

F 1 3 L a b o r a t o r y

BlackHat 13

Smashing the Font Scaler Engine in
Windows Kernel

Ling Chuan Lee & Lee Yee Chan

Abstract
The Font Scaler engine is widely used to scale the outline font definition such
as TrueType/OpenType font for a glyph to a specific point size and convert
the outline into a bitmap at a specific resolution. The revolution of font in
computers which is mainly used for styling purposes has made many users
overlook its security issues. In fact, the Font Scaler engine can cause many
security impacts especially in the Windows kernel mode.

In this paper, the basic structure of the Font Scaler engine will be discussed.
This includes the conversion of an outline into a bitmap, the mathematical
description of each glyph in an outline font, a set of instruction in each glyph
which instructs the Font Scaler engine to modify the shape of the glyph, and
the instruction interpreter etc.

Next, we introduce our smart font fuzzing method for identifying the new
vulnerabilities of the Font Scaler engine. The difference between dumb
fuzzing and vulnerable functions will be explained and we will prove that the
dumb fuzzing technique is not a good option for Windows Font Fuzzing.

Lastly, we focus on the attack vector that could be used to launch the attacks
remotely and locally. A demonstration of the new TrueType font (TTF)
vulnerabilities and the attack vector on Windows 8 and Windows 7 will be
shown.

1.0 Introduction
Computer uses different styles of typefaces to display text.Today, hundreds
and thousands of font files have been developed in the digital world. Different
categories of font are available within Microsoft Windows; for instance, GDI
Fonts, Device Fonts and many more. TrueType font (TTF) is one of the
common GDI fonts providing support for font management and text output. It
is a digital font which includes many different kind of information used by
rasterizer and the operating system software to display characters on a
computer screen or print out in other devices such as a printer.

All fonts, including the TTF contain glyphs. It is a set of paths, (also known as
outline) filled with pixels to create the final letter form of a character.The
outline of a character in a TrueType font is made of a straight line segment
and a closed curve specified using points and particular mathematics.

A few steps are required for displaying a font file on raster devices [1] and are
shown as below:

1. The outline stored in the font file is scaled to the requested size.
2. Scaler converts Font Unit (FUnits) to pixel coordinates and scales

outline to the size requested by the application.
3. Instructions associated with glyph are carried out by the interpreter.

Interpreter executes instructions associated with glyph and grid fits.
4. The result is a grid-fitted outline for the requested glyph.
5. The outline is then scan converted to produce a bitmap that can be

rendered on the targeted device.

2.0 The Font Scaler Engine
The Font Scaler engine [2] creates the necessary bitmap at a particular
resolution when a specific point size is requested by an application. Typically,
the Font Scaler engine consists of a set of glyph instructions that instruct the
font scaler to modify the shape of the outline of a character for a particular
font size for resolution display purposes.

Font scaler consists of a set of API functions. The user can pass parameters
to the Font Scaler through the fs_GlyphInputType data structure and receive
information from the fs_GlyphInfoType record [2]. Some important functions
for the Font Scaler are shown in Table 1.

Functions Description
win32k!fs_OpenFonts Opens the Font Scaler
win32k!fs_Initialize Initializes the Font Scaler
win32k!fs_NewSfnt Retrieves data from sfnt data structure, the

win32k!sfnt_DoOffsetTableMap function will
be used to map offset and length table.

Functions Description

win32k!fs__NewTransformation Specifies the size, pixel and the used of
resolution.

win32k!fs_NewGlyph Displays a new glyph

win32k!fs_ContourScan Required when converts the glyph into a
bitmap

win32k!fs_FindBitMapSize Calculates the amount of memory that is
needed

win32k!fs_GetGlyphIDs

Returns glyph IDs for a range of character
code

Table: 1 Font Scaler functions

Table 2 summarizes the routine functions that allow a glyph from a TTF file to
be displayed [2].

Description Win32k function

Engine exported interface

win32k!fs_NewGlyph
win32k!fs_ContourScan
win32k!fs_FindBitMapSize
win32k!fs_Initialize
win32k!fs_GetGlyphIDs
win32k!fs_OpenFonts
win32k!fs_NewSfnt
win32k!fs_SetUpKey
win32k!fs_WinNTGetGlyphIDs
win32k!fs_ConvertGrayLevels
win32k!fs_NewContourGridFit

Engine internal interface win32k!fs__Contour
win32k!fs__NewTransformation

Engine converter function

win32k!fsc_SetupScan
win32k!fsc_FillBitMap
win32k!fsc_CheckYReversalInSpline
win32k!fsc_MeasureGlyph
win32k!fsc_FillGlyph
win32k!fsc_CalcLine
win32k!fsc_CalcSpline
win32k!fsc_OverScaleOutline
win32k!fsc_BLTHoriz
win32k!fsc_OverscaleToSubPixel
win32k!fsc_OverscaleToBold
win32k!fsc_InitializeBitMasks
win32k!fsc_CheckEndPoint
win32k!fsc_CalcGrayMap
win32k!fsc_BeginElement
win32k!fsc_CalcGrayRow
win32k!fsc_AllocVMem

Description Win32k function
win32k!fsc_RemoveDups
win32k!fsc_EndContourEndpoint

Engine support function

win32k!fsg_CreateGlyphData
win32k!fsg_WorkSpaceSetOffsets
win32k!fsg_ExecuteGlyph
win32k!fsg_CompositeInnerGridFit
win32k!fsg_CheckOutlineOrientation
win32k!fsg_Embold
win32k!fsg_MergeGlyphData
win32k!fsg_DoScanControl
win32k!fsg_RestoreContourData
win32k!fsg_RunPreProgram
win32k!fsg_CopyFontProgramResults
win32k!fsg_GridFit
win32k!fsg_InitInterpreterTrans
win32k!fsg_UpdatePrivateSpaceAddresses
win32k!fsg_PrivateFontSpaceSize

Bitmap related function

win32k!sbit_EmboldenSubPixel
win32k!sbit_CalcDevHorMetrics
win32k!sbit_GetDevAdvanceWidth
win32k!sbit_GetDevAdvanceHeight
win32k!sbit_GetMetrics
win32k!sbit_GetBitmap
win32k!sbit_EmboldenGrayFromMono
win32k!sbit_NewTransform
win32k!sbit_EmboldenGray
win32k!sbit_SearchForBitmap
win32k!sbit_Embolden
win32k!sbit_ExpandGrayFromMono

Instruction virtual machine
function

win32k!itrp_SHP
win32k!itrp_ROUND
win32k!itrp_WPV
win32k!itrp_DIV
win32k!itrp_SPVTCA_0
win32k!itrp_SPVTCA_1
win32k!itrp_FDEF
win32k!itrp_PUSHB
win32k!itrp_SROUND
win32k!itrp_IF
win32k!itrp_SHC
win32k!itrp_NPUSHB
win32k!itrp_IP
win32k!itrp_WCVT
win32k!itrp_MSIRP
win32k!itrp_RoundToHalfGrid
win32k!itrp_PUSHW
win32k!itrp_RoundToHalfGridSP
win32k!itrp_DUP
win32k!itrp_JROT

Description Win32k function
win32k!itrp_SHE
win32k!itrp_JROF
win32k!itrp_MINDEX
win32k!itrp_ELSE
win32k!itrp_SDPVTL
win32k!itrp_RCVT
win32k!itrp_MD
win32k!itrp_LOOPCALL
win32k!itrp_SHPIX
win32k!itrp_GETINFO
 (more refers to Appendix)

Table 2: Functions that allow a glyph to be displayed

3.0 TTF Fuzzing

A TTF file consists of a sequence of concatenated tables. The combination of
data from different tables will be used to render the glyph data in the font. A
basic font consists of multiple tables that are specified in its header. Typically,
a binary TTF file begins with the Font Offset Table. The Font Offset Table is
divided into five subtables, which includes the following.

 sfnt version : 65536 (0x0001 0000) for version 1.0

numTables : Number of tables
 searchRange : (Maximum power of 2 ≤ numTables) x 16
 entrySelector : log2 (Maximum power of 2 ≤ numTables)
 rangeShift : numTables x 16 –searchRange

Figure 1: Font Offset Table

The FontOffset Table is followed by a sequence of tables containing the font
data. These tables can be arranged in any order. A basic font is composed of
multiple tables as specified in its header. Each font table directory header
consists of four subtables as shown below.

 tag : 4 byte identifier
 checksum : Checksum of the table
 offset : beginning offset of the font table entry
 length : Length of the table

Figure 2: Font Table Directory

Table 3 shows the required table that must appeal in any valid TTF file.

Tag Table
cmap Character to glyph mapping
glyph Glyph data
head Font header
hhea Horizontal header
hmtx Horizontal metrics
loca Index to location
maxp Maximum profile
name Naming table
post PostScript information
OS/2 OS/2 and Windows specific metrics

Table 3: Required Table in TTF

In certain circumstances, due to the functionality expected of a given TTF
font, optional tables may be needed. Table 4 lists the optional tables together
with their tag name.

Tag Table
cvt Control Value Table
EBDT Embedded bitmap data
EBLC Embedded bitmap location data
EBSC Embedded bitmap scaling data
fpgm Font program
gasp Grid-fitting and scan conversion

procedure
hdmx Horizontal device metrics
kern kerning
LTSH Linear threshold table
prep CVT Program
PCLT PCLT

Table 4: Optional Table in TTF

Due to font validation purposes, the dumb fuzzing technique is not
recommended for these fields: “checkSum”, “offset”, “length” and “Table”. To
reduce the number of irrelevant tests, a checksum validation program is used
to determine the checksum of the “head” table.

Figure 3: Validation process for TTF fuzzing

During the fuzzing process, the table checksum has to be re-computed. The
checksum calculation implies a four bytes boundary as shown in the Python
program below.

1. def chk(tab):

2. total_data=0

3. for i in range(0, len(tab), 4):

4. data=unpack(“>I”,tab[i:i+4])[0]

5. total_data += data

6. final_data=0xFFFFFFFF &total_data

7. return final_data

The TTF font fuzzer [3] is created to fuzz the TTF font into different sizes
which enables the generation of test cases to determine the size of font in
triggering the vulnerability. The overall process of the fuzzer starts with
automating the installation of the crafted font in a Windows system. It will then
display the font in a different size, uninstall the font type and repeat the
process if no vulnerability is found.

Before using a font with a specified size and displaying it on a window, the
font must be installed. Since the crafted TTF font is designed to exploit the
Windows 8 Pro, the TTF font is not installed by default by Microsoft Windows
during setup. The windll.gdi32.AddFontResourceExA function is used to
automate the installation of the crafted font into the ‘C:\Windows\Fonts’ folder.

1. htr=windll.gdi32.AddFontResourceExA(fileFont, FR_PRIVATE,None)

Next, our fuzzer will need to prepare an environment by registering a window
class and creating a new window to automate the display of the font text.
Once the fuzzing environment is ready, a LOGFONT [4] object is created to
define the attributes of a font.

1. lf=win32gui.LOGFONT()

Since the objective of this fuzzer is to fuzz the font into different sizes, the
range of font size to be fuzzed has to be defined. The range can start and end
at any number and an increment number can be specified depending on one’s
preference. Just like everything else in the computer, a font must have a
name. Thus, the defined name should always go to the name of the crafted
TTF font. Below is a set of properties used to describe a font.

1. lf.lfHeight=fontsize

2. lf.lfFaceName="xxxx"

3. lf.lfWidth=0

4. lf.lfEscapement=0

5. lf.lfOrientation=0

6. lf.lfWeight=FW_NORMAL

7. lf.lfItalic=False

8. lf.lfUnderline=False

9. lf.lfStrikeOut=False

10. lf.lfCharSet=DEFAULT_CHARSET

11. lf.lfOutPrecision=OUT_DEFAULT_PRECIS

12. lf.lfClipPrecision=CLIP_DEFAULT_PRECIS

13. lf.lfPitchAndFamily=DEFAULT_PITCH|FF_DONTCARE

The fuzzer will then proceed by displaying the pre-set font with the predefined
attributes. As expected from the name, a LOGFONT structure is a logical font.
However, due to the application that needs to work with fonts at a lower level,
it means that the target font functions are not specified and HFONT always
maps to the same physical font internally. Both windll.gdi32.ExtTextOutW
and ETO_GLYPH_INDEX are used as physical font APIs.

1. windll.gdi32.ExtTextOutW(

2. hdc,

3. 5,

4. 5,

5. ETO_GLYPH_INDEX,

6. None,

7. var1,

8. len(var1),

9. None)

Assuming no vulnerability has been found at a font with a specified size that
has been called, the windll.gdi32.RemoveFontResourceExW function will be
called to remove the fonts in the ‘C:\Windows\Fonts’ folder.

1. windll.gdi32.RemoveFontResourceExW(fileFont, FR_PRIVATE,None)

Another size of font in the range will be called and the same process will
repeat until vulnerability is found or the list of font size elements under a loop
function has all been called and no vulnerability is found.

4.0 Attack Vector
The Graphics Device Interface (GDI) is part of the core OS component. It is
responsible for graphical object display and output transmission to devices
such as printers.The vulnerability of a font able is to be launched via several
attack vectors, both locally and remotely.

4.1 Local Font Attack Vector

Typically, the method to trigger the local attack might be different depending
on the vulnerability of the font; some might need the user to select and click
the file and display via fontview.exe. However, there are some vulnerable
fonts that can be triggered immediately when the mouse cursor points to the
font file.

Figure 4: The attacker copies and executes a crafted font in a Windows

system to raise the user privilege as a super user.

4.2 Remote Font Attack Vector

Some font vulnerabilities can allow remote attacks as long as the vulnerable
font is embedded in a docx or html file. The vulnerable font can be attacked
via browser (Firefox, Chrome), Microsoft Office Documents (*.docx, *.pptx)
and other applications such as Adobe Portable Document format (*.pdf).

4.2.1 Remote Font Attack Vector – html:

The font vulnerability can allow remote code execution if the victim opens the
crafted web page that is embedded with a TTF. Figure 5 below shows how
the attacker uses the CSS @font-face property to embed crafted TTF into a
web page.

Figure 5: Embedded crafted font inahtml file

4.2.2 Remote Font Attack Vector – Docx:

The remote font attack can be launched by embedding a crafted font into a
Microsoft Office document. To do this, a TTF file format has to be converted
into an obfuscated TTF font file format (ODTTF) before performing the
embedding process and this must satisfy the following requirements.

1. A 128-bit Global Unique Identifier (GUID) is generated.
2. An XOR operation on the first 32 byte of the TTF is performed.
3. The ODTTF font file is embedded into Microsoft Office Word.

Figure 6: Performing the XOR operation on the first 32 byte of the TTF

The Python code below simplifies the obfuscation process by converting the
TTF file to an ODTTF file.

1. fontKey = keys.decode("hex")

2. obfFontString = open(ttfFontFile, 'rb').read()

3. fontString = [ord(x) for x in obfFontString]

4. fori in range(16):

5. fontString[i] = ord(obfFontString[i]) ^ ord(fontKey[15‐i])

6. fontString[i+16] = ord(obfFontString[i+16]) ^ ord(fontKey[15‐i])

Figure 7: Successfully embedded a crafted TTF font file in Microsoft

document file

Summary
Two TTF tests are included in our TTF fuzzing. One is by opening the TTF file
using FontView.exe and the other is by calling the glyph index from character
map and displaying the text in different sizes. It is recommended that the
display test of the targeted font size is not set to start at font size 0. This is
because Microsoft Office does not accept font size 0. Lastly, to ease the
analysis process it is advised to focus on a few glyphs only before starting the
fuzzing process.

Reference

[1] TrueType 1.0 Font File, Technical Specification Revision 1.66 August 1995
[2] Understanding Windows Kernel Font Scaler Engine Vulnerability, Wang

Yu SyScan 360 2012
[3] Partial of TrueType Font Fuzzer,

https://github.com/lingchuanlee/FontFuzzer/
[4] LOGFONT Structure, http://msdn.microsoft.com/en‐

us/library/windows/desktop/dd145037(v=vs.85).aspx

Appendix

;Function[xx] = TrueType Instructions
;xx is opcode from 0x00 until 0xBF
function[0x00] = itrp_SVTCA_0;
function[0x01] = itrp_SVTCA_1;
function[0x02] = itrp_SPVTCA_0;
function[0x03] = itrp_SPVTCA_1;
function[0x04] = itrp_SFVTCA_0;
function[0x05] = itrp_SFVTCA_1;
function[0x06] = itrp_SPVTL;
function[0x07] = itrp_SPVTL;
function[0x08] = itrp_SFVTL;
function[0x09] = itrp_SFVTL;
function[0x0A] = itrp_WPV;
function[0x0B] = itrp_WFV;
function[0x0C] = itrp_RPV;
function[0x0D] = itrp_RFV;
function[0x0E] = itrp_SFVTPV;
function[0x0F] = itrp_ISECT;
function[0x10] = itrp_SRP0;
function[0x11] = itrp_SRP1;
function[0x12] = itrp_SRP2;
function[0x13] = itrp_SetElementPtr;
function[0x14] = itrp_SetElementPtr;
function[0x15] = itrp_SetElementPtr;
function[0x16] = itrp_SetElementPtr;
function[0x17] = itrp_LLOOP;
function[0x18] = itrp_RTG;
function[0x19] = itrp_RTHG;
function[0x1A] = itrp_LMD;
function[0x1B] = itrp_ELSE;
function[0x1C] = itrp_JMPR;
function[0x1D] = itrp_LWTCI;
function[0x1E] = itrp_LSWCI;
function[0x1F] = itrp_LSW;
function[0x20] = itrp_DUP;
function[0x21] = itrp_POP;
function[0x22] = itrp_CLEAR;
function[0x23] = itrp_SWAP;
function[0x24] = itrp_DEPTH;
function[0x25] = itrp_CINDEX;
function[0x26] = itrp_MINDEX;
function[0x27] = itrp_ALIGNPTS;
function[0x28] = itrp_RAW;
function[0x29] = itrp_UTP;
function[0x2A] = itrp_LOOPCALL;
function[0x2B] = itrp_CALL;
function[0x2C] = itrp_FDEF;

function[0x2D] = itrp_IllegalInstruction;
function[0x2E] = itrp_MDAP;
function[0x2F] = itrp_MDAP;
function[0x30] = itrp_IUP;
function[0x31] = itrp_IUP;
function[0x32] = itrp_SHP;
function[0x33] = itrp_SHP;
function[0x34] = itrp_SHC;
function[0x35] = itrp_SHC;
function[0x36] = itrp_SHE;
function[0x37] = itrp_SHE;
function[0x38] = itrp_SHPIX;
function[0x39] = itrp_IP;
function[0x3A] = itrp_MSIRP;
function[0x3B] = itrp_MSIRP;
function[0x3C] = itrp_ALIGNRP;
function[0x3D] = itrp_RTDG;
function[0x3E] = itrp_MIAP;
function[0x3F] = itrp_MIAP;
function[0x40] = itrp_NPUSHB;
function[0x41] = itrp_NPUSHW;
function[0x42] = itrp_WS;
function[0x43] = itrp_RS;
function[0x44] = itrp_WCVT;
function[0x45] = itrp_RCVT;
function[0x46] = itrp_RC;
function[0x47] = itrp_RC;
function[0x48] = itrp_WC;
function[0x49] = itrp_MD;
function[0x4A] = itrp_MD;
function[0x4B] = itrp_MPPEM;
function[0x4C] = itrp_MPS;
function[0x4D] = itrp_FLIPON;
function[0x4E] = itrp_FLIPOFF;
function[0x4F] = itrp_DEBUG;
function[0x50] = itrp_LT;
function[0x51] = itrp_LTEQ;
function[0x52] = itrp_GT;
function[0x53] = itrp_GTEQ;
function[0x54] = itrp_EQ;
function[0x55] = itrp_NEQ;
function[0x56] = itrp_ODD;
function[0x57] = itrp_EVEN;
function[0x58] = itrp_IF;
function[0x59] = itrp_EIF;
function[0x5A] = itrp_AND;
function[0x5B] = itrp_OR;
function[0x5C] = itrp_NOT;
function[0x5D] = itrp_DELTAP1;
function[0x5E] = itrp_SDB;

function[0x5F] = itrp_SDS;
function[0x60] = itrp_ADD;
function[0x61] = itrp_SUB;
function[0x62] = itrp_DIV;
function[0x63] = itrp_MUL;
function[0x64] = itrp_ABS;
function[0x65] = itrp_NEG;
function[0x66] = itrp_FLOOR;
function[0x67] = itrp_CEILING;
function[0x68] = itrp_ROUND;
function[0x69] = itrp_ROUND;
function[0x6A] = itrp_ROUND;
function[0x6B] = itrp_ROUND;
function[0x6C] = itrp_NROUND;
function[0x6D] = itrp_NROUND;
function[0x6E] = itrp_NROUND;
function[0x6F] = itrp_NROUND;
function[0x70] = itrp_WCVTFOD;
function[0x71] = itrp_DELTAP2;
function[0x72] = itrp_DELTAP3;
function[0x73] = itrp_DELTAC1;
function[0x74] = itrp_DELTAC2;
function[0x75] = itrp_DELTAC3;
function[0x76] = itrp_SROUND;
function[0x77] = itrp_S45ROUND;
function[0x78] = itrp_JROT;
function[0x79] = itrp_JROF;
function[0x7A] = itrp_ROFF;
function[0x7B] = itrp_IllegalInstruction;
function[0x7C] = itrp_RUTG;
function[0x7D] = itrp_RDTG;
function[0x7E] = itrp_SANGW;
function[0x7F] = itrp_AA;
function[0x80] = itrp_FLIPPT;
function[0x81] = itrp_FLIPRGON;
function[0x82] = itrp_FLIPRGOFF;
function[0x83] = itrp_IDefPatch;
function[0x84] = itrp_IDefPatch;
function[0x85] = itrp_SCANCTRL;
function[0x86] = itrp_SDPVTL;
function[0x87] = itrp_SDPVTL;
function[0x88] = itrp_GETINFO;
function[0x89] = itrp_IDEF;
function[0x8A] = itrp_ROTATE;
function[0x8B] = itrp_MAX;
function[0x8C] = itrp_MIN;
function[0x8D] = itrp_SCANTYPE;
function[0x8E] = itrp_INSTCTRL;
function[0xB0] = itrp_PUSHB1;
function[0xB1] = itrp_PUSHB;

function[0xB2] = itrp_PUSHB;
function[0xB3] = itrp_PUSHB;
function[0xB4] = itrp_PUSHB;
function[0xB5] = itrp_PUSHB;
function[0xB6] = itrp_PUSHB;
function[0xB7] = itrp_PUSHB;
function[0xB8] = itrp_PUSHW1;
function[0xB9] = itrp_PUSHW;
function[0xBA] = itrp_PUSHW;
function[0xBB] = itrp_PUSHW;
function[0xBC] = itrp_PUSHW;
function[0xBD] = itrp_PUSHW;
function[0xBE] = itrp_PUSHW;
function[0xBF] = itrp_PUSHW;

