
Type-Changing Rewriting and Semantics-Preserving
Transformation

Sean Leather

Johan Jeuring

Andres Löh

Bram Schuur

Technical Report UU-CS-2013-017

October 2013

Department of Information and Computing Sciences

Utrecht University, Utrecht, The Netherlands

www.cs.uu.nl

ISSN: 0924-3275

Department of Information and Computing Sciences

Utrecht University

P.O. Box 80.089

3508 TB Utrecht
The Netherlands

Type-Changing Rewriting and
Semantics-Preserving Transformation

Sean Leather
Utrecht University
s.p.leather@uu.nl

Johan Jeuring
Utrecht University

Open University Netherlands
j.t.jeuring@uu.nl

Andres Löh
Well-Typed LLP

andres@well-typed.com

Bram Schuur
Utrecht University
b.schuur@uu.nl

Abstract
We have identified a class of regular, whole-program transforma-
tions that cannot be safely performed with typical transformation
techniques because transformation requires changing the types of
terms. In these transformations, we want to change typically large
parts of a program from using one type to using another type
while simultaneously preserving the original program semantics af-
ter transformation.

In this paper, we present type-and-transform systems, an auto-
mated approach to the whole-program transformation of terms in-
volving type A to terms involving the isomorphic type B using type-
changing rewrite rules. Type-and-transform systems establish typ-
ing and semantics relations between all source and target subpro-
grams such that a complete transformation can guarantee the equiv-
alent semantics of a whole program. We describe the type-and-
transform system for the lambda calculus with let-polymorphism
and general recursion, including several examples from the litera-
ture and properties of the system.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors—Translator writing systems and compiler
generators; F.4.2 [Mathematical Logic and Formal Languages]:
Grammars and Other Rewriting Systems; F.3.3 [Logics and Mean-
ings of Programs]: Studies of Program Constructs—Type structure

General Terms Languages, Theory

Keywords type-and-transform systems, type-changing rewriting,
semantics-preserving program transformation

1. Introduction
Program improvement sometimes involves large, homogeneous
changes that are not intended to modify program functionality
(other than, perhaps, performance). For example, a programmer

might rename variables, reorganize code, or update code to use
a new library API. Of course, these changes can still introduce
unwanted errors into a program. Consequently, programmers of-
ten use tools to help automate common patterns of change such as
refactoring [8]. Compilers or interpreters may also be employed for
large changes such as optimization without necessitating program-
mer intervention. In functional programming, term rewriting [1]
can be used to safely change programs with simple rewrite rules.

Many approaches to automated semantics-preserving program
improvement only allow type-preserving updates to code. This is
only natural: in a statically typed programming language, type
safety is a prerequisite for a working program. Replacing one term
with another of a different type challenges the effort of guarantee-
ing the preservation of semantics between the terms. Some type-
changing rewrites may be straightforward: adding a parameter to
a function, for example. Other changes are not obvious: changing
one string type to a different string type, in which the APIs of the
two types are not equivalent. A completely transformed program
should work as before, i.e. the strings are still strings. However, the
evaluation may now be more efficient. Or, for example, the program
now supports Unicode characters whereas before the encoding was
ASCII. Our focus is the class of transformations between isomor-
phic types with possibly different APIs.

In this paper, we discuss a foundation for certain automated
semantics-preserving and type-changing program transformations.
We use purely functional programming languages with strong,
static type systems. Such languages allow us to utilize the type
system for safety as well as driving change throughout the pro-
gram. By disallowing or isolating side effects, such languages also
simplify the proof of semantics preservation. Our object language
is the lambda calculus with let-polymorphism and general recur-
sion (a.k.a. the Hindley-Milner type system).

A type-and-transform system defines, for a given language, how
to relate two programs such that all “unresolved” term and type
changes are identified and can (eventually) be resolved resulting in
the programs being semantically equivalent. A type-and-transform
system specifies the structure of a transformation1 that relates
one typed program (the source) to another (the target). The target
is actually the (possibly) modified source. A type-and-transform
system also specifies how a program can be modified with a typed

1 To avoid confusing readers from different backgrounds, we point out that
we have hijacked the terms “transformation” and “rewrite,” among others,
and substituted specialized meanings.

source target

es : τs el : τl

er : τr

rewriting

transformation

Figure 1. Diagram of transformation and rewriting

rewrite rule, an extension of the usual rewrite rule that can, under
certain conditions, impose a change of type between its left-hand
side (lhs) and right-hand side (rhs) patterns.

The structure of a transformation mirrors the structure of the
source term, preserving both the syntactic relation of correspond-
ing source and target subterms and the typing relations of each sub-
term. A transformation also records any modifications that arise
when a typed rewrite rule is applied to a target. If the source and
initial target are related by a transformation, then we can construct
a new transformation relating the source and new target. A com-
plete transformation2 relates two programs with the same type and
equivalent semantics, even though the programs may differ syntac-
tically.

Figure 1 provides a visualization of the connections between
transformation and rewriting. Here, es is the source term, and τs
is the type of es. The subscripts l and r indicate the target terms
and types matching the respective lhs and rhs of a rewrite rule.
The lower frequency oscillating vertical arrow represents rewriting,
while the higher frequency arrows represent transformations.

A set of typed rewrite rules describes all the allowed changes
between the terms of two types, A and R .3 The conversion between
types is given by the functions rep : A→R and abs : R →A .

In this paper, we focus on types A and R that are isomorphic.
That is, both of the following equivalences hold:

rep◦abs≡ idR→R (rep-abs)

abs◦ rep≡ idA→A (abs-rep)

This simplifies the proof of semantics, but it also means many type
pairs are not supported.

We believe the conversion requirement can be weakened to
a retract (i.e. only (abs-rep) is necessary). This would, for exam-
ple, allow transformations between the types A = String and R =
String→String. One of the authors has already shown this to some
extent. In his master’s thesis, Schuur [26] demonstrated a type-and-
transform system for the simply typed lambda calculus using a log-
ical relation as proof technique. There is precedence [24] for us-
ing logical relations with more interesting languages such as ours,
which has general recursion and polymorphism. We will explore
this in future work, but we feel that this paper stands well on its
own as a basis for type-and-transform systems.

1.1 An Application of Type-and-Transform Systems
To motivate type-and-transform systems, we present an application
that will also serve as a running example. Pat, the programmer, will
guide us through the general scenario presenting the problem and
possible solutions. For our code examples, we use Haskell notation.

Scenario Pat writes a program using type A. The operations in-
volving A (A-terms) are convenient for programming, but program-
ming with A can produce inefficient programs, and Pat discovers
the program has this problem. Fortunately for Pat, another type B

2 This is not related to “completeness” but rather to a subset of transforma-
tions obeying certain properties described in Section 6.
3 The abbreviations A/abs and R /rep refer to abstraction and representation,
respectively, in deference to Hughes [17].

newtype Z = Z (S→S)

(�) :: Z→Z→Z
Z f �Z g = Z (f ◦g)

ε :: Z
ε= Z id

type S = String -- for brevity

rep :: S→Z
rep xs = Z (xs++)

abs :: Z→S
abs (Z f) = f ""

Figure 2. Difference strings library

is isomorphic to A and more efficient but not as convenient (e.g.
the set of B-terms is smaller or the code is more verbose). Unfortu-
nately, replacing A-terms with B-terms or inserting conversions at
all the right places is time-consuming and error-prone.

Pat can attempt to solve the problem using a type-and-transform
system to automatically transform the program with one of two
potential approaches:

1. Pat uses a compiler flag. The compiler “knows” about the A-
to-B transformation and converts A-terms to B-terms, safely
and completely. In the meantime, Pat will continue to utilize
A-terms, comfortable in the knowledge that the compiler will
optimize4 them to B-terms.

2. Pat uses an IDE component. After the operation – which
could be considered a form of refactoring – Pat uses the
newly transformed code with B-terms instead of A-terms.

Typical Examples The canonical example is transforming lists to
an alternative representation (sometimes called difference lists) as
first-class functions on lists [17]. In a similar vein, cons-lists can
be replaced by join-lists [27, 33] or finger trees [16]. There are also
multiple string types, each with a different application: people in
the Haskell community often encounter problems using String (a
synonym for [Char]) when they should be using ByteString [3] or
Text [14].

Example: Difference Strings Substantial use of the standard
Haskell “append” operation ++ on lists can be problematic since
left-bracketed associations, such as (xs++ ys)++ zs, are inefficient:
xs is traversed twice during evaluation. Even though ++ is right-
associative, we cannot always easily guarantee that ++ is used in a
right-bracketed way, especially when abstraction is used, e.g. as in
let as = xs++ ys in as++ zs.

We paraphrase the Hughes [17] solution to the append problem
with two adaptations. First, we specialize the code from lists to lists
of chracters (i.e. String). This simplifies our initial presentation of
type-and-transform systems. We revisit the example with lists in
Section 7.4. Second, we use a Haskell newtype for the difference
list string type Z, and we assume that Z is abstract outside this
library. This ensures that we have an isomorphism. The code for
the library is in Figure 2. The isomorphism with the standard String
type is implemented by rep and abs.

With the Z library, we can now give some example transfor-
mation targets. The simple (xs++ ys)++ zs becomes abs ((rep xs �
rep ys)� rep zs) – xs is no longer traversed twice. A transformation
can push change through bindings: the above let example can be
transformed to abs (let as = rep xs�rep ys in as�rep zs) – note that
as has a new type. Lastly, borrowing an example from Hughes [17],
we can transform the reverse function (specialized to strings):

rev :: S→S
rev "" = ""

rev (x : xs) = rev xs++(x :"")

4 To clarify, transformation does not guarantee improvement, but it does
expedite comparing transfomed and untransformed programs.

Terms e, f F x | f e | λx.e | fix e | let x = e1 in e2
Types τ,υ F α | B | τ→υ

Type Schemes ς F ∀ᾱ.τ

Environments Γ F ε | Γ,ν : ς

Variables ν F x | m

Figure 3. Object language syntax

There are multiple possible targets (and we discuss how to choose
one in Section 7.2), but, assuming rev is found in a larger program,
the most likely tarket is:

rev′ :: S→Z
rev′ "" = ε
rev′ (x : xs) = rev′ xs� rep (x :"")

This version (renamed for presentation) allows the Z type to prop-
agate further through the uses of rev′. Alternatively, every rev e can
be transformed to abs (rev′ e).

As a programming abstraction, the difference string representa-
tion is clearly not as convenient as the string representation. Opti-
mization may not be a concern early in the development cycle, and
the simplicity of strings can be a strong motivating factor. But later,
inefficiency can become a significant problem, and the transforma-
tion to difference strings becomes very useful.

Gill and Hutton [13] also use rev to demonstrate the worker/
wrapper transformation; however, their work differs from ours in at
least two respects. First, we describe fully automated transforma-
tions, while the worker/wrapper transformation is a manual proof
technique. Second, the scope of a worker/wrapper transformation is
a recursive function, while the scope of our transformation is deter-
mined by an arbitrary binding, i.e. anything from a local definition
to a module or even the whole program.

1.2 Contributions
The contributions of this paper are the following:

• We describe the type-and-transform system for the lambda
calculus with let-polymorphism and general recursion.

• We establish and prove the properties necessary for type
safety and preserving semantics.

• We discuss the transformation algorithm, choice heuristics,
and extending to parameterized types.

We have also developed a monadic Haskell implementation5 of the
algorithm. Note that our primary focus is on the theory, and we do
not discuss many practical aspects. We plan to extend the theory to
Haskell and investigate the real-world efficiency and effectiveness
of type-and-transform systems.

1.3 Overview
The remainder of this paper is organized as follows. We begin in
Section 2 with a discussion of the object language, including the
type system and semantics. In Section 3, we look at a few exam-
ple transformations to develop an intuitive understanding. We dive
into type-and-transform systems by introducing the typing and se-
mantics in Sections 4 and 5, respectively. In Section 6, we present
the formal definitions and correctness proofs of the important con-
cepts. Section 7 follows up with discussions of a transformation al-
gorithm, transformation choice heuristics, parameterized type con-
structors, and the transformation of lists to difference lists. We de-
scribe two more applications of type-and-transform systems in Sec-

5 A cabal package is available at http://www.staff.science.uu.nl/
~leath101/code/tts-0.3.2.tar.gz.

Γ ` e : τ

τ ≺ Γ(x)
Γ ` x : τ

(VAR)
Γ ` e : τ→ τ

Γ ` fix e : τ
(FIX)

Γ ` f : τ→υ Γ ` e : τ

Γ ` f e : υ
(APP)

Γ,x : τ ` e : υ

Γ ` λx.e : τ→υ
(LAM)

Γ ` e1 : τ Γ,x :GΓ(τ) ` e2 : υ

Γ ` let x = e1 in e2 : υ
(LET)

Figure 4. Object language type system

tion 8. Finally, we examine related work in Section 9 and conclude
with our future plans in Section 10.

2. Object Language
Our object language is the lambda calculus with general recursion
(a fix primitive) and polymorphic let-bindings with the Hindley-
Milner type system [5, 22]. It is a small language but interesting
enough for useful examples.

Figure 3 gives the grammar for the language. The term syntax is
standard. For readability, we borrow features from Haskell such as
infix binary operators and list notation, but all examples can easily
be translated to the core language.

A type τ is either a type variable α , a base type B (e.g. integer
or string), or a function type. We use α/B as a shortcut for either
a type variable or a base type later in the paper. A type scheme ς

quantifies over a vector ᾱ of type variables in a type. If ᾱ is empty,
we write the type scheme as a type.

Type environments are finite maps from variables to type
schemes. A type environment is either empty or the union of an
environment Γ with {ν : ς }, where ν does not occur free in Γ. We
use α-renaming where necessary to avoid shadowing. In later sec-
tions, we distinguish metavariables (m) from object variables (x),
but the environment domain is the sum of the two. The notation
ς = Γ(x) indicates that x : ς ∈ Γ.

A type substitution6 σ is a finite map from type variables to
types. A substitution that replaces α1, . . .,αn with τ1, . . .,τn is writ-
ten as [α1 7→ τ1, . . .,αn 7→ τn]. The empty substitution is written as
id, and the composition of two substitutions σ1 and σ2 is σ1 ◦σ2.
We indicate the application of a substitution σ to a type τ by jux-
taposition: στ . Substitution uses α-renaming where necessary to
avoid capture.

Instantiation and generalization are defined as follows:

• A type τ is an instance of a type scheme ς = ∀ᾱ.τ ′ if there
exists a substitution σ , whose domain is a subset of ᾱ , such
that τ = στ ′. We write instantiation as τ ≺ ς .

• The closure GΓ(τ) of the type τ under the environment Γ is
defined as (where fv(x) means the free variables of x):

GΓ(τ) = ∀ᾱ.τ where ᾱ = fv(τ) \ fv(Γ)

The typing judgment Γ ` e :τ says that the term e, closed by the
type environment Γ, has the type τ . The inference rules are given
in Figure 4.

For the language semantics, we use the following equivalences:

6 We later use forms of substitution for mapping things other than types, but
the notation remains the same.

http://www.staff.science.uu.nl/~leath101/code/tts-0.3.2.tar.gz
http://www.staff.science.uu.nl/~leath101/code/tts-0.3.2.tar.gz

Source Target
"a" : S rep "a" : Z (1)

++ : S→S→S � : Z→Z→Z (2)

x++"b" : S x� rep "b" : Z (3)

(λx.x++"b") "a" : S abs ((λx.x� rep "b") (rep "a")) : S (4)

(λx.x++"b") "a" : S abs ((λx.rep x� rep "b") "a") : S (5)

(λx.x++"b") "a" : S (λx.abs (rep x� rep "b")) "a" : S (6)

Table 1. Examples of transformations

(λx.e2) e1 ≡ [x 7→ e1]e2 (RED-LAM)

let x = e1 in e2 ≡ [x 7→ e1]e2 (RED-LET)

fix (g◦ f)≡ g (fix (f ◦g)) (RED-ROLLING)

The first two are standard reduction rules for a call-by-name se-
mantics. The last equivalence, (RED-ROLLING), is the rolling rule for
the least fixed point [2, 13].

3. A Brief Look at Transformation
In this section, we look at a few transformations in our object lan-
guage7 to expand on the description of the running example in Sec-
tion 1.1 and to develop an intuitive understanding of transforma-
tion.

The simplest transformation is one that relates a typed term to
itself; that is, transformation is reflexive. Consider the small but
interesting examples listed in Table 1.

The first two are examples of the most basic transformations be-
cause each involves a single rewrite rule. In (1), a string is rewritten
to a difference string by applying rep to the string. The transforma-
tion of (2) is a simple renaming operation.

Each of the examples (1) and (2) changes the type of the term,
but note that the type changes have a regular pattern: every S
becomes a Z and the type’s functional structure is preserved. Using
this pattern, we can intuitively “resolve” the changes and return the
targets to terms that are semantically equivalent to the sources by
applying abs and rep (and eta-reduction) in certains ways:

"a"≡ abs (rep "a") ++≡ λx.λy.abs (rep x� rep y)

In (3), the source x has type S, but the target x has type Z. A
transformation allows free variables to have different types in the
source and target by relating the type environments, which may
have different ranges but must have the same domains.

A transformation can relate different targets to one source, as
demonstrated by (4), (5), and (6). The relation is left-total (a.k.a. a
multivalued function) because the identity transformation is always
allowed. We discuss the practical problem of choosing a preferred
target in Section 7.2.

The transformation relation relates a source to a target and not
necessarily vice versa. That is, we cannot guarantee that it is a
symmetric relation. For example, abs and rep are only introduced
and never eliminated; so, we cannot define a transformation relating
a rewritten target to a source.

Examples (4), (5), and (6), in which the types are equal, are com-
plete transformations. These transformations allow us to substitute
the target for the source. Incomplete transformations such as (1), (2),
and (3), can be subtransformations of complete transformations, but
they are not complete themselves.

In the next section, we describe the typing infrastructure for
rewriting and transformation.

7 For simplicity, we consider any datatypes or newtypes defined in Haskell
code to be base types in the object language.

T (τ,υ) = let (σ , τ̊) = T ′(τ,υ) in τ̊

T ′(Bs, Bt) = (id,Bs) if Bs ≡ Bt
T ′(τ, α) = ([α 7→ τ],τ)
T ′(α, υ) = ([α 7→ υ],υ)
T ′(τ1→ τ2,υ1→υ2) = let (σ1, τ̊1) = T ′(τ1,υ1)

(σ2, τ̊2) = T ′(σ1τ2,σ1υ2)
in (σ2 ◦σ1,σ2τ̊1→ τ̊2)

T ′(A, R) = (id, ι)

Figure 5. Definition of T and T ′ on types

4. The Typing of Type-and-Transform Systems
A key feature of type-and-transform systems is the support for
transformations that allow for type-changing rewrites but enforce
the discipline of type safety. We discuss the balance in this sec-
tion by first describing type functors, a basic but important underly-
ing concept in type-and-transform systems. Then, we present typed
rewrite rules and transformations, especially the type-related as-
pects. We discuss the semantics-related aspects in Section 5.

4.1 Type Functors
The types of the two terms in a transformation are related by a type
functor, which has the following syntax:

τ̊, υ̊ F α | B | τ̊→ υ̊ | ι

A type functor indicates the difference between two types (which
we call A and R) with the distinguished element ι . In the running
example, wherever S (A) is found in the source type and Z (R) is
found in the target type, the type functor has ι . Otherwise, the type
functor mirrors the common structure of the two types.

The type functor τ̊ of a transformation from source type τs to a
target type τt is given by T (τs,τt), defined in Figure 5. The defi-
nition8 of T uses T ′. The first component of T ′(τ,υ) is the most
general unifier, U(τ,υ), if it exists. That is, if σ = U(τ,υ), then
(σ , τ̊) = T ′(τ,υ), and τ̊ is isomorphic to τ and υ . The more inter-
esting case occurs where U(τ,υ) is not defined but τ̊ = T (τ,υ) is.
In that case, there will be a ι in τ̊ wherever τ has A and υ has R .

The type projection of a type functor τ̊ is τ̊〈υ〉, where every ι

in τ̊ is replaced by υ :
α/B〈υ〉= α/B

(τ̊→ υ̊)〈υ〉= τ̊〈υ〉→ υ̊〈υ〉
ι〈υ〉= υ

Note that 〈τ〉 is surjective, e.g. ι〈S〉 ≡ S〈S〉; this property will be
useful later. With the definitions of T and 〈 〉, we can state, for
any τ̊ , the following inversion property:

τ̊ ≡ T (τ̊〈A〉, τ̊〈R 〉) (τ̊ -INV)

For a transformation type functor τ̊ , the source type is τ̊〈A〉, and
the target type is τ̊〈R 〉.

To close transformations where free variables can change types,
we use a type functor environment Γ̊, a slight adaptation of a type
environment that maps variables to type functor schemes:

Γ̊ F ε | Γ̊,x : ς̊

ς̊ F ∀ᾱ.τ̊

Instantiation (≺) and generalization (G) work as expected. T can
also be lifted to type functor schemes and environments:

T
Γ̊
(ς1,ς2) = G

Γ̊
(T (τ1,τ2)) where τ1 ≺ ς1,τ2 ≺ ς2

8 Figure 5 is simplified in two ways for clarity. (1) The types A and R are
implicit parameters. (2) To be more general, A and R should not be treated
as patterns but checked for unification, e.g. with U(τ,A).

Γ ` p : τ

τ ≺ Γ(ν)

Γ ` ν : τ
(P-VAR)

Γ ` p1 : τ→υ Γ ` p2 : τ

Γ ` p1 p2 : υ
(P-APP)

Γ ` ρ

Γ∪ Γ̊〈R 〉 ` pl : τ̊l〈R 〉 Γ∪ Γ̊〈R 〉 ` pr : τ̊r〈R 〉
τ̊l〈A〉 ≡ τ̊r〈A〉

Γ ` (Γ̊ . pl : τ̊l ; pr : τ̊r)
(R)

Γ `R

ρ ∈R Γ ` ρ

Γ `R
(RS)

Figure 6. Pattern, rule, and rule set typing

T (ε, ε) = ε

T ((Γ1,ν1 : ς1),(Γ2,ν2 : ς2)) =

let Γ̊ = T (Γ1,Γ2) in Γ̊,ν1 :T
Γ̊
(ς1,ς2) if ν1 ≡ ν2

We can likewise define lifted versions of 〈 〉:
ς̊〈υ〉

Γ̊
= G

Γ̊
(τ̊〈υ〉) where τ̊ ≺ ς̊

ε〈υ〉= ε

(Γ̊,ν : ς̊)〈υ〉= Γ̊〈υ〉,ν : ς̊〈υ〉
Γ̊

These lead to the following inversion properties:

ς̊ ≡ T
Γ̊
(ς̊〈A〉

Γ̊
, ς̊〈R 〉

Γ̊
) (ς̊ -INV)

Γ̊≡ T (Γ̊〈A〉, Γ̊〈R 〉) (Γ̊-INV)

From example (3) of Table 1, we infer the source and target type
environments to be Γs = {x : S, . . .} and Γt = {x : Z, . . .}, respec-
tively. Thus, the type functor environment of the transformation is
T (Γs,Γt) = {x : ι , . . .}.

In the next section, we look at the other important component
of the system, rewriting, and how type functors play a role there.

4.2 Typed Rewrite Rules
The typed rewrite rule is the basic unit of change. In standard term
rewriting systems, the rule appears as a pair of patterns, pl ; pr,
where pl is the lhs, pr is the rhs, and p has the following syntax:

p F ν | p1 p2

A pattern is either a variable or the application of two patterns. Ob-
ject variables (x), which are syntactically distinct from metavari-
ables (m), are constant symbols. A term e is an instance of p if
a substitution θ (mapping metavariables to terms) exists such that
θp ≡ e. A redex is an instance of the lhs, θpl, and contracting the
redex means replacing it with the corresponding instance of the rhs,
θpr.

In type-and-transform systems, we extend the notation for a rule
(ρ) by annotating the patterns with type functors and annotating the
rule itself with a type functor environment:

ρ F Γ̊ . pl : τ̊l ; pr : τ̊r

A rule set R is a finite set of typed rewrite rules.
The type functor environment Γ̊ of a rule closes over the

metavariables of the two patterns; it does not include the object
variables. The object variables are bound in the transformation
type functor environment (described in Section 4.3).

Consider the rule set for the running example:

τ̊l〈A〉 ≡ τ̊r〈A〉 τ̊l〈R 〉

τ̊r〈R 〉

τ̊l

τ̊r

Figure 7. Diagram of transformation type functors and types

{m : S} . m : S ; rep m : ι (SZ-1)

{m : ι } . m : ι ; abs m : S (SZ-2)

ε .++ : S→S→S ; � : ι→ ι→ ι (SZ-3)

There is a simple intuition behind the type functors in the above
rules: if a pattern or metavariable has type Z (which is the target
type of the transformation), that type is replaced with the type
functor “placeholder” ι .

We can view ι as a viral infection that spreads throughout the
program via rewriting. The infection is introduced with (SZ-1),
propagated by (SZ-3), and eliminated by (SZ-2). In the end, we need
the A type (e.g. S) to preserve the source type, and the R type (Z)
is an underlying type used only during transformation.

A rule set R must be well-typed under some type environment
Γ (closing over the object variables) according to the inference
rules for the judgment Γ ` R in Figure 6. The inference rules
for the prerequisite judgment on typing patterns (Γ ` p : τ) are
standard, but the inference rule for typing a rewrite rule (Γ ` ρ)
needs explanation.

In Figure 1, we showed that rewriting applies a rule to a target
term to produce a new target term and that a source term is related
by transformations to both target terms. Consider the type functors
τ̊l and τ̊r for the two transformations. By adapting Figure 1 to
type functors, as discussed in Section 4.1, Figure 7 shows the
relationships between the type functors and the source and target
types .

The premises of the inference rule (R) of the judgment Γ ` ρ

include two relationships from Figure 7. First, the patterns must
be typed with the target type (e.g. τ̊l〈R 〉 for the lhs) and type
environment (Γ̊l〈R 〉). Second, the lhs and rhs source types must
be equivalent:9

τ̊l〈A〉 ≡ τ̊r〈A〉 (τ̊ -REW)

These conditions ensure that a typed rewriting rule will preserve
the typing relationships of a transformation. The reader may wish
to verify that the rule set of (SZ-1), (SZ-2), and (SZ-3) is well-typed.

4.3 Transformation
A transformation is given by a derivation of the following judg-
ment:

Γ̊ ` e R
 e′ : τ̊

The relation can be interpreted as: given a type functor environment
Γ̊ and a typed rewrite rule set R, a source e transforms to a target
e′ with the type functor τ̊ .

The inference rules for the transformation judgment are given
in Figure 8. Most of the rules correspond directly to typing rules
in Figure 4. They enforce the structural mirroring of the source
and target as well as the typing of the terms. Type functors and
type functor environments are treated simply as types and type
environments.

The one inference rule that does not correspond to typing,
(T-REW), is for type-changing rewriting. Its premises are:

9 This is where the surjectivity of 〈τ〉 plays a role.

Γ̊ ` e R
 e′ : τ̊

τ̊ ≺ Γ̊(x)

Γ̊ ` x R
 x : τ̊

(T-VAR)
Γ̊ ` e R

 e′ : τ̊→ τ̊

Γ̊ ` fix e R
 fix e′ : τ̊

(T-FIX)

Γ̊ ` e1
R
 e′1 : τ̊→ υ̊ Γ̊ ` e2

R
 e′2 : τ̊

Γ̊ ` e1 e2
R
 e′1 e′2 : υ̊

(T-APP)

Γ̊,x : τ̊ ` e R
 e′ : υ̊

Γ̊ ` λx.e R
 λx.e′ : τ̊→ υ̊

(T-LAM)

Γ̊ ` e1
R
 e′1 : τ̊ Γ̊,x :G

Γ̊
(τ̊) ` e2

R
 e′2 : υ̊

Γ̊ ` let x = e1 in e2
R
 let x = e′1 in e′2 : υ̊

(T-LET)

(Γ̊m . pl : τ̊l ; pr : τ̊r) ∈R
Γ̊ ` e R

 e′ : τ̊l Γ̊; Γ̊m ` e R
 pl@e′⇒ θ

Γ̊ ` e R
 θpr : τ̊r

(T-REW)

Γ̊; Γ̊m ` e R
 p@e′⇒ θ

Γ̊; Γ̊m ` x R
 x@x⇒ id

(M-VAR)

Γ̊ ` e R
 e′ : τ̊ τ̊ ≺ Γ̊m(m)

Γ̊; Γ̊m ` e R
 m@e′⇒ [m 7→ e′]

(M-MVAR)

Γ̊; Γ̊m ` e1
R
 p1@e′1⇒ θ1

Γ̊; Γ̊m ` e2
R
 p2@e′2⇒ θ2

Γ̊; Γ̊m ` e1 e2
R
 p1 p2@e′1 e′2⇒ θ2 ◦θ1

(M-APP)

Figure 8. Transformation and pattern matching

1. There is a typed rewrite rule ρ in the rule set R.

2. There is a transformation with the lhs type functor of ρ .

3. The transformation target e′ is a redex (θpl) of ρ .

The consequence of these obligations is a transformation with the
source of the transformation in premise 2, a target that is the
contraction (θpr) of ρ , and a type functor (τ̊r) from the rhs of ρ .

The third premise, describing pattern matching for a typed
rewrite rule, is given by the following judgment:

Γ̊; Γ̊m ` e R
 p@e′⇒ θ

The interpretation is that, given an object variable environment Γ̊

and a metavariable environment Γ̊m, a pattern p matches a target e′
and produces a substitution θ . Of the inference rules shown in Fig-
ure 8, (M-VAR) and (M-APP) are straightforward structural matches.
In (M-MVAR), we see that the source e is used to ensure that, when a
metavariable is found, the corresponding source and target terms
are components of a subtransformation. The metavariable type
functor from Γ̊m must match the subtransformation’s type functor.

We have presented the purely type-related aspects of type-and-
transform systems: type functors and the inference systems for typ-
ing rewrite rules and describing transformations. However, rewrit-
ing and transformation also establish relations between terms. We
discuss this in the next section.

5. The Semantics of Type-and-Transform
Systems

In this section, we describe the semantics relations of rewriting and
transformation. We begin with a description of a type functor as
a difunctor, linking types to terms. Then, we discuss the difunctor
properties required for typed rewrite rules and transformation.

5.1 Difunctors
A difunctor [9, 21] is a mixed-variant binary type constructor F
with the function:

dimap :∀a a′ b b′.(a′→b′)→ (b→a)→F b′ b→F a′ a

The first parameter of F is contravariant, and the second is covari-
ant. The function dimap must obey the following laws of identity
and distribution over composition:

dimap id id ≡ id (D-ID)

dimap (g◦h) (i◦ j)≡ dimap h i◦dimap g j (D-COMP)

A type functor is a difunctor with the same parameter in the
covariant and contravariant positions. That is, if F is a type functor,
then τ̊〈a〉= F a a, and dimap can be simplified:

dimap :∀a b.(a→b)→ (b→a)→F b b→F a a

For brevity, we write the dimap for type functors as Dτ̊ :

Dτ̊ :∀a b.(a→b)→ (b→a)→ τ̊〈b〉→ τ̊〈a〉
Dα/B f g = id
Dτ̊→υ̊ f g = λx→Dυ̊ f g◦ x◦Dτ̊ g f
Dι f g = g

Note the argument reversal in the contravariant usage of the τ̊→ υ̊

case.
As with previous functions on types, we can lift dimap to type

functor schemes and environments. Schemes are straightforward:

D
ς̊ ,Γ̊ :∀a b.(a→b)→ (b→a)→G

Γ̊
(τ̊〈b〉)→G

Γ̊
(τ̊〈a〉)

D
ς̊ ,Γ̊ = Dτ̊ where τ̊ ≺ ς̊

Lifting dimap to type functor environments requires a slight twist.
We give D

Γ̊
f g the type Γ̊〈b〉→ Γ̊〈a〉 and define it as a substitution

on terms:

D
Γ̊

:∀a b.(a→b)→ (b→a)→ Γ̊〈b〉→ Γ̊〈a〉
Dε f g = id
D

Γ̊,ν :ς̊ f g = D
Γ̊

f g◦ [ν 7→ D
ς̊ ,Γ̊ g f ν]

Note that the use of D
ς̊ ,Γ̊ in the second case is contravariant.

Here is an example of applying the various dimaps:

(D{x:ι } rep abs)x = (id ◦ [x 7→ Dι ,ε abs rep x])x
= [x 7→ Dι abs rep x]x
= rep x

We do not use D
Γ̊

rep abs in any other form, so, for conciseness, we
omit the arguments rep and abs. To reduce the number of brackets,
substitution application has a higher precedence than function ap-
plication.

5.2 Typed Rewrite Rules

A rewrite rule Γ̊ . pl : τ̊l ; pr : τ̊r is typed by the inference rule
(R), but this condition is not sufficient to prevent rewriting from
breaking a program. (It is trivial to come up with an example
rewrite rule that changes terms but not types.) Our intention is
ultimately to preserve the semantics of the source term in the target
(for a complete transformation), so we must establish a relation
between the rule patterns that connects them to the source term.

From the source type equivalence τ̊l〈A〉 ≡ τ̊r〈A〉 (Section 4.2), we
derive the following equivalence on patterns:

Dτ̊l
rep abs D

Γ̊
pl ≡ Dτ̊r

rep abs D
Γ̊

pr (D-REW)

Given an isomorphism for A and R , we map the patterns (as terms)
to equivalent forms using the dimap of each pattern’s type functor
(i.e. Dτ̊ rep abs : τ̊〈R 〉→ τ̊〈A〉). Before applying Dτ̊ to a pattern, we
apply the substitution D

Γ̊
, which applies D

ς̊ ,Γ̊ to each metavariable
in the pattern.

The difunctor ensures that we can map both a term (or pat-
tern) and a type functor, thus preserving the equivalence of both.
To demonstrate (D-REW), we give the following properties for the
rewrite rules of the running example (see Section 4.2):

DS rep abs D{m:S}m≡ Dι rep abs D{m:S}(rep m) (SZ-D-1)

Dι rep abs D{m:ι }m≡ DS rep abs D{m:ι }(abs m) (SZ-D-2)

DS→S→S rep abs Dε (++)≡ Dι→ι→ι rep abs Dε (�) (SZ-D-3)

We leave the proof of these properties as a simple exercise. It is
worth noting that these rules could be proven even if D

Γ̊
= id (for

any Γ̊); however, the substitution is necessary when both patterns
have both metavariables and object variables, as in the following:

{m : ι } . (abs m++) : S→S ; (m�) : ι→ ι

We leave the (D-REW) property and proof of this rule as exercises for
the reader. The solution can be found in Appendix A.

5.3 Transformation
In Section 4.3, we established a transformation Γ̊ ` es

R
 et : τ̊ as a

relation between a source es and a target et whose types may differ
as specified by the type functor τ̊ . As with typed rewrite rules, we
can relate the semantics of the terms using the difunctor aspect of
the type functor. We apply a dimap to the target term to equate it to
the source term:

es ≡ Dτ̊ rep abs D
Γ̊

et (D-TRANS)

In a transformation with the type functor τ̊ , the source does not
change, so we map the target et : τ̊〈R 〉 to a term equivalent to the
source es : τ̊〈A〉 with Dτ̊ rep abs : τ̊〈R 〉→ τ̊〈A〉 and D

Γ̊
.

For an example of (D-TRANS) in action, we prove the semantics
relation of example (3). The proposition is:

x++"b"≡ Dι rep abs D
Γ̊
(x� rep "b")

The subscript ι in Dι comes from rewriting with (SZ-3). The envi-
ronment Γ̊ contains a mapping for at least all the variables men-
tioned, including {x : ι }. The proof follows:

Dι rep abs D
Γ̊
(x� rep "b")

≡ { apply D
Γ̊
}

Dι rep abs (Dι abs rep x� rep "b")
≡ { apply Dι }

abs (rep x� rep "b")
≡ { apply rep }

abs (Z (x++)�Z ("b"++))
≡ { apply � }

abs (Z ((x++)◦ ("b"++)))
≡ { apply abs }
((x++)◦ ("b"++)) ""
≡ { apply ◦ }
(λy→ x++"b"++ y) ""
≡ { (RED-LAM) }

x++"b"++""

≡ { "" is the unit of ++ }
x++"b"

In the next section, we discuss the formal definitions and prop-
erties of the concepts introduced in Sections 4 and 5.

6. Definitions and Properties
We have introduced the typing and semantics relations of typed
rewrite rules. For type-and-transform systems, we require the rules
to be valid:

Definition 1 (Typed rewrite rule validity). Given a type environ-
ment Γ and an A/R isomorphism, a typed rewrite rule

ρ = Γ̊ . pl : τ̊l ; pr : τ̊r

is valid if it satisfies:

1. Γ ` ρ (Section 4.2)
2. Dτ̊l

rep abs D
Γ̊

pl ≡ Dτ̊r
rep abs D

Γ̊
pr (Section 5.2)

3. Left-linearity
4. fv(pl)⊇ fv(pr) •

Property 3 (i.e. no metavariable occurs twice in pl) keeps the sys-
tem simple by avoiding the need for equality on terms. Property 4
(where fv(p) is the set of metavariables in p) prevents unbound
metavariables. To avoid nontermination, some term-rewriting sys-
tems disallow a lone metavariable in the lhs [1]; however, they are
essential to the expressiveness of typed rewrite rules. To ensure ter-
mination, we use a particular rewriting strategy (see Section 7.1).

A rule set is valid if every rule in the set is valid for the same
environment and isomorphism.

We now formally define a transformation:

Definition 2 (Transformation). Given an A/R isomorphism, a
transformation is a tuple10 (Γ̊,R,e,e′, τ̊), where R is valid for
Γ̊〈R 〉 and the isomorphism, that satisfies Γ̊ ` e R

 e′ : τ̊ (Sec-
tion 4.3). •

The most basic property that transformations have is that the
source and target terms are well-typed:

Theorem 1 (Typing of transformation terms). The terms of a
transformation Γ̊ ` e R

 e′ : τ̊ are typed by:

1. Γ̊〈A〉 ` e : τ̊〈A〉
2. Γ̊〈R 〉 ` e′ : τ̊〈R 〉 �

PROOF By straightforward rule induction on the derivations. In the
(T-REW) case, the rewrite rule validity ensures the rhs and thus the
contraction will be appropriately typed. �

A transformation also allows us to relate the semantics of the
source and target:

Theorem 2 (Semantics of transformation terms). A transforma-
tion Γ̊ ` e R

 e′ : τ̊ satisfies e≡ Dτ̊ rep abs D
Γ̊

e′ (Section 5.3). �

PROOF By rule induction on the derivations of Γ̊ ` e R
 e′ : τ̊ . In the

(T-FIX) case, we use (RED-ROLLING). In the (T-REW) case, we use the
(D-REW) property for each rewrite rule. The full proof is given in
Appendix B. �

The final property is that of a complete transformation, in which
τ̊〈A〉 ≡ τ̊〈R 〉. Complete transformations have the special property
that the semantics of the terms are also equivalent. First, we need
to explain how to determine the same-type property. Recall that ι

indicates where the type changes in a type functor (Figure 5). We
simply check that τ̊ “does not have” any ιs:

10 To be precise, a transformation is a tuple that satisfies the transformation
judgment, but we normally use the judgment to refer to a transformation.

ῑ(α/B) = true
ῑ(ι) = false
ῑ(τ̊→ υ̊) = ῑ(τ̊) ∧ ῑ(υ̊)

These lemmas follow from the definition of ῑ():

Lemma 1. If ῑ(τ̊), then τ̊〈τ〉 ≡ τ̊〈υ〉 for any τ and υ . �

PROOF By straightforward induction on τ̊ . �

Lemma 2. If ῑ(τ̊), then Dτ̊ f g≡ id for any f and g. �

PROOF By straightforward induction on τ̊ . �

It is straightforward to lift the function ῑ() to – and thus prove the
above lemmas for – type functor schemes and environments.

We can now define complete transformations:

Definition 3 (Complete transformation). A transformation Γ̊ `
e R
 e′ : τ̊ is complete if ῑ(Γ̊) and ῑ(τ̊). •

The expected properties follow:

Theorem 3 (Typing of complete transformation terms). If a trans-
formation Γ̊ ` e R

 e′ : τ̊ is complete, then the following hold:

1. Γ≡ Γ̊〈A〉 ≡ Γ̊〈R 〉 and τ ≡ τ̊〈A〉 ≡ τ̊〈R 〉
2. Γ ` e : τ and Γ ` e′ : τ �

PROOF Follows from Theorem 1 and Lemma 1. �

Theorem 4 (Semantics of complete transformation terms). If a
transformation Γ̊ ` e R

 e′ : τ̊ is complete, then e≡ e′. �

PROOF Follows from Theorem 2 and Lemma 2. �

This completes the formal description of type-and-transform
systems. In the next section, we discuss other aspects.

7. Discussion
There are a number of points for further discussion on type-and-
transform systems.

7.1 Algorithm
Here, we present a summary of the features of a transformation
algorithm using a valid typed rewrite rule set. We will report on the
algorithm in greater detail in a separate paper.

Our algorithm is a direct adaptation of algorithm W [22], a stan-
dard algorithm for the object language type system. Given the cor-
respondence of transformation (Figure 8) to typing (Figure 4), the
similarity is not surprising. The arguments to our algorithm are a
rewrite rule set, a type environment, and a term. The result is a list
of recursively annotated terms – every subterm is annotated with a
type substitution, a type functor, and a weight. The recursive struc-
ture of the algorithm is identical to W; the primary difference is that
we rewrite the subterm after every recursive call. The substitution
serves the same purpose as in W , and the type functor is treated as
a simple type. We use weights to choose the preferred transformed
term. This is described more in Section 7.2.

Rewriting works in the usual way – pattern matching and sub-
stitution on the annotated terms – however, matching also includes
type functor annotations. This can be seen in (M-MVAR) in Figure 8,
which needs the type functor from a subtransformation.

In (T-REW) (Figure 8), we pick one of the rewrite rules from the
rule set, but in the algorithm, we apply every rule. This is why the
algorithm returns a list of results: multiple rules (including identity)
may by successful. Type-incorrect rewrite results are discarded.

A transformation according to Figure 8 may not terminate. That
is, a derivation of Γ̊ ` e R

 e′ : τ̊ may be infinitely long because

Source Target Weight
"a"++"b"++"c" (7)

abs (rep "a"� rep "b"� rep "c") (−4,4)
"a"++abs (rep "b"� rep "c") (−2,3)

(λx.x++ x) "a" (8)

abs ((λx.x� x) (rep "a")) (−2,2)
abs ((λx.rep x� rep x) "a") (−2,3)

Table 2. Examples of comparable transformations

the inference rule (T-REW) can be instantiated an unlimited number
of times. (Unlike the other inference rules, (T-REW) is not syntax-
directed.) In the transformation algorithm, we apply each rewrite
rule once at each subterm. This strategy guarantees termination, but
it also does not produce all possible results. In our experience with
type-and-transform systems, this is not an issue; however, we plan
to explore it further with an empirical comparison of algorithmic
variations.

Soundness The transformation algorithm is sound. It implements
the transformation of Definition 2. Soundness follows from the
correspondence between transformation and typing and rewrite rule
validity.

Completeness It is trivial to show that the algorithm does not
satisfy completeness. In a separate paper, we plan to describe re-
stricted transformations for which we can prove completeness.

7.2 Choosing the “Best” Transformation
Given a program P, a well-scoped subprogram T , and a metric | |
(e.g. tokens), the transformation coverage is the ratio |T|/|P| where
T has undergone a complete transformation and the context of P
excluding T has not been transformed.

One might think there is an optimal transformation for the de-
sired coverage, but we have found no useful strict ordering on trans-
formations. Instead, we have often seen multiple transformation
targets that are equally “good.” Consider the example transforma-
tions (4), (5), and (6) in Table 1. It is not obvious which is better; in
the context of a larger program, any one of them may prove more
useful.

Some transformations, on the other hand, are clearly better than
others. Consider the two example sources in Table 2 (ignoring the
weight column for now), each with two possible targets. In (7), we
prefer to have more ++ replaced by �. In (8), we prefer to have fewer
rep introduced. In general, the preferences may be contradictory.

Recall the viral infection analogy. The basic idea is that we
infect as early as possible and spread the infection as far as possible.
Rewrite rules such as (SZ-1) introduce the infection, and rules such
as (SZ-2) eliminate the infection. We therefore wish to minimize
the occurrence of these rules, which we call repair rules since
they repair types. The rule (SZ-3) is a “vector” for the infection,
transmitting it from one term to another. We wish to maximize the
application of these rules, which we call rename rules since they
usually rename functions.

We assign a score to each rename rule depending on how “valu-
able” the rule is. The score is a measure of how effective the rule is
in maximizing the transformation coverage. Consider the following
rules for some types A and R :

ε . f0 : A ; g0 : ι (ρ0)

ε . f1 : A→A ; g1 : ι→ ι (ρ1)

{m : ι } . m : ι ; revert m : A (revert)

Rules (ρ0) and (ρ1) are rename rules, and rule (revert) is a repair rule.

To determine the score of rule (ρ0), we observe that it does not
necessarily improve the program more than the identity rewrite,
the “default” if no rules are applied. For example, rewriting f0 to
revert g0 is probably not preferable over leaving f0 alone (though
an argument could be made otherwise, depending on the system).
Alternatively, rewriting f1 f0 to revert (g1 g0) is likely preferred. To
indicate this ambivalence for (ρ0), we assign it a score of 0, the same
score as the identity rewrite (or not rewriting at all).

Rule (ρ1), on the other hand, always improves the coverage of
the transformation (over the identity) because it requires rewriting
the argument to f1. Its score is −1 (as in golf, a lower score is
better). If we rewrite f1 f0 to g1 g0, the rename score is the sum
of the rename rule scores, −1.

In general, the rename score of a rule that rewrites an n-arity
function fn to gn is −n. For simplicity, we include in the arity only
the arguments of type A; other types either do not affect the score
(as in Int) or have a non-obvious effect (as in function types).

After maximizing the renames, we minimize the repairs, which
means applying as few repair rules as possible.

To rank targets, we assign each a weight – a pair (m,n) where m
is the rename score and n is the number of repair rules – such that
we can order the targets lexicographically by weight. The winning
target is the program with the smallest weight. Alternatively stated:

1. We choose the targets with the lowest rename score.

2. If multiple targets have the same rename score, we choose
the targets with fewer repairs.

3. We (arbitrarily) choose the first of the remaining targets.

In the running example, we assign the rename score −2 to the
rule (SZ-3) since the function ++ has an arity of 2. The weights in
Table 2 show how our approach leads to our preferred choices.

7.3 Parameterized Type Constructors
Up to this point, we have used only simple (nullary) types to sim-
plify explanation. We can also support parameterized type con-
structors.

The adapted syntax of types and type functors follows:

ϕ F c,d | C
ϕ̊ F ϕ | ι

τ,υ F α | B | τ→υ | ϕ τ

τ̊, υ̊ F α | B | τ̊→ υ̊ | ϕ̊ τ̊

A type constructor is either a type variable (c,d) or a base type
constructor (C), and we now use ι as a type functor constructor.
We modify type projection, τ̊〈ϕ〉, for constructors and extend it
with new cases:

α/B〈ϕ〉= α/B

(τ̊→ υ̊)〈ϕ〉= τ̊〈ϕ〉→ υ̊〈ϕ〉
(C τ̊)〈ϕ〉= C τ̊〈ϕ〉
(ι τ̊)〈ϕ〉= ϕ τ̊〈ϕ〉

In the last two cases, C and ϕ are difunctors, as we can see more
clearly in the definition of Dτ̊ :

Dτ̊ :∀c d.(∀a b.(a→b)→ (b→a)→ c b→ c a)→
(∀a b.(a→b)→ (b→a)→d b→d a)→
∀a.(c a→d a)→ (d a→ c a)→ τ̊〈d〉→ τ̊〈c〉

Dα/B dc dd f g = id
Dτ̊→υ̊ dc dd f g = λx→Dυ̊ dc dd f g◦ x◦Dτ̊ dd dc g f
DC τ̊ dc dd f g = dimapC (Dτ̊ dd dc g f) (Dτ̊ dc dd f g)
Dι τ̊ dc dd f g = g◦ dd (Dτ̊ dd dc g f) (Dτ̊ dc dd f g)

Here, dimapC is the dimap for the base constructor C, and the
function arguments dc and dd are the dimaps for the relevant type

constructors. Note that we do not define Dτ̊ for type constructor
variables because we do not have a dimap for those.

As an aside, if the parameter of a type constructor ϕ is not used
in contravariant positions, then dimapϕ f g≡mapϕ g, where mapϕ

is the covariant functor of ϕ .
The type-and-transform systems work of Sections 4, 5, and

6 can be developed in a straightforward manner for unary type
constructors. It is also possible to define Dτ̊ for type constructors
of arbitrary arity using kind-indexed types [15].

7.4 Difference Lists
With support for parameterized type constructors, we can describe
the transformation for Hughes’ lists or difference lists, mentioned
in Section 1.1.

Difference lists are trivially different from difference strings
(Figure 2). We present only the newtype and the type signatures:

newtype H a = H ([a]→ [a])
(�) :: H a→H a→H a
ε :: H a
rep :: [a]→H a
abs :: H a→ [a]

To describe the transformation of lists to difference lists, the
following inputs are needed for the type-and-transform system:

1. Type (constructor) pair and functions to witness the isomor-
phism

2. Typed rewrite rules, including both repair rules (such as the
isomorphism functions) and rename rules

3. Proof that the rewrite rules are valid (according to Defini-
tion 1)

As far as what is necessary for a practical system, only the rewrite
rules are needed. The isomorphism is implied by the rules, and the
proof is an external obligation for correctness. We leave the proof
as an exercise for the reader. In general, these proofs are not very
difficult. They follow the style of the example proof in Section 5.3.

The typed rewrite rules for the list-to-difference-list transforma-
tion are:

{m : [a]} . m : [a] ; rep m : ι a (9)

{m : ι a} . m : ι a ; abs m : [a] (10)

ε .++ : [a]→ [a]→ [a]; � : ι a→ ι a→ ι a (11)

ε . [] : [a] ; ε : ι a (12)

Only (12) is new compared to the difference string rules (Sec-
tions 4.2 and 7.2), and we assign it a score of 0.

There are a few interesting transformations that we can perform.
The first is the reverse example (for reference, r is the initial reverse
function and r′ is the transformed function):

let r = fix (λ f .list [] (λx xs.f xs++ [x])) in r [1,2]
let r′ = fix (λ f .list ε (λx xs.f xs � rep [x])) in abs (r′ [1,2])

In lieu of pattern matching (i.e. with case in Haskell), we use the
list eliminator:

list :∀a b.(a→ [a]→b)→ [a]→b

Note, as we mentioned in Section 1.1, how the transformation in
r′ extends beyond the function definition. An example similar to
reverse is the concat function (c):

let c = fix (λ f .list [] (λx xs. x++ f xs)) in c [[0], [1]]
let c′ = fix (λ f .list ε (λx xs.rep x � f xs)) in abs (c′ [[0], [1]])

We have run the examples from this section through our imple-
mentation and confirmed the results, but these examples just touch

the surface of how much a transformation can change a program.
For example, by changing the function list to a difference list elim-
inator dlist, we can also change the types of the inputs to these
functions. In a related paper, van Eekelen et al. [31] explore the
options on transforming patterns and constructors.

8. Other Applications
In this section, we describe two more applications of type-and-
transform systems in the fashion of Section 1.1. With each concrete
example, we give the rewrite rules for the transformation as in
Section 7.4.

8.1 Generalization
Software reuse means writing code that can used more than once.
One technique for doing this is generalizing the code: abstracting
over the details to create code that can be instantiated in more
places.

Scenario Pat writes a program using type A. It solves the problem
for the moment, but Pat realizes that it would be useful to have a
type B T , where B is some parameterized type and T is the argument
that would instantiate a type isomorphic to A. This would would be
useful for using functions defined on B and even for instantiated B
with another argument.

Pat instructs the IDE (or command-line tool) to transform A-
terms to B T-terms using the type-and-transform system. Now, Pat
can begin using the benefits of B.

Typical Examples Trivial transformations include changing a
specialized IntList to [Int] or [Int] to Tree Int (a rose tree of Ints).
A more interesting example is transforming a datatype to a type
class, e.g. String to (roughly) StringLike a⇒ a, assuming there is
an instance of StringLike for String. In other words, the methods
of the type class StringLike are smart constructors, and we are not
changing the type so much as changing the terms that construct and
use the type. After transformation, String can be substituted with
another type that has an instance of StringLike.

Transforming specialized code to datatype-generic code is an
example of this scenario. In datatype-generic programming (DGP),
the structure of a datatype is represented by a collection of other
types, isomorphic to the original datatype [10]. (In the scenario, T
is the structure representation in B T .)

Many generic functions are available with DGP libraries. Some
libraries hide their representation from the user but some require
users to program with it, often using smart constructors [19, 29].
We present a simplified example as a case study.

Example: Fixed-Point of Base Functors A regular datatype in
Haskell can be represented as the fixed point of a base functor. For
example, the datatype ExpF is the base functor of Exp:

data Exp = Val Int | Add Exp Exp
data ExpF r = ValF Int | AddF r r

ExpF is a simple copy of the datatype with every recursive position
replaced by a fresh type parameter r. The fixed point of ExpF is
defined using a datatype Fix that embodies recursion in the type:

newtype Fix f = In {out :: f (Fix f)}
type FExp = Fix ExpF

Given a Functor instance of ExpF , natural recursion on regular
datatypes is defined by the fold (or catamorphism):

fold :: Functor f ⇒ (f a→a)→Fix f→a
fold alg = alg◦ fmap (fold alg)◦out

The types Exp and FExp are isomorphic (modulo undefined val-
ues):

from :: Exp→FExp
from (Val i) = val i
from (Add e1 e2) = add (from e1) (from e2)

to :: FExp→Exp
to (In (ValF i)) = Val i
to (In (AddF e1 e2)) = Add (to e1) (to e2)

Rather than construct FExp terms directly, as in:

three = In (AddF (In (ValF 1)) (In (ValF 2)))

we use smart constructors:

val :: Int→FExp
val i = In (ValF i)
add :: FExp→FExp→FExp
add e1 e2 = In (AddF e1 e2)

As an additional convenience, we define a specialized fold for
FExp:11

foldFExp :: (Int→ r)→ (r→ r→ r)→FExp→ r
foldFExp v a = fold alg

where alg (ValF i) = v i
alg (AddF r1 r2) = a r1 r2

To contrast the recursion styles of Exp and FExp, we show the
evaluation function for each:

eval :: Exp→ Int
eval (Val i) = i
eval (Add e1 e2) = eval e1 + eval e2

evalF :: FExp→ Int
evalF = foldFExp id (+)

Transformation The Exp-to-FExp transformation involves two
operation classes:

1. Rewriting built-in constructors to their smart-constructor
analogs: Val becomes val and Add becomes add

2. Inserting conversions where necessary: to and from are used
to avoid type mismatches

At first glance, it may seem that the conversions are unnecessary.
That is, it is a simple matter of rewriting the constructors without
needing to or from. But consider other Exp-functions that are not
generic: e.g. isVal :: Exp→ Bool or five :: Exp. These cannot be
transformed or discarded, and the conversions are necessary to
use them. The example in Section 8.2 has more of these sorts of
functions.

The type FExp gives us generic functions to use, and the con-
struction is now hidden behind smart constructors. This provides
the opportunity to implement more generic functionality such as
our previous work on incrementalization [19].

In the object language, the typed rewrite rules are:

{m : Exp} . m : Exp ; from m : ι (13)

{m : ι } . m : ι ; to m : Exp (14)

ε . Val : Int→Exp ; val : Int→ ι (15)

ε . Add : Exp→Exp→Exp ; add : ι→ ι→ ι (16)

To the rename rules (15) and (16), we assign the scores 0 and −2,
respectively.

11 We can, of course, define foldExp just as easily, but there are other
approaches, e.g. pattern functors [35], that can provide convenient folds for
free. For the sake of simplicity, we present only the base-functor approach.

complex-rect rect :: Float→Float→Rect
real :: Rect→Float
imag :: Rect→Float
+R,×R :: Rect→Rect→Rect

complex-polar polar :: Float→Float→Pol
mag :: Pol→Float
phase :: Pol→Float
+P,×P :: Pol→Pol→Pol

Figure 9. Interfaces of two libraries for complex numbers

8.2 Integration
Software development sometimes requires using multiple libraries
with variations on the same concepts. Type-and-transform systems
can assist in integrating these libraries.

Scenario Pat has two libraries with the respective types A and B
that denote the “same” idea but serve different purposes (e.g. by
having different APIs). Pat prefers type A in one part of the code
and type B in a different part, but Pat still needs to translate As to
Bs and vice versa, so that the parts stay connected.

To transform a part of a program, Pat selects a well-scoped
subprogram, such as one or more modules, and directs a type-and-
transform tool to transform that subprogram. This leaves the rest of
the program untouched.

Typical Examples Time is often implemented in different ways:
Unix system time, clock time, timestamps (e.g. for NTP), etc. Cal-
endar dates are defined with numerous standards: Gregorian, Hijri,
Gujarati, etc. Multiple data representations are common: consider
the various representations of XML, JSON, and other serialization
formats.

Example: Complex Numbers As a simple example, we consider
integrating two libraries, presented in Figure 9, for representing
complex numbers [11, 33]. The library complex-rect uses the
rectangular (Cartesian) coordinate system with the Rect type, and
the library complex-polar uses the polar coordinate system with
the Pol type.

Each library has a function (rect or polar) for constructing a
value of its type from Floats, though the arguments naturally have
different meanings. The components of the Rect representation are
provided by real and imag, while the components of Pol are pro-
vided by mag and phase. Both libraries have analogous functions
for performing addition and multiplication. If the libraries do not
provide conversion functions, we must write them:

asPol :: Rect→Pol
asRec :: Pol→Rect

Transformation Suppose that we need a transformation to change
Rect-terms to Pol-terms. The typed rewrite rules are:

{m : Rect} . m : Rect ; asPol m : ι (17)

{m : ι } . m : ι ; asRec m : Rect (18)

ε .+R : Rect→Rect→Rect ;+P : ι→ ι→ ι (19)

ε .×R : Rect→Rect→Rect ;×P : ι→ ι→ ι (20)

Some functions do not have analogs. In the transformed program,
they may end up using the isomorphism functions: e.g. rect be-
comes asPol◦ rect and real becomes real◦asRec. As with previous
examples, we assign the score −2 to each of the rename rules (19)
and (20).

9. Related Work
Program transformation is studied in many contexts, and there is a
vast amount of related work. In this section, we identify a subset of
the work that is most relevant and compare it to type-and-transform
systems.

Term rewriting is a technique that has been extensively applied
to program transformation. Stratego [32] is a well-known language
and tool set for program transformation using rewriting. It is repre-
sentative of strategy languages in which many transformations can
be specified. With standard term rewriting, it appears to be difficult
to support type-changing rewrite rules while preserving type safety
and semantics. Type-and-transform systems can perhaps be viewed
as an adaptation of term rewriting.

Some applications of type-and-transform systems can be con-
sidered refactoring or interactive program transformation. HaRe [20]
is a Haskell refactoring tool that supports a number of of automatic
refactorings; however, it does not provide type-changing rewriting
for whole-program transformations. Other tool-supported equa-
tional reasoning approaches include PATH [30] and HERMIT [7],
both of which do not appear to facilitate type-changing rewriting.
Nonetheless, it may be possible to build a type-and-transform sys-
tem onto one of the above systems.

Erwig and Ren [6] define an update calculus, whose capabili-
ties include rewrites and scope changes as well as update composi-
tion, alternation, and recursion. Their type-change system ensures
that an update preserves type correctness for many type-changing
transformations. The update calculus is intended for some type-
changing updates; however, it does not have a mechanism for prop-
agating type changes through bound variables. We were unable to
specify any of our examples in the update calculus. On the other
hand, a key feature of the update calculus is its support for scope
changes, something that type-and-transform systems do not allow.
It appears that type-and-transform systems and the update calculus
complement each other.

One might see our approach as a type-and-effect system [12] if
one views the transformation as a side effect of an extended type
system. However, that analogy is stretched rather thin. We do not
modify how the type system works, but instead derive from the
type a type functor that relates programs using the underlying type
system.

Cunha and Visser [4] describe a strongly typed rewriting system
for calculating transformations that change both the structure of
types and terms. They use a point-free program calculus with one
constructor for pointwise functions over which no transformation is
done. We do not distinguish different forms of syntax: all functions
in the lambda calculus can be transformed. Type-and-transform
systems, on the other hand, do not provide strategies for rewriting:
the type changes drive the rewriting.

Coercions are functions inserted into a program to change terms
from one type to a subsuming type. Kießling and Luo [18] define
coercions in a Hindley-Milner type system using subtyping instead
of an isomorphism between types. Their coercions serve a similar
purpose to our rewrite rules, though the latter are slightly more gen-
eral. Our notion of a complete transformation is loosely related to
their idea of completion. Swamy et al. [28] describe type-directed
coercion insertion in simply-typed lambda calculus with a focus on
non-ambiguity. Our work takes advantage of ambiguity (via multi-
ple rewrites) to find the “best” transformation. One primary differ-
ence between coercions and type-and-transform systems is that the
latter allow for type changes to propagate through bindings while
the former restrict type changes to function application.

10. Conclusions and Future Work
This paper introduces type-and-transform systems: automatic pro-
gram transformation with type-changing rewriting that is type-
safe and semantics-preserving. The type-and-transform system of
a programming language is the specification of transformations,
derived from the language’s type system, and typed rewrite rules,
which change terms and types in a regular fashion. We described
the type-and-transform system for the lambda calculus with let-
polymorphism and general recursion, and we proved that a com-
plete transformation preserves typing and semantics.

We continue to investigate and refine type-and-transform sys-
tems. As stated in Section 1, we are working on improving our
proof technique. There are connections from type-and-transform
systems to abstraction [25], representation independence [23], and
parametricity [34]. For example, we might consider ι as a special
free variable and treat the type as a relation on types that instanti-
ate ι differently. The connection to parametricity is not immediate,
however. In parametricity, the type relation ∀a.[a]→ [a] holds for
any type relation instantiated for a. In type-and-transform systems,
the same type relation holds only if the instantiating types are iso-
morphic. We will explore these connections in more depth in future
work.

We plan to expand the model of type-and-transform systems
to allow for transformation between a larger variety of types. We
also want to describe transformation sequences and transformations
with multiple types.

Type-and-transform systems may also be applicable to compil-
ers, e.g. for whole-program optimization. We have done prelimi-
nary work with System F, and we will look into System FC, the
core language of GHC.

This paper used a toy language to explain the theory and prove
properties. We plan to build on this foundation by developing the
theory for larger object languages such as Haskell and writing tools
to experiment with real-world programs and investigate practical
aspects of type-and-transform systems such as transformation ef-
fectiveness, algorithm performance, and choice heuristics.

Acknowledgments
We are grateful for the many constructive conversations with
Joeri van Eekelen, Jurriaan Hage, José Pedro Magalhães, Basti-
aan Heeren, Stefan Holdermans, Patrik Jansson, Jan Rochel, and
Doaitse Swierstra. We also thank the Dutch Haskell Users Group
and the anonymous reviewers for their very helpful suggestions.

References
[1] F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge

University Press, 1998.

[2] R. C. Backhouse, M. Bijsterveld, R. v. Geldrop, and J. v. d. Woude.
Categorical Fixed Point Calculus. In Proc. of CTCS, pages 159–179,
1995.

[3] D. Coutts, D. Stewart, and R. Leshchinskiy. Rewriting Haskell Strings.
In Proc. of PADL, pages 50–64, 2007.

[4] A. Cunha and J. Visser. Strongly Typed Rewriting For Coupled
Software Transformation. In Proc. of RULE, pages 17–34, 2006.

[5] L. Damas and R. Milner. Principal type-schemes for functional pro-
grams. In Proc. of POPL, pages 207–212, 1982.

[6] M. Erwig and D. Ren. An update calculus for expressing type-safe
program updates. Sci. Comput. Program., 67:199–222, 2007.

[7] A. Farmer, A. Gill, E. Komp, and N. Sculthorpe. The HERMIT in the
Machine: A Plugin for the Interactive Transformation of GHC Core
Language Programs. In Proc. of Haskell, pages 1–12. ACM, 2012.

[8] M. Fowler. Refactoring: Improving the Design of Existing Code.
Addison-Wesley, 1999.

[9] P. Freyd. Recursive Types Reduced to Inductive Types. In Proc. of
LICS, pages 498–507, 1990.

[10] J. Gibbons. Datatype-Generic Programming. In R. Backhouse, J. Gib-
bons, R. Hinze, and J. Jeuring, editors, Proc. of Spring School on
Datatype-Generic Programming, pages 1–71, 2007.

[11] J. Gibbons. Unfolding Abstract Datatypes. In Proc. of MPC, pages
110–133, 2008.

[12] D. K. Gifford and J. M. Lucassen. Integrating Functional and Impera-
tive Programming. In Proc. of LFP, pages 28–38, 1986.

[13] A. Gill and G. Hutton. The worker/wrapper transformation. J. Funct.
Program., 19(2):227–251, 2009.

[14] T. Harper. Stream Fusion on Haskell Unicode Strings. In Proc. of IFL,
pages 125–140, 2011.

[15] R. Hinze. Polytypic Values Possess Polykinded Types. In Proc. of
MPC, pages 2–27, 2000.

[16] R. Hinze and R. Paterson. Finger trees: a simple general-purpose data
structure. J. Funct. Program., 16(2):197–217, Mar. 2006.

[17] R. J. M. Hughes. A Novel Representation of Lists and Its Application
to the Function “reverse”. Inf. Process. Lett., 22(3):141–144, 1986.

[18] R. Kießling and Z. Luo. Coercions in Hindley-Milner Systems. In
Proc. of TYPES, pages 259–275, 2003.

[19] S. Leather, A. Löh, and J. Jeuring. Pull-Ups, Push-Downs, and Passing
It Around: Exercises in Functional Incrementalization. In Proc. of IFL,
pages 159–178, 2011.

[20] H. Li, C. Reinke, and S. Thompson. Tool Support for Refactoring
Functional Programs. In Proc. of Haskell, pages 27–38, 2003.

[21] E. Meijer and G. Hutton. Bananas in Space: Extending Fold and
Unfold to Exponential Types. In Proc. of FPCA, pages 324–333, 1995.

[22] R. Milner. A Theory of Type Polymorphism in Programming. J.
Comput. Syst. Sci., 17(3):348–375, 1978.

[23] J. C. Mitchell. Representation independence and data abstraction. In
Proc. of POPL, pages 263–276, 1986.

[24] A. M. Pitts. Parametric Polymorphism and Operational Equivalence.
Math. Struct. in Comp. Science, 10:321–359, 2000.

[25] J. C. Reynolds. Types, Abstraction and Parametric Polymorphism.
Information Processing, pages 513–523, 1983.

[26] B. Schuur. A Type-Changing, Semantics-Preserving Program Trans-
formation System. Master’s thesis, Department of Information and
Computing Sciences, Utrecht University, February 2013.

[27] M. R. Sleep and S. Holmström. A short note concerning lazy reduction
rules for append. Softw: Pract. Exper., 12(11):1082–1084, 1982.

[28] N. Swamy, M. Hicks, and G. M. Bierman. A Theory of Typed
Coercions and Its Applications. In Proc. of ICFP, pages 329–340,
2009.

[29] W. Swierstra. Data types à la carte. J. Funct. Program., 18(4):423–
436, July 2008.

[30] M. Tullsen. PATH, A Program Transformation System for Haskell.
PhD thesis, Yale University, 2002.

[31] J. van Eekelen, S. Leather, and J. Jeuring. Type-Changing Program
Transformations with Pattern Matching. In Proc. of the Workshop on
Haskell And Rewriting Techniques (HART) 2013, 2013.

[32] E. Visser. A Survey of Strategies in Rule-Based Program Transforma-
tion Systems. J. Symb. Comput., 40(1):831–873, 2005.

[33] P. Wadler. Views: A way for pattern matching to cohabit with data
abstraction. In Proc. of POPL, pages 307–313, 1987.

[34] P. Wadler. Theorems for free! In Proc. of FPCA, pages 347–359, 1989.
[35] A. R. Yakushev, S. Holdermans, A. Löh, and J. Jeuring. Generic

Programming with Fixed Points for Mutually Recursive Datatypes. In
Proc. of ICFP, pages 233–244, 2009.

A. Example Proofs
In Section 5.2, we mentioned the following typed rewrite rule:

{m : ι } . (abs m++) : S→S ; (m�) : ι→ ι

The corresponding (D-REW) property is:

DS→S rep abs D{m:ι }(abs m++)≡ Dι→ι rep abs D{m:ι }(m�)

The proof of this property follows:

DS→S rep abs D{m:ι }(abs m++)

≡ { apply D{m:ι } }
DS→S rep abs (abs (rep m)++)
≡ { (abs-rep) }

DS→S rep abs (m++)
≡ { apply DS→S rep abs }
(m++)
≡ { η-conversion }

λy.m++ y
≡ { section }

λy.(m++) y
≡ { "" is the unit for ++ }

λy.(m++) (y++"")
≡ { β -conversion, section }

λy.(λx.(m++) ((y++) x)) ""
≡ { apply ◦ }

λy.((m++)◦ (y++)) ""
≡ { apply abs }

λy.abs (Z ((m++)◦ (y++)))
≡ { apply � }

λy.abs (Z (m++)�Z (y++))
≡ { apply rep }

λy.abs (rep m� rep y)
≡ { β -conversion }

λy.abs ((λx.rep m� rep x) y)
≡ { η-conversion }

abs◦ (λx.rep m� rep x)
≡ { section }

abs◦ (λx.(rep m�) (rep x))
≡ { apply ◦ }

abs◦ (rep m�)◦ rep
≡ { apply Dι rep abs and Dι abs rep }

Dι rep abs◦ (rep m�)◦Dι abs rep
≡ { apply Dι→ι rep abs }

Dι→ι rep abs (rep m�)
≡ { apply D{m:ι } }

Dι→ι rep abs D{m:ι }(m�)

B. Proof of Transformation Semantics
This appendix gives the full proof of Theorem 2: a transformation
Γ̊ ` e R

 e′ : τ̊ satisfies (D-TRANS), repeated here:

e≡ Dτ̊ rep abs D
Γ̊

e′

The proof proceeds by inference rule induction on the derivations.
We include the relevant rule with each case for convenient refer-
ence.

CASE (T-VAR) x≡ Dτ̊ rep abs D
Γ̊

x

τ̊ ≺ Γ̊(x)

Γ̊ ` x R
 x : τ̊

(T-VAR)

Dτ̊ rep abs D
Γ̊

x
≡ { expand D

Γ̊
, x : ς̊ ∈ Γ̊ }

Dτ̊ rep abs D
Γ̊′,x:ς̊ x

≡ { apply D
Γ̊′,x:ς̊ }

Dτ̊ rep abs (D
Γ̊′ ◦ [x 7→ D

ς̊ ,Γ̊′ abs rep x])x

≡ { apply substitution, x : ς̊ /∈ Γ̊′ }
Dτ̊ rep abs (D

ς̊ ,Γ̊′ abs rep x)
≡ { apply D

ς̊ ,Γ̊′ , τ̊ ≺ ς̊ }
Dτ̊ rep abs (Dτ̊ abs rep x)
≡ { (D-COMP) }

Dτ̊ (abs◦ rep) (abs◦ rep) x
≡ { (abs-rep) }

Dτ̊ id id x
≡ { (D-ID) }

x

�

CASE (T-FIX) fix e≡ Dτ̊ rep abs D
Γ̊
(fix e′)

Γ̊ ` e R
 e′ : τ̊→ τ̊

Γ̊ ` fix e R
 fix e′ : τ̊

(T-FIX)

Dτ̊ rep abs D
Γ̊
(fix e′)

≡ { D
Γ̊

distributes over fix }
Dτ̊ rep abs (fix D

Γ̊
e′)

≡ { id is the unit for ◦ }
Dτ̊ rep abs (fix (D

Γ̊
e′ ◦ id))

≡ { (D-ID) }
Dτ̊ rep abs (fix (D

Γ̊
e′ ◦Dτ̊ id id))

≡ { (rep-abs) }
Dτ̊ rep abs (fix (D

Γ̊
e′ ◦Dτ̊ (rep◦abs) (rep◦abs)))

≡ { (D-COMP) }
Dτ̊ rep abs (fix (D

Γ̊
e′ ◦Dτ̊ abs rep◦Dτ̊ rep abs))

≡ { associativity of ◦ }
Dτ̊ rep abs (fix ((D

Γ̊
e′ ◦Dτ̊ abs rep)◦Dτ̊ rep abs))

≡ { (RED-ROLLING) }
fix (Dτ̊ rep abs◦D

Γ̊
e′ ◦Dτ̊ abs rep)

≡ { apply Dτ̊→τ̊ }
fix (Dτ̊→τ̊ rep abs D

Γ̊
e′)

≡ { e≡ Dτ̊→τ̊ rep abs D
Γ̊

e′ }
fix e

�

CASE (T-APP) e1 e2 ≡ Dυ̊ rep abs D
Γ̊
(e′1 e′2)

Γ̊ ` e1
R
 e′1 : τ̊→ υ̊ Γ̊ ` e2

R
 e′2 : τ̊

Γ̊ ` e1 e2
R
 e′1 e′2 : υ̊

(T-APP)

Dυ̊ rep abs D
Γ̊
(e′1 e′2)

≡ { D
Γ̊

distributes over application }
Dυ̊ rep abs (D

Γ̊
e′1 D

Γ̊
e′2)

≡ { (D-ID) }
Dυ̊ rep abs (D

Γ̊
e′1 (Dτ̊ id id D

Γ̊
e′2))

≡ { (rep-abs) }
Dυ̊ rep abs (D

Γ̊
e′1 (Dτ̊ (rep◦abs) (rep◦abs) D

Γ̊
e′2))

≡ { (D-COMP) }
Dυ̊ rep abs (D

Γ̊
e′1 (Dτ̊ abs rep (Dτ̊ rep abs D

Γ̊
e′2)))

≡ { apply Dτ̊→υ̊ }
Dτ̊→υ̊ rep abs D

Γ̊
e′1 (Dτ̊ rep abs D

Γ̊
e′2)

≡ { e1 ≡ Dτ̊→υ̊ rep abs D
Γ̊

e′1, e2 ≡ Dτ̊ rep abs D
Γ̊

e′2 }
e1 e2

�

CASE (T-LAM) λx.e≡ Dτ̊→υ̊ rep abs D
Γ̊
(λx.e′)

Γ̊,x : τ̊ ` e R
 e′ : υ̊

Γ̊ ` λx.e R
 λx.e′ : τ̊→ υ̊

(T-LAM)

Dτ̊→υ̊ rep abs D
Γ̊
(λx.e′)

≡ { D
Γ̊

distributes over λ since x : τ̊ /∈ Γ̊ }
Dτ̊→υ̊ rep abs (λx.D

Γ̊
e′)

≡ { apply Dτ̊→υ̊ }
Dυ̊ rep abs◦ (λx.D

Γ̊
e′)◦Dτ̊ abs rep

≡ { apply ◦ }
λx.Dυ̊ rep abs ((λx.D

Γ̊
e′) (Dτ̊ abs rep x))

≡ { (RED-LAM) }
λx.Dυ̊ rep abs [x 7→ Dτ̊ abs rep x]D

Γ̊
e′

≡ { substitution composition }
λx.Dυ̊ rep abs ([x 7→ Dτ̊ abs rep x]◦D

Γ̊
)e′

≡ { commute ◦ since x : τ̊ /∈ Γ̊ }
λx.Dυ̊ rep abs (D

Γ̊
◦ [x 7→ Dτ̊ abs rep x])e′

≡ { apply D
Γ̊,x:τ̊ }

λx.Dυ̊ rep abs D
Γ̊,x:τ̊ e′

≡ { e≡ Dυ̊ rep abs D
Γ̊,x:τ̊ e′ }

λx.e

�

CASE (T-LET) let x = e1 in e2 ≡ Dυ̊ rep abs D
Γ̊
(let x = e′1 in e′2)

Γ̊ ` e1
R
 e′1 : τ̊ Γ̊,x :G

Γ̊
(τ̊) ` e2

R
 e′2 : υ̊

Γ̊ ` let x = e1 in e2
R
 let x = e′1 in e′2 : υ̊

(T-LET)

Dυ̊ rep abs D
Γ̊
(let x = e′1 in e′2)

≡ { D
Γ̊

distributes over let since x :G
Γ̊
(τ̊) /∈ Γ̊ }

Dυ̊ rep abs (let x = D
Γ̊

e′1 in D
Γ̊

e′2)
≡ { (RED-LET) }

Dυ̊ rep abs [x 7→ D
Γ̊

e′1]DΓ̊
e′2

≡ { substitution composition }
Dυ̊ rep abs ([x 7→ D

Γ̊
e′1]◦D

Γ̊
)e′2

≡ { (D-ID), ς̊ = G
Γ̊
(τ̊) }

Dυ̊ rep abs ([x 7→ D
ς̊ ,Γ̊ id id D

Γ̊
e′1]◦D

Γ̊
)e′2

≡ { (rep-abs) }
Dυ̊ rep abs

([x 7→ D
ς̊ ,Γ̊ (rep◦abs) (rep◦abs) D

Γ̊
e′1]◦D

Γ̊
)e′2

≡ { (D-COMP) }
Dυ̊ rep abs

([x 7→ D
ς̊ ,Γ̊ abs rep (D

ς̊ ,Γ̊ rep abs D
Γ̊

e′1)]◦D
Γ̊
)e′2

≡ { split substitution }
Dυ̊ rep abs

([x 7→ D
ς̊ ,Γ̊ rep abs D

Γ̊
e′1]◦ [x 7→ D

ς̊ ,Γ̊ abs rep x]◦D
Γ̊
)e′2

≡ { commute ◦ since x : ς̊ /∈ Γ̊ }
Dυ̊ rep abs

([x 7→ D
ς̊ ,Γ̊ rep abs D

Γ̊
e′1]◦D

Γ̊
◦ [x 7→ D

ς̊ ,Γ̊ abs rep x])e′2
≡ { [x 7→ D

ς̊ ,Γ̊ rep abs D
Γ̊

e′1] distributes over application }
[x 7→ D

ς̊ ,Γ̊ rep abs D
Γ̊

e′1]
(Dυ̊ rep abs (D

Γ̊
◦ [x 7→ D

ς̊ ,Γ̊ abs rep x])e′2)
≡ { (RED-LET) }

let x = D
ς̊ ,Γ̊ rep abs D

Γ̊
e′1

in Dυ̊ rep abs (D
Γ̊
◦ [x 7→ D

ς̊ ,Γ̊ abs rep x])e′2
≡ { apply D

ς̊ ,Γ̊ }
let x = Dτ̊ rep abs D

Γ̊
e′1

in Dυ̊ rep abs (D
Γ̊
◦ [x 7→ D

ς̊ ,Γ̊ abs rep x])e′2
≡ { apply D

Γ̊
}

let x = Dτ̊ rep abs D
Γ̊

e′1 in Dυ̊ rep abs D
Γ̊,x:ς̊ e′2

≡ { e1 ≡ Dτ̊ rep abs D
Γ̊

e′1, e2 ≡ Dυ̊ rep abs D
Γ̊,x:ς̊ e′2 }

let x = e1 in e2

�

CASE (T-REW) e≡ Dτ̊r
rep abs D

Γ̊
θpr

(Γ̊m . pl : τ̊l ; pr : τ̊r) ∈R
Γ̊ ` e R

 e′ : τ̊l Γ̊; Γ̊m ` e R
 pl@e′⇒ θ

Γ̊ ` e R
 θpr : τ̊r

(T-REW)

Dτ̊r
rep abs D

Γ̊
θpr

≡ { θ commutes with D
Γ̊

and distributes over application }
θ(Dτ̊r

rep abs D
Γ̊

pr)
≡ { (D-REW) }

θ(Dτ̊l
rep abs D

Γ̊
pl)

≡ { θ commutes with D
Γ̊

and distributes over application }
Dτ̊l

rep abs D
Γ̊

θpl
≡ { e′ ≡ θpl }

Dτ̊l
rep abs D

Γ̊
e′

≡ { e≡ Dτ̊l
rep abs D

Γ̊
e′ }

e

�

	Introduction
	An Application of Type-and-Transform Systems
	Contributions
	Overview

	Object Language
	A Brief Look at Transformation
	The Typing of Type-and-Transform Systems
	Type Functors
	Typed Rewrite Rules
	Transformation

	The Semantics of Type-and-Transform Systems
	Difunctors
	Typed Rewrite Rules
	Transformation

	Definitions and Properties
	Discussion
	Algorithm
	Choosing the ``Best'' Transformation
	Parameterized Type Constructors
	Difference Lists

	Other Applications
	Generalization
	Integration

	Related Work
	Conclusions and Future Work
	Example Proofs
	Proof of Transformation Semantics

