since the impact of memory access latencies on the performance is more
significant as store instructions are more frequently executed.

For each kernel, we also define an aggregate amount of the following three numbers:
the floating-point instruction portions of all the PTX instructions, the special instruc-
tion portion, and the ratio of store instructions to load instructions. Figure 12f illustrates
the composition effect of the three instruction types on the CHC runtime performance
and helps us understand the interaction among PTX instructions more clearly. Based

@ Springer

Int J Parallel Prog

L EFE ST S
3

°| ~
PP LSS FFRE LSS
I IS T T e

~~Float <~Speedup

(a) (b)

s
25
2
s 1s
Y e) '

S N CCE L P L EF IO OO R I S SR SR Y
= S & ¢ © O £ L § F P E S E o oF & § F P E S E
& E E LS FTFTETEFT TS o € FTFTETEFT TS o

~-Load <~Speedup

~~FP+SP --Speedup ~~STILD =-Speedup ~~STILD =-Speedup

(d) (e) ()

Fig. 12 The number of PTX instructions according to their types: a floating-point, b load, ¢ store, d the
sum of floating-point and special instructions e the ratio of store instructions to load instructions f putting
all in together

on this observation, the efficiency of the proposed cooperative computing for CUDA
applications is much more predictable. Furthermore, the CUDA applications can be
either defined as CPU-friendly applications or GPU-friendly applications. For exam-
ple, MERT, which has the highest score, is a clearly GPU-friendly workload and is
preferable to GPU-only computing, whereas TRANS, QRNG, VEC, and MD5 have
CPU-friendly characteristics. The remaining kernels, in which the aggregate values
are within from 0.5 to 1.0, may have an opportunity to be designed and implemented
either for CPUs, GPUs, or CPU-GPU hybrid configurations.

6 Discussions

The CUDA architecture supplies a transparency of application software such as lan-
guage, compiler, driver, and useful tools. This abstraction layer allows developers to
program their applications without any knowledge on hardware architecture. How-
ever, the CPU that generally controls an execution flow of CUDA applications should
wait for its turn during the kernel execution. This paper proposes a runtime CUDA
framework, which enables CUDA applications running on GPU to be concurrently
executed on multicore CPU and GPU. There are two topics that will be discussed in
this section.

6.1 PTX Translation to LLVM

The runtime system uses Ocelot to translate PTX instruction to LLVM IR. The number
of LLVM instructions per a PTX instruction (i.e., translation efficiency) varies from
one to tens, so that the number of the translated LLVM instructions is important for the
performance. From the hardware perspective, the quad-core CPU within the system
used in Sect. 5 is manufactured in the Nehalem architecture, which has the execution

@ Springer

Int J Parallel Prog

engine that carries out four single-precision (SP) floating-point operations (FLOPs)
such as addition or subtraction. Therefore, the ideal throughput of the Nehalem core is
10.64 Giga FLOPs/sec/core (2.66 GHz x 4 FLOPs/Hz), and the whole throughput of
the two-socket system is then 85.12 GFLOPs. On the contrary, the NVIDIA GeForce
9400 GT has 67.2 GFLOPs in terms of single-precision FP operations. Although the
performance of the CPU is better than that of the GPU, the performance improvement
can be significantly varied according to the translation efficiency. Thus, if we can
map PTX instructions onto LLVM instructions more efficiently with an advanced
compiler technique such as a PTX to AVX native translation, then more speedup can be
achieved.

6.2 Global Memory Consistency

Cooperative heterogeneous computing emulates the global memory on the CPU-side.
Thread blocks in the CPU can access the emulated global memory and perform the
atomic operations. However, our system does not allow the global memory atomic
operations between the thread blocks on the CPU and the thread blocks on the GPU to
avoid severe performance degradation. In fact, discrete GPUs have their own memory
and communicate with the main memory through the PCI express, which causes long
latency problems. This architectural limit suggests that the CHC prototype need not
provide global memory atomic operations between CPU and GPU. To allow the atomic
operations without performance degradation, a system with an integrated GPU, in
which CPU and GPU share a memory space, or a new hardware architectural support
is required.

Besides the CUDA architecture, the key difference on which we focus is in the use
of idle computing resources with a concurrent execution of the same CUDA kernel
on both CPU and GPU, thereby finding a new way of computing on a heterogeneous
platform that consists of CPU and GPU. Considering that the future computer systems
are expected to incorporate more cores in both general purpose processors and graph-
ics devices, parallel processing on CPU and GPU would become a great computing
paradigm for high-performance applications. This would be quite helpful to programs
on a single chip heterogeneous multi-core processor including CPU and GPU as well.
Note that Intel and AMD have already shipped commercial heterogeneous multi-core
processors.

7 Related Work

There have been several prior research projects which aim at mapping an explic-
itly parallel program for graphics devices onto multi-core CPUs or heterogeneous
architectures. OpenCL [21] is an open standard for parallel programming that allows
developers to conveniently access to CPUs, GPUs, and other processing units. The
kernels can be assigned to any processing unit and executed simultaneously. However,
there is a significant difference between OpenCL and our proposed framework which
is kernel partitioning. In fact, the CHC system has finer granularity than OpenCL,
dividing a single kernel into multiple pieces for both CPUs and GPUs. The OpenCL

@ Springer

Int J Parallel Prog

standard makes no consideration for kernel partitioning. MCUDA [25] automatically
translates CUDA codes for general purpose multi-core processors, applying source-to-
source translation. This implies that the MCUDA technique translates the kernel source
code into a code written in a general purpose high-level language, which requires one
additional step of source recompilation.

Twin Peaks [10] maps an OpenCL-compatible program targeted for GPUs onto
multi-core CPUs by using the LLVM (Low Level Virtual Machine) intermediate rep-
resentation for various instruction sets. Ocelot [8], which inspired our runtime system,
uses a dynamic translation technique to map a CUDA program onto multi-core CPUs.
Ocelot converts at runtime PTX code into an LLVM code without recompilation and
optimizes PTX and LLVM code for execution by the CPU. The proposed framework
in this paper is largely different from these translation techniques (MCUDA, Twin
Peaks, and Ocelot) in that we support cooperative execution for parallel processing
over both CPU cores and GPU cores.

In addition, EXOCHI provides a programming environment that enhances com-
puting performance for media kernels on multicore CPUs with Intel Graphics Media
Accelerator (GMA) [27]. However, this programming model uses the CPU cores only
for serial execution. The Merge framework has extended EXOCHI for the parallel
execution on CPU and GMA; however, it still requires APIs and the additional port-
ing time [16]. Saha et al. [23] have proposed a programming model for a different
platform, which consists of x86 CPU and Larrabee cores [24]. Lee et al. [15] have
presented a framework which aims at porting an OpenCL program on the Cell BE
processor to manage software-managed caches and coherence protocols.

Ravi et al. [22] have proposed a compiler and a runtime framework that generate a
hybrid code running on both CPU and GPU. It dynamically distributes the workload,
but the framework targets only for generalized reduction applications, while our system
targets to map general CUDA applications. Qilin [17], in the most relevant study to our
proposed framework, has shown an adaptive kernel mapping using a dynamic work
distribution. The Qilin system trains a program to maintain databases for the adaptive
mapping scheme. In fact, Qilin requires and strongly relies on its own programming
interface. This implies that the system cannot directly port the existing CUDA codes,
but rather programmers should modify the source code to fit their interfaces. As an
alternative, CHC is designed for seamless porting of the existing CUDA code on CPU
cores and GPU cores. In other words, we focus on providing backward compatibility
of CUDA runtime APIs.

8 Conclusions

The paper has introduced three key features for the efficient exploitation of the thread
level parallelism provided by CUDA on the CPU multi-cores in addition to the GPU
device. The proposed CHC framework provides a tool set which enables CUDA binary
to run on CPU and GPU, without imposing source recompilation. The experiments
demonstrate that the proposed framework successfully achieves efficient parallel exe-
cution and that the performance results obtained are close to the values deduced from
the theoretical analysis. We believe the CHC can be utilized in the future heteroge-

@ Springer

Int J Parallel Prog

neous multi-core processors which are expected to include even more GPU cores as
well as CPU cores.

As future work, we will first develop a dynamic control scheme on deciding the
workload distribution ratio. We also plan to design an efficient thread block distribution
technique considering data access patterns and thread divergence. We believe CHC can
eventually provide a solution for the degradation of performance due to the irregular
memory access and thread divergence in the original CUDA execution model. In fact,
the future CHC framework needs to address the performance trade-offs considering
the CUDA application configurations on various GPU and CPU models. In addition,
we will discuss the overall speedups considering the transition overhead to find the
optimal configuration for the CHC execution model.

Acknowledgments We thank all of the anonymous reviewers for their comments. This work was sup-
ported by the Basic Science Research Program through the National Research Foundation (NRF) of Korea,
which is funded by the Ministry of Education, Science and Technology [2009-0070364]. This work is also
supported in part by the US National Science Foundation under Grant No. CCF-1065448. Any opinions,
findings, and conclusions as well as recommendations expressed in this material are those of the authors
and do not necessarily reflect the views of the National Science Foundation.

References

1. Acar, U.A., Blelloch, G.E., Blumofe, R.D.: The data locality of work stealing. In: Proceedings of the
Twelfth Annual ACM Symposium on Parallel Algorithms and Architectures, SPAA 00, pp. 1-12.
ACM, New York, NY, USA (2000)

2. Bakhoda, A., Yuan, G., Fung, W., Wong, H., Aamodt, T.: Analyzing cuda workloads using a detailed gpu
simulator. In: Performance Analysis of Systems and Software, 2009. ISPASS 2009. IEEE International
Symposium on, pp. 163-174 (2009). doi:10.1109/ISPASS.2009.4919648

3. Bell, N., Garland, M.: Cusp: Generic parallel algorithms for sparse matrix and graph computations
(2010). http://cusp-library.googlecode.com

4. Blumofe, R.D., Leiserson, C.E.: Scheduling multithreaded computations by work stealing. J. ACM
46, 720-748 (1999)

5. Brodtkorb, A.R., Dyken, C., Hagen, T.R., Hjelmervik, J.M., Storaasli, O.O.: State-of-the-art in hetero-
geneous computing. Sci. Program. 18, 1-33 (2010)

6. Che, S.,Boyer, M., Meng, J., Tarjan, D., Sheaffer, J., Lee, S.H., Skadron, K.: Rodinia: a benchmark suite
for heterogeneous computing. In: Workload Characterization, 2009. IISWC 2009. IEEE International
Symposium on, pp. 44-54 (2009). doi:10.1109/IISWC.2009.5306797

7. Cifuentes, C., Malhotra, V.M.: Binary translation: static, dynamic, retargetable? In: Proceedings of the
1996 International Conference on Software Maintenance, ICSM *96, pp. 340-349. IEEE Computer
Society, Washington, DC, USA (1996)

8. Diamos, G.F, Kerr, A.R., Yalamanchili, S., Clark, N.: Ocelot: a dynamic optimization framework for
bulk-synchronous applications in heterogeneous systems. In: Proceedings of the 19th International
Conference on Parallel Architectures and Compilation Techniques, PACT 10, pp. 353-364. ACM,
New York, NY, USA (2010)

9. Garland, M., Kirk, D.B.: Understanding throughput-oriented architectures. Commun. ACM 53, 58-66
(2010)

10. Gummaraju, J., Morichetti, L., Houston, M., Sander, B., Gaster, B.R., Zheng, B.: Twin peaks: a software
platform for heterogeneous computing on general-purpose and graphics processors. In: Proceedings of
the 19th International Conference on Parallel Architectures and Compilation Techniques, PACT ’10,
pp- 205-216. ACM, New York, NY, USA (2010)

11. Juric, M.: Cuda md5 hashing. http://majuric.org/software/cudamd5

12. Kerr, A., Diamos, G., Yalamanchili, S.: A characterization and analysis of ptx kernels. In: Proceed-
ings of the 2009 IEEE International Symposium on Workload Characterization (IISWC), IISWC "09,
pp- 3—12. IEEE Computer Society, Washington, DC, USA (2009)

@ Springer

http://dx.doi.org/10.1109/ISPASS.2009.4919648
http://cusp-library.googlecode.com
http://dx.doi.org/10.1109/IISWC.2009.5306797
http://majuric.org/software/cudamd5

Int J Parallel Prog

13.

14.

15.

16.

18.

19.
20.

21.

22.

23.

24.

25.

26.

27.

Kumar, R., Tullsen, D., Jouppi, N., Ranganathan, P.: Heterogeneous chip multiprocessors. Computer
38(11), 32-38 (2005)

Lattner, C., Adve, V.: LIlvm: A compilation framework for lifelong program analysis & transformation.
In: Proceedings of the International Symposium on Code Generation and Optimization: Feedback-
Directed and Runtime Optimization, CGO ’04, pp. 75. IEEE Computer Society, Washington, DC,
USA (2004)

Lee, J., Kim, J., Seo, S., Kim, S., Park, J., Kim, H., Dao, T.T., Cho, Y., Seo, S.J., Lee, S.H., Cho,
S.M., Song, H.J., Suh, S.B., Choi, J.D.: An opencl framework for heterogeneous multicores with
local memory. In: Proceedings of the 19th International Conference on Parallel Architectures and
Compilation Techniques, PACT ’ 10, pp. 193-204. ACM, New York, NY, USA (2010)

Linderman, M.D., Collins, J.D., Wang, H., Meng, T.H.: Merge: a programming model for hetero-
geneous multi-core systems. In: Proceedings of the 13th International Conference on Architectural
Support for Programming Languages and Operating Systems, ASPLOS XIII, pp. 287-296. ACM,
New York, NY, USA (2008)

. Luk, C.K., Hong, S., Kim, H.: Qilin: Exploiting parallelism on heterogeneous multiprocessors with

adaptive mapping. In: Microarchitecture, 2009. MICRO-42. 42nd Annual IEEE/ACM International
Symposium on, pp. 45-55 (2009)

Nickolls, J., Dally, W.: The gpu computing era. Micro IEEE 30(2), 56-69 (2010)

NVIDIA: Cuda parallel computing platform. http://developer.nvidia.com/category/zone/cuda-zone
NVIDIA: Ptx: Parallel thread execution isa. http://developer.nvidia.com/cuda/nvidia- gpu-computing-
documentation

OpenCL: The open standard for parallel programming of heterogeneous systems. http://www.khronos.
org/opencl

Ravi, V.T., Ma, W., Chiu, D., Agrawal, G.: Compiler and runtime support for enabling generalized
reduction computations on heterogeneous parallel configurations. In: Proceedings of the 24th ACM
International Conference on Supercomputing, ICS *10, pp. 137-146. ACM, New York, NY, USA
(2010)

Saha, B., Zhou, X., Chen, H., Gao, Y., Yan, S., Rajagopalan, M., Fang, J., Zhang, P., Ronen, R.,
Mendelson, A.: Programming model for a heterogeneous x86 platform. In: Proceedings of the 2009
ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI 09, pp.
431-440. ACM, New York, NY, USA (2009)

Seiler, L., Carmean, D., Sprangle, E., Forsyth, T., Abrash, M., Dubey, P., Junkins, S., Lake, A., Sug-
erman, J., Cavin, R., Espasa, R., Grochowski, E., Juan, T., Hanrahan, P.: Larrabee: a many-core x86
architecture for visual computing. In: ACM SIGGRAPH 2008 papers, SIGGRAPH ’08, pp. 18:1-
18:15. ACM, New York, NY, USA (2008)

Stratton, J., Stone, S., Hwu, W.m.: Mcuda: An efficient implementation of cuda kernels for multi-core
cpus. In: Amaral, J. (ed.) Languages and Compilers for Parallel Computing, Lecture Notes in Computer
Science, vol. 5335, pp. 16-30. Springer, Berlin (2008)

Tian, C., Feng, M., Gupta, R.: Supporting speculative parallelization in the presence of dynamic data
structures. In: Proceedings of the 2010 ACM SIGPLAN Conference on Programming Language Design
and Implementation, PLDI 10, pp. 62-73. ACM, New York, NY, USA (2010)

Wang, PH., Collins, J.D., Chinya, G.N., Jiang, H., Tian, X., Girkar, M., Yang, N.Y., Lueh, G.Y., Wang,
H.: Exochi: architecture and programming environment for a heterogeneous multi-core multithreaded
system. In: Proceedings of the 2007 ACM SIGPLAN Conference on Programming Language Design
and Implementation, PLDI *07, pp. 156-166. ACM, New York, NY, USA (2007)

@ Springer

http://developer.nvidia.com/category/zone/cuda-zone
http://developer.nvidia.com/cuda/nvidia-gpu-computing-documentation
http://developer.nvidia.com/cuda/nvidia-gpu-computing-documentation
http://www.khronos.org/opencl
http://www.khronos.org/opencl

	Boosting CUDA Applications with CPU--GPU Hybrid Computing
	Abstract
	1 Introduction
	2 Background
	3 Motivation
	3.1 Problem Observation
	3.2 Problem Analysis

	4 Software Framework Design
	4.1 Workload Distribution Module and Method
	4.2 Memory Consolidation for Transparent Memory Space
	4.2.1 Accessing Memory Addresses
	4.2.2 Launching CUDA Kernels
	4.2.3 Merging Separated Data

	4.3 Global Scheduling Queue for Thread Scheduling

	5 Experimental Evaluation
	5.1 Performance Improvements
	5.2 Impact of Workload Distribution Ratio on CHC Performance
	5.3 Impact of Workload Characteristics
	5.4 Composition Effect of PTX Instructions

	6 Discussions
	6.1 PTX Translation to LLVM
	6.2 Global Memory Consistency

	7 Related Work
	8 Conclusions
	Acknowledgments
	References

