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ABSTRACT 
Citing the confusing statements in the A I  literature concerning the relationship between branch and 
bound (B&B) and heuristic search procedures we present a simple and general form,dation of B&B 
which shouM help dispel ranch of the confusion. We ilhtstrate the utility of the form ulation by showblg 
that through it some apparently very different algorithms for searching And~Or trees reveal the speciftc 
nature of their shnilarities and differences, bz addition to git'ing new insights into the relationships 
among some A I  search algo.rithms, the general formulation also pros'ides suggestions on how existing 
search procedures may be t,aried to obtain new algorithms. 

1. Introduction 

Various heuristic procedures for searching And /Or  graphs, game trees, and 
state space representat ions have appeared in the AI  literature over  the last few 
decades, and at least some of them have been thought to be related to the 
branch and bound (B&B) procedures of operat ions research. But the relation- 
ships between these two classes of procedures have been rather  controversial.  
For example,  Pohl argues in [23] that heuristic search procedures are very 
different from B&B procedures,  whereas Hall [4] and Ibaraki  [5, 7] claim that 
many heu~'istic procedures for searching state space representations are essen- 
tially B&B procedures.  Knuth does not consider the alpha-beta  game tree 
search algorithm to be a B&B procedure;  he considers its less efficient version 
(called F I  in his classical t reatment  of alpha-beta |11]) to be branch and bound. 
But, Reingold et al. [24] consider alpha-beta  to be a type of B&B. In the 
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formal description of the game tree search algorithm B*, its author Berliner 
specifically states that "B* is not a B&B algorithm" [2]. While dcscribing the 
algorithm HS (same as the AO* And/Or  graph search algorithm [22]) in [16] 
Martelli and Montanari state that their algorithm is different from B&B 
because "(B&B) tcchnique does not recognize the existence of identical 
subproblems". But Ibaraki's B&B procedure [7] for combinatorial optimization 
problems does recognize the existence of identical suhproblems. It would seem 
that different pcople have differing notions of the words 'branch and bound'.  

Part of the confusion and controversy can be explained on historical grounds. 
B&B techniques appear to have been conceptualized in the early 196(Is to tackle 
integer programming and nonlinear assignment problems. Later similar tech- 
niques with some modifications were found to be applicable in many other 
problem domains. As more and more applications were discovered the B&B 
methodology ew~lved. Various formal models of B&B were presented and later 
superseded by more general models [1, 17, 12,6,7]. A lack of awarencss of 
these later developments would be one exphmation for some of the confusion 
noted above; the early survey by Lawler and Wood [14] is very often the only 
reference on B&B citcd in papers on search in the AI literature. 

It is easy to see that the central idea of B&B - - th e  technique of branching 
and bounding to discover the optimum element of a set--is  at the heart of 
many heuristic search procedures of AI. Confusion arises when one examines 
the specifics of B&B formulations presented in the literature. Even the later 
formulations, having been developed for specific problem domains, do not 
adequately model And/Or  graph and game tree search procedures such as 
alpha-beta, SSS* [28], AO* and B*. For example, the characterization of B&B 
presented in [12] is developed in the context of permutation problems; while 
the one in [7] attempts to serve as a general model for state space scarch 
procedurcs. 

Abstracting the essentials of B&B and dropping problem specific restrictions 
we have developed a formulation which is more general and also much simpler 
than existing formulations; the reader need only look at the previously cited 
references on B&B to be convinced of the latter claim. In this paper, we 
illustrate the utility of our  B&B formulation by presenting SSS* as a B&B 
procedure for the search of an optimum solution tree of an And/Or  tree, and 
showing how this formulation makes it possible to assess the precise relation- 
ship between SSS* and alpha-beta, two algorithms which hitherto were con- 
sidered to be quite different. 

SSS* was originally developed by Stockman [27] to find the largest merit 
solution of an And/Or  graph when the merit is defined in a specific manner. 
Stockman noticed that, because of the correspondence between And/Or  trees and 
game trees, SSS* can also be used to do minimax search of a game tree [28]. What 
came as a greater surprise was that SSS* outperforms alpha-beta in terms of the 
number of nodes expanded. The  relative performance of SSS* with respect to 



A GENERAL BRANCH AND BOUND FORMULATION 181 

alpha-beta,  according to various performance  criteria, is a subject of continuing 
investigations [28, 25, 3]. 

One  of the consequences of examining SSS* in our  B&B framework is that if a 
minor  modification is made in the B&B formulation of SSS*, the resulting 
procedure is equivalent to alpha-beta.  This is most interesting, for a lpha-beta  as 
conventionally presented [11] appears  very different f rom SSS* as described by 
Stockman [28]. Considering that alpha-beta has been known for over  twenty 
years, it is noted worthy that SSS* was discovered only recently in the context not 
of game playing, but of a waveform parsing system [27]. Perhaps if an adequate  
B&B formulation for alpha-beta  had bcen available earlier, SSS* would have 
been developed as a natural variation of alpha-beta.  

This insight into the relationship between SSS* and alpha-beta is but one 
instance of the utility of our B&B formulation of SSS*. The  formulation makes it 
easy to visualize other  variations and parallel implementat ions of SSS*, some of 
which have been presented in Kanal and Kumar  [8, 9]. 

We note that many other  state space, A n d / O r  graph, and game tree search 
procedures can also be formulatcd as B&B procedures in a manner  similar to 
the formulation of SSS* described here. A brief outline of A* and AO* as branch 
and bound procedures can be found in [18]. 

Section 2 briefly introduces And /Or  trees and their correspondence with 
game trees. Section 3 presents our abstract B&B formulation, and Section 4 
presents SSS* as a B&B procedure.  In Section 4 we also show how alpha-beta is 
related to SSS*, and briefly discuss what the B&B formulation reveals about the 
relationship of SSS* to AO* and B*. Section 5 contains concluding remarks.  

2. And/Or Trees and their Correspondence with Game Trees 

And/ Or  graphs provide graphical representat ions for problem reduction for- 
mulations. A detailed t reatment  of And / Or  graphs can be found in [21, 22]. To  
keep the discussion simple in this paper  we limit our  presentation to And /Or  
trees. Many of the concepts and techniques presented are directly applicable to 
And / Or  graphs. In this section we briefly review And /Or  trees and their 
correspondence with game trees. 

2.1. And/Or  trees 

Each node, of an And /Or  tree represents a problem, and a special node called 
root repregents the original problem to be solved. Nodes having successors are 
called nontenninal .  Each nonterminal node has all immediate  successors either 
of type A N D  or of type OR. A solution to a problem whose (nonterminal) 
node has immediate  successors of type O R  is obtained by solving any one of 
the successors; while a solution to a p r o b l e m  whose node has immediate  
successors of type A N D  is obtained by solving all of these successors. Nodes 
with no successors are called terminal. 
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G i v e n  an A n d / O r  t ree  r c p r e s e n t a t i o n  of  a p r o b l e m  we can iden t i fy  its 
d i f ferent  so lu t ions ,  each one  r e p r e s e n t e d  by  a ' so lu t ion  t r ee ' .  

A sohaion tree T of an A n d / O r  t ree  G is a sub t ree  of G with the  fo l lowing 
p rope r t i e s .  

(i) T h e  roo t  node  of  the  A n d / O r  t ree  G is the  roo t  node  of  the  so lu t ion  t ree  
T. I 

(ii) If a n o n t e r m i n a l  node  of  the  A n d / O r  tree G is in T, then  all of i ts 
i m m e d i a t e  successors  a re  in T if t hey  a re  of  type  A N D ,  and  exac t ly  o n e  of its 
i m m e d i a t e  successors  is in T if t hey  a rc  of  t ype  O R .  

Fig. 1 shows an A n d / O r  t ree  a n d  o n e  of  its so lu t ion  t rees .  In m a n y  p r o b l e m s  
a mer i t  is a s soc ia t ed  with so lu t ion  t rees .  

T h e r e  a re  va r ious  ways in which a mer i t  funct ion can be  def ined ,  but  the  one  
def ined  be low is of special  in te res t  to  us. Let  c ( n )  d e n o t e  the  mer i t  of a 
t e rmina l  node  n of G. 

Merit function f. Let  T be  a so lu t ion  t ree  of  all A n d / O r  t ree  G,  then  f ( T )  is 
def ined  as the  m i n i m u m  mer i t  of all t e rmina l  nodes  in 7", i.e., f ( T )  = min{c( t )  I t is 
a t e rmina l  node  of 7"}. 

T o  fac i l i ta te  eva lua t ion  of f - v a l u e s  of  so lu t ion  t rees  we def ine  an eva lua t ion  
funct ion  Cr for  the  nodes  of  a so lu t ion  t ree  T. 

Eual ,a t ion  function cr. If n is a node  of  a so lu t ion  t ree  T, then  Cr(n) is 
de f ined  as fol lows.  

(i) If n has  n~ . . . . .  nk as i m m e d i a t e  successors  of  type  A N D ,  

CT(tl) = min{cr(ni)  I 1 <~ i <~ k} 

c ( n )  = 28 94 78 52 22 35 53 80 30 54 21 73 9 71 43 91 

Fie,. !. An And/Or tree (~. AND nodes are represented by square nodes, and OR nodes are 
represented by circle nodes. Boldface lines show a solution tree T of G; ,[(7") = 28. 
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(ii) If n has n~ as immediate  successor of type OR,  

cT(n) = cT(n,). 

(iii) If n is a terminal node, 

c~(n) = cOO. 

L e m m a  2.1. I f  n is the root node of a solution tree T, then cr (n)= f (T ) .  

Proof. By induction on the height of T. 

Hence,  to calculate the f -value  of a solution tree T with root node n we 
successively evaluate the cT-value of its nodes until c r (n)  is known. Among  the 
different solution trees for a problem the solution tree with highest merit would 
then be chosen. 

2.2. Correspondence with game trees 

And /Or  trees can also be used as models of two person, perfect information 
board games [21, 26]; e.g., tile And~Or tree of Fig. 1 can be viewed as a game 
tree. The game is played between players M A X  and MIN;  ill the corresponding 
A n d / O r  tree board positions resulting from M A X ' s  moves are represented by 
O R  nodes (circle nodes in Fig. I), and the positions resulting from MIN ' s  
moves are represented by A N D  nodes (square nodes in Fig. 1). Moves of the 
game proceed in strict alternation between M A X  and MIN until no further 
moves are allowed by the rules of the game. After  the last move M A X  receives 
a payoff which is a function of the final board position (c-value of the 
corresponding terminal node). MIN has to forfeit the same amount.  Thus, 
M A X  always seeks to maximize the payoff while MIN does the converse. 
Assuming that the root node of the tree corresponds to the current position of 
the game from which M A X  is to move,  the objective is to find a move for 
M A X  with guarantees the best payoff. The  best payoff that M A X  can be 
guaranteed for a game is given by the minimax value of tile corresponding 
A n d / O r  tree. This evaluation can be defined in a recursive manner .  We first 
define a minimax function g for all nodes of an And /Or  tree G as follows. 

(i) If n has immediate  successors of type OR,  

g(n)  = max{g(ni)} for all immediate  successors ni of n. 

(ii) If n has immediate  successors of type AND,  

g(n) = min{g(ni)} for all immediate  successors n~ of I1. 

( i i i )  If n is a terminal node of G, 

g(n)  = cOO. 
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Then  the  min imax  va lue  of  an A n d / O r  t ree  G is def ined  as g (n ) ,  w h e r e  n is 
the  roo t  node  of  G. 

In [28] S t o c k m a n  m a d e  a r e m a r k a b l e  obse rva t ion  (with a formal  p roof )  that  
the  min imax  va lue  of  a game  t ree  is the  s ame  as the maximuna f - v a l u e  (as 
def ined  in Sect ion 2.1) of all so lu t ion  t rees  when a game  t rce  is v i ewed  as an 
A n d / O r  t ree .  A n  in tu i t ive  exp lana t ion  for  this resul t  is that  a so lu t ion  t ree  
r ep re sen t s  all poss ib le  responses  by M I N  to some  pa r t i cu l a r  s equence  of  moves  
m a d e  by M A X ,  i.e., it r ep re sen t s  a pa r t i cu l a r  s t ra tegy  for  M A X .  M I N  can 
a lways  choose  the  s equence  of moves  l ead ing  to the  m i n i m u m  va lued  t ip  node  
and  thus  mini ,n ize  the  payoff  for  a s t ra tegy  chosen  by  M A X .  Thus  the  mer i t  (or  
the  g u a r a n t e e d  payoff.) of a so lu t ion  t ree  is t aken  as the  m i n i m u m  c -va lue  of all 
its t ip nodes .  Each so lu t ion  t ree  r ep r e sen t s  an a l t e rna t ive  s t ra tegy  for  M A X .  
Since M A X  is free to  choose  any  poss ib le  s t ra tegy  he wou ld  choose  the  one  
c o r r e s p o n d i n g  to the  so lu t ion  t ree  with the  highest  mer i t ,  to g u a r a n t e e  the  
m a x i m u m  payoff  by MIN.  

3. A General and Bound F o r m u l a t i o n  

T h e  class of  p r o b l e m s  so lved  by  b ranch  and  h o u n d  p r o c e d u r e s  can be  ab-  
s t rac t ly  s ta ted  as follows.  

Fo r  a given a rb i t r a ry  d i sc re te  set X o r d e r e d  by  a real  va lued  
mer i t  funct ion f : X ~ R ,  find s o m e  x * E X  such that  for  all 

x e x ,  f (x*)  >~f(x).' 

Branch  and  b o u n d  p r o c e d u r e s  d e c o m p o s e  the  or ig inal  set in to  sets  of dec reas -  
ing size. T h e  d e c o m p o s i t i o n  of  each  g e n e r a t e d  set is con t i nued  until  tests  reveal  
that  it is e i the r  a s ingle ton  ( then we m e a s u r e  its mer i t  d i rec t ly  and c o m p a r e  
with the  cu r r en t ly  best  m e m b e r ' s  mer i t )  o r  p roved  not  to  con ta in  an o p t i m u m  
e l e m e n t  (an e l e m e n t  with g rea tes t  mer i t )  of the  set X, in which case,  the  set is 
' p r t l ned '  o r  e l im ina t ed  f rom fur the r  cons ide ra t ion .  2 If the  d e c o m p o s i t i o n  
process  is c o n t i n u e d  (and satisfies s o m e  proper t i e s ) ,  we even tua l ly  find an 
o p t i m u m  e lemen t .  Of ten ,  on ly  a small  f ract ion of  the  total  set need  to  
g e n e r a t e d .  

In the  ea r l i e r  fo rmula t ions  of  B & B  [17, 1] on ly  the  lower  and  u p p e r  bounds  
on the  mer i t  va lues  of  the  e l e m e n t s  of  (sub)sets  (of X )  were  used for  p runing .  
If two sets  X~ and  X2 are  in the  co l lec t ion  of  sets  u n d e r  cons ide ra t i on ,  and  the 

~lower b o u n d  on the mer i t s  of  e l e m e n t s  in X,  is no  sma l l e r  than  the  u p p e r  

'(a) Discussion in this section is also applicable (with appropriate modifications) to the case, 
when f denotes the cost of ttle elements of X, and a least cost element is desired. (b) In some 
problems all largest merit elements of X are desired. In this paper we restrict ourselves to the ease 
when only one optimal element is needed. 

:More precisely, we need only to prove that even after eliminating the set in question at least one 
of the remaining sets still under consideration contains an optimum element of X. 
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bound on the merits of elements in X2, then Xz can be pruned. The  use of 
bounds for pruning gave the procedure its name 'branch and bound' .  

The concept of pruning by bounds was later generalized to inchlde pruning 
by 'dominance '  (see [12, 6, 7]). Tile generalization involves using information 
about the sets other  than just bounds (see, e.g., [18, 19]). A dominance relation 
D is defined between subsets X,, X2 of X such that XIDX2 if and only if an 
optinlum element of ,.\'j is no worse than an opt inmm element of X2. If two sets 
X,, X2 are in the collection under consideration of X, DX,_, then X2 can be 
pruned. 

Here  we brielly describe the basic elements  of our  branch and bound 
formulation. Our  development  of B&B has been greatly influenced by the 
earlier formulation due to Mitten [ 17]. As is discussed later, in our formulation, 
the dominance relation is used for pruning in a nmnner  somewhat ditterent 
than in [12,6,7]. 

Let Y bc the set of all subsets of X, i.e., Y = 2". Symbol A.'/denotes a subset 
of X, and symbol A denotes a collection of subsets of X, i.e.. A C Y. For 
brevity, a collection A of the subsets of X will sonlctimes be referred to simply 
as a 'collection'.  For notational convenience the union of all subsets in any 
collection A is denoted by U ( A ) ,  i.e., U ( A ) =  {Xi I -% E A}. We define 
f* ( ,~ )  to be the nmximum of the merits of tile elements  in ,V;. Any clement 
x* E ,Y~ for which f (x*)  = f*(X~) is called an optimton element of tile set Xi. 

We next define branching and pruning functions, and the dominance relation, 
and introduce the B&B procedure as an iterative procedure operating on sets. 

Branching function BRANCH:2 Y ~ 2  Y is defined over  collections A of sub- 
sets of X such that, 

(i) XI ~ t~RANCH(A) :ff for some X} ~ A, A] C X}. 
(ii) U (BRANCH(A)) = U ( A ) .  
These conditions state that the branching rule divides the members  of the 

collection A into subsets which collectively include precisely the same elements  of 
X as the original collection A. From proper ty  (ii) of the function tSR^NCH we get 
the following result. 

I .emma 3.1. f*(  U (BRANClt(A))) = f*(  O (A)). 

Often, tile function BRANCIt is implemented such that only a selected member  
of tile collection A is divided into subsets, and tile rest are returned unchanged, 
i.e., BRAEcu(A)= (A--SELEC'T(A))USpLIT(A), where SEI.ECrr and SPLIT are 
defined as follows. 

Selection function SELECr : 2v--* Y is a function which returns a subset X; of 
X from tile collection A, i.e., SELECt(A) ~ A. 

Splitting function spLrr : Y o 2  v splits a subset Xi of X into a collection of 
subsets of Xi, i.e., Xi = g (SPLIT(,1,])). 

Dominance relation D is a binary relation defined between any subsets Xi, A') 
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of X such that X i D X / i f  and only if f*(Xi)>~/*(X/).  From the definitions o f / *  
and D we obtain the following lemma. 

Lemma 3.2. Let A be a collection of subsets of  X. I f  XIDX/ and Xi, X~ ~ A,  then 
f * (  U (A ) )  = f*(  U ( A - { X / } ) ) .  

The lemma says that if Xi and X/ are present in a collection A and Xi 
dominates Xj, then X/ can be eliminated from the collection A without 
lowering its optimum value. 

Pruning fimction r, aUNE : 2r--* 2 r prunes the dominated subsets of A. It is 
defined as follows. PauNE(A)= A - A  ~ where A ~ is a subset of A with the 
following property: for all X~ E A ~ there exists some X~ ~ A -  A ~ such that 
X/DX,-. 

Hence,  from Lemma 3.2, all the members of A ~ can be eliminated from the 
collection A without lowering its f*-value. This important result is summarized 
in the following lemma: 

Lemma 3.3. f*(  U (PRUNE(A))) = f*(  U (A)). 

We note that the use of dominance in our B&B f.ormulation differs from that 
in earlier formulations. In the formulations presented in [12,6,7] sets pre- 
viously generated and not currently in the collection are also allowed to 
participate in tile test for dominance. When dominance is used in that way the 
cited formulations have to impose more .restrictions (in addition to the 
definition) on D to ensure that Lemma 3.3 still remains valid (otherwise there 
exists, for example, the possibility of all members of the current set being 
pruncd away because of dominance by different elements of the ancestor set). 
These restrictions tend to be dependent  upon the problem domain being dealt 
with, and thus complicate the idea behind pruning by dominance. -In [13] it is 
shown that tile simpler pruning method used in the formulation presented here 
is no less general than pruning methods in the previous formulations. 

Let IsI denote  the cardinality of a set S. Proccdure P0 given below represents 
the essence of many B&B procedures. Here,  A denotes the collection of 
subsets of X upon which the branching and pruning operations are performed 
in each iteration of I'0. 

procedure P0 (*B&B procedure to search for 
an optimum element of a set X*) 

begin 
A .'= {X}; (*initialize active collection A*) 
while I g (A)] ~ 1 do (,loop until collection A has 

only one element of set X*) 
A : =  BI=IANCH(A);  (,*branch on the collection A*) 
A : = P R U N E ( A ) ;  �9 (*eliminate the dominated 

subsets from A*) 
end; 

end 
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Theorem 3.4. When the procedure Po terminates for some Xo in X, {x0} = U (A), 
and f ( xo )=f* (X)  (i.e., at the termination the collection A contains only an 
optimt,n element of the set X).  

Proof. The  predicate Io, {f*( U ( A ) ) = f * ( X ) } ,  is clearly established by tile 
initialization statement (A = {X}) and (from Lemmas  3.1 and 3.3) is maintained 
by tile operators  nRANC~I and PRUNE. Hence,  I0 is also true at the termination of 
P0. 

Also the predicate It, {] U ( A ) I  = 1}, is true at the termination of the 
'while-loop'  of P0. But, {I U ( A ) I  = 1} implies there exists an x0 such that 
{x0} = U (A). 

Hence,  from I0 and lh we conclude f * (X )  = f(Xo). 

Theo rem 3.4 guarantees that, at termination, the collection A will contain 
only an opt imum element of X ;  but the termination itself is not guaranteed.  In 
general, we need to impose extra structure on the functions BRANCll and PRUNE 
to be able to guarantee the termination of P0. 

3.1. Discussion of the formulation and its relationship to previous work 

In this abstract formulation a number  of details have been left out. For 
example,  we only define the basic propert ies of a branching function. In a 
practical implementat ion of a B&B procedure a branching function is chosen 
which is natural for the problem domain in question and satisfies the propert ies 
given here. 

For pruning, in each cycle of P0, a dominated subset A ~ of the collection A 
needs to be constructed. Note  that given any two subsets X~, X2 of X, at least 
one of them dominates  the other  (either f*(Xt)>~f*(X2), or f*(X2>.f*(Xi)). 
Hence,  in theory, A D can be constructed to have all but one set of the 
collection A. This would make  the procedure/9o terminate  in a very few cycles, 
since in every cycle of Po, all but one of the generated sets will be eliminated. 

But we may not know the dominance relation for every pair of members  of 
the collection A without exhaustively enumerat ing the elements in the sets 
which are members  of A. However ,  in a particular problem, partial knowledge 
from the problem domain is often available to reveal the dominance relation 
between some of the members  of A. qllis partial knowledge of the dominance 
relation c'an be used to construct A ~ a dominated subset of A. In the next 
section, where we present a practical B&B procedure  to find an opt imum 
solution tree of an And / Or  tree, we show how knowledge of the problem 
domain is used to ascertain dominance between two sets of solution trees. 

4. A B&B Procedure for Opt imum Solution Tree Search 

Here ,  the domain of elements  X is the set of solution trees of an And /Or  tree 
G. The  merit  function f for solution trees is defined in Section 2.1. In practical 
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implementat ions of B&B procedures the set X and its subsets are not 
represented explicitly. Instead, some problem specific data structure is used 
which implicitly represents the set X and its subsets. We shall use 'partial 
solutions trees '  (also called partial trees) defined below, to represent sets of 
solution trees of G. 

First, in Section 4.1 we introduce partial trees and define the function f* and 
the dominance relation D on partial solution trees. Then,  in Section 4.2 we 
present implementat ions of the functions SPLIT, SELECT, BRANCtl and PRUNE to 
opera te  on partial trees and the collections of partial trees so as to have the 
same propert ies  as in Section 3; we then present  SSS* as a B&B procedure for the 
search of an op t imum solution tree of an And /Or  tree. 

4.1. Partial solution trees---a representation for  sets of solution trees 

A partial solution tree (or partial tree) T '  of an And /Or  tree G is a subtree of G 
with the following properties.  

(i) The  root node of the And / Or  graph G is the root node of the partial tree 
Z t , 

(ii) If any node (other than the root) of G is in T ' ,  then its ancestor is also 
in T' .  

(iii) If a nonterminal  node tz of G is in T '  and immediate  successors of n in 
G are of type OR,  then at most one of the immediate  successors of n is in T ' .  

A partial solution tree is an ' incomplete '  solution tree which can be extended 
(in possibly various ways) to form a complete  solution tree. It represents all 
those solution trees which can be formed by extending it. We use S-TnEEs(T') to 
denote  the set of solution trees represented by a partial tree T' .  Fig. 2 shows a 
partial tree T '  of the And /Or  tree G of Fig. 1 and the set of solution trees 
represented by T' .  A node of a partial tree is called a tip node, if it has no 
successors in T' .  A tip node of T '  is either a terminal node (if it has no 
successor in G),  or  a nonterminal (if it has successors in G).  It follows that a 
partial tree all of whose tip nodes are terminal nodes in G represents just one 
solution tree, viz., itself. 

For a node n of partial tree T ' ,  c r (n)  ( T  is any solution tree in S-TREr~(T')) 
can be evaluated by using the definition of Cr in Section :2.1, provided all 
successors of n (i.e., immediate  successors, successors of immediate  
successors . . . .  ) in G are also in T ' .  A node n of T '  is called solved if c r (n)  is 
known. 

Define f*(T')  to be the max imum of the merits of all solution trees 
represented by T ' ,  i.e., f*(T')=max{f(T)IT~s-'rREES(T')}.  Let sot.- 
VEDTws(T') and trNSOLWD'rws(T') represent the sets of solved and unsolved tip 
nodes of T '  respectively. The  following lemma can be proved by induction on 
the height of the tip nodes of T ' .  
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(a) 

5 

FiG. 2. (a) A partial trce T'. (b) Solution trees represented by T'. 

I.emma 4.1. 

f*(T') = min{min{c(n)  [ . E SOLVEDTIPS(T)} , 

min{g(n)  [ n E UNSOLVEDTIPS(T')}} 

where g(n) is the minimax vahte of node tz as defined itz Section 2.2. 

T h e  d o m i n a n c e  relat ion D be tween  any part ial  t rees T] and T~ is def ined as 
follows. T]DT~ if and  only  if f*(T;)>~f*(T~). Let  us define the  funct ion 
.bozotd for  any part ial  t ree  T '  "to be  an uppe r  b o u n d  on the  mer i t s  of  the 



190 V. KUMAR AND L.N. KANAL 

solution trees represented by T '  as follows 

ubound(T ' )  = min{c(n) I n ~ SOLVEDTWS(T')}. 

Lemma 4.2. For partial trees T; and T~, if UNSOLVEDTIPS(T;) C UNSOLVEDTIPS(T~) 
attd ubound(T ' ) />  ubound(T)),  then T~DT~. 

Proof. From L e m m a  4.1 

f*(T~) = min{min{c(n) I n E SOLVEDTIPS(T;)} , 
min{g(n) I n @ UNSOLVEDTIPS(T~)}} 

= min{ubound(T~), min{g(n) I n E UNSOLVEDTIPS(T~)}} 
>t min{ubound(T)), min{g(n) I n E UNSOLVEDTIPS(T))}} 
= p ( T ~ ) .  

Now, from the definition of 'dominance ' ,  we conclude T[DT;.. 

Note that given any two partial trees T; and T} of G, it is always possible, by 
exhaustively generating and evaluating all solution trees represented by T~ and 
T}, to determine whether  or not T~ dominates  T~. But Lemma  4.2 permits us to 
conclude that T '  dominates  T) without such exhaustive generation provided 
certain information about T~ and T} is known. For  example,  using L e m m a  4.2, 
we can conclude that in Fig. 3(d) T h  dominates  T~2. 

4.2. SSS* as a B&B procedure for And/Or tree search 

Here,  A will be used to represent a collection of partial solution trees (instead 
of a collection of sets of solution trees directly). For any collection A of partial 
trees, U ( A )  denotes the union of sets of solution trees represented by the 
partial trees in A, i.e., U (A) = U{S-TREES(T~) [ T~E A}. 

The  function BRANCH takes a set of partial trees as input and returns another  
set of partial trees as output.  I t . i s  implemented as a composit ion of two 
functions SELECT and SPLIT: BRANCH(A)= ( A -  SELECT(A))USPLIT(SELECT(A)). 

The  function SELECT is implemented to return a partial tree in A which has 
the largest upperbound.  Hence,  it has the following properties: (i) SELECT(A) 
A, and (ii) ubound(svLECT(A)) ~> ubound(T ' )  for all T~ E A. 

The  function SPLIT takes a partial tree T '  as an argument ,  and after expansion 
or evaluation of a node of T' ,  returns the resulting (set of) partial tree(s). Since 
several nodes in T' may be available for expansion and evaluation, a certain 
order  is followed. The  first unevaluated node n of T '  in post order 3 sequence 
(denoted as CURRENTNODE(T')) is selected; if n is a nonterminal tip node of T ' ,  
then T '  is extended by generating successors of the node n, otherwise n is 
evaluated. The  reason for choosing this strategy for node selection is explained 

3Post order is recursively defined as follows. First, visit sub-trees in left to right order, then visit 
the root node (see [10]). 
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later. Thus,  SPLIT is implemented  using functions EXPAND and EVALUATE as 
follows. 

If n is a nonterminal  tip node  of T ' ,  
SPLIT('/") = EXPAND('./"). 

Otherwise  (n is e i ther  a terminal node or  has successors in T') ,  
SPLIT('/") = EVAI.UATE(T') .  

The  function EXPAND returns the set of  partial trees which results f rom 
expanding the selected node  n of T ' .  If n~ . . . . .  n~ are successors of  n in G, 
then EXPAND(T') is defincd as follows. 

If n has O R  successors, 
EXPAND(T' )  = { T '  *( t l  - Hi) I 1 <~ i <~ k }  

a n d  CURREN'rNODE(T '  :': (ll  -- IZi)) = I l i .  

Otherwise (n has A N D  successors), 
EXPAND('/") = {7"' * ( . - -  . , . .  m)} and 

C U R R E N T N O D E ( T ' : + : < ~ ! !  - -  H I . .  I lk))  = I l l  

Here T ' * 0 I - n + )  denotcs the extension of T '  by including n+ as an itn- 
mcdiate O R  successor of n, and T '  * (n - t z l . .  nk) denotes the extension of T '  
by including nj . . . .  ilk as immediate A N D  successors of n. Clearly, 

S-TREEs(T' )  = U {S-TREEs(T' *( t l  --  I1i)) I l ~ i ~ k} 

a n d  

S- ' rREEs(T ' )  = S-TREES(T'  * (tl  - - I l l . .  ' l l ~ ) )  . 

The function EVALUA'rE is implemented to return 7"' : l i ter evaluating the 
selected node n. As defined, the post order successor o f ,  becomes the new 
CURRENTNODE(T'). Clearly, s-'rREES(7"')= S-TREES(EVALUATE(7"')). If n is a ter- 
minal node of T' ,  then the upper bound of T '  is updated 

u b o u n d ( E v A I . t I A T E ( T ' ) )  = min{ubound(T ' ) ,  c01)}. 

Thus,  viewed in entirety,  the function nRANCH takes a set of partial trees as 
input,  selects a largest ubound  ~ partial tree 7" f rom the set, chooses  a nonterminal  
tip node  n (=CURRENTNODE(T')) of T' ,  and ei ther evaluates n and return T ' ,  or  
expands n and returns the resulting extensions of T ' .  It follows that the function 
BRANCrl, aS defined here,  has both  the propert ies  of  its definition in Section 3. 

The  fuhction PRUNE takcs a collection A of partial trccs as the argument ,  
identifies the set of  partial trees A ~ (using lemma 4.2) such that each partial 
tree of A ~ is domina ted  by some partial tree in A -  A ~ and returns A - A  ~ 
i.e., P R U N I : . ( A ) = A - A  ~ Thus  the function PRUNE eliminates only the 
domina ted  partial trees. 

41n case there ure more lhari one partial trees with Ihc same largest ubound the one whose 
CURREN'I~ODE iS in the left most position is selected. 
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Let T~ be the partial tree containing only tile root node of G (i.e., 
S-TRt3Es(T~) is the set of all solution trees of the And /Or  tree G), then the 
following B&B procedure P~ searches for the opt imum solution tree of G. Here  
A denotes the collection of partial trees upon which branching and pruning 
operations are performed in each iteration of Pt. 

procedure P1 (*B&B procedure for the search of optimum 
solution tree of an And/Or tree G*) 

begin 
A := {T~}; (,initialize A with the complete 

set of solution trees of G*) 
while ] U (A)] ~ 1 do (*repeat until A has just 

one solution tree*) 
A := BRANCH(A); 

A :=  PRUNE(A): 

end; 
end 

(*select and split some set 
of solution trees from A*) 

(*remove the dominated 
solution trees from A*) 

The functions BRANCIt and PRUNE implemented for collections of partial trees 
have tile same properties as in Section 3; hence, from Theorem 3.4 it follows 
that, at the termination of tile proccdure  P~, the collection A will contain only 
an op t imum solution tree of G. If G is finite it has only a finite number  of 
solution trees each having only a finite numbcr  of nodes. In each iteration of 
procedure PI, a node of some solution tree is either evaluated or expanded.  
Hence,  the procedure will eventually terminate as all the solution trees will 
either be completely explored (and all except one will be pruned) or  will be 
dominated by some other  partial tree before complete  evaluation. 

Careful observation reveals that SSS* [28] is equivalent to the B&B procedure 
presented above.  SSS* as presented in [28] maintains a list of states of traversal 
called OPEN; each of these states represents a partial tree (i.e., a set of solution 
trees) and the current upperbound associated with it. State selection and 
expansion directly correspond to the branching operation,  and purging of states 
from OPEN corresponds to pruning dominated partial trees. The  states eli- 
minated from the OPEN list correspond precisely to the dominated partial trees 
found by the use of Lemma 4.2. Thus SSS* can be considered a practical 
implementat ion of tile above B&B procedure.  Fig. 3 provides an illustration of 
the similarity between the two. 

Fig. 3(a) shows partial tree T~ of the A n d / O r  tree G of Fig. I. T~ consists of 
only the root node, and thus represents the total set of solution trees of G. Fig. 
3(b) shows partial trees resulting from the branching operat ion on T~, or  
equivalently from the expansion of node I in SSS*. Branching splits the total set 
of solution trees into two disjoint subsets now represented by partial trees T~ 
and T~. Fig. 3(c) shows partial trees T h  and T h  resulting from the branching 
operat ion on T~, or equivalently from the expansion of node 2 (and later node 4) in 
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FIG. 3. S o m e  steps of  SSS* v i e w e d  as B&:B search for an o p l i m u m  so lut ion  tree  of  tile A n d / O r  tree  
G of  Fig. I. 
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SSS*. Fig. 3(d) shows partial trees Til and Ti2 after evaluation of node 16 of T~t 
and nodes 18, 19 of Ti2. From Lemma 4.2 T[2 dominates Tit, hence Tit is 
eliminated; equivalently, in SSS* node 17 is eliminated. 

4.3. Relationship of SSS* to alpha-beta, B* and AO* in the light of the B&B 
J 

formulation 

Interestingly, if in the B&B formulation of SSS* the function SELEC'I-(A) is 
modified to choose a partial tree whose CURRENTNODE is in the 'left-most" 
position in the explicit part of G, then the resulting procedure is equivalent to 
the well known alpha-beta procedure. This observation implies that alpha-beta 
(unlike SSS*) is not a best-first B&B procedure;  hence, intuitively, it should 
expand more nodes than SSS*. Fig. 4 shows some steps of alpha-beta search 
reinterpreted as B&B search for an optimum solution tree of the And/Or  tree 
G of Fig. 1. 

The alpha-beta search would proceed in a manner similar to the SSS* search, 
starting from the partial tree "/'6 (as in Fig. 3(a)). The expansion of node l 
would split T~ into Ti and T~ (as shown in Fig. 3(b)). Further branching on Ti  
would result in T'H and T~2 of Fig. 3(c). Now, due to the 'directional' nature of 
alpha-beta, the nodes 16, 17 and 8 of T'tt would be evaluated before the nodes 
18, 19,9 of T~2. For this reason, alpha-beta, in this example, can not avoid 
evaluating node 17. Note that, by selecting a largest ubound partial tree for 
branching in each cycle, SSS* avoided evaluating node 17. After  evaluating 
nodes 18 and 19 of T]2, from Lemma 4.2 T]2 dominates T~l. Fig. 4(a) shows 
partial tree T]2x and T~22 resulting from the branching operation on T]2 (the 
result of generating successors of node 5). Fig. 4(b) shows partial trees T]21 and 
T~22 after evaluation of nodes 20, 21 of T]zt and node 22 of T]2z. From Lemma 
4.2 T~21 dominates T]22; hence T~z2 is eliminated; equivalently, a cutoff occurs 
at node 11, and node 23 is never evaluated by alpha-beta. 

The algorithms AO* and B* can also be viewed as B&B procedures for 
searching for an optimal solution tree by appropriately defining the nRANCH and 
PRUNE functions (see [19, 13]). In AO* and B*, heuristic values are associated 
with unexplored nodes, which are used to associate bounds on the f*-values of 
the partial trees on which branching and pruning is performed. In contrast in 
SSS* using the definition of ubound in Section 4.1, the upper bound on the 

,/*-values of a partial tree is computed solely on the basis of the merit of the 
'evaluated nodes; it is assumed that an uninformed bound of +oo is associated 
with unevaluated nodes. In both SSS* and AO*,  always a best bound (largest 
merit upper bound or least cost lower bound) partial tree is selected for further 
branching, q'he branching rule and termination criterion of the B&B for- 
mulation of B* are somewhat unconventional. This is because B*, being used 
for game playing, needs to find only the immediate OR successor of the root of 
an optimal solution tree of G, rather than a 'complete '  opt imum solution tree. 

In general, in a partial tree selected for branching, several nodes may be 
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c(n)= 78 52 (a) 78 52 
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i 

\ 

78 52 20 c ( n ) =  78 52 60 40 (b)  

T121 T122 

FIG. 4. Sortie steps of alpha-beta reinterpreted as B&B search for an optimum solution tree of the 
And/Or tree G of Fig. I. 

available for expansion or evaluation. The choice of which node to expand o r  
evaluate next can significantly affect the time and space requirements of the 
algorithm, and is thus very important. Depending upon the available know- 
ledge of the problem domain ,  different procedures use different kinds of 
heuristics for node selection. For example, in the B* algorithm for minimax 
evaluation of game trees [2] heuristic upper and lower bounds on the node 
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values are used to decide which node to expand next. Similarly in AO*,  
heuristic bounds on the nodes are used in the selection criterion. 

SSS* (and alpha-beta)  does not assume availability of such heuristic inform- 
ation about the tip values except in ordering successors after a node ex- 
pansion. But, SSS* follows a certain order  in expanding and evaluating nodes 
of the selected partial trees. Due to the dominance relation 5 given by Lemma 
4.2 this ordering allows representation of a partial tree by a 3-tuple for the 
purpose of node selection. The 3-tuple {n. s, h} (introduced in the treatment of 
SSS* by Stockman [28]) summarizes the state of a partial tree T ' ;  n denotes  the 
CURREr, r~ODE(T') in the present or previous iteration of SSS* depending upon 
whether  the status s is LIVE or SOINED, and /t denotes the upper  bound on the 
merits of the solution trees represented by the partial tree T' .  q'hese 3-tuples 
are kept in an ordered (on h) list, and always the partial tree corresponding to 
the 3-tuple on the top of the list is chosen for branching, qhus,  the 3-tuple 
representation makes  the process of selection of a node for expansion in SSS* 
extremely ctlicient compared  to, for instance, AO* which needs an elaborate  
mechanism of arrows (see [16, 20]) to select a node for expansion. Note that 
even though a 3-tuple ( - , - , - )  completely characterizes the state of a partial 
tree, the (undominatcd) partial trees of the And /Or  graph G still need to be 
explicitly stored so that (i) in every cycle the determination of next CURRENT- 
r4Ot)E can be done, (ii) at the termination of Pt an opt imum sohltion tree can be 
found. 

5. Concluding Remarks  

We have shown that by abstracting the core of B&B and diw~rcing it from 
problem specifics, a general B&B formulation is obtained within which seemingly 
very different algorithms reveal their essential similarities and differences. 
Because many of the existing search procedures were developed for problems in 
different fields by authors with differing backgrounds and perspectives, it is not 
surprising that the essential nature of these procedures is masked by problem 
specific details. Looking at the descriptions of SSS* and alpha-beta in [28] and [111 
who would have thought they are close cousins. 

The purpose of a general formulation has to be to provide a greater  insight 
than available from previous formulations. As should be evident from this 
paper,  our  general formulation has led to new insights into the relationship 
between some search algorithms and has also provided suggestions on how the 
existing search methods may be varied to provide new algorithms. We believe 
that through this new formulation, we have dispelled some of the confusion 
appearing in the literature concerning the nature of B&B procedures and their 
relationship to AI  search techniques. 

SBcsides minimum function there are o ther  merit  functions (e.g., addit ive cost function used in 

[15]) for which a dominance relation can be obtained.  
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This work has encouraged us to seek a more general formulation which 
would help clarify the relationships between B&B, dynamic programming, and 
a wider variety of AI heuristic search procedures. Such a formulation is 
currently under investigation [ 13]. 
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