
An Algebraic Framework for Modeling

of Reactive Rule-Based Intelligent Agents

Katerina Ksystra, Petros Stefaneas, and Panayiotis Frangos

National Technical University of Athens
Iroon Polytexneiou 9, 15780 Zografou, Athens, Greece

katksy@central.ntua.gr, petros@math.ntua.gr, pfrangos@central.ntua.gr

Abstract. As the use of intelligent agents in critical domains increases,
the need for verifying their behavior becomes stronger. Reactive rules
are the main reasoning formalism for intelligent agents. For this reason,
we propose the use of the OTS/CafeOBJ method for the specification of
reactive rules, which will permit the verification of safety properties for
reactive rule-based intelligent agents.

Keywords: intelligent agents, reactive rules, CafeOBJ, Observational
Transition Systems, rule-based system.

1 Introduction

Intelligent agents are a new paradigm for developing software applications. An
intelligent agent is defined either as anything that can be viewed as perceiving its
environment through sensors and acting upon that environment through effectors
[1], or as a software that carries out some set of operations and acts on behalf of
a user [2], or finally as a computational process that implements the autonomous
functionality of an application [3]. Agent-based systems usually consist of many
agents that communicate with each other and are known as multi-agent systems.

The use of rule-based systems as the main reasoning model of agents that
are part of a multi-agent system has been proposed in early attempts. In this
approach each agent includes a rule engine and is able to perform rule-based
inference [4]. Thus, an intelligent agent is called rule-based, if its behavior and
its knowledge are expressed by means of rules.

The task of verifying the behavior of rule-based agents is difficult because
rules can interact during execution and this interaction can cause undesirable
results [5]. For example, one rule may trigger another rule and cause a chain
of rule triggerings. Also, changes to the rule base (add, remove, change rules)
can introduce errors in the behavior of the system if the effects of the changes
are not examined beforehand. Thus, using rules in critical systems implies that
the system’s behavior must be extensively analyzed. Formal methods provide
powerful means for analyzing system’s behavior and can prove really helpful
for preventing design errors at an early stage of development. In this paper, we
address the problem of formally analyzing reactive rule-based agents as follows:

V. Geffert et al. (Eds.): SOFSEM 2014, LNCS 8327, pp. 407–418, 2014.
c© Springer International Publishing Switzerland 2014



408 K. Ksystra, P. Stefaneas, and P. Frangos

– We present an algebraic framework for formally expressing Production and
Event-Condition-Action rules (Section 3).

– We use the OTS/CafeOBJ method for the specification of reactive rule-based
intelligent agents and the verification of their behavior (Section 3).

– We apply the framework to a supply chain management system and prove
security properties in order to demonstrate its effectiveness (Section 4).

The proposed framework offers the ability to formally specify an intelligent
agent whose behavior is expressed in terms of reactive rules, to verify its behav-
ior and thus ensure its correctness. This work is in continuation of [6], where
Observational Transition System (OTS) semantics were provided for reactive
rules.

1.1 Related Work

A lot of research concerning analysis of rule-based systems exists in the area of
active databases. For example, in [7] authors present an overview of processing
rules in production systems, deductive and active databases. A larger survey on
the different approaches of reaction rules can be found in [18]. Most of the ap-
proaches addressing formal analysis of such systems however deal with checking
properties such as termination, confluence and completeness. One such attempt
to verify rule-based systems can be found in [8], where authors use Petri-nets
to analyze various types of structure errors such as inconsistency, incomplete-
ness, redundancy and circularity of rules. Also, ECA-LP [15] which is based on
a labeled transaction logic semantics, supports state based knowledge updates
including a test case based verification and validation for transactional updates.

Few papers targeting the verification of the behavior of active rule-based sys-
tems/agents exist. More precisely, in [9] authors describe a reasoning framework
for Ambient Intelligence that uses the Event Calculus formalism for reasoning
about actions and causality. Also, an approach to verify the behavior of Event-
Condition-Action rules is presented in [5] where a tool that transforms such rules
to timed automata is developed. Then the Uppaal tool is used to prove desired
properties for a rule-based application. This last work is the closest to ours with
the difference that in [5] authors use model checking, while our approach uses
theorem proving techniques.

Our framework focuses on verifying the behavior of rule-based agents, rather
than proving correctness properties or handling problems with negations, mainly
for two reasons; first, the verification of such properties has been studied in many
other approaches [8] and second the OTS/CafeOBJ method does not study prop-
erties about the transitions of the system but analyzes their effects in the sys-
tem’s behavior. We believe that our framework has the following advantages over
existing approaches; it can be used for the verification of complex systems due to
the simplicity of the CafeOBJ language and its natural affinity for abstraction.
Also, it has the ability to specify systems with infinite states (in contrast with
approaches that use model-checking techniques) and it allows the reusability not
only of the specification code but also of the proofs [17].



An Algebraic Framework for Modeling 409

2 Observational Transition Systems and CafeOBJ

An Observational Transition System (OTS) is a transition system written in
terms of equations [10]. Assuming that there exists a universal state space Y
and that each data type we need to use, including their equivalence relationship,
has been declared in advance, an OTS S is defined as the triplet S = 〈O, I, T 〉
where:

1. O is a finite set of observers. Each o ∈ O is a function o : Y → D, where
D is a data type that may differ from observer to observer. Given an OTS
S and two states u1, u2 ∈ Y the equivalence u1=su2 between them with
respect to S is defined as; ∀o ∈ O, o(u1)=o(u2) i.e. two states are considered
behaviorally equivalent if all the observers return for these states the same
data values.

2. I is the set of initial states, such that I ⊆ Y .
3. T is a set of conditional transitions. Each τ ∈ T is a function τ : Y → Y and

preserves the equivalence between two states; if u1=su2 then τ(u1)=sτ(u2).
For each u ∈ Y , τ(u) is called the successor state of u wrt τ . The condition
c-τ is called the effective condition of τ . Also, for each u ∈ Y , c-τ(u) = false
⇒ u=sτ(u). Finally, observers and transitions may be parameterized by data
type values.

Observational transition systems can be described as behavioral specifica-
tions in CafeOBJ, an algebraic specification language and processor [11],[21].
In a CafeOBJ module we can declare sorts, operators, variables and equations.
There exists two kinds of sorts; a visible sort denotes an abstract data type and a
hidden sort denotes the state space of an abstract machine. Two kinds of behav-
ioral operators can be applied to hidden sorts: action and observation operators.
An observation operator can only be used to observe the inside of an abstract
machine while an action operator can change its state. Finally, CafeOBJ system
rewrites a given term by regarding equations as left-to-right rewrite rules.

CafeOBJ is used to specify OTSs [10]. The universal state space Y of an
OTS is denoted in CafeOBJ by a hidden sort and an observer by an observation
operator. Any initial state in I is denoted by a constant and a transition by
an action operator. The transitions are defined by describing what the value,
returned by each observer in the successor state, becomes when the transitions
are applied in an arbitrary state u. Finally, for expressing the effective conditions,
conditional equations are used.

3 An Algebraic Framework for Reactive Rules

The proposed framework aims to enhance reactive rules with verification capabil-
ities. More precisely, it supports Event Condition Action and Production rules.
This will allow proving desired safety properties about intelligent agents/systems
whose behavior is expressed in terms of such rules. Because we are interested
in proving application specific properties, additional characteristics (observers



410 K. Ksystra, P. Stefaneas, and P. Frangos

and/or transitions) about the specific system will be required in order to specify
its behavior. These characteristics will differ from application to application and
thus the specification cannot become fully automated. This framework however
will serve as the basis for specifying and verifying reactive rule based systems
and most importantly for capturing the semantics of their rules.

3.1 Production Rules in CafeOBJ

A Production rule is a statement of rule programming logic, which specifies the
execution of an action in case its conditions are satisfied, i.e. production rules
react to states changes. Their essential syntax is if Condition do Action. Some
usual predefined actions supported by Rule Markup languages are: add, retract,
update knowledge and generic actions with external effects [12].

A Production rule can be naturally expressed in our framework if we map the
action of the rule to a transition which has as effective condition the condition of
the rule. Also, since most of the actions correspond to changes of the knowledge
base in order to describe their effects we need an observer that will observe the
knowledge base (KB) at any given time. Thus, the observer knowledge : Y →
SetofBool which returns the set of boolean elements that belong to the knowl-
edge base is needed. For expressing the functionalities of the KB, the following
operators are required; /in which returns true if an element belongs to the
knowledge base, | which denotes that an element is added to the KB and /
which denotes that an element is removed from the KB. Formally, the definition
of a set of Production rules as an OTS is presented below.

Definition 1. Assume the universal state space Y and the following set of Pro-
duction rules; {if Ci do Ai, i = 1, . . . , n ∈ IN}, where without harm of generality
we also assume that the conditions of the rules are disjoint. We define an OTS
S = 〈O, I, T 〉 from this set of rules as follows:

- O = {O′ ∪ knowledge}
- T = {Ai}
- I = the set of initial states, such that I ⊆ Y

In the above definition, O′ denotes the rest of the system’s observers. Tran-
sitions are the actions of the rules, Ai : Y D1 . . . Dl → Y . They can be generic
actions (with external changes) or the usual predefined actions assert : Y Bool →
Y (add a fact to KB), retract : Y Bool → Y (remove a fact from KB), update :
Y Bool Bool → Y (remove/add a fact) [20]. Facts are denoted by boolean-sorted
CafeOBJ terms. Formally, the actions of Production rules are defined as transi-
tions through the following steps;

1. The effective condition of an action Ai is defined as; eq c-Ai(u,d1,...,dn)

= Ci(d1,...,dn) /in knowledge(u).
2. If Ai is an assert action its effect on the knowledge observer is defined as;

knowledge(assert(u,ki(d1,...,dn))) = ki(d1,..,dn)|knowledge(u)

if c-assert(u,ki(d1,...,dn)).



An Algebraic Framework for Modeling 411

3. If Ai is a retract action its effect on the knowledge observer is defined as;
knowledge(retract(u,ki(d1,..,dn))) = knowledge(u)/ki(d1,..,dn)

if c-retract(u,ki(d1,..,dn)).
4. If Ai is an update action its effect on the knowledge observer is defined

as; knowledge(update(ki(d1,..,dn),kj(d1,..,dn))) = (knowledge(u)

/ki(d1,..,dn))|kj(d1,..,dn) if c-update(ki(d1,..,dn),kj(d1,...

,dn)).
5. If Ai is a generic action, we define; knowledge(ai(u,d1,...,dn)) = ai(d1

,...,dn)|knowledge(u) if c-ai(u,d1,...,dn) and
oi(ai(u,d1,...,dn)) = vi if c-ai(u,d1,..,dn).

Step 1 declares that an action ai can be successfully applied if the condition
of the rule holds, i.e. belongs to the knowledge base1. Step 2 states that when
a transition assert(u, ki(d1, . . . , dn)) is applied successfully in an arbitrary state
u, ki is added to the knowledge base. Where ki is the fact being asserted. In
step 3 it is stated that when the transition retract(u, ki(d1, . . . , dn)) is applied
successfully in an arbitrary state u, ki is removed from the knowledge base. When
the transition update(u, ki(d1, . . . , dn), kj(d1, . . . , dn)) is applied successfully in
an arbitrary state u, ki is removed and kj is added, as step 4 defines. Finally,
step 5 states that when we have the application of a generic action we add to our
KB the information that this action occurred. But generic actions may have side
effects and in order to describe them we may have to use additional observers
oi ∈ O and define how their values change when the action is applied successfully.

3.2 Event Condition Action Rules in CafeOBJ

In contrast to Production rules, Event Condition Action (ECA) rules define an
explicit event part which is separated from the conditions and actions of the rule.
Their essential syntax is; on Event if Condition do Action. The ECA paradigm
states that a rule autonomously reacts to actively or passively detected simple or
complex events by evaluating a condition or a set of conditions and by executing
a reaction whenever the event happens and the condition(s) is true [13].

In order to express ECA rules in our framework we need an observer that will
remember the occurred events. For this reason, in each event we assign a natural
number and when an event is detected its number is stored in the observer event-
memory : Y → Nat. Using event-memory we can map events to transitions.
The actions of ECA rules are assert, retract, update, or generic actions and are
mapped to transitions, as before. However, their semantics differs as the actions
of ECA rules can be applied only if their triggering event has been detected first.
Formally, the definition of a set of ECA rules as an OTS is presented below.

Definition 2. Assume the universal state space Y and a finite set of ECA rules
{on Ei if Ci do Ai, i = 1, . . . , n ∈ IN}, where without harm of generality we

1 If we have negation-as-failure in the condition of the rule, i.e. if the condition cannot
be proved, this is expressed in our framework as; if ci /∈ knowledge(u), since this
basically means that there is no information (in our knowledge base) about the
condition.



412 K. Ksystra, P. Stefaneas, and P. Frangos

also assume that for i 
= j; Ei, Ai, Ci 
= Ej , Aj , Cj , respectively. The OTS S =
〈O, I, T 〉 modeling these rules is defined as:

- O = {O′ ∪ knowledge, event−memory}
- T = {Ei, Ai}
- I = the set of initial states such that I ⊆ Y

Here, O′ is the same as in definition 1. Transitions are the events, Ei :
Y D1 . . . Dn → Y and the actions, Ai : Y D1 . . . Dn → Y . Formally, the rule
on Ei if Ci do Ai is defined in CafeOBJ terms through the following steps:

1. The effective condition of an event Ei is denoted as c-ei(u, d1, . . . , dn) and
states the conditions under which the system is able to detect the event.

2. The effects of the application of the event Ei in an arbitrary system state u
is the following;

knowledge(Ei(u,d1,...,dn)) = ei(d1,...,dn)|knowledge(u) if

c-ei(u,d1,...,dn) and event-memory(u) = null .

event-memory(Ei(u,d1,...,dn)) = i if c-ei(u,d1,...,dn) and

event-memory(u) = null .

3. The effective condition of the action Ai, is defined as; eq c-Ai(u,d1,..,dn)

= Ci(d1,...,dn) /in knowledge(u) and ei(d1,...,dn) /in

knowledge(u).
4. The effects of the action Ai, if it is an assert action, is described through the

following equations;

knowledge(assert(u,ki(d1,..,dn))) = ki(d1,..,dn)|knowledge(u)

/ei(d1,...,dn) if c-assert(u,ki(d1,...,dn)) .

event-memory((u,ki(d1,...,dn))) = null if

c-assert(u,ki(d1,...,dn)) .

The effects of the rest of the actions are defined in a similar way. Step 2 states
that when the transition/event Ei is applied, the name of the occurred event (ei)
is added to the knowledge base as a fact if in the previous state the detection
conditions of the event were true and event-memory was null (denoting that
no events had occurred). Also, when the event is applied, event-memory stores
the identification number of the event (here i). Step 3 declares that the action
will be applied successfully, if the condition of the rule belongs to the KB and
the triggering event of the action has been detected. In step 4 it is stated that
when the action assert(u, ki(d1, . . . , dn)) is applied, the fact ki is added to the
knowledge base and its triggering event is consumed, i.e. its name is removed
from the knowledge observer. Also, event-memory becomes null.

We must mention here that as we will see in the following section, sometimes
the names of the events are not removed from the observer event-memory if
they are required for the detection of complex events. Also, if many rules (either
Production or ECA) can be executed at the same time, a selection function is



An Algebraic Framework for Modeling 413

used from the inference engine of the system such as those presented in [14], [15].
It is quite straightforward to include this characteristic in our framework but is
out of the scope of this paper.

One of the challenges we met while expressing these rules into our framework
was the difference between events and actions, i.e. while events can occur at
anytime and can be straightforwardly mapped to transitions, actions must be
executed after the detection of their triggering events. To capture this difference
we used the observer event-memory. Initially it returns the value null (meaning
that no events have been detected) denoting that any event can occur, but when
an event is detected then the only applicable transition in the system is the
action of the detected event.

3.3 Complex Events Definition

Sometimes ECA rules react to the detection of complex events. Complex events
are created by primitive event(s) and event operator(s). A typical set of event
operators for defining complex events include the following; Xor (Mutually Ex-
clusive), Disjunction (Or), Conjunction (And), Any, Concurrent (Parallel), Se-
quence (Ordered), Aperiodic, Periodic. In [14] definitions of such operators are
presented in more details. In this section we will present how the basic event
operators can be expressed in our framework.

Assume primitive events Ai and Bj defined as transitions with effective con-
ditions c-Ai and c-Bj respectively. Complex event Xor(Ai,Bj) means that ei-
ther event Ai happens or Bj, but not both. The application of the complex
event/transition ek : xor(u,Ai,Bj) to an arbitrary system state is defined as:

knowledge(xor(u,Ai,Bj)) = xor(Ai,Bj)|knowledge(u) if

Ai /in knowledge(u) xor Bj /in knowledge(u) .

event-memory(xor(u,Ai,Bj)) = k if Ai /in knowledge(u) xor

Bj /in knowledge(u) .

The above equations state that the complex event is detected (its occurrence is
added to the KB) if its detection conditions are fulfilled, i.e. if we have detected
either the primitive event Ai or event Bj. Also, the observer event-memory
stores the id number k of the event (where xor is a built-in operator) if the same
conditions hold. Disjunction(Ai,Bj) means that either event Ai happens or Bj
(or both). In a similar way, the application of the event disjunction(u,Ai,Bj)
is defined as; knowledge(disjunction(u,Ai,Bj)) = disjunction(Ai,Bj)|

knowledge(u) if Ai /in knowledge(u) or Bj /in knowledge(u).
Conjunction(Ai,Bj) means that both events Ai and Bj occur in any order.

The application of the event conjunction(u,Ai,Bj) is defined as; knowledge
(conjuction(u,Ai,Bj)) = conjuction(Ai,Bj)|knowledge(u) if Ai /in

knowledge(u) and Bj /in knowledge(u).
Sequence(Ai,Bj) corresponds to the ordered execution of events Ai and

Bj. The application of sequence(u,Ai,Bj) is defined as; knowledge(Bj(u))=
sequence(Ai,Bj)|knowledge(u) if Ai /in knowledge(u) and event-



414 K. Ksystra, P. Stefaneas, and P. Frangos

memory(u) = i. This complex event is detected (its occurrence is added to KB)
during the occurrence of event Bj, which can occur if in the previous state Ai
had occurred, i.e. event-memory had stored i (and not if the memory is equal
to null). By using the observer event-memory and declaring which event had oc-
curred before we can avoid the unintended semantics these operators can have,
which are caused because the events, in the active database sense, are treated as
if they occur at an atomic instant. This problem is discussed in [15], [19] where
also a solution is proposed by defining an interval-based effect semantics in terms
of an interval-based event calculus formalization. The alternative interval-based
semantics could be implemented in our framework by extending the definition
of an event with the time of its occurrence and introducing the notions of event
and time intervals. The rest event operators (Concurrent, Aperiodic and Peri-
odic), which are used less often, cannot be straightforwardly expressed in our
framework and an extension is required in order to include them as well.

4 Case Study: A Supply Chain Management System

To demonstrate the expressiveness of our framework we applied it to an indus-
trial case study that uses Event Condition Action rules to control the activities of
its agents. These activities are inter-enterprise business processes and thus their
verification is an important task. In [16] authors present an integrated workflow-
supported supply chain management system that was developed so that Nanjing
Jin Cheng Motorcycle Corporation in China and its suppliers could handle better
their inner processes. The proposed system consists of a set of business function
agents whose tasks are to deal with outsourcing, production planning, sales, cus-
tomer service, inventory, and so on. Each agent is an autonomic and independent
entity. ECA rules are used to control the execution sequence of agents’ activities.
These rules are presented in table 1. A more detailed description of the system
is presented in appendix A.

Table 1. ECA rules controlling the activities of the manufacturer

R1 On end(sales) R5 On end(ManufacturePlan)
Do st(charge) if isMaterialsEnough

R2 On end(sales) and end(charge) Do st(Manufacture)
if payment >= totalprice R6 On end(ManufacturePlan)
Do st(QueryInventory) if not isMaterialsEnough

R3 On end(queryinventory) Do st(Outsource)
if IsGoodsEnough R7 On end(Outsource)
Do st(DeliverGoods) if ArrivedMaterials

R4 On end(queryinventory) Do st(Manufacture)
if not IsGoodsEnough R8 On end(Manufacture)
Do st(ManufacturePlan) Do st(DeliverGoods)



An Algebraic Framework for Modeling 415

4.1 Formal Specification and Verification of the System

Rules R1-R8 were expressed in our framework according to the previous defini-
tions. For example, the first rule was defined in CafeOBJ using the transitions
endsales and stcharge. The first transition represents the event part of the
rule and the second the action. The definition of the transition endsales can be
seen below:

-- endsales

op c-endsales : Sys department customer Nat -> Bool

eq c-endsales(S,Sales,C,N) = (order(S,Sales,C) = N)

and (event-memory(S) = null) .

ceq knowledge(endsales(S,Sales,C,N)) = (endsales|knowledge(S))

if c-endsales(S,Sales,C,N) .

ceq event-memory(endsales(S,Sales,C,N)) = 1

if c-endsales(S,Sales,C,N) .

The effective condition c-endsales denotes that the event endsales can be
detected when the sales department receives an order from a customer and if no
other event had been detected in the previous state. The observer order returns
the cost of the order a department receives from a customer. When the event
is successfully detected its name enters the knowledge base and event-memory
stores its identification number. The transition stcharge is defined as follows:

-- stcharge

op c-stcharge : Sys Nat customer -> Bool

eq c-stcharge(S,N,C1) = (endsales /in knowledge(S)) and

(event-memory(S) = 1) .

ceq event-memory(stcharge(S,N,C1)) = null if c-stcharge(S,N,C1) .

eq knowledge(stcharge(S,N,C1)) = knowledge(S) .

ceq payment(stcharge(S,N,C1),C2) = pending if c-stcharge(S,N,C1)

and (C1 = C2) .

The effective condition c-stcharge denotes that the action stcharge will occur
if endsales belongs to the KB and event memory contains the id number of the
event. After the execution of the action, the observer event-memory becomes
null, knowledge base stays the same (because the occurrence of endsales event
is needed for the detection of the complex event end(sales) and end(charge) of
R2) and the payment of the customer is pending until a receipt is received.
The sixth rule was defined in CafeOBJ using the transitions stoutsource and
endmanufactureplan. The definition of the transition endmanufactureplan is
presented below;

-- endmanufactureplan

op c-endmanufactureplan : Sys bill inventory -> Bool

eq c-endmanufactureplan(S,B,I) = (materials(S,B,I) = computed)

and (event-memory(S) = null) .



416 K. Ksystra, P. Stefaneas, and P. Frangos

ceq knowledge(endmanufactureplan(S,B,I)) = (endmanufactureplan|

knowledge(S)) if c-endmanufactureplan(S,B,I) .

ceq event-memory(endmanufactureplan(S,B,I)) = 5 if

c-endmanufactureplan (S,B,I) .

The effective condition c-endmanufactureplan denotes that the event can be
detected when it is computed if there are enough materials to produce goods for
the order and if event-memory is null. When the event is detected the name of
the event enters the knowledge base and the observer event-memory stores the
number of the event, i.e. 5. The transition stoutsource is defined as follows;

-- stoutsource

op c-stoutsource : Sys bill inventory agent -> Bool

eq c-stoutsource(S,B,I,A) = endmanufactureplan /in knowledge(S)

and (event-memory(S) = 5) and (materials(S,B,I) < enough) .

ceq knowledge(stoutsource(S,B,I,A)) = (knowledge(S)/

endmanufactureplan) if c-stoutsource(S,B,I,A) .

ceq event-memory(stoutsource(S,B,I,A)) = null if

c-stoutsource(S,B,I,A) .

ceq list(stoutsource(S,B,I,A),A) = true if

c-stoutsource(S,B,I,A) .

The effective condition c-stoutsource declares that the action can be suc-
cessfully applied if the event endmanufactureplan has been detected and the
condition of the action holds, i.e. the materials are not enough. When the action
occurs, the observer event-memory becomes null, the occurrence of the event is
removed from the knowledge base and a list is sent to the outsourcing agent.

In a similar way we expressed all the rules in our framework. We also de-
fined the transitions whose occurrence makes the detection conditions of the
events true. For example, in order to detect the event endmanufacture, the
products for the order must have been produced. Thus, we defined the transi-
tion produceproducts. When this transition is successfully applied, the value of
the observer products becomes ”produced”, indicating that the event endmanu-
facture can be detected; ceq products(produceproducts(S)) = produced if

c-produceproducts(S) .

In the above case study, the events may seem as simple propositional repre-
sentations, or similar in format, but in the context of the whole specification
they fully express the functionalities of the system (appendix A). In order to
specify this manufacturer agent, 18 transitions (12 that correspond to events
and actions and 6 external transitions) and 14 observers were needed.

The most important feature of the proposed framework is the ability to ver-
ify the behavior of reactive rule-based intelligent agents using the proof score
methodology [10,17]. The type of properties that can be proved with the frame-
work are safety properties, that hold in any reachable state of the system (called
invariant properties), and liveness properties, which denote that something will
eventually happen. For the supply chain system of the previous section, we



An Algebraic Framework for Modeling 417

proved that the process of delivering the goods to the customer must not be ac-
tivated if the payment of the customer does not cover the total cost of the order.
This is an invariant property, important for the purpose of the system. Invariant
1, is defined in CafeOBJ terms as; eq inv1(S,C) = not(not(payment(S,C)

>= cost(S,C)) and (delivered(S,C) = true)). Following the CafeOBJ/
OTS method [10,17] we successfully verified invariant 1 and two more invariants
that were needed to conclude the proof (for more details see appendix B). The full
specification, the proofs and the appendices can be found at http://cafeobjntua.
wordpress.com.

5 Conclusions and Future Work

We believe that due to the fact that reactive rule-based intelligent agents are
increasingly used in critical systems, there is a strong need for ensuring their
intended behavior. This task is difficult because rules interact during execution
and thus can have complex and unpredictable behavior. For this reason we have
presented a framework for formally specifying reactive rules with the help of
the OTS/CafeOBJ method. This framework can express complex systems while
capturing the semantics of the underlying reactive rules, and can be used for
the verification of safety properties reactive rule-based agents should meet. In
order to demonstrate its effectiveness, we have applied it to a case study of a
manufacturer business agent. In the future, we intend to develop a tool that
will automatically translate a set of reactive rules, written in a Rule Markup
language, to CafeOBJ and that will support online verification. Finally, this
framework could be extended for modeling operational reactive systems that
need to define an optimized proof-theoretic and operational semantics.

Acknowledgments. This research has been co-financed by the European Union
(European Social Fund ESF) and Greek national funds through the Operational
Program ”Education and Lifelong Learning” of the National Strategic Reference
Framework (NSRF) - Research Funding Program: THALIS

References

1. Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach, 1st edn. Prentice
Hall (1995)

2. Gilbert, D.: Intelligent Agents: The Right Information at the Right Time. IBM
Intelligent Agent White Paper

3. FIPA (Foundation for Intelligent Physical Agents), www.fipa.org

www.fipa.org


418 K. Ksystra, P. Stefaneas, and P. Frangos

4. Badica, C., Braubach, L., Paschke, A.: Rule-based Distributed and Agent Sys-
tems. In: 5th International Conference on Rule-Based Reasoning, Programming,
and Applications, RuleML 2011, pp. 3–28. Springer (2011)

5. Ericsson, A., Berndtsson, M., Pettersson, P.: Verification of an industrial rule-based
manufacturing system using REX. In: 1st International Workshop on Complex
Event Processing for Future Internet, iCEP-FIS (2008)

6. Ksystra, K., Triantafyllou, N., Stefaneas, P.: On the Algebraic Semantics of Reac-
tive Rules. In: Bikakis, A., Giurca, A. (eds.) RuleML 2012. LNCS, vol. 7438, pp.
136–150. Springer, Heidelberg (2012)

7. Vlahavas, I., Bassiliades, N.: Parallel, object-oriented, and active knowledge base
systems. Kluwer Academic Publishers, Norwell (1998)

8. Xudong, H., Chu, C., Yang, H., Yang, S.J.H.: A New Approach to Verify Rule-
Based Systems Using Petri Nets. Information and Software Technology 45(10),
663–669 (2003)

9. Patkos, T., Chrysakis, I., Bikakis, A., Plexousakis, D., Antoniou, G.: A Reason-
ing Framework for Ambient Intelligence. In: Konstantopoulos, S., Perantonis, S.,
Karkaletsis, V., Spyropoulos, C.D., Vouros, G. (eds.) SETN 2010. LNCS (LNAI),
vol. 6040, pp. 213–222. Springer, Heidelberg (2010)

10. Ogata, K., Futatsugi, K.: Proof scores in the OTS/CafeOBJ method. In: Najm, E.,
Nestmann, U., Stevens, P. (eds.) FMOODS 2003. LNCS, vol. 2884, pp. 170–184.
Springer, Heidelberg (2003)

11. Diaconescu, R., Futatsugi, K.: CafeOBJ report: the language, proof techniques,
and methodologies for object-oriented algebraic specification. AMAST series in
computing. World Scientific, Singapore (1998)

12. Paschke, A., Boley, H., Zhao, Z., Teymourian, K., Athan, T.: Reaction RuleML 1.0:
Standardized Semantic Reaction Rules. In: Bikakis, A., Giurca, A. (eds.) RuleML
2012. LNCS, vol. 7438, pp. 100–119. Springer, Heidelberg (2012)

13. Paschke, A.: ECA-RuleML: An Approach combining ECA Rules with temporal
interval-based KR Event/Action Logics and Transactional Update Logics. ECA-
RuleML Proposal for RuleML Reaction Rules Technical Goup (2005)

14. Paschke, A., Boley, H.: Rules Capturing Events and Reactivity. In: Giurca, A.,
Gasevic, D., Taveter, K. (eds.) Handbook of Research on Emerging Rule-Based
Languages and Technologies: Open Solutions and Approaches, pp. 215–252. IGI
Publishing (2009)

15. Paschke, A.: ECA-LP / ECA-RuleML: A Homogeneous Event-Condition-Action
Logic Programming Language. In: Int. Conf. on Rules and Rule Markup Languages
for the Semantic Web, Athens, Georgia, USA (2006)

16. Liua, J., Zhangb, J., Hub, J.: A case study of an inter-enterprise workflow-
supported supply chain management system. Information and Management 42,
441–454 (2005)

17. Futatsugi, K., Goguen, J.A., Ogata, K.: Verifying Design with Proof Scores. Veri-
fied Software: Theories, Tools, Experiments 4171, 277–290 (2005)

18. Paschke, A., Kozlenkov, A.: Rule-Based Event Processing and Reaction Rules. In:
Governatori, G., Hall, J., Paschke, A. (eds.) RuleML 2009. LNCS, vol. 5858, pp.
53–66. Springer, Heidelberg (2009)

19. Teymourian, K., Paschke, A.: Semantic Rule-Based Complex Event Processing. In:
Governatori, G., Hall, J., Paschke, A. (eds.) RuleML 2009. LNCS, vol. 5858, pp.
82–92. Springer, Heidelberg (2009)

20. Reaction RuleML, http://ruleml.org/reaction
21. Diaconescu, R., Futatsugi, K., Ogata, K.: CafeOBJ: Logical Foundations and

Methodologies. Computing and Informatics 22, 257–283 (2003)

http://ruleml.org/reaction

	An Algebraic Framework for Modeling
of Reactive Rule-Based Intelligent Agents
	1 Introduction
	1.1 Related Work

	2 Observational Transition Systems and CafeOBJ
	3 An Algebraic Framework for Reactive Rules
	3.1 Production Rules in CafeOBJ
	3.2 Event Condition Action Rules in CafeOBJ
	3.3 Complex Events Definition

	4 Case Study: A Supply Chain Management System
	4.1 Formal Specification and Verification of the System

	5 Conclusions and Future Work
	References




