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This is an edited transcript of a talk given at last year's 
conference. To preserve the flavor of the talk and the ques- 
tions, 1have done very little editing--mostly eliminating su- 
perfluous words and phrases, correcting especially atrocious 
grammar, and making the obvious changes needed when re- 
placing slides by figures. The tape recorder was not func- 
tioning for the first few minutes, so 1 had to recreate the 
beginning of the talk. 

I t 's  an honor to be invited to speak here at the second 
PODC conference. I 'd like to think that  it was because of 
nay work, but I suspect that the real reason is that  I tend to 
be controversial, saying all sorts of things that  will offend 
people and liven things up. To paraphrase Isaac Newton: 

If I have received more notice than other men, 
it was by stepping on the toes of giants. 

Well, I 'll try not to disappoint you. 

What  I 'm going to present here are my own personal 
views. Needless to say, I don ' t  expect  most of you to agree 
with these views. Saying what is and is not a problem in- 
volves predict ion--deciding just  what will be regarded in 
the future as the real problems in concurrency. To show 
how successful I am, I'll just  tell you that  when Susan 
Owicki first described Pnueli 's  use of temporal  logic-- in  a 
seminar she gave around the summer  of '79 or ' 80- - I  knew 
immediately that it was formal nonsense that  wasn't  really 
good for anything. 2 So, with that  piece of prognostication 

to vouch for my abilit_ies as a fortune teller, I 'll begin. 
l Work supported in part by the National Science Foundation under 
grant number MCS-81Ot-159, and by the Army Research Office under 
grant number DAAGit9-83-K-0119. 

"~After the talk, I was told that some people didn't get the joke and 
thought l.was insulting Pnueli. In fact, much of my recent research 
has been based upon Pnueli's work in temporal logic. 
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Shared Variables 1965 
Semaphores 1968 
Monitors 1972 
CSP 1978 

Figure 1: The  history of s tandard concurrency. 

The  first unsolved problem I want to talk about is 
the problem of developing a fundamental  theory of con- 
currency. By a fundamental  theory, I mean one that 's  not 
based upon arbitrary formal models or specific languages, 
but one tha t ' s  really fundamental.  

I recently heard a speaker use the phl'ase "standard 
concurrency". After listening to him for a while, it turned 
out that  by "standard concurrency" he meant  CSP. 

Those who cannot remember the past are con- 
demned to repeat it. 

George Santayana 

The history of s tandard concurrency is shown in Figure 1. 
When I started working in concurrency, s tandard concur- 
rency meant  semaphores. (Actually, conditional critical 
regions started challenging semaphores, but monitors be- 
came the standard before conditional critical regions had a 
chance.} Papers that  claimed to be about synchronization 
were really about semaphores. 

Well, synchronization isn't really semaphores, or moni- 
tors or CSP. Synchronization is something more fundamen- 
tal. I don' t  mean to put down CSP. It 's  a fine language--  
or, more precisely, a fine set of communicat ion constructs. 
Hoare deserved his Turing award. But, so did Dijkstra. 

Some of you may think that  was way back then, but 
now we really know what concurrency is all about, and we 
really know that  CSP is the right way of doing things. For 
those of you who think that  way, I 'd like to remind you that 
while we theoreticians are busy studying CSP, people out 
there in the real world are building Ethernets.  And CSP 
doesn ' t  seem to me to be a very good model of Ethernets. 

Anyway, what I really want to talk about is a funda- 
mental theory of synchronization or  concurrency. To give 
you an example of what it is that  I would like to see, I'll 
talk about something that  I do understand a little about--- 
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Figure 2: Alice and Bob's yard. 

namely, the mutual exclusion problem. 

In the mutual exclusion problem, we have two people-- 
let's call them Alice and Bob. Alice and Bob are neighbors 
and share a yard, as shown in Figure 2. Alice and Bob 
also have dogs, and naturally they want to let the dogs use 
the yard. After all, it's a lot easier just to let the dog out 
in the yard than to go out and walk him. The problem 
is that these dogs don't like each other, and they fight, so 
only one dog at a time can be in the yard. As you can see 
from the picture, there are trees and bushes in the yard, 
so you can't just look out the window and see if there's a 

. dog in the yard. So, Alice and Bob had to do something to 
communicate with each other to find out who can let his or 
her dog into the yard when. 

They could just walk over to the other person's house 
and knock on the door, but they didn't want to do that. 
After all, it might be raining, and they wanted to stay nice 
and dry and comfortable in the house. So, they needed 
some way of communicating. How did they do it? 

The first idea Alice had was to get some walkie-talkies. 
Then they could just sit in the house and call each other 
to decide whether it was safe to let a dog out. Unfortu- 
nately, that doesn't work. The problem is that in order for 
a walkie-talkie to work, you have to keep the walkie-talkie 
with you at all t imes--or at least while your dog is in the 
yard. But what happens if Alice, say, puts the dog in the 
yard and then wants to take a shower or run down to the 
store for something. She'd have to keep the walkie-talkie 
with her at all times, and that won't do. 

What they needed was a less ephemeral sort of message- 
passing device, so Bob had a really clever idea. He devised 
the little device, shown in Figure 3, for transmitting infor- 
mation. The can sits on Alice's window sill, and the string 
runs over to Bob's house. When Bob wants to send one 
bit of information to Alice) he just pulls on the string and 
knocks the can down. Alice can look at any time and see if 
the can is up or down. 

Figure 3: A simple signaling device. 

We•l that seems really neat, but unfortunately, that 
• doesn't work either. The problem is that you can only put 

a finite number of cans on the window sill. This means that 
Alice, say, can let her dog into the yard only a fixed number 
of times before Bob has to reset the cans. In other words, 
each time Alice wants to let the dog out, she has to send 
some message, pulling down at least one can. With a finite 
number of cans, she can only do that a finite number of 
times before Bob has to do something about resetting the 
cans. But what happens if Bob goes on vacation without 
telling Alice? He could be gone for weeks, and Alice is 
bound to run out of cans. So this doesn't work. 

Finally, they consulted a computer scientist, who tells 
them: "Yes, we know this problem. For signalling each 
other, all programmers know you need some kind of flag-- 
a binary device which can be set and reset by one person." 
So, they went home and built some flags, like the one shown 
in Figure 4. Each of them then had a flag, and they could 
just reach out the window and raise or lower their flags. 
And, in fact, with these flags, there's an algorithm that 
solves their problem. I'll show it to you in a minute. 

Now what have I just told you? I claim that I've told 
you some very important fundamental properties of mu- 
tual exclusion. The first thing I told you is that mutual 
exclusion is not solvable by message passing--at least not 
the way the mutual exclusion problem is normally formu- 
lated. If you look at solutions which claim to impleulent 
mutual exclusion with message passing, you realize that 
they are assuming some lower-level mechanisnl that actu- 
ally implements the mutual exclusion. Usually, you think 
you're communicating by message passing: but ~hat the 
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Figure 4: A one-bit flag. 

message is really doing is setting a flag at the other end, 
and that flag is logically part of the process that is sending 
the message. 

The other thing I told you was that the mutual exclu- 
sion problem is not solvable with interrupts. Those tin cans 
I drew were really the communication mechanism that ' s  
more familiar to you as an interrupt b i t - - i t ' s  set by the 
sender and it's reset by the receiver. It can ' t  be used to 
solve the mutual  exclusion problem, as that problem is usu- 
ally posed. 

But the mutual  exclusion problem is solvable with one- 
bit registers that have one reader and one wri ter--with no 
lower-level mechanism. 

Notice I told you all this without constructing any mod- 
els, without constructing any formal theories, without hav- 
ing to define any formal programming language. The point 
I'd like to make is that synchronization is a teat physical 
property; it 's not dependent  on models. A theory of syn- 
chronization should in some sense be a theory of physics. If 
someone asks "What 's  the mutual  exclusion problem?" we 
say: "It 's that two guys can ' t  be at the same place at the 
same time." Place and time are physical concepts. Even 
though we may build some models to help us understand 
the problems, remember that the problems we are trying to 
solve have to do with real computers moving real electrons 
around. 

l not iced--a t  least when I started in this game, it 's been 
less true recent ly-- that  people tend to approach these prob- 
lems by building models. The first thing someone would 

A: wh i l e  true 

do FA := up; 

whi le  FB = up do  skip od;  
dog in yard; 
FA := down 

od 

B: whi le  
do  

true 

FA := up; 
whi le  FB = up do  FB :=  down 

whi le  FB = up do skip od; 
FA :~- up; 

od; 
dog in yard; 
FA :=  clown 

od  

Figure 5: A mutual  exclusion algorithm. 

ask when I said I'd like to talk about synchronization is: 
"What 's  your model?" What  I 'm saying is: Let's think 
about real results. Models come after you start  understand- 
ing things. 

I mentioned that there was an algorithm for solving 
the mutual  exclusion problem. It 's the one in Figure 5. 
I 've written it as a nice little program with whi les  and 
shared variables and everything. It 's  a fairly well-known 
algorithm. What ' s  less well known about this algorithm is 
that it works with truly concurrent reads and writes. No 
assumption of atomicity is needed anywhere along the line. 
Incidentally, it 's a chivalrous algorithm; Alice has priority 
over Bob. 

Now let me show you the same algorithm written in a 
slightly different way. In Figure 6, I 've written it as a CSP 
program. It 's more or less the same algorithm, but  I should 
mention that it 's not the identical algorithm. The way 
I've written it in CSP states that the operations of reading 
and writing the flag are atomic, so it 's not as general as 
the algorithm shown in Figure 5. You can write the other 
algorithm in CSP, but  it would be hard to fit it on a single 
slide. CSP isn' t  a very good language for describing this 
kind of algorithm, although it 's good for other kinds of 
algorithms. 

Now, is this a distributed algorithm? Well, when I 
showed you the picture of the yard (Figure 2), it looked 
pretty distributed. There were two people in different 
houses communicating by signalling over a distance. When 
I write it as Figure 6, we have a nice distributed CSP al- 
gorithm. But if I just  wrote it as Figure 5 and didn ' t  give 
you these clues, you'd say that it 's just  an ordinary shared- 
variable nondistr ibuted program. 

Which is it? Is it distributed or is it not distributed? 
Well, we've come to our first nonproblem: What is a dis- 

tributed systeme. Distribution is in the eye of the beholder. 
To the user sit t ing at the keyboard, his IBM personal com- 
puter is a nondistr ibuted system. To a flea crawling around 



A:: *[true -* FA ! up; 
FB?t; 
,[t = u p  - - .  FB ? t]; 
dog in yard; 
FA ! down 

B:: *[true --* F~ ! up; 
F B ? t ;  
*[t = up --* FB ! down; 

* [ t = u p ~ F A ?  t ] ;  
FB ! up; 
F A ? t ;  

dog in yard; 
FA ! down 

FA:: *[FA ? val --* skip 
FB ! val --* skip ] 

FB:: *[F.~ ? val --* skip i] 
FA ! val ---* skip ] 

]; 

[ 

Figure 6: The algorithm rewritten in CSP. 

on the circuit board, or to the engineer who designed it, it 's 
very much a distributed system. 

When people ask "Is X a distributed system?", I think 
they're really asking a question of morality. We know that 
distributed systems are good and nondistributed syhtems 
are bad. I think I understand why: The Defense Depart- 
ment gives money to study distributed systems and doesn't 
give money to study nondistributed systems, so that means 
distributed systems are good. 

Another nonproblem: Distributed proofs of distributed 
algorithms. You just saw me describe the same algorithm 
two different ways. One is a "distributed" CSP program, 
the other is a "nondistributed" shared-memory program. I 
think we're in trouble if the way we prove this algorithm 
depends on which way we represent it, because then our 
proofs aren't  telling us very much about the algorithm, 
they're telling us about the programming language we hap- 
pen to write it in. So, this notion of trying to prove dis- 
tributed algorithms differently from nondistributed algo- 
rithms is a nonproblem. 

The source of the confusion here is that people confuse 
distribution with modularity. We know that modularity 
is a good thing. Modularity is important for a proof--we 
want to break our proof up into pieces, that is, into separate 
modules. But the notion of a module and the notion of a 
process are orthogonal concepts. They don't  have anything 
to do with one another. 

Let's take an example. Suppose we have a distributed 
file system in which there are computers in New York and 
San Francisco, like the one in Figure 7, and suppose we 
have two programmers assigned the job of implementing 
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Figure 7: A two-process system. 
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Figure 8: The obvious decomposition. 

.2 

it. We have a nice distributed two process system--one 
process in New York, one process in San Francisco--and 
we want to decompose it into two modules, one for each 
programmer. Of course, everybody knows an obvious way 
of doing this: the one shown in Figure 8. You have one 
programmer implementing the module in San Francisco, 
and the other programmer implementing the one in New 
York. When they're done, they come together in Chicago 
and try to put it together. Right? Of course not! The way 
you break this up into two modules is shown in Figure 9, 
where each module involves parts of both processes. 

Similarly you don't  try to prove the correctness of a 
two-process algorithm by writing proofs of each module 
separately and then pasting them together. You write a 
proof of an algorithm by viewing what the algorithm does, 
and that generally involves global reasoning. If the two 
processes are intimately connected and intimately commu- 
nicating, you don't  go off and write proofs of each one sep- 
arately and then try to paste the proofs together. 

So we come to a solved problem, which is: Proving 
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Figure 9: A better decomposition. 

properties of concurrent programs. There are two kinds of 
properties that we prove. The first is safety properties. 
The method that's known for doing this is generally called 
the Gries-Owicki or Owicki-Gries method, but I like to at- 
tribute it to Ashcroft who was really the first one who did 
i t - - in  1972. My favorite formulation of it, which I think 
makes things clear, is what I call the Generalized Hoare 
Logic. It appeared in my 1981 Acta Informatica paper, and 
it is explained much more clearly in a forthcoming paper by 
Fred Schneider and myself, s Basically, this is a generaliza- 
tion of the Hoare partial correctness approach, except that 
instead of pre- and post-conditions you have invariance. 

The other kind of property is liveness. We know how 
to prove those properties now. The proofs involve making 
lattices of temporal assertions and using well-foundedness 
arguments. The basic idea for that came from Pnueli's 
work on temporal logic. What's really new--what niakes 
concurrent programs different from sequential programs-- 
is that the assertions you put into the lattice are temporal 
logic assertions rather than ordinary logic assertions. Susan 
Owicki and I wrote a paper that tells you how to do it; it 
appeared in TOPLAS in 1982. 

These methods work just as well for distributed pro- 
grams as for nondistributed programs. There's nothing 
special about distributed programs. There's still work to 
be done in program verification. There are new language 
constructs--we want to find appropriate proof rules for 
them--and there's a lot of other stuff to be done. But 
you're not going to discover any remarkable, brilliant new 
method of verifying concurrent programs--just as you're 
not going to discover any remarkable, brilliant new method 
of verifying sequential programs. Axiomatic methods for 
sequential programs are going to boil down to Hoare pre- 
/post-conditions for proving safety properties and some 
well-foundedness argument for proving termination. The 
same thing is going to be true of concurrent programs. The 
fantastic new method that you may come up with is going 
SThis pape r  has since appea red  in the April,  1984 issue of TOPLAS .  

to be just a reformulation of these basic ideas in some new, 
confusing method. 

Well, what are the unsolved problems of program ver- 
ification? What I regard as the main unsolved problem is: 
Proving properties of real programs. I bank at the Bank of 
America. They have an automated-teller card, called a Ver- 
satel card. So, I go down to my friendly automated teller, 
where I put in my card and say "Give me some money." 
Usually it does. However, every so often, the teller comes 
back and says: "I'm sorry; system not available," or some- 
thing like that, which is a euphemism for "I'm sorry, things 
have crashed." Usually it's a communication problem; the 
teller can't communicate with the central computer. But 
sometimes it's the central computer that has crashed. 

If you look at when the Bank of America central com- 
puter crashes and start doing statistics, you find that oc- 
casionally somebody has spilled coffee in the mainframe, 
or something like that happened that you can understand. 
But, in about 95% of those crashes, they don't really know 
what caused it. The system goes down, somebody says 
"Oh, here it goes again," and they push the reboot but- 
ton. It takes them a couple of minutes to bring the stuff 
in from disk, the system starts again, and everying is fine. 
So, depending on the particular prejudices of whoever is 
recording those things, it was either a transient hardware 
failure, or whatever they like to call it. But basically, they 
just don't really know what happened. 

My guess is that most of those crashes are concurrent 
programming errors, because they are precisely the sort of 
things you expect when you have synchronization errors. 
These failures occur occasionally~ you can't detect them~ 
you can't get rid of them by testing, you can't reproduce 
them--they sound just like concurrent programming soft- 
ware errors. 

What the world needs are not more proofs of ten-line 
concurrent algorithms. The world needs some way of get- 
ting Bank of America to be able to eliminate those 95% of 
their crashes:-some tool, some method, maybe some way 
of teaching programmers how to use the techniques that we 
already have, but some way of getting these proof methods 
out into the real world. I strongly advise people to knock 
on the doors of Bank of America and say. "Hey, can we 
help you?" 

A similar current research area--I  wouldn't exactly call 
it an unsolved problem--which I think is very important is: 
High-level specification and proof. I just told you that we 
know how to prove concurrent programs, so why do I now 
have a current research area called " high-level specifica- 
tion and proof"? Well, in the standard verification meth- 
ods like the Owicki-Gries method, what you're proving are 
statements about the program written in the language of 
the program. You prove statements about program vari- 
ables, about bits, and about all the stuff that the program 
is shuffling around. But when you write a specification of, 
say, what the Bank of America's Versateller is supposed to 
be doing, you should write it in terms of how the customer 



If request A --+ request B 
t hen  service A --* service B 

Figure 10: An informal specification of FIFO. 

looks at it. The customer isn't interested in bits and flags 
and fields and such; he's interested in those little green 
pieces of paper coming out of the machine. So, if you want 
to write a specification for the Bank of America system, 
you want to talk in terms of those little green pieces of pa- 
per and the buttons that the user hits, not in terms of bits 
and bytes and nibbles and all that stuff. The specification 
should be independent of a particular implementation. 

We know how to verify properties that involve the ac- 
tual bits of the program, but when you write those proper- 
ties as high-level statements, not involving bits but involv- 
ing transactions, there are still unsolved problems involved 
in proving that the program, which shuffles bits and bytes, 
is really doing the right thing when viewed at the level of 
button-pushing and dollars coming out. The important as- 
pect of the specification is trying to specify the problem 
not the solution. As I've indicated, temporal logic seems to 
be a promising tool--despite my initial reaction to i t - -but  
it's not the only approach that's being used. I regard all 
this as a very fertile field of research. 

To illustrate one particular unsolved problem in speci- 
fication, I'll mention that the problem of specifying priority 
is completely unsolved) For example, I'll talk about spec- 
ifying FIFO (first-in, first-out), which is a simple type of 
priority. Now at this point everybody who does specifica- 
tions (Amy s for example is here someplace) will have their 
back bristling and will be saying: "What do you mean FIFO 
can't be specified? Anybody can specify that--especially 
anybody using temporal logic." You can write down this 
nice temporal logic expression, And obviously that means 
FIFO. 

Let's look a little more closely at a FIFO specification, 
which. I've written in Figure 10, where the.---, is read as 
"precedes". This specification says: For all A and B, if 
request A precedes request B, then service A has to proceed 
service B. In other words, if A requests service before B 
does, then A should get service before B does. 

Whenever you write a specification, you have to say 
something about what the interface operations are. I could 
talk a lot about that; it's an area of specification that peo- 
ple tend to neglect. If you look at most high-level specifi- 
cations, you'll find out that you can't tell from the specifi- 
cation whether what's being specified is a Pascal program 
or a box with a bunch of wires sticking out of it. Somehow, 
I would say you haven't really specified something com- 
pletely if you don't know whether you're supposed to get 
a Pascal program or a box with a bunch of wires sticking 
out. The reason you don't know that is that you don't know 
4This problem was discovered during a discussion with Richard 
Schwartz and Michael Melliar-Smith. 

SAmy Lansky " 

what the interface is. It's the interface that's different for 
those two cases, and you don't know whether the interface 
involves Pascal subroutine calls or electronic voltage levels. 

In writing a FIFO specification, you usually assume 
operations of enter request and give service. So, when 
we write the specification, we assume that we have these 
operations--the operation in which A can enter a request 
and the one in which A can receive service. These oper- 
ations have to be implementation-dependent; you have to 
specify them very differently for a Pascal program than for 
a box with wires sticking out of it. For a Pascal program, 
the operation of entering a request might consist of call- 
ing a certain subroutine, and the operation of granting the 
request might simply be the return from that subroutine. 

Notice that we have request as the operation in the spec- 
ification, whereas enter request is the operation that's being 
assumed. What's the relation between the two? There are 
two possibilities. The first possibility is that the request 
should be synonymous with the enter request, so that when 
we write that request A precedes request B, we really mean 
that enter request A precedes enter request B. 

You can write that as your specification, and it looks 
very nice. The problem is that it's not always imple- 
mentable. For example, if your interface is in a machine 
language and enter request is simply branching to a cer- 
tain location, then there is no way a computer can figure 
out which of two processes branched to that location first. 
So, this is a nice-looking specification, but it's not always 
implementable. 

So much for the first possibility. The second possibility 
is that the enter request is just a part of the request op- 
eration. Another way of saying that is that request is an 
operation which the implementer is free to define. While 
some things are specified as are part of the interface, there 
are other things that the implementer is allowed to define. 
For example, if a specification is in terms of a queue, the 
implementer is free to define exactly how that queue is rep- 
resented. In the same way, you could say that the im- 
plementer is free to define exactly how the operation of 
requesting something is implemented. 

That 's  fine, but the problem is that once you've done 
this, any algorithm is FIFO. All you have to do is define the 
request operation to be everything that happens from the 
time the user says enter request until he's actually granted 
that request. You then discover from this definition that 
every algorithm is FIFO. 

If you start thinking now about what you really mean 
by FIFO, you'll notice that there's an implicit condition 
that the request operation must not involve any waiting. 
That 's why the definition in which the request operation is 
everything from the time you enter the request until the 
time it's granted doesn't work, because that part of the 
implementation involves waiting for the other process to 
do something. Unfortunately, the notion of "no waiting" 
isn't expressible in any methodology I know of. So, here we 
have the simplest type of specification you might think of 
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in a concurrent system--a FIFO protocol--and no current 
specification method can specify it. 

Okay, let's get back to fundamental theory. Let's go 
back to Alice and Bob and their yard (Figure 2). After Al- 
ice and Bob had used their protocol for a while, their dogs 
started becoming friends and the whole business wasn't 
necessary. So, they took down their flags. Then Bob and 
Alice also got friendly, and they got married. But being a 
modern California fairy tale, they soon got divorced. Part 
of the divorce settlement was that Alice had custody of the 
dogs and Bob had to pay canine support, which in this case 
meant providing dog food. Now, there was a very bitter 
custody battle for the dogs, so Alice and Bob didn't want 
to see each other. The arrangement was that Bob would 
put dog food in the yard when Alice wasn't there and Alice 
would go get the food when Bob wasn't there. Alice would 
feed the dogs and, when the dog food ran out, she would 
tell Bob that she needed more dog food, and Bob would 
put it in the yard. 

As you probably know, what I've just described is a 
producer-consumer problem. On the face of it, it looks 
very much like a mutual exclusion problem because you 
have the same condition: Bob and Alice aren't supposed 
to be in the yard at the same time, just as in the mutual 
exclusion problem their dogs weren't supposed to be in the 
yard at the same time. But in fact, it's a very different 
problem. Why is it different? First of all, you can solve it 
without the flags; you can use the cans (interrupt registers) 
to solve it. This shouldn't come as a surprise to anyone, 
but most people never really thought about it. When you 
have a main frame and a peripheral unit, they're solving a 
producer-consumer problem between them, and they do it 
communicating through an interrupt register. 

The other difference, which I regard as more funda- 
mental, is the fact that there is no arbiter involved in the 
producer-consumer problem, whereas there is one in the 
mutual exclusion problem. Okay, what's an arbiter? An 
arbiter is a device that makes a discrete decision based on 
continuous input--for example, the flag position. When 
you raise the flag, there are an infinite number of positions 
it can be in, not just up or down. But when Alice reads 
the flag--when she says to herself: "Is that flag up?"--she 
has to take those infinite number of possibilities and make 
a discrete decision: up or down. A device that does this is 
known as an arbiter. 

It appears to be a law of physics--not a law of some- 
body's model of concurrency, but a real law of physics-- 
that it is impossible to bound the arbiter's decision time. 
In other words, there have to be situations-- some flag posi- 
tion or some particular circumstance of raising the flag--in 
which it will take Alice 100 years to decide: 

Is it up? Is it down? Well . . .  no, it's up. Is it 
really up? No, I think it's . . .  But maybe it's 
d. . .  No, i t ' s . . .  But maybe . . .  

The probability of that going on for too long is pretty small, 
but it appears to be a fact that the possibility of such a 

delay is inevitable. 

It's a very interesting problem. Physicists don't seem 
to be aware of it, but I regard the arbiter problem as one 
of the interesting facets of concurrency. 

So, an important difference between the mutual exclu- 
sion problem and the bounded buffer or producer-consumer 
problem is that any algorithm that solves the mutual exclu- 
sion problem cannot be guaranteed to work in a bounded 
length of time, whereas the producer-consurner problem 
does have solutions that take a bounded length of time. 

Again, I didn't say anything about models; I'm talking 
here about the laws of nature. That 's  the sort of thing I'd 
like to see in a theory of concurrency. I'd like to see this 
kind of result somehow codified and made more precise. 

What are the unsolved problems here? I told you some 
things I know about it; what don't I know? Here's one un- 
solved problem. I mentioned two types of synchronization: 
mutual exclusion and producer-consumer. Are they the 
only kinds of synchronization problems? Can any problem 
be regarded as a mutual exclusion problem or a producer- 
consumer problem, or a combination of the two? Every 
problem I've seen can be; but I wouldn't know how to go 
about saying that this is true or false, or exactly what it 
means. I think there's an interesting problem here. 

Another problem is: What are the fundamental costs 
o/synchronization? There have been a few resul(s. Nancy 
Lynch and Mike Fischer, among others, have been working 
on this, but we don't even really know too much about how 
to measure cost. Should we count the number of messages? 
The number of message delays? If you're dealing with a 
shared memory situation, are these reasonable things to 
measure? Message passing in some sense is really equivalent 
to shared variables if you look at it at a lower level. So, 
what does this all mean? I don't know. 

Another interesting problem is: What are the funda- 
mental limits to concurrency? The number of processors is 
usually considered the limitation; give me enough proces- 
sors and I'll compute anything for you. Everybody talks 
about these wonderful ways of putting processors together, 
and everybody is building nice systolic arrays--regular ar- 
rays of processors. We all know that's good engineering 
practice because everything is simple and nice and neat. 
The problem is that I know one firm that's been designing 
some very good concurrent computers for quite a while. 
I don't know exactly how they work--I've never really 
learned too much about them--but  I do know some of the 
other products they design have been engineered quite well. 
I suspect this company knows what's it doing, only when 
you look inside their computer you don't see this nice reg- 
ular array of things; you see an awful rat's nest of proces- 
sors interconnected to one another--very bad engineering. 
Something must be wrong with that firm, but they seem 
to be doing pretty well. Figure I I shows an example of 
their top-of-the-line model; it's not at all the way people 
think of designing computers. But an organization that's 
been around for half a billion to a billion years must be 
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Figure 11: A well-known company's top-of-the line concur- 
rent computer. 6 

doing something right. Which leads me to suspect there's 
a reason why they don't have these nice regular arrays of 
processors and use this rat's nest, in which neurons are 
connected to thousands of other neurons. 

It seems clear that when you start looking at the real 
limits of concurrency, you will find that interconnectivity 
of processors is going to be more important than just how 
many processors you can squeeze on to your chip. Can you 
quantify that? Is there some theory here? 

These are just a few of the problems that occurred to 
me when I was putting together this talk. It's certainly 
not a complete list. Again, I want to emphasize that I 'm 
not looking for models, I 'm looking for results. You should 
really understand the difference between a model and re- 
ality. I recommend looking at Turing's original paper on 
'Ihring machines. Look at how he justified his definition of 
the machine as a universal computer. It wasn't in terms of 
five-tuples of this, that and the other thing. 

Okay, let's switch topics: Fault tolerance. Those of you 
who regard fault tolerance as one of your areas of interest, 
please raise your hands. 7 Now, those of you who have your 
hands up, keep them up if you've read this paper: 

E. W. Dijkstra: "Self-stabilizing Systems in 
Spite of Distributed Control." Communications 
of the ACM 17, 11 (November 1974), 643-644. 

If you haven't read this paper, put your hands down. 

I think most of the hands went down. Most people 
haven't seen this paper. Well, it is by an obscure author 
in an obscure journal, so I suppose you should be excused. 

I regard this as Dijkstra's most brilliant work--at least, 
his most brilliant published paper. It's almost completely 
6Reproduced from Stedman's Medical Dictionary, 21 st Edition, (~)1966, 
the Williams & Wilkins Company, Baltimore, Md. 

7A large portion of the audience raised their hands. 

unknown. I regard it to be a milestone in work on fault 
tolerance. The terms "fault tolerance" and "reliability" 
never appear in this paper. In fact, one reason why it's not 
better known might be Dijkstra's approach, illustrated by 
this quote from the paper: 

The appreciation [of these results] is left as an 
exercise for the reader. 

I regard self-stabilization to be a very important con- 
cept in fault tolerance, and to be a very fertile field for 
research. I'll let you dig out Dijkstra's paper and discover 
for yourself what self-stabilization means, and leave it as 
an exercise for you to appreciate what it has to do with 
fault tolerance. Maybe I've given you a big enough hint so 
that you will not, like most people at the time, just dismiss 
it as an interesting little exercise that 's not really worth 
anything. 

Now for the last unsolved problem that I'll mention. 
Since about a third of the papers in this conference seem 
to be fault-tolerant algorithms or Byzantine Generals sort 
of things, I thought I'd give at least one unsolved problem 
in fault tolerance: 

Prove that clock synchronization in the face of a 
single arbitrary failure is impossible for a three- 
process system. 

I find it interesting that the analogous result for the Byzan- 
tine Generals problem was one of the first ones known, but 
nobody has yet proved it about clock synchronization. 8 The 
approximate Byzantine Generals results show that none of 
the straightforward ways will work--a straightforward way 
being one where everybody reads everybody else's clock, 
gets a bunch of numbers that are approximately the same, 
and then does something with those numbers. But nobody 
has ever proved that there isn't some really weird method 
that doesn't do it this way and somehow works. No one 
believes i t - -a t  least no one who understands the Byzantine 
Generals impossibility results--but nobody has proved it. 
It 's a nontrivial problem and I recommend it as being more 
worthwhile than the latest little wrinkle in what you can 
or cannot do in terms of defining variants of the Byzantine 
Generals problem. This clock synchronization question is 
a very fundamental problem. 

Another fundamental question is: What's the signifi- 
cance of the number 47 This may not be meaningful to 
many of you; to those of you to whom it isn't, I will ex- 
plain that 4 is in fact equal to 3+  1. What's significant here 
is that Byzantine Generals problems can't  be solved with 
three processors in the face of a single arbitrary fault, but 
they can be solved with four processors. The reason I men- 
tion this as a problem is that there's a clock synchronization 
algorithm that we know about, which is called interactive 
convergence, which also has the same property; it works 
with 4 processors but not for 3 processors. 9 But the way 
aThis lecture stimulated Dolev, Halpern and Strong to solve the prob- 
lem. Their proof appears in the Proceedings of the 8izteenth Annual 
ACM STOC Conference (1984). 

9This algorithm is described in the paper by Melliar-Smith and me in 



the number four pops up there is really strange--very dif- 
ferently from the way it comes up in Byzantine Generals 
types of solutions. Whenever I see the same number pop- 
ping up in two very different ways in related areas, I think 
that there may be something fundamental going on, so I 
pose this as my last general question. 

Okay, I've tried to leave plenty time for questions or 
attacks or whatever you wish to call them. 

QUESTIONS 
The identity of questioners is given when known. 

Alber t  Meyer :  One thing that I'm a little mixed up about 
is your objection to models. You can't really mean that you 
want no models. I presume this because you ask, as a set 
of open problems, to make precise such things as whether 
mutual exclusion plus producer-consumer equals synchro- 
nization. You stated a bunch of things that sounded like 
appeals for theorems, like that you need interrupts or you 
need flags, or you need arbiters, or you don't. At the same 
time, you're really quite negative, saying: "Enough of this 
models business. Distributed computation and synchro- 
nization are about 'reality'." It seems to me that those two 
appeals are not consistent; I presume that you mean there 
is a certain kind of model you don't like. But, if you're 
going to make things more precise in order to confirm the 
facts and theses that you're asserting, how else do you do it 
but to give some kind of precise model of what those terms 
mean? 

Answer:  As I'm fond of misquoting: "A foolish consis- 
tency is the hobgoblin of small axiom systems." What do 
I mean by "no models"? Take an interesting result in com- 
putability, like the halting problem. You can give a little 
proof of the impossibility of the halting problem without 
ever mentioning a five-tuple. You can talk about it in terms 
of drawing pictures of Turing machines and tapes, and peo- 
ple understand what you're doing. Any good mathemati- 
cian will say: "Yes, that's really a theorem." 

Of course, you might at some point want to make sure 
that it really does work. You might then want to formal- 
ize it and make those five-tuples and precisely define the 
mappings. We do make mistakes--and in the area of con- 
cur~vency we make a lot more mistakes than we make in 
other areas--so formalism is really important. But formal- 
ism comes later. If you're doing things right, you can state 
and "prove" your results without ever having to get into 
all these epsilons and deltas and omegas and stuff. Once 
you've got the result and once you've explained it to other 
people, then, when you have to get it published in JACM, 
you can put in these epsilons and deltas and omegas. But 
the thing that I advise against and abhor is the notion 
that the first thing you do when you study a problem is 
sit down and find a model. We don't need that. We have 
reality around us; we don't need models to start with. 
this proceedings. 

That 's what I mean by no models. Certainly, once 
you've got some ideas and some results, you can start for- 
mulating them more precisely in terms of these models. I 
always think of Einstein's remark, which I'm sure I'm mis- 
quoting, that if you really understand something you can 
explain it to a 13-year old child. That 's the way I feel 
too. If you have to dive into the formal models before you 
can explain what you're talking about, then you're doing 
something wrong. 

J .  Misra :  I was thoroughly confused when you said 
"model", and I think that your answer has left me even 
more confused. I believe if you read Dijkstra's paper, he 
starts out with a model--a model of process failure. Is that 
what you call a model, or is it against formalism that you're 
speaking? 

Answer :  Well, obviously I'm not pointing to Dijkstra's 
paper as a model of how to explain your ideas. I guess 
my comments on models are reactions to having read, way 
back when, several Ph .D.  theses where the only difficult 
problem that the author solved was understanding his own 
notation. I think good researchem do what I 'm saying au- 
tomatically. They don't start with models, they start with 
ideas. Maybe I'm saying that bad researchers shouldn't 
even begin because they begin by starting with models. 
There's an art to doing science and mathematics, involving 
the fine line between rigor and formalism. I'm all in favor of 
rigor; I don't care too much for formalism. I can't explain 
where that line lies; it's something that I 'm afraid isn't be- 
ing taught too well in the schools. I think that if you have 
to ask what the difference between rigor and formalism is, 
then maybe you shouldn't be doing research. 

Nancy  Lynch:  I think that part of the problem is that 
the models that we now have in this area aren't clean and 
general enough. Perhaps people can prove results in a spe- 
cific model that really ought to be stated in a simpler and 
more general way; so we don't quite have the right way of 
stating our results. 

Answer :  I should say something in defense of the work. 
that's been done. There's good work that is clearly saying 
something about the real world, not just about the specific 
model that it's stated in. But I think we don't understand 
the real world of concurrency well enough to be able to state 
them right. So, I don't think we have the final statements 
of those results. The way of improving this situation is 
not to look for models, but to try to study electrons and 
computers and what's really going on. 

Michael Rabin: I would like to add a comment to this 
long discussion. I completely agree with your point of 
view that there is too much formalism. I think I would 
rather express your objections to some of what is going 
on as an objection to an excess of formalism. The dif- 
ference between, on the one hand, Turing's work and the 
work on computability in the sense of reeursive functions, 
and, on the other hand, the kind of thing that we were dis- 
cussing here, is that fortunately the notion of computabil- 



]ty of a function from the integers to the integers is really 
rather invariant. There were several models or, if you wish, 
formalisms: Church's lambda calculus, Turing's, Post's, 
Markov's, Kleene's, etc. Fortunately they all capture a no- 
tion that is really invariant. Therefore, we have the luxury 
of expressing things in invariant terms and talking about 
the proof and not about the formalism. Programs, which 
are algorithms realized in computers, are not as clean--at 
least the way we view them now, perhaps without having 
the ultimate understanding of them. That, to my mind, 
may be the difficulty. 

My second remark will come as no surprise to most of 
the people here. When looking at the kind of questions 
you've raised--for example, the arbiter--I  would say that, 
in view of some of the past experience we have had, there is 
a role for randomization here. Perhaps a problem such as 
the arbiter problem is, in a certain deterministic sense, not 
solvable, and you can get results or statements about the 
situation that are as bad as you wish. But, if you adopt 
the point of view that you want to be right most of the 
time, and that you flip coins in order to make decisions in 
those situations, you might get better results. For example, 
Alice or Bob, instead of vacilating there and saying "Is it 
up? Is it down?" and so on, flips a coin. You can then 
try to arrange an algorithm which results in you're being 
right, or the system working in the intended way, most of 
the time. 

I wouldn't be surprised if, when you go to that machine 
which is so badly put together, shown in Figure l l ,  that 
it will turn out in the final analysis--when we understand 
more about i t - - that  there is some random behavior there 
that gives it the stability we perceive. 

If you consider some of the other problems in this area, 
such as the mutual exclusion problem, it turns out that 
the randomizing solutions in the same kind of model that 
the Lynch-Fischer results were considering in fact give bet- 
ter stability and better behavior. That 's something to be 
considered--especially in the context not of the three or 
four processor problem that you mentioned, but of much 
larger conglomerates of processes and processors. 

Answer :  I don't want to imply that any problem that I 
haven't mentioned isn't worth mentioning. The problems 
I've discussed are the ones that came to mind when I sat 
down and decided what I was going to talk about, and 
was limited to areas that I felt competent to talk about. 
Yes, the area of probabilistic algorithms is certainly a very 
fruitful one to consider. 

1 think Mike is wrong about the arbiter. It appears that 
the introduction of randomness d~es not help you in get- 
ting ar, nmd the arbiter problem. In some sense you, can 
always got probabilistic arbiter sohltions by simply wait- 
ing a tixed ann)unt (,f time and then proceeding--that is, 
building your system assuming that everything will work 
in a bounded h'ngth ()f time. This is the way we now build 
asynchr(mous computers, so, in that sense, you do have a 
probabilistic ,ystern. But I don't think you can do any 

better by introducing randomness. 

A l b e r t  Meyer :  You can solve the problem in a random 
sense. That is, the expected time should be bounded, not 
the worst-case time. I think that 's what Michael is talking 
about, and that would be the probabilistic solution. 

Michae l  Rabin:  Yes. 

Answer :  Yes, but you don't have to introduce random- 
ness. If you tell an engineer about the problem and he's 
never heard of it before, he'll say: "Oh yes; if she can't 
make up her mind, she tosses a coin." But this just pushes 
the problem back one level, to how she decides whether to 
toss a coin or not. You can't  get away from that prob- 
lem. All of our asynchronous computers are probabilistic 
computing devices in the sense that we know they can- 
not possibly work 100% of the time; good engineers design 
their computers in such a way that the probability of an 
arbiter synchronization failure is acceptably low. If they're 
not good engineers and they don't do that, then the prob- 
ability of that kind of failure gets to be unacceptably high. 
There have been systems which have crashed regularly with 
arbiter synchronization problems, until people figured out 
what was going on. 

Ques t ion :  For the last two months I've been working in 
industrial organizations on data communications. I believe 
that it's more fruitful to use the term "model" as an adjec- 
tive rather than a noun. One thing I've noticed is that you 
have given examples of the kinds of things that you're talk- 
ing about instead of giving formal definitions. We've done 
experiments on defining protocols by example. I wonder if 
you have some feeling for the ways that human beings tend 
to communicate by examples rather than in a formalism 

Answer :  In the area of protocols, as in all areas, human 
beings do communicate by example. I like to write papers 
having examples more than ones having theorems. Unfor- 
tunately, human beings very often draw the wrong conclu- 
sions from examples. The point that you're trying to make 
with the example is not the point that people gather from 
it. My favorite example of that- -or  my most unfortunate 
example--being in my T i m e ,  C l o c k s  . . .  paper, where what 
I regarded as simply an example illustrating the technique 
was regarded by most people as the main point of the pa- 
per. 

The problem with protocols is that whenever you look 
at examples, you're always looking at the common, obvi- 
ous cases. What you need formalism for is to discover those 
uncommon things that you didn't  think of. In the specifica- 
tion of protocols, [ don't see any escape from formalism-- 
that is, formalism in the sense of something you can look at 
ahnost syntactically and decide whether you're being rig- 
orous. But again, that 's an application area; it's not an 
area where you're trying to figure out what the fundamen- 
tal theory is. Even though I can describe these algorithms 
and talk about them by drawing pictures, I will not be- 
lieve a concurrent algorithm unless I have a very rigorous 
assertional correctness proof of it. People make errors. 
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B h a r a t  Bhargava :  I just want to know why you don't 
think that distribution makes some of the problems differ- 
ent or difficult compared to the other ones. At the lower 
level they all are the same, but at some level I think that 
the distributed problems are different. 

Answer:  When something is distributed, it changes. 
Building a file system is a different problem if it's to be 
built on a single computer than if it's distributed over two 
computers. In the same way, writing a numerical algorithm 
is a different problem if your division is three times as slow 
as your multiplication or ten times as slow as your multi- 
plication. These are things that affect the efficiency of the 
implementation. Whether you have an 8-bit or a 32-bit ma- 
chine is somehownot too relevant for computability theory, 
although it is certainly relevant in terms of implementation. 

I'm not saying that the problem of implementing dis- 
tributed systems is the same as the problem of implement- 
ing nondistributed systems. Nor am I saying that the spe- 
cific verification techniques for a particular language con- 
struct for distributed programming work exactly the same 
as the techniques for shared-memory programming. What 
I'm saying is that the basic theory--the basic method of 
verification--is the same. It makes things confusing if you 
try to say that you're working on some wonderful new 
method. The world doesn't need a proliferation of new 
methods for doing this, that and the other thing when 
the principles already exist for unifying them and describ- 
ing how they're all different applications of the same basic 
ideas. 

Bharat  Bhargava:  So what you're saying is that there 
are no new principles involved in distributed computing? 

Answer:  I have yet to see anything that I would regard as 
a fundamental principle that . . .  

I n t e r r u p t i o n :  Distributed clocks wasn't fundamental? 

Answer:  I'd say that the fact that suddenly, in the past 
couple of years, distributed processing is now a morally 
good term hasn't changed anything. Those same problems 
have been around for the past fifteen years; it's just that 
we're now talking about them in terms of distributed sys- 
tems. The problem of clock synchronization is not basi- 
cally different whether you're talking about synchroniza- 
tion by exchanging clock values over messages, or by hav- 
ing several processes that communicate use shared vari- 
ables to indirectly read the clocks. It's the same funda- 
mental principle. The fact that you call one distributed 
and you call one nondistributed is not relevant at a fun- 
damental level, although it has implications for practical 
implementations. But in terms of a fundamental theory of 
clock synchronization--no, there is no difference between 
what's now called distributed processing and what used to 
be called multiprocessing. 

Quest ion:  What you said is: that didn't used to be an 
important problem and now it is. This suggests that, if 
anything, distributed systems have created some problems 

that we didn't used to think about, and that's what people 
believe to be the new challenge. 

Answer:  I could be arrogant and say that distributed sys- 
tems have now gotten other people thinking about some 
of the problems I've been thinking about for a long time. 
However, that's not as accurate as I'd like you to think it 
is. 

Yes, distributed systems give you different implemen- 
tation constraints, so certain problems are now considered 
more important than they once were. Other problems are 
considered less important. Now that memory is cheap, 
clever methods of trying to squeeze data into small amounts 
of storage are no longer interesting. Now that processes 
are communicating over a smaller-bandwidth channels than 
they used to when they were all hooked up to the same 
memory, different sorts of algorithms are interesting. But 
I don't think this has too much to say about a fundamen- 
tal theory, and certainly not about how you should reason 
about those algorithms. 

Ques t ion :  CSP is a higher-level language construct and 
Ethernet is a low-level implementation concept, so what do 
you mean by saying that CSP isn't particularly good at 
describing Ethernets? 

Answer:  Certainly CSP isn't particularly good for de- 
scribing the low level--that is, for describing the Ether- 
net. I am very suspicious of the idea that we use the same 
high-level constructs regardless of what the lower-level im- 
plementation is. Anybody who has done any real program- 
ming knows that this wonderful top-down approach is not 
what anybody ever does in practice. In practice, you have 
a very clear idea of what's going to be done at the bottom. 
The simple reason for this is that if you start at the top 
and keep working outward, and each module is expanded 
at each level, then at the end you have an exponential num- 
ber of different modules. People don't like to write a large 
number of different modules; they want a small number of 
modules at the bottom. So, this successive refinement pro- 
cess has to somehow lead not to an exponential number of 
different modules, but to an exponential number of calls 
on a small number of actual modules. The only way that 
happens is if you have a very good idea of what's going on 
down at the bottom while you are doing your nice refine- 
ment at the top. So, in that sense, I don't think you ever 
design a system without worrying about what's going on 
down there at the bottom. It may very well be that even 
though you're building your system on an Ethernet, CSP 
will be ~tn appropriate language. But what's going on down 
at the lower level is certainly not irrelevant. 
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