
ARTIFICIAL INTELLIGENCE 179

A General Branch and Bound
Formulation for Understanding and
Synthesizing And/Or Tree Search
Procedures*

Vipin Kumar and Laveen N. Kanal
Labora tory for Pat tern A n a l y s i s , C o m p u t e r Science Depar tmen t ,
Universi ty o f M a r y l a n d , College Park , M D 20742, U . S . A .

ABSTRACT
Citing the confusing statements in the A I literature concerning the relationship between branch and
bound (B&B) and heuristic search procedures we present a simple and general form,dation of B&B
which shouM help dispel ranch of the confusion. We ilhtstrate the utility of the form ulation by showblg
that through it some apparently very different algorithms for searching And~Or trees reveal the speciftc
nature of their shnilarities and differences, bz addition to git'ing new insights into the relationships
among some A I search algo.rithms, the general formulation also pros'ides suggestions on how existing
search procedures may be t,aried to obtain new algorithms.

1. Introduction

Various heuristic procedures for searching And /Or graphs, game trees, and
state space representat ions have appeared in the AI literature over the last few
decades, and at least some of them have been thought to be related to the
branch and bound (B&B) procedures of operat ions research. But the relation-
ships between these two classes of procedures have been rather controversial.
For example, Pohl argues in [23] that heuristic search procedures are very
different from B&B procedures, whereas Hall [4] and Ibaraki [5, 7] claim that
many heu~'istic procedures for searching state space representations are essen-
tially B&B procedures. Knuth does not consider the alpha-beta game tree
search algorithm to be a B&B procedure; he considers its less efficient version
(called F I in his classical t reatment of alpha-beta |11]) to be branch and bound.
But, Reingold et al. [24] consider alpha-beta to be a type of B&B. In the

*Research supported by NSF grants #ECS-7822159 and h~MCS81-17391 to the Laboratory for
Pattern Analysis

Artifzcial Intelligence 21 (1983) 179--198
0004--3702/83/0000-0000/$03.00 O 1983 North-Hol land

I~0 V. KUMAR AND L.N. KANAL

formal description of the game tree search algorithm B*, its author Berliner
specifically states that "B* is not a B&B algorithm" [2]. While dcscribing the
algorithm HS (same as the AO* And/Or graph search algorithm [22]) in [16]
Martelli and Montanari state that their algorithm is different from B&B
because "(B&B) tcchnique does not recognize the existence of identical
subproblems". But Ibaraki's B&B procedure [7] for combinatorial optimization
problems does recognize the existence of identical suhproblems. It would seem
that different pcople have differing notions of the words 'branch and bound'.

Part of the confusion and controversy can be explained on historical grounds.
B&B techniques appear to have been conceptualized in the early 196(Is to tackle
integer programming and nonlinear assignment problems. Later similar tech-
niques with some modifications were found to be applicable in many other
problem domains. As more and more applications were discovered the B&B
methodology ew~lved. Various formal models of B&B were presented and later
superseded by more general models [1, 17, 12,6,7]. A lack of awarencss of
these later developments would be one exphmation for some of the confusion
noted above; the early survey by Lawler and Wood [14] is very often the only
reference on B&B citcd in papers on search in the AI literature.

It is easy to see that the central idea of B&B - - th e technique of branching
and bounding to discover the optimum element of a set--is at the heart of
many heuristic search procedures of AI. Confusion arises when one examines
the specifics of B&B formulations presented in the literature. Even the later
formulations, having been developed for specific problem domains, do not
adequately model And/Or graph and game tree search procedures such as
alpha-beta, SSS* [28], AO* and B*. For example, the characterization of B&B
presented in [12] is developed in the context of permutation problems; while
the one in [7] attempts to serve as a general model for state space scarch
procedurcs.

Abstracting the essentials of B&B and dropping problem specific restrictions
we have developed a formulation which is more general and also much simpler
than existing formulations; the reader need only look at the previously cited
references on B&B to be convinced of the latter claim. In this paper, we
illustrate the utility of our B&B formulation by presenting SSS* as a B&B
procedure for the search of an optimum solution tree of an And/Or tree, and
showing how this formulation makes it possible to assess the precise relation-
ship between SSS* and alpha-beta, two algorithms which hitherto were con-
sidered to be quite different.

SSS* was originally developed by Stockman [27] to find the largest merit
solution of an And/Or graph when the merit is defined in a specific manner.
Stockman noticed that, because of the correspondence between And/Or trees and
game trees, SSS* can also be used to do minimax search of a game tree [28]. What
came as a greater surprise was that SSS* outperforms alpha-beta in terms of the
number of nodes expanded. The relative performance of SSS* with respect to

A GENERAL BRANCH AND BOUND FORMULATION 181

alpha-beta, according to various performance criteria, is a subject of continuing
investigations [28, 25, 3].

One of the consequences of examining SSS* in our B&B framework is that if a
minor modification is made in the B&B formulation of SSS*, the resulting
procedure is equivalent to alpha-beta. This is most interesting, for a lpha-beta as
conventionally presented [11] appears very different f rom SSS* as described by
Stockman [28]. Considering that alpha-beta has been known for over twenty
years, it is noted worthy that SSS* was discovered only recently in the context not
of game playing, but of a waveform parsing system [27]. Perhaps if an adequate
B&B formulation for alpha-beta had bcen available earlier, SSS* would have
been developed as a natural variation of alpha-beta.

This insight into the relationship between SSS* and alpha-beta is but one
instance of the utility of our B&B formulation of SSS*. The formulation makes it
easy to visualize other variations and parallel implementat ions of SSS*, some of
which have been presented in Kanal and Kumar [8, 9].

We note that many other state space, A n d / O r graph, and game tree search
procedures can also be formulatcd as B&B procedures in a manner similar to
the formulation of SSS* described here. A brief outline of A* and AO* as branch
and bound procedures can be found in [18].

Section 2 briefly introduces And /Or trees and their correspondence with
game trees. Section 3 presents our abstract B&B formulation, and Section 4
presents SSS* as a B&B procedure. In Section 4 we also show how alpha-beta is
related to SSS*, and briefly discuss what the B&B formulation reveals about the
relationship of SSS* to AO* and B*. Section 5 contains concluding remarks.

2. And/Or Trees and their Correspondence with Game Trees

And/ Or graphs provide graphical representat ions for problem reduction for-
mulations. A detailed t reatment of And / Or graphs can be found in [21, 22]. To
keep the discussion simple in this paper we limit our presentation to And /Or
trees. Many of the concepts and techniques presented are directly applicable to
And / Or graphs. In this section we briefly review And /Or trees and their
correspondence with game trees.

2.1. And/Or trees

Each node, of an And /Or tree represents a problem, and a special node called
root repregents the original problem to be solved. Nodes having successors are
called nontenninal . Each nonterminal node has all immediate successors either
of type A N D or of type OR. A solution to a problem whose (nonterminal)
node has immediate successors of type O R is obtained by solving any one of
the successors; while a solution to a p r o b l e m whose node has immediate
successors of type A N D is obtained by solving all of these successors. Nodes
with no successors are called terminal.

182 v. KUMAR AND L.N. KANAL

G i v e n an A n d / O r t ree r c p r e s e n t a t i o n of a p r o b l e m we can iden t i fy its
d i f ferent so lu t ions , each one r e p r e s e n t e d by a ' so lu t ion t r ee ' .

A sohaion tree T of an A n d / O r t ree G is a sub t ree of G with the fo l lowing
p rope r t i e s .

(i) T h e roo t node of the A n d / O r t ree G is the roo t node of the so lu t ion t ree
T. I

(ii) If a n o n t e r m i n a l node of the A n d / O r tree G is in T, then all of i ts
i m m e d i a t e successors a re in T if t hey a re of type A N D , and exac t ly o n e of its
i m m e d i a t e successors is in T if t hey a rc of t ype O R .

Fig. 1 shows an A n d / O r t ree a n d o n e of its so lu t ion t rees . In m a n y p r o b l e m s
a mer i t is a s soc ia t ed with so lu t ion t rees .

T h e r e a re va r ious ways in which a mer i t funct ion can be def ined , but the one
def ined be low is of special in te res t to us. Let c (n) d e n o t e the mer i t of a
t e rmina l node n of G.

Merit function f. Let T be a so lu t ion t ree of all A n d / O r t ree G, then f (T) is
def ined as the m i n i m u m mer i t of all t e rmina l nodes in 7", i.e., f (T) = min{c(t) I t is
a t e rmina l node of 7"}.

T o fac i l i ta te eva lua t ion of f - v a l u e s of so lu t ion t rees we def ine an eva lua t ion
funct ion Cr for the nodes of a so lu t ion t ree T.

Eual ,a t ion function cr. If n is a node of a so lu t ion t ree T, then Cr(n) is
de f ined as fol lows.

(i) If n has n~ nk as i m m e d i a t e successors of type A N D ,

CT(tl) = min{cr(ni) I 1 <~ i <~ k}

c (n) = 28 94 78 52 22 35 53 80 30 54 21 73 9 71 43 91

Fie,. !. An And/Or tree (~. AND nodes are represented by square nodes, and OR nodes are
represented by circle nodes. Boldface lines show a solution tree T of G; ,[(7") = 28.

A GENERAL BRANCH AND BOUND FORMULATION 183

(ii) If n has n~ as immediate successor of type OR,

cT(n) = cT(n,).

(iii) If n is a terminal node,

c~(n) = cOO.

L e m m a 2.1. I f n is the root node of a solution tree T, then cr (n)= f (T) .

Proof. By induction on the height of T.

Hence, to calculate the f -value of a solution tree T with root node n we
successively evaluate the cT-value of its nodes until c r (n) is known. Among the
different solution trees for a problem the solution tree with highest merit would
then be chosen.

2.2. Correspondence with game trees

And /Or trees can also be used as models of two person, perfect information
board games [21, 26]; e.g., tile And~Or tree of Fig. 1 can be viewed as a game
tree. The game is played between players M A X and MIN; ill the corresponding
A n d / O r tree board positions resulting from M A X ' s moves are represented by
O R nodes (circle nodes in Fig. I), and the positions resulting from MIN ' s
moves are represented by A N D nodes (square nodes in Fig. 1). Moves of the
game proceed in strict alternation between M A X and MIN until no further
moves are allowed by the rules of the game. After the last move M A X receives
a payoff which is a function of the final board position (c-value of the
corresponding terminal node). MIN has to forfeit the same amount. Thus,
M A X always seeks to maximize the payoff while MIN does the converse.
Assuming that the root node of the tree corresponds to the current position of
the game from which M A X is to move, the objective is to find a move for
M A X with guarantees the best payoff. The best payoff that M A X can be
guaranteed for a game is given by the minimax value of tile corresponding
A n d / O r tree. This evaluation can be defined in a recursive manner . We first
define a minimax function g for all nodes of an And /Or tree G as follows.

(i) If n has immediate successors of type OR,

g(n) = max{g(ni)} for all immediate successors ni of n.

(ii) If n has immediate successors of type AND,

g(n) = min{g(ni)} for all immediate successors n~ of I1.

(i i i) If n is a terminal node of G,

g(n) = cOO.

184 v. KUMAR AND L.N. KANAL

Then the min imax va lue of an A n d / O r t ree G is def ined as g (n) , w h e r e n is
the roo t node of G.

In [28] S t o c k m a n m a d e a r e m a r k a b l e obse rva t ion (with a formal p roof) that
the min imax va lue of a game t ree is the s ame as the maximuna f - v a l u e (as
def ined in Sect ion 2.1) of all so lu t ion t rees when a game t rce is v i ewed as an
A n d / O r t ree . A n in tu i t ive exp lana t ion for this resul t is that a so lu t ion t ree
r ep re sen t s all poss ib le responses by M I N to some pa r t i cu l a r s equence of moves
m a d e by M A X , i.e., it r ep re sen t s a pa r t i cu l a r s t ra tegy for M A X . M I N can
a lways choose the s equence of moves l ead ing to the m i n i m u m va lued t ip node
and thus mini ,n ize the payoff for a s t ra tegy chosen by M A X . Thus the mer i t (or
the g u a r a n t e e d payoff.) of a so lu t ion t ree is t aken as the m i n i m u m c -va lue of all
its t ip nodes . Each so lu t ion t ree r ep r e sen t s an a l t e rna t ive s t ra tegy for M A X .
Since M A X is free to choose any poss ib le s t ra tegy he wou ld choose the one
c o r r e s p o n d i n g to the so lu t ion t ree with the highest mer i t , to g u a r a n t e e the
m a x i m u m payoff by MIN.

3. A General and Bound F o r m u l a t i o n

T h e class of p r o b l e m s so lved by b ranch and h o u n d p r o c e d u r e s can be ab-
s t rac t ly s ta ted as follows.

Fo r a given a rb i t r a ry d i sc re te set X o r d e r e d by a real va lued
mer i t funct ion f : X ~ R , find s o m e x * E X such that for all

x e x , f (x*) >~f(x).'

Branch and b o u n d p r o c e d u r e s d e c o m p o s e the or ig inal set in to sets of dec reas -
ing size. T h e d e c o m p o s i t i o n of each g e n e r a t e d set is con t i nued until tests reveal
that it is e i the r a s ingle ton (then we m e a s u r e its mer i t d i rec t ly and c o m p a r e
with the cu r r en t ly best m e m b e r ' s mer i t) o r p roved not to con ta in an o p t i m u m
e l e m e n t (an e l e m e n t with g rea tes t mer i t) of the set X, in which case, the set is
' p r t l ned ' o r e l im ina t ed f rom fur the r cons ide ra t ion . 2 If the d e c o m p o s i t i o n
process is c o n t i n u e d (and satisfies s o m e proper t i e s) , we even tua l ly find an
o p t i m u m e lemen t . Of ten , on ly a small f ract ion of the total set need to
g e n e r a t e d .

In the ea r l i e r fo rmula t ions of B & B [17, 1] on ly the lower and u p p e r bounds
on the mer i t va lues of the e l e m e n t s of (sub)sets (of X) were used for p runing .
If two sets X~ and X2 are in the co l lec t ion of sets u n d e r cons ide ra t i on , and the

~lower b o u n d on the mer i t s of e l e m e n t s in X, is no sma l l e r than the u p p e r

'(a) Discussion in this section is also applicable (with appropriate modifications) to the case,
when f denotes the cost of ttle elements of X, and a least cost element is desired. (b) In some
problems all largest merit elements of X are desired. In this paper we restrict ourselves to the ease
when only one optimal element is needed.

:More precisely, we need only to prove that even after eliminating the set in question at least one
of the remaining sets still under consideration contains an optimum element of X.

A GENERAL BRANCI l ANt) BOUND FORMULA'IION 185

bound on the merits of elements in X2, then Xz can be pruned. The use of
bounds for pruning gave the procedure its name 'branch and bound' .

The concept of pruning by bounds was later generalized to inchlde pruning
by 'dominance ' (see [12, 6, 7]). Tile generalization involves using information
about the sets other than just bounds (see, e.g., [18, 19]). A dominance relation
D is defined between subsets X,, X2 of X such that XIDX2 if and only if an
optinlum element of ,.\'j is no worse than an opt inmm element of X2. If two sets
X,, X2 are in the collection under consideration of X, DX,_, then X2 can be
pruned.

Here we brielly describe the basic elements of our branch and bound
formulation. Our development of B&B has been greatly influenced by the
earlier formulation due to Mitten [17]. As is discussed later, in our formulation,
the dominance relation is used for pruning in a nmnner somewhat ditterent
than in [12,6,7].

Let Y bc the set of all subsets of X, i.e., Y = 2". Symbol A.'/denotes a subset
of X, and symbol A denotes a collection of subsets of X, i.e.. A C Y. For
brevity, a collection A of the subsets of X will sonlctimes be referred to simply
as a 'collection'. For notational convenience the union of all subsets in any
collection A is denoted by U (A) , i.e., U (A) = {Xi I -% E A}. We define
f* (,~) to be the nmximum of the merits of tile elements in ,V;. Any clement
x* E ,Y~ for which f (x*) = f*(X~) is called an optimton element of tile set Xi.

We next define branching and pruning functions, and the dominance relation,
and introduce the B&B procedure as an iterative procedure operating on sets.

Branching function BRANCH:2 Y ~ 2 Y is defined over collections A of sub-
sets of X such that,

(i) XI ~ t~RANCH(A) :ff for some X} ~ A, A] C X}.
(ii) U (BRANCH(A)) = U (A) .
These conditions state that the branching rule divides the members of the

collection A into subsets which collectively include precisely the same elements of
X as the original collection A. From proper ty (ii) of the function tSR^NCH we get
the following result.

I .emma 3.1. f*(U (BRANClt(A))) = f*(O (A)).

Often, tile function BRANCIt is implemented such that only a selected member
of tile collection A is divided into subsets, and tile rest are returned unchanged,
i.e., BRAEcu(A)= (A--SELEC'T(A))USpLIT(A), where SEI.ECrr and SPLIT are
defined as follows.

Selection function SELECr : 2v--* Y is a function which returns a subset X; of
X from tile collection A, i.e., SELECt(A) ~ A.

Splitting function spLrr : Y o 2 v splits a subset Xi of X into a collection of
subsets of Xi, i.e., Xi = g (SPLIT(,1,])).

Dominance relation D is a binary relation defined between any subsets Xi, A')

186 V. KUMAR AND L.N. KANAL

of X such that X i D X / i f and only if f*(Xi)>~/*(X/). From the definitions o f / *
and D we obtain the following lemma.

Lemma 3.2. Let A be a collection of subsets of X. I f XIDX/ and Xi, X~ ~ A, then
f * (U (A)) = f*(U (A - { X / })) .

The lemma says that if Xi and X/ are present in a collection A and Xi
dominates Xj, then X/ can be eliminated from the collection A without
lowering its optimum value.

Pruning fimction r, aUNE : 2r--* 2 r prunes the dominated subsets of A. It is
defined as follows. PauNE(A)= A - A ~ where A ~ is a subset of A with the
following property: for all X~ E A ~ there exists some X~ ~ A - A ~ such that
X/DX,-.

Hence, from Lemma 3.2, all the members of A ~ can be eliminated from the
collection A without lowering its f*-value. This important result is summarized
in the following lemma:

Lemma 3.3. f*(U (PRUNE(A))) = f*(U (A)).

We note that the use of dominance in our B&B f.ormulation differs from that
in earlier formulations. In the formulations presented in [12,6,7] sets pre-
viously generated and not currently in the collection are also allowed to
participate in tile test for dominance. When dominance is used in that way the
cited formulations have to impose more .restrictions (in addition to the
definition) on D to ensure that Lemma 3.3 still remains valid (otherwise there
exists, for example, the possibility of all members of the current set being
pruncd away because of dominance by different elements of the ancestor set).
These restrictions tend to be dependent upon the problem domain being dealt
with, and thus complicate the idea behind pruning by dominance. -In [13] it is
shown that tile simpler pruning method used in the formulation presented here
is no less general than pruning methods in the previous formulations.

Let IsI denote the cardinality of a set S. Proccdure P0 given below represents
the essence of many B&B procedures. Here, A denotes the collection of
subsets of X upon which the branching and pruning operations are performed
in each iteration of I'0.

procedure P0 (*B&B procedure to search for
an optimum element of a set X*)

begin
A .'= {X}; (*initialize active collection A*)
while I g (A)] ~ 1 do (,loop until collection A has

only one element of set X*)
A : = BI=IANCH(A); (,*branch on the collection A*)
A : = P R U N E (A) ; �9 (*eliminate the dominated

subsets from A*)
end;

end

A GENERAL BRANCH AND BOUND FORMULATION 187

Theorem 3.4. When the procedure Po terminates for some Xo in X, {x0} = U (A),
and f (xo)=f* (X) (i.e., at the termination the collection A contains only an
optimt,n element of the set X).

Proof. The predicate Io, {f*(U (A)) = f * (X) } , is clearly established by tile
initialization statement (A = {X}) and (from Lemmas 3.1 and 3.3) is maintained
by tile operators nRANC~I and PRUNE. Hence, I0 is also true at the termination of
P0.

Also the predicate It, {] U (A) I = 1}, is true at the termination of the
'while-loop' of P0. But, {I U (A) I = 1} implies there exists an x0 such that
{x0} = U (A).

Hence, from I0 and lh we conclude f * (X) = f(Xo).

Theo rem 3.4 guarantees that, at termination, the collection A will contain
only an opt imum element of X ; but the termination itself is not guaranteed. In
general, we need to impose extra structure on the functions BRANCll and PRUNE
to be able to guarantee the termination of P0.

3.1. Discussion of the formulation and its relationship to previous work

In this abstract formulation a number of details have been left out. For
example, we only define the basic propert ies of a branching function. In a
practical implementat ion of a B&B procedure a branching function is chosen
which is natural for the problem domain in question and satisfies the propert ies
given here.

For pruning, in each cycle of P0, a dominated subset A ~ of the collection A
needs to be constructed. Note that given any two subsets X~, X2 of X, at least
one of them dominates the other (either f*(Xt)>~f*(X2), or f*(X2>.f*(Xi)).
Hence, in theory, A D can be constructed to have all but one set of the
collection A. This would make the procedure/9o terminate in a very few cycles,
since in every cycle of Po, all but one of the generated sets will be eliminated.

But we may not know the dominance relation for every pair of members of
the collection A without exhaustively enumerat ing the elements in the sets
which are members of A. However , in a particular problem, partial knowledge
from the problem domain is often available to reveal the dominance relation
between some of the members of A. qllis partial knowledge of the dominance
relation c'an be used to construct A ~ a dominated subset of A. In the next
section, where we present a practical B&B procedure to find an opt imum
solution tree of an And / Or tree, we show how knowledge of the problem
domain is used to ascertain dominance between two sets of solution trees.

4. A B&B Procedure for Opt imum Solution Tree Search

Here , the domain of elements X is the set of solution trees of an And /Or tree
G. The merit function f for solution trees is defined in Section 2.1. In practical

l&q V. K U M A R A N D L.N. K A N A L

implementat ions of B&B procedures the set X and its subsets are not
represented explicitly. Instead, some problem specific data structure is used
which implicitly represents the set X and its subsets. We shall use 'partial
solutions trees ' (also called partial trees) defined below, to represent sets of
solution trees of G.

First, in Section 4.1 we introduce partial trees and define the function f* and
the dominance relation D on partial solution trees. Then, in Section 4.2 we
present implementat ions of the functions SPLIT, SELECT, BRANCtl and PRUNE to
opera te on partial trees and the collections of partial trees so as to have the
same propert ies as in Section 3; we then present SSS* as a B&B procedure for the
search of an op t imum solution tree of an And /Or tree.

4.1. Partial solution trees---a representation for sets of solution trees

A partial solution tree (or partial tree) T ' of an And /Or tree G is a subtree of G
with the following properties.

(i) The root node of the And / Or graph G is the root node of the partial tree
Z t ,

(ii) If any node (other than the root) of G is in T ' , then its ancestor is also
in T' .

(iii) If a nonterminal node tz of G is in T ' and immediate successors of n in
G are of type OR, then at most one of the immediate successors of n is in T ' .

A partial solution tree is an ' incomplete ' solution tree which can be extended
(in possibly various ways) to form a complete solution tree. It represents all
those solution trees which can be formed by extending it. We use S-TnEEs(T') to
denote the set of solution trees represented by a partial tree T' . Fig. 2 shows a
partial tree T ' of the And /Or tree G of Fig. 1 and the set of solution trees
represented by T' . A node of a partial tree is called a tip node, if it has no
successors in T' . A tip node of T ' is either a terminal node (if it has no
successor in G), or a nonterminal (if it has successors in G). It follows that a
partial tree all of whose tip nodes are terminal nodes in G represents just one
solution tree, viz., itself.

For a node n of partial tree T ' , c r (n) (T is any solution tree in S-TREr~(T'))
can be evaluated by using the definition of Cr in Section :2.1, provided all
successors of n (i.e., immediate successors, successors of immediate
successors) in G are also in T ' . A node n of T ' is called solved if c r (n) is
known.

Define f*(T') to be the max imum of the merits of all solution trees
represented by T ' , i.e., f*(T')=max{f(T)IT~s-'rREES(T')}. Let sot.-
VEDTws(T') and trNSOLWD'rws(T') represent the sets of solved and unsolved tip
nodes of T ' respectively. The following lemma can be proved by induction on
the height of the tip nodes of T ' .

A GENEI~,AL BRANCH AND BOUND FORMULATION 189

(a)

5

FiG. 2. (a) A partial trce T'. (b) Solution trees represented by T'.

I.emma 4.1.

f*(T') = min{min{c(n) [. E SOLVEDTIPS(T)} ,

min{g(n) [n E UNSOLVEDTIPS(T')}}

where g(n) is the minimax vahte of node tz as defined itz Section 2.2.

T h e d o m i n a n c e relat ion D be tween any part ial t rees T] and T~ is def ined as
follows. T]DT~ if and only if f*(T;)>~f*(T~). Let us define the funct ion
.bozotd for any part ial t ree T ' "to be an uppe r b o u n d on the mer i t s of the

190 V. KUMAR AND L.N. KANAL

solution trees represented by T ' as follows

ubound(T ') = min{c(n) I n ~ SOLVEDTWS(T')}.

Lemma 4.2. For partial trees T; and T~, if UNSOLVEDTIPS(T;) C UNSOLVEDTIPS(T~)
attd ubound(T ') /> ubound(T)), then T~DT~.

Proof. From L e m m a 4.1

f*(T~) = min{min{c(n) I n E SOLVEDTIPS(T;)} ,
min{g(n) I n @ UNSOLVEDTIPS(T~)}}

= min{ubound(T~), min{g(n) I n E UNSOLVEDTIPS(T~)}}
>t min{ubound(T)), min{g(n) I n E UNSOLVEDTIPS(T))}}
= p (T ~) .

Now, from the definition of 'dominance ' , we conclude T[DT;..

Note that given any two partial trees T; and T} of G, it is always possible, by
exhaustively generating and evaluating all solution trees represented by T~ and
T}, to determine whether or not T~ dominates T~. But Lemma 4.2 permits us to
conclude that T ' dominates T) without such exhaustive generation provided
certain information about T~ and T} is known. For example, using L e m m a 4.2,
we can conclude that in Fig. 3(d) T h dominates T~2.

4.2. SSS* as a B&B procedure for And/Or tree search

Here, A will be used to represent a collection of partial solution trees (instead
of a collection of sets of solution trees directly). For any collection A of partial
trees, U (A) denotes the union of sets of solution trees represented by the
partial trees in A, i.e., U (A) = U{S-TREES(T~) [T~E A}.

The function BRANCH takes a set of partial trees as input and returns another
set of partial trees as output. I t . i s implemented as a composit ion of two
functions SELECT and SPLIT: BRANCH(A)= (A - SELECT(A))USPLIT(SELECT(A)).

The function SELECT is implemented to return a partial tree in A which has
the largest upperbound. Hence, it has the following properties: (i) SELECT(A)
A, and (ii) ubound(svLECT(A)) ~> ubound(T ') for all T~ E A.

The function SPLIT takes a partial tree T ' as an argument , and after expansion
or evaluation of a node of T' , returns the resulting (set of) partial tree(s). Since
several nodes in T' may be available for expansion and evaluation, a certain
order is followed. The first unevaluated node n of T ' in post order 3 sequence
(denoted as CURRENTNODE(T')) is selected; if n is a nonterminal tip node of T ' ,
then T ' is extended by generating successors of the node n, otherwise n is
evaluated. The reason for choosing this strategy for node selection is explained

3Post order is recursively defined as follows. First, visit sub-trees in left to right order, then visit
the root node (see [10]).

A G E N E R A L BRANCI I A N D B O U N D F O R M U L A T I O N 191

later. Thus, SPLIT is implemented using functions EXPAND and EVALUATE as
follows.

If n is a nonterminal tip node of T ' ,
SPLIT('/") = EXPAND('./").

Otherwise (n is e i ther a terminal node or has successors in T') ,
SPLIT('/") = EVAI.UATE(T') .

The function EXPAND returns the set of partial trees which results f rom
expanding the selected node n of T ' . If n~ n~ are successors of n in G,
then EXPAND(T') is defincd as follows.

If n has O R successors,
EXPAND(T') = { T ' *(t l - Hi) I 1 <~ i <~ k }

a n d CURREN'rNODE(T ' :': (ll -- IZi)) = I l i .

Otherwise (n has A N D successors),
EXPAND('/") = {7"' * (. - - . , . . m)} and

C U R R E N T N O D E (T ' : + : < ~ ! ! - - H I . . I lk)) = I l l

Here T ' * 0 I - n +) denotcs the extension of T ' by including n+ as an itn-
mcdiate O R successor of n, and T ' * (n - t z l . . nk) denotes the extension of T '
by including nj ilk as immediate A N D successors of n. Clearly,

S-TREEs(T') = U {S-TREEs(T' *(t l -- I1i)) I l ~ i ~ k}

a n d

S- ' rREEs(T ') = S-TREES(T' * (tl - - I l l . . ' l l ~)) .

The function EVALUA'rE is implemented to return 7"' : l i ter evaluating the
selected node n. As defined, the post order successor o f , becomes the new
CURRENTNODE(T'). Clearly, s-'rREES(7"')= S-TREES(EVALUATE(7"')). If n is a ter-
minal node of T' , then the upper bound of T ' is updated

u b o u n d (E v A I . t I A T E (T ')) = min{ubound(T ') , c01)}.

Thus, viewed in entirety, the function nRANCH takes a set of partial trees as
input, selects a largest ubound ~ partial tree 7" f rom the set, chooses a nonterminal
tip node n (=CURRENTNODE(T')) of T' , and ei ther evaluates n and return T ' , or
expands n and returns the resulting extensions of T ' . It follows that the function
BRANCrl, aS defined here, has both the propert ies of its definition in Section 3.

The fuhction PRUNE takcs a collection A of partial trccs as the argument ,
identifies the set of partial trees A ~ (using lemma 4.2) such that each partial
tree of A ~ is domina ted by some partial tree in A - A ~ and returns A - A ~
i.e., P R U N I : . (A) = A - A ~ Thus the function PRUNE eliminates only the
domina ted partial trees.

41n case there ure more lhari one partial trees with Ihc same largest ubound the one whose
CURREN'I~ODE iS in the left most position is selected.

192 v. KUMAR AND L.N. KANAL

Let T~ be the partial tree containing only tile root node of G (i.e.,
S-TRt3Es(T~) is the set of all solution trees of the And /Or tree G), then the
following B&B procedure P~ searches for the opt imum solution tree of G. Here
A denotes the collection of partial trees upon which branching and pruning
operations are performed in each iteration of Pt.

procedure P1 (*B&B procedure for the search of optimum
solution tree of an And/Or tree G*)

begin
A := {T~}; (,initialize A with the complete

set of solution trees of G*)
while] U (A)] ~ 1 do (*repeat until A has just

one solution tree*)
A := BRANCH(A);

A := PRUNE(A):

end;
end

(*select and split some set
of solution trees from A*)

(*remove the dominated
solution trees from A*)

The functions BRANCIt and PRUNE implemented for collections of partial trees
have tile same properties as in Section 3; hence, from Theorem 3.4 it follows
that, at the termination of tile proccdure P~, the collection A will contain only
an op t imum solution tree of G. If G is finite it has only a finite number of
solution trees each having only a finite numbcr of nodes. In each iteration of
procedure PI, a node of some solution tree is either evaluated or expanded.
Hence, the procedure will eventually terminate as all the solution trees will
either be completely explored (and all except one will be pruned) or will be
dominated by some other partial tree before complete evaluation.

Careful observation reveals that SSS* [28] is equivalent to the B&B procedure
presented above. SSS* as presented in [28] maintains a list of states of traversal
called OPEN; each of these states represents a partial tree (i.e., a set of solution
trees) and the current upperbound associated with it. State selection and
expansion directly correspond to the branching operation, and purging of states
from OPEN corresponds to pruning dominated partial trees. The states eli-
minated from the OPEN list correspond precisely to the dominated partial trees
found by the use of Lemma 4.2. Thus SSS* can be considered a practical
implementat ion of tile above B&B procedure. Fig. 3 provides an illustration of
the similarity between the two.

Fig. 3(a) shows partial tree T~ of the A n d / O r tree G of Fig. I. T~ consists of
only the root node, and thus represents the total set of solution trees of G. Fig.
3(b) shows partial trees resulting from the branching operat ion on T~, or
equivalently from the expansion of node I in SSS*. Branching splits the total set
of solution trees into two disjoint subsets now represented by partial trees T~
and T~. Fig. 3(c) shows partial trees T h and T h resulting from the branching
operat ion on T~, or equivalently from the expansion of node 2 (and later node 4) in

A G E N E R A L BIC.ANCH A N D B O U N D F O R M U L A T I O N

T ;
~ . - u

" (a)

�9 . T , 1
\

(b)

z \

:.~G I ,,7: (c)

t ' ,
,, ",.

, L~ t
["~7] T '1 , I

28 (d)

/

[]

4 ,.

/ \

, , T ' 1 J ~ L-I 2
4 8 !19,
q �9

r \

78 52

193

FIG. 3. S o m e steps of SSS* v i e w e d as B&:B search for an o p l i m u m so lut ion tree of tile A n d / O r tree
G of Fig. I.

194 V. KUMAR AND L.N. KANAL

SSS*. Fig. 3(d) shows partial trees Til and Ti2 after evaluation of node 16 of T~t
and nodes 18, 19 of Ti2. From Lemma 4.2 T[2 dominates Tit, hence Tit is
eliminated; equivalently, in SSS* node 17 is eliminated.

4.3. Relationship of SSS* to alpha-beta, B* and AO* in the light of the B&B
J

formulation

Interestingly, if in the B&B formulation of SSS* the function SELEC'I-(A) is
modified to choose a partial tree whose CURRENTNODE is in the 'left-most"
position in the explicit part of G, then the resulting procedure is equivalent to
the well known alpha-beta procedure. This observation implies that alpha-beta
(unlike SSS*) is not a best-first B&B procedure; hence, intuitively, it should
expand more nodes than SSS*. Fig. 4 shows some steps of alpha-beta search
reinterpreted as B&B search for an optimum solution tree of the And/Or tree
G of Fig. 1.

The alpha-beta search would proceed in a manner similar to the SSS* search,
starting from the partial tree "/'6 (as in Fig. 3(a)). The expansion of node l
would split T~ into Ti and T~ (as shown in Fig. 3(b)). Further branching on Ti
would result in T'H and T~2 of Fig. 3(c). Now, due to the 'directional' nature of
alpha-beta, the nodes 16, 17 and 8 of T'tt would be evaluated before the nodes
18, 19,9 of T~2. For this reason, alpha-beta, in this example, can not avoid
evaluating node 17. Note that, by selecting a largest ubound partial tree for
branching in each cycle, SSS* avoided evaluating node 17. After evaluating
nodes 18 and 19 of T]2, from Lemma 4.2 T]2 dominates T~l. Fig. 4(a) shows
partial tree T]2x and T~22 resulting from the branching operation on T]2 (the
result of generating successors of node 5). Fig. 4(b) shows partial trees T]21 and
T~22 after evaluation of nodes 20, 21 of T]zt and node 22 of T]2z. From Lemma
4.2 T~21 dominates T]22; hence T~z2 is eliminated; equivalently, a cutoff occurs
at node 11, and node 23 is never evaluated by alpha-beta.

The algorithms AO* and B* can also be viewed as B&B procedures for
searching for an optimal solution tree by appropriately defining the nRANCH and
PRUNE functions (see [19, 13]). In AO* and B*, heuristic values are associated
with unexplored nodes, which are used to associate bounds on the f*-values of
the partial trees on which branching and pruning is performed. In contrast in
SSS* using the definition of ubound in Section 4.1, the upper bound on the

,/*-values of a partial tree is computed solely on the basis of the merit of the
'evaluated nodes; it is assumed that an uninformed bound of +oo is associated
with unevaluated nodes. In both SSS* and AO*, always a best bound (largest
merit upper bound or least cost lower bound) partial tree is selected for further
branching, q'he branching rule and termination criterion of the B&B for-
mulation of B* are somewhat unconventional. This is because B*, being used
for game playing, needs to find only the immediate OR successor of the root of
an optimal solution tree of G, rather than a 'complete ' opt imum solution tree.

In general, in a partial tree selected for branching, several nodes may be

A GENERAL BRANCH AND BOUND FORMULATION 195

c(n)= 78 52 (a) 78 52

T~I21 T~122

i

\

78 52 20 c (n) = 78 52 60 40 (b)

T121 T122

FIG. 4. Sortie steps of alpha-beta reinterpreted as B&B search for an optimum solution tree of the
And/Or tree G of Fig. I.

available for expansion or evaluation. The choice of which node to expand o r
evaluate next can significantly affect the time and space requirements of the
algorithm, and is thus very important. Depending upon the available know-
ledge of the problem domain , different procedures use different kinds of
heuristics for node selection. For example, in the B* algorithm for minimax
evaluation of game trees [2] heuristic upper and lower bounds on the node

196 V. K U M A R A N D L.N. K A N A L

values are used to decide which node to expand next. Similarly in AO*,
heuristic bounds on the nodes are used in the selection criterion.

SSS* (and alpha-beta) does not assume availability of such heuristic inform-
ation about the tip values except in ordering successors after a node ex-
pansion. But, SSS* follows a certain order in expanding and evaluating nodes
of the selected partial trees. Due to the dominance relation 5 given by Lemma
4.2 this ordering allows representation of a partial tree by a 3-tuple for the
purpose of node selection. The 3-tuple {n. s, h} (introduced in the treatment of
SSS* by Stockman [28]) summarizes the state of a partial tree T ' ; n denotes the
CURREr, r~ODE(T') in the present or previous iteration of SSS* depending upon
whether the status s is LIVE or SOINED, and /t denotes the upper bound on the
merits of the solution trees represented by the partial tree T' . q'hese 3-tuples
are kept in an ordered (on h) list, and always the partial tree corresponding to
the 3-tuple on the top of the list is chosen for branching, qhus, the 3-tuple
representation makes the process of selection of a node for expansion in SSS*
extremely ctlicient compared to, for instance, AO* which needs an elaborate
mechanism of arrows (see [16, 20]) to select a node for expansion. Note that
even though a 3-tuple (- , - , -) completely characterizes the state of a partial
tree, the (undominatcd) partial trees of the And /Or graph G still need to be
explicitly stored so that (i) in every cycle the determination of next CURRENT-
r4Ot)E can be done, (ii) at the termination of Pt an opt imum sohltion tree can be
found.

5. Concluding Remarks

We have shown that by abstracting the core of B&B and diw~rcing it from
problem specifics, a general B&B formulation is obtained within which seemingly
very different algorithms reveal their essential similarities and differences.
Because many of the existing search procedures were developed for problems in
different fields by authors with differing backgrounds and perspectives, it is not
surprising that the essential nature of these procedures is masked by problem
specific details. Looking at the descriptions of SSS* and alpha-beta in [28] and [111
who would have thought they are close cousins.

The purpose of a general formulation has to be to provide a greater insight
than available from previous formulations. As should be evident from this
paper, our general formulation has led to new insights into the relationship
between some search algorithms and has also provided suggestions on how the
existing search methods may be varied to provide new algorithms. We believe
that through this new formulation, we have dispelled some of the confusion
appearing in the literature concerning the nature of B&B procedures and their
relationship to AI search techniques.

SBcsides minimum function there are o ther merit functions (e.g., addit ive cost function used in

[15]) for which a dominance relation can be obtained.

A GENERAL BRANCH AND BOUND FORMULATION 197

This work has encouraged us to seek a more general formulation which
would help clarify the relationships between B&B, dynamic programming, and
a wider variety of AI heuristic search procedures. Such a formulation is
currently under investigation [13].

REFERENCES

1. Balas, E., A note on the branch-and-bound principle, Oper. Res. 16 (1968) 442-444, 886.
2. Berliner, 1t., The B* tree search algorithm: a best-first proof procedure, Artificial hltelligence

12 (1979) 23--40.
3. Campbell, M., Algorithms for the parallel search of game trees, Tech. Rept. 81-8 Dept.

Computer Science, University of Alberta, Edmonton, 1981.
4. Hall, P.A.V., Branch-and-bound and beyond, Proc. Second lnternat. Johzt Conf. Artificial

hltelligence, London (1971) 641-658.
5. Ibaraki, T., On the optimality of algorithms for finite state sequential decision processes, J.

Alath. Anal. AppL 53 (1976) 618--643.
6. Ibaraki, T., The power of dominance relations in branch and bound algorithms, J. ACAf 24

(1977) 264--279.
7. Ibaraki, T., Branch-and-bound procedure and state-space representation of combinatorial

optimization problems, Inform. Control 36 (1978) 1-27.
8. Kanal L.N. and Kumar, V., A branch and bound formulation for sequential and parallel game

tree searching, Proc. Seventh hlternal. Joint Conf. Artificial hztelligence, Vancouver (1981)
569-571.

9. Kanal L.N. and Kumar, V., Parallel implementations of a structural analysis algorithm, Proc.
IEEE Computer Society Conf. Pattern Recognition and bnage Processing. Dallas (1981) 452-
458.

1{). Knuth, D.E., The Art of Computer Programnzing--Vol. 1 (Addison-Wesley, Reading, MA,
1968).

11. Knuth D.E. and Moore, R.W., An analysis of alpha-beta pruning, Artificial h~telligence 6
(1975) 293--326.

12. Kohler W.H. and Steiglitz, K., Characterization and theoretical comparison of branch and
bound algorithms for permutation problems, J. A C M 21 (1974) 140-156.

13. Kumar, V., A unified approach to problem solving search procedures, Ph.D. Thesis, Dept.
Computer Science, University of Maryland, College Park, MD, 1983.

14. Lawler E.L. and Wood, D.E., Branch-and-bound methods: a survey, Oper. Res. 14 (1966)
699-719.

15. Martelli A. and Montanari, U., Additive AND/OR graphs, Proc. Third blternat. Joint Conf.
Artificial hltelligence, Stanford, CA (1973) 1-11.

16. Martelli A. and Monianari, U., Optimizing decision trees through heuristically guided search,
Comm. A C M 21 (1978) 1025-1039.

17. Mitten, L.G., Branch and bound methods: general formulations and properties, Oper. Res. 18
(1970) 2..,~-. 34; Errata in Oper. Res. 19 (1971) 550.

18. Nau, D.S., Kumar, V. and Kanal, L.N., A general paradigm for AI search algorithms, Proc. of
AAAI-82, Pittsburgh, PA, 1982.

19. Nau, D.S., Kumar, V. and Kanal, L.N., General branch-and-bound and its relation to A* and
AO* Artificial h~telligence (1983) submitted.

20. Nilsson, N., Searching problem solving and game playing trees for minimum cost solutions, in:
A.J.H. Morrel (Ed.), Information Processing-68 (North-Holland, Amsterdam, 1968).

21. Nilsson, N., Problem-Solving ~,lethods.in Artificial h~telligence (McGraw-Hill, New York, 1971).
22. Nilsson, N., Principles of Arti.ficial Intelligence (Tioga, Palo Alto, CA, 1980).
23. Pohl, I., Is heuristic search really branch and bound?, Proc. Sixth Annual Princeton Conf.

h~formation Science and Systems, Princeton, NJ (1972) 370--373.

198 V. KUMAR AND L.N. KANAL

24. Reingold, E., Nievergelt, J. and Deo, N., Combinatorial Optimization (Prentice-Hall, Engle-
wood Cliffs, N J, 1977).

25. Roizen I. and Pearl, J., A minimax algorithm better than alpha-beta? yes and no, Artificial
bltelligence 21 (1, 2)(1983) 199-220.

26. Slagle, J.R., Heuristic search program, in: R. Banerji and M. Mesarovic (Eds.), Theoretical
Approaches to Non-Numerical Problem Solving (Springer Verlag, Berlin, 1970).

27. Stockman, G.C., A problem-reduction approach to the linguistic analysis of waveforms, Ph.D ~.
Dissertation, TR-538, Computer Science Dept., University of Maryland, College Park, MD,
1977.

28. Stockman, G.C., A minimax algorithm better than alpha-beta?, Artificial bztelligence 12 (1979)
179-196.

Received A u g u s t 1982; revised version received October 1982

