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Abstract—Algorithms that must deal with complicated global The aim of this tutorial paper is to introduce factor graphs
functions of many variables often exploit the manner in which the - and to describe a generic message-passing algorithm, called the
given functions factor as a product of “local” functions, each of sum-product algorithmwhich operates in a factor graph and at-

which depends on a subset of the variables. Such a factoriza’[iont ts t ¢ . inal functi iated with
can be visualized with a bipartite graph that we call afactor graph empts fo compute various marginal functions associated wi

In this tutorial paper, we present a generic message-passing algo- the global function. The basic ideas are very simple; yet, as
rithm, the sum-product algorithm, that operates in a factor graph.  we will show, a surprisingly wide variety of algorithms devel-

Following a single, simple computational rule, the sum-product oped in the artificial intelligence, signal processing, and dig-
algorithm computes—either exactly or approximately—var- 3| communications communities may be derived as specific

ious marginal functions derived from the global function. A . t fth duct alaorith g i
wide variety of algorithms developed in artificial intelligence, 'MS'@NCES Olthe sum-product algorithm, operating in an appro-

signal processing, and digital communications can be derived as Priately chosen factor graph.
specific instances of the sum-product algorithm, including the ~ Genealogically, factor graphs are a straightforward gen-
forward/backward algorithm, the Viterbi algorithm, the iterative  eralization of the “Tanner graphs” of Wibergt al. [31],
‘turbo” decoding algorithm, Pearl’s belief propagation algorithm 1351 Tanner [29] introduced bipartite graphs to describe
for Bayesian networks_, the Kalman filter, and certain fast Fourier families of codes which are generalizations of the low-density
transform (FFT) algorithms. . .
parity-check (LDPC) codes of Gallager [11], and also described
trz_insform, fc_erard/backwe_lrd _algorithm,_ gra_lphi_cal models, iter- ;lg)?msljjl;ig;Odaljlrtvilggglr:srna:peth dS:Vt\;{;?g' ;;;igrse;igngélile
ative decoding, Kalman filtering, marginalization, sum-product o N ; i )
algorithm, Tanner graphs, Viterbi algorithm. “visible”; Wiberg et al,, introduced “hidden” (latent) state vari-
ables and also suggested applications beyond coding. Factor
graphs take these graph-theoretic models one step further, by
applying them to functions. From the factor-graph perspective
HIS paper provides a tutorial introduction to factor graphi@s we will describe in Section 1lI-A), a Tanner graph for a
and the sum-product algorithm, a simple way to undegode represents a particular factorization of the characteristic
stand a large number of seemingly different algorithms that haiedicator) function of the code.
been developed in computer science and engineering. We conhile it may seem intuitively reasonable that some algo-
sider algorithms that deal with complicated “global” functiongithms should exploit the manner in which a global function
of many variables and that derive their computational efficiendgctors into a product of local functions, the fundamental insight
by exploiting the way in which the global function factors intghat many well-known algorithms essentially solve the “MPF”
a product of simpler “local” functions, each of which depend@narginalize product-of-functions) problem, each in their own
on a subset of the variables. Such a factorization can be visysticular setting, was first made explicit in the work of Aji
ized using dactor graph a bipartite graph that expresses whicland McEliece [1]. In a landmark paper [2], Aji and McEliece
variables are arguments of which local functions. develop a “generalized distributive law” (GDL) that in some
cases solves the MPF problem using a “junction tree” represen-
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There are also close connections between factor graphs and codomair?. The domainS of g is called theconfiguration
graphical representations (graphical models) for multidimespacefor the given collection of variables, and each element of
sional probability distributions such as Markov random fieldS is a particularconfigurationof the variables, i.e., an assign-
[16], [18], [26] and Bayesian (belief) networks [25], [17]. Likement of a value to each variable. The codom&inf ¢ may in
factor graphs, these graphical models encode in their structuigemeral be any semiring [2], [31, Sec. 3.6]; however, at least ini-
particular factorization of the joint probability mass function ofially, we will lose nothing essential by assuming thats the
several random variables. Pearl’s powerful “belief propagatiosét of real numbers.
algorithm [25], which operates by “message-passing” in a Assuming that summation iR is well defined, then associ-

Bayesian network, translates immediately into an instance ated with every functiog(zxy, ..., x,) aren marginal func-
the sum-product algorithm operating in a factor graph thébnsg;(x;). For eachs € A;, the value ofy;(a) is obtained by
expresses the same factorization. Bayesian networks and bedighming the value of(x1, ..., z,) over all configurations of

propagation have been used previously to explain the iteratie variables that have;, = «.

decoding of turbo codes and LDPC codes [9], [10], [19], [21], This type of sum is so central to this paper that we introduce

[22], [24], the most powerful practically decodable codea nonstandard notation to handle it: the “not-sumsoemmary

known. Note, however, that Wiberg [31] had earlier describddstead of indicating the variables being summed over, we indi-

these decoding algorithms as instances of the sum-prodoate those variablestbeing summed over. For examplehifs

algorithm; see also [7]. a function of three variables, , x5, andzs, then the “summary
We begin the paper in Section Il with a small worked exampfer =" is denoted by

that illustrates the operation of the sum-product algorithm in a

simple factor graph. We will see that when a factor graph is Z h(wy, xg, 23) i= Z Z Wy, xg, x3).

cycle-free, then the structure of the factor graph not only en-  ~{zz} T1€AL w3EAg

codes the way in which a given function factors, but also efy this notation we have

codesxpressionfor computing the various marginal functions

associated with the given function. These expressions lead di- giw) ==Y glwr, ..., xp)
rectly to the sum-product algorithm. ~{a;}
In Section 11, we show how factor graphs may be used as a

system and signal-modeling tool. We see that factor graphs a:reé’ theith marginal function associated wigizs, ..., zn) is

compatible both with “behavioral” and “probabilistic” modeling N Seu;?;ni?\:)é:ggnggﬁr?aevelo ing efficient procedures for com-
styles. Connections between factor graphs and other graphic \{\/ ping P

. . . ) t']"ting marginal functions that a) exploit the way in which the
mode,ls are described pnefly n Append|x B where we recovsrrobal function factors, using the distributive law to simplify the
Pearl’s belief propagation algorithm as an instance of the su

product algonthm. . As we will see, such procedures can be expressed very natu-
In Section IV, we apply the sum-product algorithm tc?ally by use of a factor graph

e e e 1 Suppose ... 1) s o procuet of severa
. ' a9 ' 9 C ocal functions each having some subset pfy, ..., z,} as

Kalman filter as instances of the sum-product algorithm. | rguments; i.e., suppose that

Section V, we consider factor graphs with cycles, and obtain T

the iterative algorithms used to decode turbo-like codes as glzy, .., zn) = Hfi(Xi) 1)

instances of the sum-product algorithm. jeg

In Section VI, we describe several generic transformations ) . ) )

by which a factor graph with cycles may sometimes be cofn€re/ is a discrete index seX; is asubset ofu1, ..., .},

verted—often at great expense in complexity—to an equivalé#fid /i(X;) is @ function having the elements &f; as argu-

cycle-free form. We apply these ideas to the factor graph repf8€nts.

Senting the discrete Fourier transform (DFT) kernel, and del’iveDeﬁnition: A factor graphis a bipartite graph that expresses

a fast Fourier transform (FFT) algorithm as an instance of tige structure of the factorization (1). A factor graph hasa-

summations, and b) reuses intermediate values (partial sums).

sum-product algorithm. o _ able noddor each variable;;, afactor nodefor each local func-
Some concluding remarks are given in Section VII. tion f;, and an edge-connecting variable nagéo factor node
f; it and only if z; is an argument of;.
[l. MARGINAL FUNCTIONS, FACTOR GRAPHS AND THE A factor graph is thus a standard bipartite graphical represen-
SUM-PRODUCT ALGORITHM tation of a mathematical relation—in this case, the “is an argu-
Throughout this paper we deal with functions of many varnent of” relation between variables and local functions.
ables. Letry, z2, ..., x,, be acollection of variables, in which, » Example 1 (A Simple Factor Graph)et g(z1, =2, 3,
for eachi, z; takes on values in some (usually fini@dmain s, ;) be a function of five variables, and suppose thaan
(or alphabet)A;. Let g(xy, ..., z,) be anR-valued function pe expressed as a product

of these variables, i.e., a function with domain
9(371’ T2, X3, T4, .%'5)

S=A; X Ay x --- X A, = falz1)fB(m2) fo(z1, T2, 23) fD(23, 24) fE(23, T5) (2)
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fA B ¢ b fE Fig. 2. An expression tree representing; + z).

Fig. 1. A factor graph for the producfa(zi)fe(x2)fc(x1, v2, @3)

- fo(xs, xa)fe(es, vs). it is unnecessary to order the vertices to avoid ambiguity in
interpreting the expression represented by the tree.

of five factors, so thatl = {A, B, C, D, E}, X4 = {x1}, In this paper, we extend expression trees so that the leaf ver-

Xp ={z2}, X¢ = {1, 72, 23}, Xp = {x3, 24}, andXg = tices represerfunctions not just variables or constants. Sums

{z3, x5 }. The factor graph that corresponds to (2) is shown #@nd products in such expression trees combine their operands in

Fig. 1. « the usual (pointwise) manner in which functions are added and
multiplied. For example, Fig. 3(a) unambiguously represents the

A. Expression Trees expression on the right-hand side of (3), and Fig. 4(a) unambigu-

In many situations (for example, whejtr1, . .., z3) rep- ously represents the expression on the right-hand side of (4). The

resents a joint probability mass function), we are interested qRerators j‘hOW” n th_ese f||gun|a? aret_the functtrllon product a?d the
computing the marginal functiong(z;). We can obtain an ex- summary, having various focaf Iunctions as their arguments.

: : : : . Also shown in Figs. 3(b) and 4(b), are redrawings of the factor
f h [ function b 2) and loit
fligsdsig:bﬁzissﬁawmargma unction by using (2) and exploi Ingqraph of Fig. 1 as a rooted tree with andx3 as root vertex,

: : respectively. This is possible because the global function de-
Toillustrate, we writey, () from Example 1 as fined in (2) was deliberately chosen so that the corresponding
factor graph is a tree. Comparing the factor graphs with the cor-
g1(x1) = fa(w1) <Z fB(x2) <Z fe(x1, 2, 3) responding trees representing the expression for the marginal
@z @3 function, it is easy to note their correspondence. This observa-

tion is simple, but keywhen a factor graph is cycle-free, the

: <Z fp(@s, “))(Z fe(zs, xo)))) factor graph not only encodes in its structure the factorization

o i of the global function, but also encodes arithmetic expressions

or, in summary notation by which the marginal functions associated with the global func-

tion may be computed
Formally, as we show in Appendix A, to convert a cycle-free

gu(e1) = fale1) X Z f(x2)fo (21, 2, 23) factor graph representing a functigty, ..., x,) to the cor-
~Awd responding expression tree f@«x;), draw the factor graph as
a rooted tree withe; as root. Every node in the factor graph
X Z Ip(xs, x4) then has a clearly defined parent node, namely, the neighboring
~{z3} node through which the unique path franto =; must pass. Re-
place each variable node in the factor graph with a product op-
X Z fe(zs, z3) | |. (3) erator. Replace each factor node in the factor graph with a “form
{3} product and multiply byf” operator, and between a factor node
o ] f and its parent:, insert azw{w} summary operator. These
Similarly, we find that local transformations are illustrated in Fig. 5(a) for a variable
node, and in Fig. 5(b) for a factor noglewith parentz. Trivial
g3(z3) = Z Fa(z) fa(ae) folar, 2, 23) products (those with one or no operand) act as identity opera-

tors, or may be omitted if they are leaf nodes in the expression
tree. A summary operattijw{m} applied to a function with a
single argument is also a trivial operation, and may be omitted.

x| > folws, xa) | x| D0 feles, x5)|. @) Apglyinggthis transformation to tﬁe tree of Fig. 3(}:)) yields the

~ L) ~iaa) expression tree of Fig. 3(a), and similarly for Fig. 4. Trivial op-
In computer science, arithmetic expressions like treyations are indicated with dashed lines in these figures.

right-hand sides of (3) and (4) are often represented by or- . ) ) .
dered rooted trees [28, Sec. 8.3], here caéiepression trees B- Computing a Single Marginal Function
in which internal vertices (i.e., vertices with descendants) Every expression tree representsadgorithmfor computing
represent arithmetic operators (e.g., addition, multiplicatiothe corresponding expression. One might describe the algorithm
negation, etc.) and leaf vertices (i.e., vertices without desceas a recursive “top-down” procedure that starts at the root vertex
dants) represent variables or constants. For example, the trearaf evaluates each subtree descending from the root, combining
Fig. 2 represents the expressiefy + z). When the operators the results as dictated by the operator at the root. Equivalently,
in an expression tree are restricted to those that are completglyprefer to describe the algorithm as a “bottom-up” procedure
symmetric in their operands (e.g., multiplication and additionjhat begins at the leaves of the tree, with each operator vertex

~{ws}



KSCHISCHANGet al: FACTOR GRAPHS AND THE SUM-PRODUCT ALGORITHM 501

(b)

Fig. 3. (a) A tree representation for the right-hand side of (3). (b) The factor graph of Fig. 1, redrawn as a rooted tre@svitbot.

I3 X
(z3)
@”{’”3&%“3 fc fp JE
fe ol [ L @ @ @ @
I l\?f,' I\?l{’ T2 fA fB

'\z’_:_f‘{_;;}/: '\E::-:,{_;E;j
‘ fa * /B
) (b)

Fig. 4. (a) A tree representation for the right-hand side of (4). (b) The factor graph of Fig. 1, redrawn as a rooted tree@svitbot.

combining its operands and passing on the result as an opereohputes, for a single value ofthe marginal functiory; (x;)
for its parent. For example;(y + z), represented by the ex-in a rooted cycle-free factor graph, with taken as root vertex.
pression tree of Fig. 2, might be evaluated by starting at the leafThe computation begins at the leaves of the factor graph. Each
nodesy andz, evaluatingy + =, and passing on the result as ateaf variable node sends a trivial “identity function” message to
operand for thex operator, which multiplies the result with  its parent, and each leaf factor nodlesends a description of
Rather than working with the expression tree, it is simplef to its parent. Each vertex waits for messages from all of its
and more direct to describe such marginalization algorithmsdhildren before computing the message to be sent to its parent.
terms of the corresponding factor graph. To best understaflis computation is performed according to the transformation
such algorithms, it helps to imagine that there is a processtrown in Fig. 5; i.e., a variable node simply sendsphaduct
associated with each vertex of the factor graph, and that thiemessages received from its children, while a factor npde
factor-graph edges represent channels by which these proeeth parent: forms the product of with the messages received
sors may communicate. For us, “messages” sent between grom its children, and then operates on the result wi Bz}
cessors are always simply some appropriate description of sssnenmary operator. By a “product of messages” we mean an
marginal function. (We describe some useful representationsajppropriate description of the (pointwise) product of the cor-
Section V-E.) responding functions. If the messages are parametrizations of
We now describe a message-passing algorithm that we wvtfie functions, then the resulting message is the parametrization
temporarily call the “single-sum-product algorithm,” since it of the product function, not (necessarily) literally the numerical
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(2) (b)

Fig. 5. Local substitutions that transform a rooted cycle-free factor graph - 6- A factor-graph fragment, showing the update rules of the sum-product

an expression tree for a marginal function at (a) a variable node and (b) a faét rithm.
node.

single< algorithm, once these messages have arrivés able

product of the messages. Similarly, the summary operator is &)-cOmpute a message to be sent on the one remaining edge
plied to the functions, not necessarily literally to the messagiits neighbor (temporarily regarded as the parent), just as in
themselves. the single¢ algorithm, i.e., according to Fig. 5. Let us denote
The computation terminates at the root nagewhere the this temporary parent as vertex After sending a message to
marginal functiony; (x;) is obtained as the product of all mes/, VErtexv returns to the |dIe_ state, waiting for a “return mes-
sages received af;. sage”to arrive fromw. Once this message has arrived, the vertex

It is important to note that a message passed on the ed@é@ble to compute and send messages to each of its neigh-
{z, f}, either from variabler to factor f, or vice versais a bors (othgr thanw), 'each being regarded, in turn, as a parent.
single-argument function af, the variableassociated witithe ~TNe algorithm terminates once two messages have been passed
given edge. This follows since, at every factor node, summapyer every edge, one in each direction. At variable nogde
operations are always performed for the variable associated wili§ Product of all incoming messages is the marginal function
the edge on which the message is passed. Likewise, at a varigbié:), Just as in the singléalgorithm. Since this algorithm op-
node, all messages are functions of that variable, and so is &k§t€S by computing various sums and products, we refer to it
product of these messages. as thesum-producalgorithm. _

The message passed on an edge during the operation of th‘g_he s_um-product algorithm operates according to the fol-
single4 sum-product algorithm can be interpreted as follows. |pwing simple rule:

e = {_a:, f}is an edge in the tree, Whe_feis a variab_le node The Sum-Product Update Rule :
and f is a factor node, then the analysis of Appendix A shows | The message sent from a nogen an edge is the

that the message passedduring the operation of the sum- product of the local function at (or the unit function

product algorithm is simply a summary ferof the product of if v is a variable node) with all messages received at
the local functionglescending from the vertex that originates | edgesither thane, summarized for the variable

the message. associated wit.

C. Computing All Marginal Functions Let u,. ¢(z) denote the message sent from nad® node

In many circumstances, we may be interested in computiigin the operation of the sum-product algorithm, jgt_. . (z)
g:(z;) for more than one value af Such a computation might denote the message sent from ngd® nodez. Also, letn(v)
be accomplished by applying the singletgorithm separately denote the set of neighbors of a given neda a factor graph.
for each desired value af but this approach is unlikely to Then, as illustrated in Fig. 6, the message computations per-
be efficient, since many of the subcomputations performed ftmrmed by the sum-product algorithm may be expressed as fol-
different values of: will be the same. Computation gf(z;) lows:
for a_II i simultanepusly can pe efficiently accomplisheq by €fariable to local function:
sentially “overlaying” on a single factor graph all possible in-

stances of the singlealgorithm. No particular vertex is taken pa—g(r) = H Hh—a (%) ®)
as a root vertex, so there is no fixed parent/child relationship ) hen@?\ L)

among neighboring vertices. Instea#ichneighborw of any local function to variable:

given vertexv is at some point regarded as a parent.ofhe

message passed framto w is computed just as in the single- pf—a(T) =, Z f(X) H ty— £ (Y) (6)
algorithm, i.e., as ifv were indeed the parent ofand all other ~{z} yen(H\{=}

neighbors ofy were children. whereX = n(f) is the set of arguments of the functign

As in the single: algorithm, message passing is initiated at The update rule at a variable nodeakes on the particularly
the leaves. Each vertaxremains idle until messages have arsimple form given by (5) because there is no local function to
rived on all but one of the edges incident onJust as in the include, and the summary farof a product of functions af is
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/“LfDHJM(‘T‘L) = Z ngﬂfp(lw?))fD(-T?n -T4)
~{z41}

/“LfFH“/‘S(‘Tf)) = Z ul‘sﬂfm(x?))fE(-T?n -Ta'))'
~{zs}

Jfa

Termination:

91(x1) = pps—a (1)

92(2) =l fp—as (962)/#( s (72)
(z3)
(4)

b

93(%3) = B fo—as (T3) 1 fp—as (T3) 1 sp—a, (73)
Fig. 7. Messages generated in each (circled) step of the sum-product g4(a:4) =lfp—z4(Ta

algorithm.
95(5) = prp—as (¥5).

simply that product. On the other hand, the update rule at a localn the termination step, we compujg(x;) as the product of
function node given by (6) in general involves nontrivial funcall messages directed towargd Equivalently, since the message
tion multiplications, followed by an application of the summarpassed on any given edge is equal to the product of all but one
operator. of these messages, we may comppte; ) as the product of the

We also observe that variable nodes of degree two perfoiwio messages that were passed (in opposite directions) over any
no computation: a message arriving on one (incoming) edgesiggle edge incident ap;. Thus, for example, we may compute
simply transferred to the other (outgoing) edge. g3(x3) in three other ways as follows:

D. A Detailed Example 98(8) = f s (¥3) s — 1 (¥3)

Fig. 7 shows the flow of messages that would be generated by = ip—ea (T3t~ (@3)
the sum-product algorithm applied to the factor graph of Fig. 1. = Hfp—as (£3) Py — g5 (23).
The messages may be generated in five steps, as indicated with
circlesin Fig. 7. In detail, the messages are generated as follows.  lll. M ODELING SYSTEMS WITH FACTOR GRAPHS
Step 1: We describe now various ways in which factor graphs may be
Pofa—my (T1) Z falar) = fa(zr) used to modesystemsi.e., collections of interacting variables.
~{z1} In probabilistic modeling of systems, a factor graph can be
bty (@2) Z Fr(as) = frlzs) used to represen'F the joint probability mass _function Qf the va_ri-
ables that comprise the system. Factorizations of this function
ez} can give important information about statistical dependencies
Hay— fp(4) =1 among these variables.
fas—fr(@5) = 1. Likewise, in “behavioral” modeling of systems—as in the
Step 2: work of Willems [33]—system behavior is specified in set-the-
fay > fo (1) = fhpsa (1) oretic terms by specifying which particular configurations of

variables are valid. This approach can be accommodated by a

Has = o (#2) = Hsy—as (22) factor graph that represents the characteristic (i.e., indicator)

[fp—as(X3) = Z Hiey— fp(Ta) [ (@3, 24) function for the given behavior. Factorizations of this charac-
~{zs} teristic function can give important structural information about

l’LfE_’TS ‘773 Z NTJ_)fE fF($3a -To) the model. o ) _
() In some applications, we may even wish to combine these
Step 3: two modeling styles. For example, in channel coding, we model

both the valid behavior (i.e., the set of codewords) andathe
posteriorijoint probability mass function over the variables that
define the codewords given the received output of a channel.

Hfc—as ('773) = Z Ha— fo (xl)umzﬁfc (xQ)fC(xlv L2, '773)

~{zs}

Hag— fo (B8) =1 fp—as (V)1 fr—as (¥3)- (While it may even be feasible to model complicated channels
Step 4 with memory [31], in this paper we will model only memoryless
Pofo—z (T1) = Z Pas— fo (T3)Has— o (x2) fo (21, T2, ¥3)  channels.)
~{z} In behavioral modeling, “Iverson’s convention” [14, p. 24]

can be useful. IfP is a predicate (Boolean proposition) in-

 —za \L2) = z3— fo \L z1— fo \T L1y T2, T . . .
o (P2) = D i (B3t g () fen, 22, ) volving some set of variables, thd®] is the {0, 1}-valued

e function that indicates the truth @?, i.e.
Hzs—fp ($3) =Hfo—ms ($3)NfE—>$3 ($3) . .
|1, if Pis true
Hrs—fr (373) = Hfo—as ($3)NfD—>l‘3 ($3) [P] 0, otherwise. (7)
Step 5: For example f(z, v, z) = [x + v = 2] is the function that
Hay— g4 (Z1) = frfo—e, (T1) takes a value of if the conditionz + y = 2 is satisfied, and

Py g5 (T2) = fhfe—a, (T2) otherwise.
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If we let A denote the logical conjunction oAD" operator,
then an important property of lverson’s convention is that

[PLAPyA ... AP =[PP ... [P] ®)

(assumingl - 1 = 1 and0 - 1 = 0). Thus, if P can be written
as a logical conjunction of predicates, tHé# can be factored
according to (8), and hence represented by a factor graph.

A. Behavioral Modeling

Letzy, zo, ..., z, be a collection of variables with config-
uration spaces = A; x A, x --- x A,. By abehaviorin S,
we mean any subsé of S. The elements oB are thevalid
configurations Since a system is specified via its behavityy whered denotes the sum in GB). The corresponding factor
this approach is known as behavioral modeling [33]. graph is shown in Fig. 8, where we have used a special symbol

Behavioral modeling is natural for codes. If the domain dbr the parity checks (a square with &* sign). Although
each variable is some finite alphabgtso that the configuration strictly speaking the factor graph represents the factorization
space is the-fold Cartesian product = A", then a behavior of the code’s characteristic function, we will often refer to the
C C S is called ablock codeof lengthn over A, and the valid factor graph as representing the code itself. A factor graph

Fig. 8. A Tanner graph for the binary linear code of Example 2.

configurations are calledodewords obtained in this way is often calledT@nner graphafter [29].
The characteristic (or set membership indicator) function for It should be obvious that a Tanner graph for &may%] linear
a behaviorB is defined as block code may be obtained from a parity-check matix=
[h;;] for the code. Such a parity-check matrix masolumns and
xB(x1;s -, xn) = [(21, .o, 20) € Bl at leastn — & rows. Variable nodes correspond to the columns

of H and factor nodes (or checks) to the rowsHf with an
edge-connecting factor noddo variable nodg if and only if

: . i ) . . h;; # 0. Of course, since there are, in general, many parity-
X5 IS proportional to a probability mass function that is unlfornaheck matrices that represent a given code, there are, in general,

over the vql|d configurations.) . . _many Tanner graph representations for the code. -«
In many important cases, membership of a particular config-

uration in a behavioB can be determined by applying a series Given a collection of general nonlinear local checks, it may be
of tests (checks), each involving some subset of the variablag:omputationally intractable problem to determine whether the
A configuration is deemed valid if and only if it passes all testgorresponding behavior is nonempty. For example, the canon-
i.e., the predicatéry, ..., z,) € B may be written as a logical ical NP-complete problersAt (Boolean satisfiability) [13] is
conjunction of a series of “simpler” predicates. Thgnfactors simply the problem of determining whether or not a collection
according to (8) into a product of characteristic functions, ea¢ffiBoolean variables satisfies all clauses in a given set. In effect,
indicating whether a particular subset of variables is an elem@ach clause is a local check.

of some “local behavior.” Often, a description of a system is simplified by introducing
hidden(sometimes called auxiliary, latent, or state) variables.
Nonhidden variables are calletible A particular behavioB

with both auxiliary and visible variables is said to represent a
given (visible) behavior if the projection of the elements of

B on the visible variables is equal €. Any factor graph for3

is then considered to be also a factor graph@oiSuch graphs

Obviously, specifyingy s is equivalent to specifyind3. (We
might also givey g a probabilistic interpretation by noting that

» Example 2 (Tanner Graphs for Linear Codes)he char-
acteristic function for any linear code defined byrann parity-
check matrix can be represented by a factor graph having
variable nodes and factor nodes. For example, @ is the bi-
nary linear code with parity-check matrix

1100 1 0 were introduced by Wibergt al.[31], [32] and may be called
H=1l0 110 0 1 9) Wiberg-type graphs. In our factor graph diagrams, as in Wiberg,
1 01 1 0 0 hidden variable nodes are indicated by a double circle.
An important class of models with hidden variables are the
thenC' is the set of all binang-tuplesz A (z1, T2, ..., ) trellis representations (see [30] for an excellent survey). Atrellis

that satisfy three simultaneous equations expressed in maff@ block code’is an edge-labeled directed graph with distin-
form asHzT = 0. (This is a so-calledkernel representatign guished root and goal vertices, essentially defined by the prop-

since the linear code is defined as the kernel of a particular liné4py that each sequence of edge labels encountered in any di-
transformation.) Membership i@ is completely determined by .rected path from the root vertex to the goal vertex is a codeword

checking whethesachof the three equations is satisfied. Thereln €, and that each codeword @is represented by at least one
fore, using (8) and (9) we have such path. Trellises also have the property that all paths from

the root to any given vertex should have the same fixed length
xelay, 22, 2g) = (21, 22, -, 76) € C d, called thedepthof the given vertex. The root vertex has depth
=[z1®22®ws = 0] [z2823®26 =0] 0, and the goal vertex has depih The set of depth vertices
[z1®x3Prs = 0] can be viewed as the domain dtate variables;. For example,
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0o o > 0_.\1
A 0% A

1 ! 1 —@— 1 0 1
.< 1 0 1><1 >.
0

Fig. 9. (a) Atrellis and (b) the corresponding Wiberg-type graph for the code of Fig. 8.

Fig. 9(a) is a trellis for the code of Example 2. Vertices at th
same depth are grouped vertically. The root vertex is leftmos
the goal vertex is rightmost, and edges are implicitly directe
from left to right.

A trellis divides naturally into: sectionswhere theth trellis
sectionZ; is the subgraph of the trellis induced by the vertice:
at depthi — 1 and depth. The set of edge labels ifi may be
viewed as the domain of a (visible) variable In effect, each
trellis sectionT; defines a “local behavior” that constrains thérig. 10. Generic factor graph for a state-space model of a time-invariant or
possible combinations of_1, z;, ands;. time-varying system.

Globally, a trellis defines a behavior in the configuration
space of the variablesy, ..., sn, 1, ..., Z». A configu- tion, it follows that every code can be represented by a cycle-free
ration of these variables is valid if and only if it satisfies théactor graph. Unfortunately, it oftenturns out that the state-space
local constraints imposed by each of the trellis sections. TE&Zes (the sizes of domains of the state variables) can easily be-
characteristic function for this behavior thus factors natural§Pme too large to be practical. For example, trellis representa-
into » factors, where théth factor corresponds to thieh trellis ~ tions of turbo codes have enormous state spaces [12]. However,

section7; and hass;_1, x;, ands; as its arguments. such codes may well have factor graph representations with rea-
The following example illustrates these concepts in detail féPnable complexities, but necessarily with cycles. Indeed, the
the code of Example 2. “cut-set bound” of [31] (see also [8]) strongly motivates the

) o . study of graph representations with cycles.
» Example 3 (A Trellis Description)Fig. 9(a) shows @ = Tygjises are basically conventional state-space system
trellis for the code of Example 2, and Fig. 9(b) shows thg,,qels, and the generic factor graph of Fig. 10 can represent
corresponding Wiberg-type graph. In addition to the visiblg,, state-space model of a time-invariant or time-varying

variable nodesey, s, ..., x, there are also hidden (statelystem. As in Fig. 9, each local check represents a trellis
variable nodess, s1, ..., s¢. Each local check, shown as &gation: i.e., each check is an indicator function for the set of
generic factor node (black square), corresponds to one sectigyed combinations of left (previous) state, input symbol,
of the trellis. output symbol, and right (next) state. (Here, we allow a trellis

In this example, the local behavidi corresponding to the gqge to have both an input label and an output label.)
second trellis section from the left in Fig. 9 consists of the fol-
lowing triples(s;, 2, s2): » Example 4 (State-Space Modeldjor example, the

Ty = {(0, 0, 0), (0, 1, 2), (1, 1, 1), (1, 0, 3)} (10) classical linear time-invariant state-space model is given by the

where the domains of the state variabdgsand s, are taken to equations

be{0, 1} and{0, 1, 2, 3}, respectively, numbered from bottom z(j +1) = Az(j) + Bu(j)

to top in Fig. 9(a). Each element of the local behavior corre- y(5) = Cx(5) + Du(y) (11)

sponds to one trellis edge. The corresponding factor node i . : . . . P .

the Wiberg-type graph is the indicator functiffs: , =2, s2) = Wﬂeﬁre‘] < ﬁ 'S thg .dlscrete.tlg;e '”({e’”(J) = (n(5), o

(51, 22, 52) € To). ur(4)) aret gtlmeflnpqtvar|a ¢5y(J)=<y1(J),...,yn,(J))

are the timef output variablesz(j) = (z1(5), ..., zm(y)) are

It is important to note that a factor graph corresponding the time+ state variables4, B, C, andD are matrices of ap-

a trellis is cycle-free. Since every code has a trellis representaepriate dimension, and the equations are over someffield
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Any such system gives rise to the factor graph of Fig. 10. The
time-j check function

F@G) w(d), y(G), 2(+1) : F*x F*x F"'x F™ — {0, 1}
is
F@(), u(j), y(4), z(j + 1))

= [2(j + 1) = Az(j) + Bu(j)] y(j) = C=(j) + Du(y)]. Flyilz1) e F(ys|ze)

In qther words, the check function enforces the local behaViﬂb. 11. Factor graph for the joint APP distribution of codeword symbols.
defined by (11). -«

o ) Forexample, if” is the binary linear code of Example 2, then
B. Probabilistic Modeling

we have
We turn now to another important class of functions that We ., . wg) = [z, @ 22 ® 25 = 0] - [x2 B 23 B 26 = 0]
will represent by factor graphs: probability distributions. Since 6
conditional and unconditional independence of random vari- 1 ®rsPxy=0]- H fyila)
ables is expressed in terms of a factorization of their joint prob- el
ability mass or density function, factor graphs for probabilitywhose factor graph is shown in Fig. 11. -«

distributions arise in many situations. We begin again with an

example from coding theory. Various types of Markov models are widely used in signal

processing and communications. The key feature of such

» Example 5 (APP Distributions)Consider the standard models is that they imply a nontrivial factorization of the joint
coding model in which a codeword = (z1, ..., z,) iS probability mass function of the random variables in question.
selected from a cod€ of length» and transmitted over a This factorization may be represented by a factor graph.
memoryless channel with cqrrespondmg 'output s'e_quence> Example 6 (Markov Chains, Hidden Markov Modelsix
y = (w1, ..., yn). For each fixed observatiop, the joint

a posteriori probability (APP) distribution for the com- gene_ral, letf (1, o wn) denote the_Jomt probability mass
X . . i function of a collection of random variables. By the chain rule
ponents ofz (i.e., p(x|y)) is proportional to the function

9(@) = flylo)p(z), wherep(z) is thea priori distribution of conditional probability, we may always express this function

for the transmitted vectors, andl(y|z) is the conditional

probability density function foy whenz is transmitted. B
Since the observed sequengés fixed for any instance of Jlas, oo an) = H Jlailzy, oy wio).

“decoding” a graph we may considefz) to be a function of: =t

only, with the components afregarded as parameters. In othelFor example, ifr» = 4, then

words, we may writef (y|«) or p(x|y) as fy(z), meaning that flx1, . za)= f(z1) f(wo|my) f (23|21, 22) f(2a]z1, 2, 23)

the expression to be “decoded .al\./vays has the same pargmq%qch has the factor graph representation shown in Fig. 12(b).

fqrm, but that t_he paramet@r will in general be different in In general, since all variables appear as arguments of

different (_jecogmg LnSta”_Ce§-d_ bution for th ted f(zn|z1, ..., zn_1), the factor graph of Fig. 12(b) has no ad-
Assur_nlng_t at thea priori distribution for the transmitte vantage over the trivial factor graph shown in Fig. 12(a). On the

vectors is uniform over codewords, we hane) = xc(2)/ICl,  giher hand, suppose that random variatles X,, ..., X,, (in

wherexc(x) is the charactensnc funcnoq f@ and|C] is the that order) form a Markov chain. We then obtain the nontrivial
number of codewords iV If the channel is memoryless, theng, . i oo n

n

f(y|z) factors as n
n f(a:l, ceey a:n) = H f($1|$171)
f(ylv"'vyn|x17 ,xn)IHf(ysz) . _i=1_
iy whose factor graph is shown in Fig. 12(c) for= 4.
Under these assumptions, we have Continuing this Markov chain example, if we cannot observe
) ” eachX; directly, but instead can observe oy, the output of a
_ . memoryless channel with; as input, then we obtain a so-called
9(z1, o Tn) = O] Xl oo ) £[1 fuilzd)-— (12) “hiddenyMarkov model.” The joiFr:t probability mass or density

Now the characteristic functioc(«) itself may factor into a function for these random variables then factors as

product of local characteristic functions, as described in the pre- FZL, ooy Ty Y1y oy Yn) = H filzizy) flyilx)
vious subsection. Given a factor grapHor x(z), we obtain a i1

factor graph for (a scaled version of) the APP distribution averwhose factor graph is shown in Fig. 12(d) fer= 4. Hidden
simply byaugmenting? with factor nodes corresponding to theMarkov models are widely used in a variety of applications;
different f(y;|x;) factors in (12). Theth such factor has only e.g., see [27] for a tutorial emphasizing applications in signal
one argument, namely;, sincey; is regarded as a parameterprocessing.

Thus, the corresponding factor nodes appear as pendant vertic&f course, since trellises may be regarded as Markov models
(“dongles”) in the factor graph. for codes, the strong resemblance between the factor graphs of
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flz1, 22,23, 24) .—“—.
(@3 (@s) flaz2lzr)  flzsles, 22) f(@a|z1, 2, 23)

(2) (b)

@ @) @) @)

flz1) flz2lz1)  flas|z2)  f(wales)

(c)

Fig. 12(c) and (d) and the factor graphs representing trellises
(Figs. 9(b) and 10) is not accidental. <

In Appendix B we describe very briefly the close relationship
between factor graphs and other graphical models for proba-
bility distributions: models based on undirected graphs (Markov
random fields) and models based on directed acyclic graphs
(Bayesian networks).

flnle) f(yalzs) fyslzs) f(yalzd)

Fig. 13. The factor graph in which the forward/backward algorithm operates:
IV. TRELLIS PROCESSING thes, are state variables, the are input variables, the; are output variables,
and eachy; is the output of a memoryless channel with input
As described in the previous section, an important family of

factor graphs contains the chain graphs that represent trelliggsa posteriorijoint probability mass function foz, s, andz
or Markov models. We now apply the sum-product algorithjiven the observatiog is proportional to

to such graphs, and show that a variety of well-known algo- " "
rithms—the forward/backward algorithm, the Viterbi algorithm, gy, s, &) := [[ Ti(si—1, @i, wi, 50) [ F(wiles)
and the Kalman filter—may be viewed as special cases of the iy =1

sum-product algorithm. wherey is again regarded as a parametey @riot an argument).

The factor graph of Fig. 13 represents this factorization. of

A. The Forward/Backward Algorithm Giveny, we would like to find the APPg(u;|y) for each:.

_ _ _ These marginal probabilities are proportional to the following
We start with the forward/backward algorithm, sometimes renarginal functions associated wih

ferred to in coding theory as the BCJR [4], APP, or “MAP” al-

gorithm. This algorithm is an application of the sum-product pluily) < > gy(u, s, z).

algorithm to the hidden Markov model of Example 6, shown ~{ui}

in Fig. 12(d), or to the trellises of examples Examples 3 andgince the factor graph of Fig. 13 is cycle-free, these marginal
(Figs. 9 and 10) in which certain variables are observed at figictions may be computed by applying the sum-product algo-
output of a memoryless channel. rithm to the factor graph of Fig. 13.

The factor graph of Fig. 13 models the most general situ- Initialization: As usualin a cycle-free factor graph, the sum-
ation, which involves a combination of behavioral and prolproduct algorithm begins at the leaf nodes. Trivial messages are
abilistic modeling. We have vectors = (u1, u2, ..., ux), sent by the input variable nodes and the endmost state variable
x = (x1, £1, ..., Tn),ands = (so, ..., s,) thatrepresent, re- nodes. Each pendant factor node sends a message to the corre-
spectively, input variables, output variables, and state variablgsonding output variable node. As discussed in Section Il, since
in a Markov model, where each variable is assumed to take @@ output variable nodes have degree two, no computation is
values in a finite domain. The behavior is defined by local cheglerformed; instead, incoming messages received on one edge
functionsT;(s;_1, i, u;, s;), as described in Examples 3 andare simply transferred to the other edge and sent to the corre-
4. To handle situations such as terminated convolutional codggonding trellis check node.
we also allow for the input variable to be suppressed in certainOnce the initialization has been performed, the two endmost
trellis sections, as in the rightmost trellis section of Fig. 13. trellis check nodeq} and7;, will have received messages on

This model is a “hidden” Markov model in which we cannothree of their four edges, and so will be in a position to create
observe the output symbols directly. As discussed in Examplegh, output message to send to a neighboring state variable node.
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@ The« andg messages have a well-defined probabilistic inter-
pretation:a(s;_1) is proportional to the conditional probability
mass function fos; ; given the “past’y, ..., ¥;_1; i.e., for
6(ui) each states;_; € S;_1, a(s;—1) is proportional to the condi-
B(si-1) B(s;) tional probability that the transmitted sequence passed through
-—— - states;_; given the past. Similarlyg(s;) is proportional to
@ — ——= @ the conditional probability mass function fey given the “fu-
a(si-1) a(s;) ture” y;+1, %i+2, ..., i.e., the conditional probability that the
T transmitted sequence passed through stat@he probability
v(z:) that the transmitted sequence passed through a particular edge
e = (si—1, ui, x4, s;) € T; is thus given by
T;
Q as:)y(2:)B(si41) = ale)y(e)Ble).

i ) i ) ) Note that if we were interested in the APPs for the state vari-

Fig. 14. A detailed view of the messages passed during the operation of trBa .

forward/backward algorithm. abless; or the symbol variables;, these could also be com-
puted by the forward/backward algorithm.

Again, since the state variables have degree two, no computation . - .
is performed; at state nodes messages received on one edgg r-ghe Min-Sum and Max-Product Semirings and the Viterbi
simply transferred to the other edge. Algorithm

In the literature on the forward/backward algorithm (e.g., We might in many cases be interested in determining which
[4]), the message... 1. (z;) is denoted as(z;), the message valid configuration has largest APP, rather than determining
Its;—T,., (s:) is denoted as(s;), and the message,, 1, (s;) the APPs for the individual symbols. When all codeword are
is denoted ag(s; ). Additionally, the messager. —... (v;) will @ priori equally likely, this amounts to maximum-likelihood
be denoted a&(w;). sequence detection (MLSD).

The operation of the sum-product algorithm creates two nat-As mentioned in Section Il (see also [31], [2]), the codomain
ural recursions: one to computés;) as a function ofv(s; ;) R of the global functiory represented by a factor graph may in
and~(x;) and the other to computé(s; 1) as a function of general be any semiring with two operations™and “-” that
B(s;) and~(z;). These two recursions are called floeward satisfy the distributive law
andbackwardrecursions, respectively, according to the direc- . . .
tion of message flow in the trellis. The forward and backward Ve, y, 2 € B) vlyrz) =y +lez). 14
recursions do notinteract, so they could be computed in parallel!n @ny such semiring, a product of local functions is well de-

Fig. 14 gives a detailed view of the message flow for a singf§€d, as is the notion of summation of valuesgofit follows
trellis section. The local function in this figure represents tHat the “not-sum” or summary operation is also well-defined.
trellis checkT(s;_1, ui, @i, s;)- In fact, our observation that the structure of a cycle-free factor

The Forward/Backward RecursionsSpecializing the gen- 9raph encodes expressions (i.e., algorithms) for the computation
eral update equation (6) to this case, we find of marginal functions essentially follows from the distributive

law (14), and so applies equally well to the general semiring

a(si) = Y Tilsioy, wiy @i, si)al(siza) (i) case. This observation is key to the “generalized distributive
~led law” of [2].
B(si—1) = Z Ti(siz1, wi, i, 85)0(s5)v(2;). A semiring of particular interest for the MLSD problem is the
~{si_1} “max-product” semiring, in which real summation is replaced
Termination: The algorithm terminates with the computawith the “max” operator. For nonnegative real-valued quantities
tion of the§(u;) messages. z, y, andz, “." distributes over “max”
Su) = 3 Ti(sicr, wi, @iy si)alsi)Blsip)v(w:). z(max(y, 2)) = max(zy, v2).
~Auik _ _ _ _ Furthermore, with maximization as a summary operator,
These sums can be viewed as being defined over valid treflis, maximum value of a nonnegative real-valued function
edges: = (s; 1, ui, i, s;) suchthafl;(c) = 1. Foreachedge ;(, . )isviewed as the “complete summary” gfi.e.
e, we leta(e) = afs;—1), Ble) = B(s;), andvy(e) = vy(z;).
Denoting byE;(s) the set of edges incident on a stati the max g1, .., &n) = H;?X(H;EJX(- . (Iréffxg(xl’ coes )
22 trellis section, ther and/3 update equations may be rewritten _ Z 9@, s 2m).
~{}
afsi) = Z a(e)y(e) For the MLSD problem, we are interested not so much in deter-
eCEi(ei) mining this maximum value, as in finding a valid configuration
Blsic)= > Ble)(e). (13) & that achieves this maximum.
e€l;(si 1) In practice, MLSD is most often carried out in the negative

The basic operations in the forward and backward recursidog-likelihood domain. Here, the “product” operation becomes
are therefore “sums of products.” a “sum” and the fnax” operation becomes artin” operation,
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so that we deal with the “min-sum” semiring. For real-valuelinear combinations of jointly Gaussian random variables are
quantitiese, ¥, z, “+" distributes over “min” Gaussian, it follows that the; andy; sequences are jointly

x4+ min(y, z) = min(z +y,  + 2). Gaussian. _
We use the notation

We extend Iverson’s convention to the general semiring case N ) y
by assuming thak contains a multiplicative identity, and a N(z, m, 0%) o exp (—(37 —m)~/(20 ))
null elementz such that: - = = z andz - = = z forallz € R. to represent Gaussian density functions, wherando? rep-
When P is a predicate, then by?] we mean thg z, «}-valued resent the mean and variance. By completing the square in the
function that takes value wheneverP is true and- otherwise. exponent, we find that

In the “min-sum” semiring, where the “product” is real addition, N(z, my, O—f)/\/(x’ ma, a%) x N(z, ma, o—§) (16)
we takeu = 0 andz = oco. Under this extension of Iverson’s,, hare
convention, factor graphs representing codes are not affected by o2my + o?my
the choice of semiring. mz = T 2102
Consider again the chain graph that represents a trellis, ! 2
suppose that we apply the min-sum algorithm; i.e., the sum- 1 1 1
product algorithm in the min-sum semiring. Products of posi- o_§ = U—% + o—_§

tive fungtions (inthe rggular factor graph) are cqn_verted to SUBSnilarly, we find that
of functions (appropriate for the min-sum semiring) by taking scc

their negative logarithm. Indeed, such functions can be scalj[d Nz, mi, oD)N (y, ax, 03) dx

and shifted (e.g., settinﬁ_az, s|y) = —alnp(z, s|y)+bV\_/here - N 5 o ) 17

a andb are constants wite > 0) in any manner that is con- x Ny, amy, a”o1 +03). (17)
venient. In this way, for example, we may obtain squared Eu-As in Example 5, the Markov structure of this system permits
clidean distance as a “branch metric” in Gaussian channels, arsdto write the conditional joint probability density function of

Hamming distance as a “branch metric” in discrete symmettige state variables,, ..., =, giveny,, ..., yx as
channels. k

Applying the min-sum algorithm in this context yields the f(z1, -, x|y, ..., w) = H flzilzj—1) f(ylz;) (18)
same message flow as in the forward/backward algorithm. As in j=1

the forward/backward algorithm, we may write an update equéheref(z;|z;-1) is a Gaussian density with mealy_,z;_;
tion for the various messages. For example, the basic updafé varianceB7_;, and f(y;|=;) is a Gaussian density with

equation corresponding to (13) is meanC;z; and variance);. Again, the observed values of the
als;) = m_in_ (al(e) +7(e)) (15) cgnz:rp])zmlsarlables are regarded as parameters, not as function ar-

so that the basic operation is a “minimum of sums” instead of The conditional density function far, given observations up
a “sum of products.” A similar recursion may be used in tht® time % is the marginal function

backward direction, and from the results of the two recursionstlk(xk) = fleglys, -5 k)

the most likely sequence may be determined. The result is a

“bidirectional” Viterbi algorithm. = /{ } [, o zly, - ue) d(~{z})
~AT L

The conventional Viterbi algorithm operates in the forward ; . L
9 P here we have introduced an obvious generalization of the

direction only; however, since memory of the best path is mai)ﬁv- 1 » notation to int ls. Th £ thi ditional
tained and some sort of “traceback” is performed in makin 0 -;umA hotation 1o integrais. the mean of this conditiona
ensity, i = Elzklyi,...,u], is the minimum mean-

a decision, even the conventional Viterbi algorithm might b . :
viewe:j Ias be:/ng bidirectic\)/nall frerbr aigor '9 squared-error (MMSE) estimate af;, given the observed

outputs. This conditional density function can be computed
C. Kalman Filtering via the sum-product algorithm, using integration (rather than

: . : i ummation) as the summary operation.
In this section, we derive the Kalmanfllter(see,e.g.,[3],[23]3 A portion) of the factor g?;pr? that describes (18) is shown

?S tan mstahnce of the ng-?rodg_ct algor;_thml_operagng n _tlhe Fig. 15. Also shown in Fig. 15 are messages that are
ac tor gra_\p_l cotrre:rs]p;)n_ mgbo a-}ulslc:re e |m|e_ _|tnear fynam'%ssed in the operation of the sum-product algorithm.
fgs em sim arr].oh ﬁ glv_ertl)l y (11). olr smp;q Y, WEIOCUS O denote byP;;_1(z;) the message passed ig from
e case in which all variables are scalars satisfying f(z;lzj—1). Up to scale, this message is always of the form
Tjp1 = Ay + Bju; Nz, mjp-1, UJQ'IJ—I)’ and so may be represented by the
y; =Cz; + Djw; pair '(ﬁ.zﬂj,l, "?u—l)' We interpretmm',l as the. MMSE
wherez;, y;, u;, andw; are the timej state, output, input, predlctlon_of x; given the set ofobservatlons up to time- 1.
and noise variables, respectively, aAg, B;, C;, andD; are  According to the product rule, applying (16), we have
assumedto be knpwn time—varying scalarg. Generalizationto the; ;(x;) = Pj—1(x;) f(y;|z;)
case of vector varlabl_es is standa_rd, butW|_II not be pursueq here. =N}, W1, U?lj—l)N(ij C;x;, Df)
We assume that the inputand noisew are independent white N . 5 N 5, 2
Gaussian noise sequences with zero mean and unit variance, and < N (@, i1, 05, )N (25, 43/ Cj, D5 /CF)
that the state sequence is initialized by settigg—= 0. Since x N (x4, 05, o—flj)
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flzjlzi-1) f(zjlz)
L) —— \ T TT—= .f_hmj+1
P(jlj — 1) P(il5) PG +1lj

fyjl=;)
Fig. 15. A portion of the factor graph corresponding to (18).

where
25 2
_ Dirngp1 + Cyi05, 4

mj|; =

ili 22 2

Cj OG- T Dy

2
G551

Cio?. | +D3

7753

=iijlj-1 + (yj = Cyrivjj-1)
and
D3o?

azl L J7gli—1
iy — 2,2 2"
Gt D
Likewise, applying (17), we have

Pipi(ir) = / Pyl )N (w41, Ajaj, BY) de;

- 2
XN (@415 Mojpa)s, o5)j41)
where

M)y = Ajmg;

= A1+ Ky — Cimypo1)  (19)

and

_ 2 2 2

=Ajo; + B;
2 2

A

T (0202

RIS J
In (19), the value

2
Tj+1l

is called théfilter gain.

These updates are those used by a Kalman filter [3]. As m
tioned, generalization to the vector case is standard. We not
that similar updates would apply to any cycle-free factor gragﬂf i
in which all distributions (factors) are Gaussian. The operati
of the sum-product algorithm in such a graph can, therefore,
regarded as a generalized Kalman filter, and in a graph with o

cles as an iterative approximation to the Kalman filter.

V. ITERATIVE PROCESSING THE SUM-PRODUCT ALGORITHM
IN FACTOR GRAPHS WITH CYCLES

or LDPC codes—arise precisely in situations in which the un-
derlying factor grapldoeshave cycles. Extensive simulation re-
sults (see, e.g., [5], [21], [22]) show that with very long codes
such decoding algorithms can achieve astonishing performance
(within a small fraction of a decibel of the Shannon limit on a
Gaussian channel) even though the underlying factor graph has
cycles.

Descriptions of the way in which the sum-product algorithm
may be applied to a variety of “compound codes” are given in
[19]. In this section, we restrict ourselves to three examples:
turbo codes [5], LDPC codes [11], and repeat—accumulate (RA)
codes [6].

A. Message-Passing Schedules

Although a clock may not be necessary in practice, we
assume that messages are synchronized with a global dis-
crete-time clock, with at most one message passed on any
edge in any given direction at one time. Any such message
effectively replacesprevious messages that might have been
sent on that edge in the same direction. A message sent from
nodew at time¢ will be a function only of the local function at
v (if any) and the (most recent) messages receivedpaior to
time 4.

Since the message sent by a ned® an edge in general de-
pends on the messages that have been receiveitheredges at
v, and a factor graph with cycles may have no nodes of degree
one, how is message passing initiated? We circumvent this diffi-
culty by initially supposing that a unit message (i.e., a message
representing the unit function) has arrived on every edge inci-
dent on any given vertex. With this conventi@verynode is in
a position to send a message at every time along every edge.

A message-passirgghedulan a factor graph is a specifica-
tion of messages to be passed during each clock tick. Obviously
a wide variety of message-passing schedules are possible. For
example, the so-callefiiboding schedulg19] calls for a mes-
sage to pass in each direction over each edge at each clock tick.
A schedule in which at most one message is passed anywhere

Hine graph at each clock tick is callecsarial schedule

e will say that a vertex has a messageendingat an edge

t has received any messages on edges otherdladter the
Fansmission of the most previous message:.08uch a mes-

5ge is pending since the messages more recently received can
ect the message to be sentoiThe receipt of a messagewat

from an edge: will create pending messages atatheredges
incident onv. Only pending messages need to be transmitted,
since only pending messages can be different from the previous
message sent on a given edge.

In addition to its application to cycle-free factor graphs, the In a cycle-free factor graph, assuming a schedule in which
sum-product algorithm may also be applied to factor grapbsly pending messages are transmitted, the sum-product algo-
with cycles simply by following the same message propagethm will eventually halt in a state with no messages pending.
tion rules, since all updates are local. Because of the cyclesa factor graph with cycles, however, it is impossible to reach
in the graph, an “iterative” algorithm with no natural termi-a state with no messages pending, since the transmission of a
nation will result, with messages passed multiple times onnaessage on any edge of a cycle from a nodeill trigger a
given edge. In contrast with the cycle-free case, the results of ttein of pending messages that must return toiggeringv to
sum-product algorithm operating in a factor graph with cyclesend another message on the same edge, and so on indefinitely.
cannot in general be interpreted as exact function summariesin practice, all schedules are finite. For a finite schedule, the
However, some of the most exciting applications of the sursum-product algorithm terminates by computing, for eagh
product algorithm—for example, the decoding of turbo coddke product of the most recent messages received at variable
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(a)
Fig. 16. Turbo code. (a) Encoder block diagram. (b) Factor graph.
nodez;. If z; has no messages pending, then this computatic

is equivalent to the product of the messages sent and receiv
on any single edge incident on.

B. Iterative Decoding of Turbo Codes

A “turbo code” (“parallel concatenated convolutional code”)
has the encoder structure shown in Fig. 16(a). A blockdata rig 17. A factor graph for a LDPC code.
to be transmitted enters a systematic encoder which produices
and two parity-check sequencgsindq at its output. The first i .
parity-check sequengeis generated via a standard recursive LDPC codes, like turbo codes, are very effectively decoded
convolutional encoder; viewed togetherndp would form the USINg the sum-product algorithm; for example MacKay and
output of a standard rate/2 convolutional code. The secongl\eal report exc_ellent performance results approachlng that of
parity-check sequenagis generated by applying apermutatioﬁurbo codes using what amounts to a flooding schedule [21],
7 to the input stream, and applying the permuted stream td%¢]-
second convolutional encoder. All output streamg, andq
are transmitted over the channel. Both constituent convolutiokl RA Codes
encoders are typically terminated in a known ending state. RA codes are a special, low-complexity class of turbo codes

A factor graph representation for a (very) short turbo codeiistroduced by Divsalar, McEliece, and others, who initially de-
shownin Fig. 16(b). Included in the figure are the state variableed these codes because their ensemble weight distributions
for the two constituent encoders, as well as a terminating trellige relatively easy to derive. An encoder for an RA code op-
section in which no data is absorbed, but outputs are generata@dtes ork input bitsu, ..., ug, repeating each bif) times,
Except for the interleaver (and the short block length), this gragiid permuting the result to arrive at a sequesce . ., zxg.
is generic, i.e., all standard turbo codes may be represented\inoutput sequence; , . .., zx¢ is formed via an accumulator
this way. that satisfiessr; = 21 andx; = x;_1 + z; fori > 1.

Iterative decoding of turbo codes is usually accomplished viaTwo equivalent factor graphs for an RA code are shown in
a message-passing schedule that involves a forward/backweigl 18. The factor graph of Fig. 18(a) is a straightforward repre-
computation over the portion of the graph representing one caentation of the encoder as described in the previous paragraph.
stituent code, followed by propagation of messages between ¥he checks all enforce the condition that incident variables sum
coders (resulting in the so-callektrinsic information in the to zero modul. (Thus a degree-two check enforces equality
turbo-coding literature). This is then followed by another foref the two incident variables.) The equivalent but slightly less
ward/backward computation over the other constituent codmmplicated graph of Fig. 18(b) uses equality constraints to
and propagation of messages back to the first encoder. Trdpresent the same code. Thus, eqg.,= w» = ws, corre-
schedule of messages is illustrated in [19, Fig. 10]; see also [3dponding to input variable; and state variables, zs, andz1;

of Fig. 18(a).

C. LDPC Codes

LDPC codes were introduced by Gallager [11] in the earl'?r Simplifications for Binary Variables and Parity Checks
1960s. LDPC codes are defined in terms of a regular bipartiteFor particular decoding applications, the generic updating
graph. In a(j, k) LDPC code, left nodes, representing coderules (5) and (6) can often be simplified substantially . We treat
word symbols, all have degrgewhile right nodes, representinghere only the important case where all variables are binary
checks, all have degrée For example, Fig. 17 illustrates the(Bernoulli) and all functions except single-variable functions
factor graph for a shoit2, 4) LDPC code. The check enforcesare parity checks or repetition (equality) constraints, as in
the condition that the adjacent symbols should have even ovefalis. 11, 17, and 18. This includes, in particular, LDPC codes
parity, much as in Example 2. As in Example 2, this factor gragnd RA codes. These simplifications are well known, some
is just the original unadorned Tanner graph for the code.  dating back to the work of Gallager [11].
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Fig. 18. Equivalent factor graphs for an RA code.

The probability mass function for a binary random variable Likelihood Difference (LD):
may be represented by the vectps, pi ), wherepg + p; = 1. Definition: 6(po, p1) = po — p1-

According to the generic updating rules, when messages AR (81, 8) = o1+ 62
(po, p1) and(qo, q1) arrive at a variable node of degree three, VARLOL 92) =970
the resulting (normalized) output message should be CHK (61, 62) = 6162.
VAR (po, P1, Q0> 1) = < p(fo , pfl ) . (20) Signed Log-Likelihood Difference (SLLD)
Pogo T p1gL Pofo T P11 Definition: A(po, p1) = sgn(p1 — po) ln [p1 — pol.
Similarly, at a check node representing the function (ol (oA A2 D/2)
s (cosh<<|A1|—|A2|>/2>) ’

fx,y 2)=[z@yez=0]

(where ‘@” represents modul@-addition), we have if sgn(A1) = sgn(Ag) = s

VAR (A, Ag) = ¢ s-sgn(|Ar] — [As])

CHK (po, p1, 0, 91) = (Poqo + p1q1, Poqr + P1qo)- (21) 1 ( sinhi((| A1 14|25 ])/2) )

We note that at check node representing the dual (repetition con- sinh(([[A1[—[A2]1)/2) / °

straint) f(z, y, z) = [x = y = #|, we would have L if sen(A;) = —sgn(As) = —s

REDP = VAR
. or 2y o ) 7 A I 22 1) o (Ar, Az) = sga(A)sgn(A2)(A1] + [As).
i.e., the upda_lte rules for repetition constralnts. are the same 3% the LLR domain, we observe that fors> 1
those for variable nodes, and these may be viewed as duals to
those for a simple parity-check constraint. In(cosh(z)) ~ [z] —In(2).

We view (20) and (21) as specifying the behavior of idedihus, an approximation to theik function (22) is
“probability gates” that operate much like logic gates, but with cHK (A, A2) = (A1 + A2)/2] — [(AL — Ap) /2]
soft'(“fuzzy") values. . N ' =sgn(A;)sgn(Az) min(|A], |Az])

Smcepp Tr= 1,.b|nary probability mass functions can nghich turns out to be precisely the min-sum update rule.
parametrized by a single value. Depending on the parametrizap, o,51ving the equivalence between factor graphs illustrated
tion, various probab|l|t)_/ ggte |mplement_at|ons arise. We giv Fig. 19, it is easy to extend these formulas to cases where
four different parametrizations, and derive ther and CHK 5 iable nodes or check nodes have degree larger than three. In
functions for each. particular, we may extend thexr andcrk functions to more

Likelihood Ratio (LR): than two arguments via the relations
Definition: A(po, p1) = po/p:1- VAR (21, Z2..., Ty) = VAR (21, VAR(Z2, ..., Tp))
VAR (A1, A2) = A1z CHK (21, Z2..., Tp) =CHK (21, CHK(Z2, ..., T,)). (23)
ork (AL, Ag) = L)‘l)‘? Of course, there are other alternatives, corresponding to the var-
AL+ A ious binary trees with leaf vertices. For example, when= 4
Log-Likelihood Ratio (LLR) : we may COMpPUt&AR (1, &2, £3, T4) 8S
Definition: A(po, p1) = ln(po/p1). VAR (%1, T2, 3, T4) = VAR(VAR (21, Z2), VAR (%3, T4))

which would have better time complexity in a parallel imple-

AR(AL, Ao)=A1 + A ; )
VAR (Ag; As) LA mentation than a computation based on (23).

cHK (A1, A2) = In(cosh ((A; + A2)/2))
—In(cosh (A1 — A2)/2)) VI. FACTOR-GRAPH TRANSFORMATIONS

=2tanh ™ (tanh(A; /2) tanh, (A5/2)) . In this section we describe a number of straightforward trans-
(22) formations that may be applied to a factor graph in order to
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factor graph. Also notice that there are two local functions con-

_ nectingz to (y, 2).
- . @ @ O The local functions in the new factor graph retain their de-
pendences from the old factor graph. For example, althgiggh

is connected ta and the pair of variable, z), it does not ac-
tually depend ore. So, the global function represented by the

new factor graph is
= OO0 oty 2 )
:fA(ax)le(xa Y, Z)flc(.’ll', Y, Z)f/D(aya Z)

! !
Fig. 19. Transforming variable and check nodes of high degree to multiple ) fE(y’ Z)fF (y’ SR )
nodes of degree three. = fal.s o) fB@, v)fel(z, 2) ol ) fely, 2)
fe(z )

modify a factor graph with an inconvenient structure into a more

convenient form. For example, it is always possible to transforf!
a factor graph with cycles into a cycle-free factor graph, but &ctor graph. o _

the expense of increasing the complexity of the local functions!n Fig- 20(b), there is still one cycle; however, it can be re-

and/or the domains of the variables. Nevertheless, such trafgved by clustering function nodes. In Fig. 20(c), we have clus-
formations can be useful in some cases: for example, at the &fgd the local functions correspondingft, f¢, and /%

of this section we apply them to derive an FFT algorithm from  fpcp(z, y, 2) = fg(z, ¥, 2)fo(x, ¥, 2) fe(y, 2).  (24)
the factor graph representing the DFT kernel. Similar gene L
procedures are described in [17], [20], and in the constructir(;)ﬂr{]e new global function is
of junction trees in [2]. g(.. @y, 2, )
= fA( L) x)fBCE(xv Y, Z)f/D( s Y Z)f%‘(yv Ry o ')7
. . . . :f4(7$)f]/3($7 Y, Z)f/C(‘Tv Y, Z)f/E(yv Z)
It is always possible to cluster nodes of like type—i.e., i D fly, 2, ..
all variable nodes or all function nodes—without changing DA\ oo ¥ BN 2o -
the global function being represented by a factor graph. Wiich is identical to the original global function.
consider the case of clustering two nodes, but this is easily!n this case, by clustering variable vertices and function ver-
generalized to larger clusters.dfandw are two nodes being tices, we have removed the cycles from the factor graph frag-
clustered, simply delete andw and any incident edges fromment. If the remainder of the graph is cycle-free, then the sum-
the factor graph, introduce a new node representing the pipductalgorithm may be used to compute exact marginals. No-
(v, w), and connect this new node to nodes that were neighb@ee that the sizes of the messages in this region of the graph have
of v or w in the original graph. increased. For examplg andz have alphabets of sizel, | and
Whenw andw are variables with domaind,, and A,,, re- |A.|, respectively, and if functions are represented by a list of
spectively, the new variable has domaly x A,. Note that their values, the length of the message passed figto (y/, =)
the size of this domain is theroductof the original domain IS €qual to the produdti, | [A.|.
sizes, which can imply a substantial cost increase in computa- . .
tional complexity of the sum-product algorithm. Any functiorP: Strétching Variable Nodes
f that hadv or w as an argument in the original graph must be In the operation of the sum-product algorithm, in the mes-
converted into an equivalent functigi that has(v, w) as an sage passed on an edge w1}, local function products are sum-
argument, but this can be accomplished without increasing ttmarized for the variable associated with the edge. Outside of
complexity of the local functions. those edges incident on a particular variable nedany func-
Whenv andw are local functions, by the pajr, w) we mean tion dependency oa is represented in summary form; i..is
the product of the local functions. X, and X, denote the sets marginalized out.
of arguments of; andw, respectively, thelX, U X, isthe set  Here we will introduce a factor graph transformation that
of arguments of the product. Pairing functions in this way canill extend the region in the graph over whiehis represented
imply a substantial cost increase in computational complexity wfthout being summarized. Let;(x) denote the set of nodes
the sum-product algorithm; however, clustering functions do#gat can be reached fromby a path of length two iF". Then
not increase the complexity of the variables. no(x) is a set of variable nodes, and for apye no(zx), we
Clustering nodes may eliminate cycles in the graph so then pairz andy, i.e., replacey with the pair(z, ¥), much as
the sum-product algorithm in the new graph computes marginala clustering transformation. The function nodes incidenj on
functions exactly. For example, clustering the nodes associateauld have to be modified as in a clustering transformation, but,
with ¢ andz in the factor graph fragment of Fig. 20(a) and conas before, this modification does not increase their complexity.
necting the neighbors of both nodes to the new clustered nowée call this a “stretching” transformation, since we imagine
we obtain the factor graph fragment shown in Fig. 20(b). Nmodez being “stretched” along the path fromto .
tice that the local function nodéz connectingy andz in the More generally, we will allow further arbitrary stretching of
original factor graph appears with just a single edge in the new|f B is a set of nodes to which has been stretched, we will

ich is identical to the global function represented by the old

A. Clustering



514 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 47, NO. 2, FEBRUARY 2001

/B fe

(a)

Fig. 20. Clustering transformations. (a) Original factor graph fragment. (b) Variable paates: clustered. (¢) Function nodés;, f, andfr clustered.

(14342

(a) (b) ()

Fig. 21. Stretching transformation. (a) Original factor graph. (b) Nedés stretched ta:; andx;. (c) The node representing alone is now redundant and
can be removed.

allow z to be stretched to any element:of( B), the set of vari- whenever they arise as the result of a series of stretching trans-
able nodes reachable from any nodefbby a path of length formations.
two. In stretchinge in this way, we retain the following basic  Fig. 12(b) illustrates an important motivation for introducing
property: the set of nodes to whighhas been paired (togetherthe stretching transformation; it may be possible for an edge, or
with the connecting function nodes) induces a connected sihdeed a variable node, to becomeeglundant Let f be a local
graph of the factor graph. This connected subgraph generatdsrection, lete be an edge incident ofy, and letX. be the set
well-defined set of edges over whiehis represented without of variables (from the original factor graph) associated with
being summarized in the operation of the sum-product algh-X. is contained in the union of the variable sets associated
rithm. This stretching leads to precisely the same condition thaith the edges incident ofiother thane, thene is redundant. A
define junction trees [2]: the subgraph consisting of those veedundant edge may be deleted from a factor graph. (Redundant
tices whose label includes a particular variable, together wigldlges must be removed one at a time, because it is possible for
the edges connecting these vertices, is connected. an edge to be redundant in the presence of another redundant
Fig. 21(a) shows a factor graph, and Fig. 21(b) shows adge, and become relevant once the latter edge is removed.) If
equivalent factor graph in which; has been stretched to allall edges incident on a variable node can be removed, then the
variable nodes. variable node itself is redundant and may be deleted.
When a single variable is stretched in a factor graph, sinceFor example, the node containing alone is redundant
all variable nodes represent distinct variables, the modified vair- Fig. 21(b) since each local function neighboring has a
ables that result from a stretching transformation are all distinaeighbor (other tham;) to whichz; has been stretched. Hence
However, if we permit more than one variable to be stretchetthis node and the edges incident on it can be removed, as shown
this may no longer hold true. For example, in the Markov chain Fig. 21(c). Note that we are not removing thariable z
factor graph of Fig. 12(c), if botlr; andz, are stretched to all from the graph, but rather just a node represeniingHere,
variables, the result will be a factor graph having two verticasmlike elsewhere in this paper, the distinction between nodes
representing the paitz1, x4). The meaning of such a peculiarand variables becomes important.
“factor graph” remains clear, however, since the local functionsLet = be a variable node involved in a cycle, i.e., for which
and hence also the global function are essentially unaffectedthgre is a nontrivial patf# from « to itself. Let{y, f}, {f, «}
the stretching transformations. All that changes is the behavhm the last two edges iR, for some variable nodg and some
of the sum-product algorithm, since, in this example, neith&unction nodef. Let us stretch: along all of the variable nodes
z1 hor z4 will ever be marginalized out. Hence we will permitinvolved in P. Then the edgéz, f} is redundant and hence can
the appearance of multiple variable nodes for a single varialile deleted since bothand(z, y) are incident ory. (Actually,
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® @ @)

Fig. 22. The DFT. (a) Factor graph. (b) A particular spanning tree. (c) Spanning tree after clustering and stretching transformation.

there is also another redundant edge, corresponding to travelragable nodes appearing in each path feoto a local function
P in the opposite direction.) In this way, the cycle framto  havingx as an argument. Intuitively; is not marginalized out
itself is broken. in the region off” in which z is “involved.”

By systematically stretching variables around cycles and then
deleting a resulting redundant edge to break the cycle, it is p&s- An FFT
sible to use the stretching transformation to break all cycles inAn important observation due to Aji and McEliece [1], [2] is
the graph, transforming an arbitrary factor graph into an equivitrat various fast transform algorithms may be developed using
lent cycle-free factor graph for which the sum-product algoritha graph-based approach. We now show how we may use the
produces exact marginals. This can be done without increasfagtor-graph transformations of this section to derive an FFT.
the complexity of the local functions, but comes at the expenseThe DFT is a widely used tool for the analysis of dis-

of an (often quite substantial) increase in the complexity of thgete-time signals. Letv = (wo, ..., wy_1) be a complex-
variable alphabets. valuedN-tuple, and lef2 = ¢/2*/N with j = /=1, be a prim-
itive Nth root of unity. The DFT ofw is the complex-valued
C. Spanning Trees N-tupleW = (W, ..., Wy_1) where
N-1

A spanning treef” for a connected grapt¥ is a connected, Wy = Z w0k, kE=0,1,...,N—1. (25)
cycle-free subgraph d@F having the same vertex set@slLet I o
be a connected factor graph with a spanningIread for every Consider now the case wheleis a power of two, e.g¥ =
variable noder of I, letn(x) denote the set of function nodess for concreteness. We express variableand k in (25) in
havingz as an argument. SincE is a tree, there is a uniquebinary; more precisely, we let = 4z, + 2z; + o and let
path between any two nodes’6f and in particular between & = 4y + 2, + 3o, Wherez; andy; take values fron{0, 1}.
and every element of(z). Now supposer is stretched to all We write the DFT kernel, which we take as our global function,
variable nodes involved in each path frano every element of in terms of these variables as

, .
n(z), and letF” be the resulting transformed factor graph. 9(z0, T1, T2, Yo, Y1, U2)

It turns out that every edge &t notinT is redundant and all —w (424221 +20) (4y+241430)
such edges can be deleted fré#h Indeed, ifc is an edge of” e 2r o , , o
notinT’, let X. be the set of variables associated witfand let = f(wo, w1, w2)(=1)"0 (— 1) (1) ()70
f be the local function on whichis incident. For every variable - (g)TTrvoQyTrovo
r € X, thereis apath il from f tox, andz is stretched to all where f(z¢, 21, T2) = Wazy422, 42, aNd We have used the
variable nodes along this path, and in particular is stretched teegationsQ'¢ = Q% = 1, Q* = —1, andQ? = j. We see

neighbor (inT’) of f. Since each element &f. appears in some that the DFT kernel factors into a product of local functions as
neighboring variable node not involvirg ¢ is redundant. The expressed by the factor graph of Fig. 22(a).
removal ofe does not affect the redundant status of any otherwe observe that

y X
edge ofF” notin7’, hence all such edges may be deleted fronwk = Wiy, 420 4un = Z Z Zg(xo, 21, T2, Yo, Y1, Y2)

4
F. To T1 T2

This observation implies that the sum-product algorithm can (26)
be used to compute marginal functions exactly in any spannigg that the DFT can be viewed as a marginal function, much
treeT of F', provided that each variableis stretched along all like a probability mass function. WhelN is composite, sim-
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ilar prime-factor-based decompositionsoandk will result in Factor graphs afford great flexibility in modeling systems.
similar factor graph representations for the DFT kernel. Both Willems’ behavioral approach to systems and the tradi-
The factor graph in Fig. 22(a) has cycles. We wish to cartional input/output or state-space approaches fit naturally in the
out exact marginalization, so we form a spanning tree. Thdaetor graph framework. The generality of allowing arbitrary
are many possible spanning trees, of which one is shownfimctions (not just probability distributions or characteristic
Fig. 22(b). (Different choices for the spanning tree will lead tfunctions) to be represented further enhances the flexibility of
possibly different DFT algorithms when the sum-product algdactor graphs.
rithm is applied.) If we cluster the local functions as shown in Factor graphs also have the potential to unify modeling and

Fig. 22(b), essentially by defining signal processing tasks that are often treated separately in cur-
rent systems. In communication systems, for example, channel

a(z2, yo) = (—1)"% modeling and estimation, separation of multiple users, and de-

a1, yo, y1) = (=1)F¥(—y)¥1¥o coding can be treated in a unified way using a single graphical

(—1)®avz (—j)mavryeasio model that represents the interactions of these various elements,
as suggested by Wiberg [31]. We believe that the full potential of

then we arrive at the spanning tree shown in Fig. 22(c). The valiis approach has not yet been realized, and we suggest that fur-

ables that result from the required stretching transformation drer exploration of the modeling power of factor graphs and ap-

shown. Although they are redundant, we have included variatplications of the sum-product algorithm will prove to be fruitful.

nodeszo andz;. Observe that each message sent from left to

right is a function of three binary variables, which can be repre- APPENDIX A

sented as a list of eight complex quantities. Along the path from FROM FACTOR TREES TOEXPRESSIONTREES

fto (4o, y1, ye), first 2, thenzy, and thency are marginalized

out asyo, %1, andys are added to the argument list of the func-

tions. In three steps, the functian, is converted to the func-

tion Wy.. Clearly, we have obtained an FFT as an instance of the

C(.’L'(), Yo, Y1, y?) =

Let g(x, x1, ..., zy—1) be a function that can be repre-
sented by a cycle free connected factor graph, i.&actr tree
. We are interested in developing an expression for

sum-product algorithm. Z g(x, 21, .., TN1)
~{w}
VIl. CONCLUSION i.e., the summary fot of g. We considet: to be the root off’,

so that all other vertices & aredescendantef x.

Factor graphs provide a natural graphical description of theAssuming that: hasK neighbors ifl", then without loss of
factorization of a global function into a product of local funcgeneralityg may be written in the form
tions. Factor graphs can be applied in awide range of application
areas, as we have illustrated with a large number of examples.

A major aim of this paper was to demonstrate that a single glw, w1, s ay-1) = HFZ‘(Q* Xi)
algorithm—the sum-product algorithm—based on only a single
conceptually simple computational rule, can encompass @RereF;(z, X;) is the product of all local functions in the sub-

enormous variety of practical algorithms. As we have seefige of7’ that have théth neighbor ofr as root, andy; is the

these include the forward/backward algorithm, the Viterljet of variables in that subtree. Sir€eis a tree, fori # j,
algorithm, Pearl's belief propagation algorithm, the iterativg, n X; =0andX, U---UXg = {21, ..., ey_1 }, L€,

turbo decoding algorithm, the Kalman filter, and even certaig, .. X, isa partmon of{zy, .. Q;N_l} This decom-

FFT algorithms! Various extensions of these a'QO”tth—ffﬁfosnmn is represented by the generlc factor tree of Fig. 23, in
example, a Kalman filter operating on a tree-structurgghich Fi(z, X1) is shown in expanded form.
system—although not treated here, can be derived in a straightNow, by the distributive law, and using the fact that

forward manner by applying the principles enunciated in th';gl’ ..., Xx are pairwise disjoint, we obtain
paper.
We have emphasized that the sum-product algorithm may ' g(z, z1, ..., zn—1)

be applied to arbitrary factor graphs, cycle-free or not. In the(;;

cycle-free finite case, we have shown that the sum-product al-

gorithm may be used to compute function summaebeactly o Z Z ZFl 7, X)) By
In some applications, e.g., in processing Markov chains and
hidden Markov models, the underlying factor graph is natu- _ -

rally cycle-free, while in other applications, e.g., in decoding <; fa X0 ) <Zf @ X2) ) <Zf % Xr) )
of LDPC codes and turbo codes, it is not. In the latter case, a

successful strategy has been simply to apply the sum-product_ H Z Fi(z, X;)

algorithm without regard to the cycles. Nevertheless, in some
cases it might be important to obtain an equivalent cycle-free
representation, and we have given a number of graph transfice-, the summary fot: of g is theproductof the summaries for
mations that can be used to achieve such representations. z of the F; functions.

XQ) e F}((.’IZ’, X[()
Xl X2

i=1 Az}
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The problem of computing the summary far, of the
product of the local subtree descending fremis a problem
of the same general form with which we began, and so the
same general approach can be applied recursively. The result
of this recursion justifies the transformation of the factor
tree for g with root vertexz into an expression tree for
ZN{m} g(z, z1, ..., xy_1), asillustrated in Fig. 5.

APPENDIX B
OTHER GRAPHICAL MODELS FORPROBABILITY DISTRIBUTIONS

Factor graphs are by no means the first graph-based language
for describing probability distributions. In the next two exam-
ples, we describe very briefly the close relationship between
factor graphs and models based on undirected graphs (Markov
random fields) and models based on directed acyclic graphs
(Bayesian networks).

A. Markov Random Fields
A Markov random field (see, e.g., [18]) is a graphical model

Fig. 23. A generic factor tree. based on an undirected grapgh= (V, E) in which each node
corresponds to a random variable. The gréplis a Markov
Consider the case= 1. To compute the summary farof random field(MRF) if the distributionp(vy, ..., v,) satisfies

I, observe that, without loss of generalify,(x, X;) can be the local Markov property
written as
(VveV)  pV\{v})=plvn(v)) (27)

Bz, X1) = filz, 21, 20) G, ) wheren(v) denotes the set of neighborswofin words,G is an
Go(g, X12)---Grlrr, X1L)  MRFif every variablev is independent of nonneighboring vari-

where, for convenience, we have numbered the argumeﬂ@es in the graph, given the values of its immediate neighbors.
of g so that fi(z, 1, ..., z1) is the first neighbor ofz. MRFs are well developed in statistics, and have been used in a
This decomposition is illustrated in Fig. 23. We note thaf2riety of applications (see, e.g., [18], [26], [16], [15]).

{z1,..., 21}, X11, ..., X1y, is a partition of X;. Again A cliquein a graph is a collection of vertices which are alll
using the fact that these sets are pairwise-disjoint and apply#yrvise neighbors. Under fairly general conditions (e.g., pos-
the distributive law, we obtain itivity of the joint probability density is sufficient), the joint

probability mass function of an MRF may be expressed as the

Z Fi(z, Xy) product of a collection of Gibbs potential functions, defined on
~{z} the set(? of cliques in the MRF, i.e.
= filw, w1, . 2)G(n, X)) Grlar, Xir) o, va, ooy on) = 274 [ Fe(Ve) (28)
N[m} FeQ
= Z filz, z1, ..., zr) ZG1($1, X)) |- where Z—! is a normalizing constant, and eagh € Q is a
@ wL X cligue. For example (cf. Fig. 1), the MRF in Fig. 24(a) may be

used to express the factorization
<)§ Gr(zr, X1L)> p(v1, va, U3, V4, V5)
= 77" fe(vy, va, vs) fp(vs, va) fu(va, vs)-
= Z (fl(% Ty, ..., TL) H Z G(z, Xli)) . Clearly, (28) has precisely the structure needed for a factor
~{x} =1 ~{xz;} graph representation. Indeed, a factor graph representation may
In words, we see that if. (z, =1, ..., 1) is a neighbor of:, be preferable to an MRF in expressing such a factorization,

since distinct factorizations, i.e., factorizations with different
@’'s in (28), may yield precisely thesameunderlying MRF
graph, whereas they will always yield distinct factor graphs.
(An example in a coding context of this MRF ambiguity is
1) for each neighbor; of f; (other thanr), compute the given in [19].)

summary forz; of the product of the functions in the

subtree descending from; B. Bayesian Networks

2) form the product of these summaries wijth summa- Bayesian networks (see, e.g., [25], [17], [10]) are graphical
rizing the result forz. models for a collection of random variables that are based on

to compute the summary farof the product of the local func-
tions in the subtree df descending frony;, we should do the
following:



518 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 47, NO. 2, FEBRUARY 2001

@) @) (@) (2) (@) @)
F D

(@) @) (@ @) @) @)
(2) (b) (©

Fig. 24. Graphical probability models. (a) A Markov random field. (b) A Bayesian network. (c) A factor graph.

directed acyclic graphs (DAGs). Bayesian networks, combined
with Pearl’'s “belief propagation algorithm” [25], have become
an important tool in expert systems. The first to connect
Bayesian networks and belief propagation with applications
in coding theory were MacKay and Neal [21]; more recently,
[19], [24] develop a view of the “turbo decoding” algorithm [5]
as an instance of probability propagation in a Bayesian network
model of a code.

Each nodev in a Bayesian network is associated with a
random variable. Denoting hy(v) the set ofparentsof v (i.e.,
the set of verticedrom which an edge is incident on), by
definition, the distribution represented by the Bayesian network
may be written as

Fig. 25. Messages sent in belief propagation.
n

plos, va, ... v) = [ ploilate:)). (29) . .
ey andcis a child ofp. Messages sent between variables are always
functions of the parent. In [25], a message sent fropto ¢ is
If a(v;) = @ (i.e.,v; has no parents), we tak¢v;|<) = p(v;). denotedr.(p), while a message sent froato p is denoted as
For example (cf. (2)) Fig. 24(b) shows a Bayesian network thaf(p), as shown in Fig. 25 for the specific Bayesian network of

expresses the factorization Fig. 24(c).
Consider the central variablg in Fig. 25. Clearly, the mes-
p(v1, v2, v3, v4, V5) sage sent upwards by the sum-product algorithm to the local

= p(v1)p(va)p(vs|vy, v2)p(us|vs)p(uslvs). (30) function f contained in the ellipse is, from (5), given by the
product of the incoming. messages, i.e.
Again, as with Markov random fields, Bayesian networks ex-

press a factorization of a joint probability distribution that is Pas—p(23) = Az, (73)Aay (73).
suitable for representation by a factor graph. The factor graph ] .
corresponding to (30) is shown in Fig. 24(c); cf. Fig. 1. The message sent frofito z; is, according to (6), the product

It is a straightforward exercise to translate the updaff/ With the other messages receivedfaummarized for;.
rules that govern the operation of the sum-product aIgorithNPte that this local function is the conditional probability mass
to Pearl’s belief propagation rules [25], [17]. To convert fnction f(zs|z1, x2); hence
Bayesian network into a factor graph: simply introduce a
function node for each factop(v;|a(v;)) in (29) and draw Ay (1) = Z (Azy (#3)A0s (w3) f (w3]21, w2)m, (w2))
edges from this node tg; and its parenta(v;). An example ~{z1}

_con\_/ersion from a Bayesian network to a factor graph is shown Z Aa, (23)Ag, (23) Z f(xs|zy, 22)me, (22).
in Fig. 24(c). s oo

Equations similar to Pearl’s belief updating and bottom-
up/top-down propagation rules [25, pp. 182—183] may be deimilarly, the message.., (x3) sent fromz; to the ellipse con-
rived from the general sum-product algorithm update equatiot@ning x4 is given by
(5) and (6) as follows.

In belief propagation, messages are sent between “variabl@z, (#3) = A, (x3) > (f(ws|z1, 22)ma, (21)70, (22))
nodes,” corresponding to the dashed ellipses for the particular ~{zs}

Bayes.ian. network shown in Fig. 25. Ina Baye_sian network, if an =\, (z3) Z Z Faslz1, 22)7, (1) 70, (22).
edge is directed from vertexto vertexc, thenp is a parent ot P



KSCHISCHANGet al: FACTOR GRAPHS AND THE SUM-PRODUCT ALGORITHM

In general, let us denote the set of parents of a variatiyy [5]
a(z), and the set of children of by d(z). We will have, for
everya € a(z)
(6]
Ae(a) =" | T] M@ f(ela) T[] 7o) [7]
~{a} \de€d(z) pEa(x)\{a}
(31)
and, for everyd € d(x) (8]
(9]
ra@)= [ Aele) Y | flala@) ] 0 10]
cCd(z)\{d} ~{z} aCa(x)
(32) [11]
The termination condition for cycle-free graphs, called the “be—[lz]
lief update” equation in [25], is given by the product of the mes-
sages received by in the factor graph
(13]
(14]
BEL(z)= [[ Xa(@) D [ fzla(z)) J] ma(a) a5

ded(x) ~{z}

a€a(x)

(33)
Pearl also introduces a scale factor in (32) and (33) so that the
resulting messages properly represent probability mass fun€L6l
tions. The relative complexity of (31)—(33) compared with them]
simplicity of the sum-product update rule given in Section I
provides a strong pedagogical incentive for the introduction of18]
factor graphs. [19]
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