
ava i lab le at www.sc iencedi rec t . com

journa l homepage : www. e lsev ier . com/ loca te / d i in

d i g i t a l i n v e s t i g a t i o n 3 S (2 0 0 6) S 9 1 – S 9 7
Identifying almost identical files using context triggered
piecewise hashing

Jesse Kornblum

ManTech SMA

Keywords:

Memory analysis

Forensics

Windows

Reverse engineering

Microsoft

a b s t r a c t

Homologous files share identical sets of bits in the same order. Because such files are not

completely identical, traditional techniques such as cryptographic hashing cannot be used

to identify them. This paper introduces a new technique for constructing hash signatures

by combining a number of traditional hashes whose boundaries are determined by the

context of the input. These signatures can be used to identify modified versions of known

files even if data has been inserted, modified, or deleted in the new files. The description of

this method is followed by a brief analysis of its performance and some sample applica-

tions to computer forensics.

ª 2006 DFRWS. Published by Elsevier Ltd. All rights reserved.
1. Introduction

This paper describes a method for using a context triggered

rolling hash in combination with a traditional hashing algo-

rithm to identify known files that have had data inserted,

modified, or deleted. First, we examine how cryptographic

hashes are currently used by forensic examiners to identify

known files and what weaknesses exist with such hashes.

Next, the concept of piecewise hashing is introduced. Finally

a rolling hash algorithm that produces a pseudo-random

output based only on the current context of an input is de-

scribed. By using the rolling hash to set the boundaries for

the traditional piecewise hashes, we create a Context Trig-

gered Piecewise Hash (CTPH). Such hashes can be used to

identify ordered homologous sequences between unknown

inputs and known files even if the unknown file is a modified

version of the known file. We demonstrate the spamsum al-

gorithm, a CTPH implementation, and briefly analyze its

performance using a proof of concept program called

ssdeep.

The algorithm explained in the remainder of this paper

was adapted from a spam email detector called spamsum
(Andrew, 2002) written by Dr. Andrew Tridgell. Spamsum

can identify emails that are similar but not identical to sam-

ples of known spam. The spamsum algorithm was in turn

based upon the rsync checksum (Tridgell, 1999) also by Dr.

Tridgell. Although the application of this algorithm to com-

puter forensics is new, the author did not develop the spam-

sum algorithm. This paper explains the new application and

analyzes its effectiveness.

2. Background

Computer forensic examiners are often overwhelmed with

data. Modern hard drives contain more information that

cannot be manually examined in a reasonable time period

creating a need for data reduction techniques. Data reduc-

tion techniques aim to draw the examiner’s attention to

relevant data and minimize extraneous data. For example,

a common word processing application is not worth exam-

ining, but a known malicious program should be

highlighted.
E-mail address: jesse.kornblum@mantech.com
1742-2876/$ – see front matter ª 2006 DFRWS. Published by Elsevier Ltd. All rights reserved.
doi:10.1016/j.diin.2006.06.015

mailto:jesse.kornblum@mantech.com
http://www.elsevier.com/locate/diin

d i g i t a l i n v e s t i g a t i o n 3 S (2 0 0 6) S 9 1 – S 9 7S92
To date, forensic examiners have used cryptographic hash-

ing algorithms such as MD5 and SHA-1 for data reduction

(White, 2005). These algorithms take an input of arbitrary

size and produce a fixed-length value corresponding to that

input. Cryptographic hashes have many properties, but foren-

sic examiners take advantage of two of them in particular.

First, if even a single bit of the input is changed, the output

will be radically different. Second, given an input and its

hash, it is computationally infeasible to find another input

that produces the same hash.

These two properties can be used to identify known files in

sets of unknown files. An examiner gathers a set of known files,

computes their cryptographic hash values, and stores those

values. During future investigations, the examiner can com-

pute the hash values for every file in the investigation and com-

pare those hash values to the known values computed

previously. If any of the new hash values match the known

values, the investigator has almost certainly found the known

files (White, 2005). If the file in question is a known good file, the

file can be eliminated from consideration. If it is a known bad

file, the examiner has a new investigative lead to follow.

Once sets of hashes have been created they can be passed

from one investigator to another. The National Institute of

Standards and Technology, the U.S. Department of Justice

(White, 2005), and a number of forensic software vendors

have all established repositories of cryptographic hashes for

this purpose.

Malicious users can frustrate this technique, however, by

making even a one-bit change to known files (Foster and Liu,

2005). As noted above, changing even a single bit of the input

changes the cryptographic hash of the file. For example, altering

a string found in most Microsoft Windows programs, from ‘‘This

program cannot be run in DOS mode’’ to ‘‘This program cannot

be run on DOS mode’’ (emphasis added), will radically alter the

hash for that file. As a result, systems that use sets of known

cryptographic hashes cannot match this file to the original.

Files with one-bit changes are almost entirely identical and

share a large ordered homology. Borrowing from genetics, two

chromosomes are homologous if they have identical se-

quences of genes in the same order. Similarly, two computer

files can have ordered homologous sequences if they have

large sequences of identical bits in the same order. The two

files are identical except for a set of insertions, modifications,

and deletions of data.

In practice, these almost identical files could be a Microsoft

Word document and an edited version of that document or

a JPEG and a truncated version of that JPEG. Such files would

have different cryptographic hashes and could not be identi-

fied as homologous using algorithms such as MD5. Although

the human eye can detect the similarity between the two,

there is currently no automated method to do so.

3. Context triggered piecewise hashes

3.1. Piecewise hashing

Originally developed by Nicholas Harbour for dcfldd (Har-

bour, 2002), piecewise hashing uses an arbitrary hashing
algorithm to create many checksums for a file instead of

just one. Rather than to generate a single hash for the entire

file, a hash is generated for many discrete fixed-size seg-

ments of the file. For example, one hash is generated for the

first 512 bytes of input, another hash for the next 512 bytes,

and so on. See Fig. 1 for a set of sample piecewise hashes. The

technique was originally developed to mitigate errors during

forensic imaging. If an error occurred, only one of the piecewise

hashes would be invalidated. The remainder of the piecewise

hashes, and thus the integrity of the remainder of the data,

was still assured.

Piecewise hashing can use either cryptographic hashing

algorithms, such as MD5 in dcfldd or more traditional hash-

ing algorithms such as a Fowler/Noll/Vo (FNV) hash. Regard-

less of the algorithm, for the purposes of this paper the

algorithm used to compute the piecewise hashes is called

the traditional hash to distinguish it from the rolling hash de-

scribed below.

3.2. The rolling hash

A rolling hash algorithm produces a pseudo-random value

based only on the current context of the input. The rolling

hash works by maintaining a state based solely on the last

few bytes from the input. Each byte is added to the state as

it is processed and removed from the state after a set number

of other bytes have been processed.

Assuming we have an input of n characters, we say the ith

byte of the input is represented by bi. Thus, the input as

a whole consists of bytes b1, b2,., bn. At any position p in

the input, the state of the rolling hash will depend only on

the last s bytes of the file. Thus, the value of the rolling

hash, r, can be expressed as a function of the last few bytes

as shown in Eq. (1).

rp ¼ F
�
bp;bp�1; bp�2;.; bp�s

�
(1)

The rolling hash function F is constructed so that it is possi-

ble to remove the influence of one of the terms. Thus, given rp,

it is possible to compute rp þ 1 by removing the influence of

bp � s, represented as the function X(bp � s), and adding the in-

fluence of bp þ 1, represented as the function Y(bp þ 1), as seen

in Eqs. (2) and (3).

rpþ1 ¼ rp � X
�
bp�s

�
þ Y

�
bpþ1

�
(2)

rpþ1 ¼ F
�
bpþ1;bp;bp�1;.;bðp�sÞþ1

�
(3)

3.3. Combining the hash algorithms

Whereas current piecewise hashing programs such as dcfldd

used fixed offsets to determine when to start and stop the tra-

ditional hash algorithm, a CTPH algorithm uses the rolling

hash. When the output of the rolling hash produces a specific

0 - 512: 24a56dad0a536ed2efa6ac39b3d30a0f
512 - 1024: 0bf33972c4ea2ffd92fd38be14743b85
1024 - 1536: dbbf2ac2760af62bd3df3384e04e8e07

Fig. 1 – Sample piecewise MD5 hashes.

d i g i t a l i n v e s t i g a t i o n 3 S (2 0 0 6) S 9 1 – S 9 7 S93
output, or trigger value, the traditional hash is triggered. That

is, while processing the input file, one begins to compute the

traditional hash for the file. Simultaneously, one must also

compute the rolling hash for the file. When the rolling hash

produces a trigger value, the value of the traditional hash is

recorded in the CTPH signature and the traditional hash is

reset.

Consequently, each recorded value in the CTPH signature

depends only on part of the input, and changes to the input

will result in only localized changes in the CTPH signature.

For instance, if a byte of the input is changed, at most two,

and in many cases, only one of the traditional hash values

will be changed; the majority of the CTPH signature will re-

main the same. Because the majority of the signature remains

the same, files with modifications can still be associated with

the CTPH signatures of known files.

The remainder of this paper demonstrates one implemen-

tation of a CTPH called the spamsum algorithm in honor of its

origin. This algorithm is implemented in the program ssdeep

to be published concurrently with this paper at http://

ssdeep.sourceforge.net/.

4. The spamsum algorithm

The spamsum algorithm uses FNV hashes for the traditional

hashes (Andrew, 2002) which produce a 32-bit output for any

input (Noll, 2001). In spamsum, Dr. Tridgell further reduced

the FNV hash by recording only a base64 encoding of the six

least significant bits (LS6B) of each hash value (Andrew, 2002).

The algorithm for the rolling hash was inspired by the Al-

der32 checksum (Andrew, 2002) and pseudocode for it is in

Fig. 2. The original spamsum algorithm had an additional log-

ical AND with 0xffffffff following the shift left which has

been deleted. This AND statement originally limited the

values in the algorithm to 32-bit values. Because the author

has explicitly stated that all values in the algorithm are un-

signed 32-bit values, the AND statement has no effect and

has been omitted.

Before processing the input file, we must choose a trigger

value for the rolling hash. In the spamsum algorithm, and

thus for the remainder of this paper, the trigger value will

be referred to as the block size. Two constants, a minimum

To update the hash for a byte d:

x, y, z, and c are unsigned 32-bit values initialized to zero. window is
 an array of size unsigned 32-bit values all of which are initialized to
 zero.

y = y − x
y = y + size ∗ d
x = x + d
x = x − window [c mod size]
window [c mod size] = d
c = c + 1
z = z 5
z = z ⊕ d
return (x + y + z)

Fig. 2 – Pseudocode for rolling hash.
block size, bmin, and a spamsum length, S, are used to set

the initial block size for an input of n bytes using Eq. (4).

The block size may be adjusted after the input is processed

under certain conditions defined below. Thus, the block

size computed before the input is read is called the initial

blocksize, binit.

binit ¼ bmin2
Plog2ð n

Sbmin
ÞR

(4)

After each byte of the input is processed, the rolling hash is

updated and the result is compared against the block size. If

the rolling hash produces a value that is equal, modulo the

block size, to the block size minus one, the rolling checksum

has hit a trigger value. At such time a base64 encoded value

of the LS6B of the traditional hash is appended to the first

part of the final signature. Similarly, when the rolling check-

sum produces a value that is equal, modulo twice the block

size, to twice the block size minus one, a base64 encoded value

of the LS6B of the traditional hash is appended to the second

part of the spamsum hash. Note that two separate states of

the traditional hash are maintained, one for each block size

calculation.

After every byte of the input has been processed, the final

signature is examined. If the first part of the signature is not

long enough after all of the input is processed, the block size

is halved and the input is processed again.

The final spamsum signature consists of the block size,

the two sets of LS6Bs, and the input’s filename in quotes.

The first set of LS6Bs is computed with block size b and

the other 2b. Psuedocode for the spamsum algorithm is

shown in Fig. 3 and a sample spamsum signature is shown

in Fig. 4.

5. Comparing spamsum signatures

Two spamsum signatures can be compared to determine if

files from which they were derived are homologous. The

examination looks at the block size, eliminates any se-

quences, and then computes a weighted edit distance be-

tween them as defined below. The edit distance is scaled

to produce a match score, or a conservative weighted mea-

sure of the ordered homologous sequences found in both

files.

Because the triggers for the traditional hash are based

upon the input file and the block size, only signatures with

an identical block size can be compared. The spamsum algo-

rithm generates signatures for each input based on block sizes

b and 2b, so it is possible to compare two signatures if the

block sizes given in the signatures are within a power of

a two. For example, with two signatures, the first with a block

size of bx and the second with by, the first signature has CTPH

values for block sizes bx and 2bx, the second for y and 2by. We

can compare these two signatures if bx¼ by, 2bx¼ by, or

bx¼ 2by.

After the block sizes have been resolved, any recurring se-

quences are removed. These sequences indicate patterns in

the input file and usually do not convey much information

about the content of the file (Andrew, 2002). Finally, the

http://ssdeep.sourceforge.net/
http://ssdeep.sourceforge.net/

d i g i t a l i n v e s t i g a t i o n 3 S (2 0 0 6) S 9 1 – S 9 7S94
weighted edit distance between the two hashes is computed

using dynamic programming. Given two strings s1 and s2,

the edit distance between them is defined as ‘‘the minimum

number of point mutations required to change s1 into s2’’,

where a point mutation means either changing, inserting,

or deleting a letter (Allison, 1999). The spamsum algorithm

uses a weighted version of the edit distance formula origi-

nally developed for the USENET newsreader trn (Andrew,

2002). In this version, each insertion or deletion is weighted

as a difference of one, but each change is weighted at three

and each swap (i.e. the right characters but in reverse order)

is weighted at five. For clarity, this weighted edit distance is

referenced as e(s1,s2) for signatures s1 and s2 of length l1 and

l2, respectively, and is shown in Eqs. (5)–(7). In these equa-

tions, i is the number of insertions, d is the number of dele-

tions, c is the number of changes, and w is the number of

swaps.

e ¼ iþ dþ 3cþ 5w (5)

cþw �minðl1; l2Þ (6)

iþ d ¼ jl1 � l2j (7)

b = compute initial block size(input)

done = FALSE

while (done = FALSE) {
initialize rolling hash(r)
initialize traditional hash(h1)
initialize traditional hash(h2)

signature1 =""
signature2 =""

foreach byte d in input {
update rolling hash(r,d)
update traditional hash(h1,d)
update traditional hash(h2,d)
if (get rolling hash(r) mod b = b − 1)then {

signature1+= get traditional hash(h1) mod 64

initialize traditional hash(h1)

}
if (get rolling hash(r) mod (b ∗ 2) = b ∗ 2 − 1) then {

signature2+= get traditional hash(h2) mod 64

initialize traditional hash(h2)

}
}

if length (signature1)< S/2 then
b = b/2

else

done = TRUE
}

signature = b+ ":" +signature1+ ":" +signature2

Fig. 3 – Pseudocode for the spamsum algorithm.
The edit distance is then rescaled from 0–64 to 0–100 and

inverted so that zero represents no homology and 100 indi-

cates almost identical files. The final match score, M, for

strings of length l1 and l2 can be computed using Eq. (8).

Note that when S¼ 64, which is the default, that the S and

64 terms cancel.

The match score represents a conservative weighted per-

centage of how much of s1 and s2 are ordered homologous

sequences. That is, a measure of how many of the bits of

these two signatures are identical and in the same order.

The higher the match score, the more likely the signatures

came from a common ancestor and the more likely the

source files for those signatures came from a common an-

cestor. A higher match score indicates a greater probability

that the source files have blocks of values in common and

in the same order.

M ¼ 100�
�

100Seðs1; s2Þ
64ðl1 þ l2Þ

�
(8)

The CTPH proof of concept program, ssdeep (Kornblum,

2006b), indicates any two files with a match score greater

than zero as matching. During anecdotal testing the author

did not find any dissimilar files that had a match score greater

than zero, but further research should be conducted in this

area.

It is possible that two files can have identical CTPH signa-

tures but still be different files. If a modification is made to

a file that does not affect when the rolling hash triggers the re-

cording of the traditional hash, the value of the traditional

hash for that piecewise segment may be different. But because

the value of the traditional hash is reduced from a 32-bit value

to a 6-bit value, by the pigeonhole principle, many values from

the traditional hash will map to the same value recorded in

the signature. Specifically, there is a 2�6 probability that this

new block will have the same CTPH signature as the original

file. Thus, even if two files have the same spamsum signature,

there is no proof that they are byte for byte identical and the

examiner must further examine the files in question. Granted,

such a discrepancy can easily be resolved using cryptographic

hashing algorithms such as MD5. Given that such algorithms

can indicate for certain if the files are identical and run

much faster than CTPH, they should probably be computed

first regardless.

5.1. Comparing identical files

Because the spamsum algorithm is completely deterministic,

identical files will produce the same spamsum hash. Since

the hashes match exactly they will have an edit distance

of zero. When scaled they have a match score of 100 – a per-

fect match.
1536:T0tUHZbAzIaFG91Y6pYaK3YKqbaCo/6Pqy45kwUnmJrrevqw+oWluBY5b32TpC0:
T0tU5s7ai6ptg7ZNcqMwUArKvqfZlMC0,"/music/Dragostea Din Tei.mp4"

Fig. 4 – Sample spamsum signature, line breaks added.

d i g i t a l i n v e s t i g a t i o n 3 S (2 0 0 6) S 9 1 – S 9 7 S95
5.2. Without changing triggers

If a change is made in the input file such that none of the con-

texts that trigger the rolling hash are altered, one of the tradi-

tional hash values will still be changed. As there are only 64

possible values of the traditional hash, there is still a 2�6 pos-

sibility that this new file will have the same signature as the

original file. Even if the signatures are different, they will

only differ by one character and therefore have an edit dis-

tance of one. Applying the formula from Eq. (8), we can com-

pute the final match score for these two files as (100�(100/

(l1þ l2))).

5.3. Changing triggers

If a modification is made in the input file such that one of

the context triggers is changed, at most two of the tradi-

tional hash values will be changed. First, the rolling hash

will trigger earlier than in the original file, changing the cur-

rent value of the traditional hash. Then, because the compu-

tation of the next value of the traditional hash started at

a different point in the input file, the next value of the tradi-

tional hash will most likely be changed too. Finally, for each

of those values of the traditional hash there is a 2�6 probabil-

ity that the value of the traditional hash will be the same.

Thus, the odds of a file having a modification that affects

a trigger point producing the same spamsum signature as

the original file are 2�12.

Even if two piecewise hash values are different in the final

CTPH signature, this new signature will have an edit distance

of two from the original signature and a match score of

(100�(98/(l1þ l2))).

5.4. Random files

Two completely random files will match if the edit distance

between them is small enough. The author demonstrated

earlier that the odds of any two characters in the signature

being the same is 2�6. For two signatures of length l1 and l2
where l¼min(l1,l2), the odds of a match score of 100 are

therefore (2�6)l. In the case where l¼ 32, for example, the

odds of an exact match are 2�192 and is thus highly

unlikely.

6. Performance issues

Because the input may need to be processed more than

once to compute a CTPH, the running time for CTPH pro-

grams may be considerably longer than comparable crypto-

graphic hashing programs. As an example, the author

generated a few files of pseudo-random data using dd and

/dev/urandom on a computer running Fedora Linux. These

files were then hashed using both cryptographic hashing

programs (Kornblum, 2006a) and ssdeep. The running times

are recorded in Table 1. Note that ssdeep was significantly

slower than the cryptographic hashing algorithms with

the only exception of Whirlpool. It should also be noted

that two files of equal length may require different running

times in a CTPH program because of the number of times
the input must be processed. Assuming that a single

CTPH processing of the input takes O(n) time, the block

size may need to be adjusted O(log n) times, making the to-

tal running time O(n log n).

When matching sets of CTPH, the program must compare

the signature for the unknown file to each known signature.

Cryptographic hashes can be sorted, or ironically enough,

put into a hash table, to reduce the time for matching a given

hash to an unknown hash to O(log n) where n is the length

of the hash, usually a constant, so O(1). Because every

known CTPH must be compared with each unknown hash,

the edit distance must be computed for each pair. Comput-

ing the edit distance takes O(l2) time, where l is variable but

limited to a constant. The time required to compare a single

CTPH signature against a set of n known signatures is thus

O(n).

7. Applications

The CTPH technique described in this paper is quite applica-

ble to computer forensics. This section gives some examples

of these applications and a brief analysis of the results. The

proof of concept program developed for this paper, ssdeep

(Kornblum, 2006b), was used to generate all of the results

below.

7.1. Altered document matching

CTPH can be used to identify documents that are highly sim-

ilar but not identical. For example, the author constructed

a document containing the 272 words of the ‘‘Bliss’’ version

of Abraham Lincoln’s Gettysburg Address (Lincoln, 1953)

saved in Microsoft Word format. The author recorded

a CTPH signature for this document. The author then

changed all of the text in the document to another size

and font. Two paragraphs of new text were inserted at the

beginning of the file and one of them was put into a different

color. The author made numerous insertion and deletions,

for example, (changes emphasized) ‘‘Four score and like

seven years ago our fathers brought forth on this continent,

a new like nation, conceived in Liberty and stuff.’’ The author

reversed every clause regarding consecration (‘‘But, in

a larger sense, we must dedicate – we must consecrate –

we must hallow – this ground.’’) and the final clause about

how a government of the people shall not perish from the

Earth did, in fact, perish. Finally, the author appended

the phrase ‘‘I AM THE LIZARD KING!’’ a few dozen times to

the end of the document. The ssdeep program was able

Table 1 – Time to hash pseudo-random data

Algorithm 1 MB 10 MB 50 MB

MD5 9 49 223

SHA256 24 184 897

Ssdeep 71 669 6621

Whirlpool 156 1505 7518

All times are measured in milliseconds.

d i g i t a l i n v e s t i g a t i o n 3 S (2 0 0 6) S 9 1 – S 9 7S96
$ ssdeep -b gettysburg-address.doc > sigs.txt

$ ssdeep -bm sigs.txt gettysburg-modified.doc
gettysburg-modified.doc matches gettysburg-address.doc (57)

Fig. 5 – Matching the Gettysburg Address.
to generate a match between the modified document and the

original as seen in Fig. 5.

7.2. Partial file matching

Another application of CTPH technology is partial file match-

ing. That is, for a file of n bits, a second file is created contain-

ing only the first n/3 bits of the original file. A CTPH signature

of the original file can be used to match the second file back to

the first. This simulates matching the partial files found dur-

ing file carving to known files. Additionally, CTPH can be

used to match documents when only footers are available.

That is, if a new file is created with only the last n/3 bits of

the original, this file can also be matched back to a known

file using CTPH. The reader will see in Fig. 6 how a sample

file of 313,478 bytes was used to generate two partial files.

The first partial file contained the first 120,000 bytes of the

original file and second partial file contained the last 113,478

bytes of the original file. Both of these new files can be

matched back to the original using ssdeep, as seen in Fig. 6.

The cutoff of n/3 bytes comes from the block size com-

parison. Below this level there are still matches, but the

block sizes are too different to make a meaningful compar-

ison. That is, a smaller block size is needed to generate

more bits for the signature in the smaller file. Given that

there are no common block sizes in the signatures, they

cannot be compared.

The comparison of partial files, especially footers, is

significant as it represents a new capability for forensic

examiners. A JPEG file, for example, missing its header can-

not be displayed under any circumstances. Even if it con-

tained a picture of interest, such as child pornography,
the examiner would not be able to determine its content.

By using CTPH to detect the homology between un-

viewable partial files and known file, the examiner can de-

velop new leads even from files that cannot be examined

conventionally.

8. Conclusion

Context triggered piecewise hashing is a powerful new

method for computer forensics. It will enable examiners to as-

sociate files that previously would have been lost in vast quan-

tities of data that now make up an investigation. By creating

associations between files that are homologous but not iden-

tical, investigators will be able to quickly find relevant pieces

of material in new investigations. Although CTPH is not

a new technology, its application to computer forensics repre-

sents a step beyond the traditional use of cryptographic

hashing.

Acknowledgments

This research was inspired by Greg Fricke. The author is grate-

ful to ManTech’s Computer Forensics and Intrusion Analysis

Group for providing the resources and time necessary to com-

plete this project. Special thanks to Dr. Andrew Tridgell for de-

veloping and freely releasing the spamsum algorithm, without

which this paper would not exist. Invaluable assistance was

provided by Devin Mahoney, Greg Hall, Larissa O’Brien, Reid

Leatzow and Ben McNichols. Extra special thanks to S d.
$ ls -l sample.jpg
-rw-rw---- 1 usernm usernm 313478 Apr 11 11:05 sample.jpg

$ dd if=sample.jpg of=first bs=1 count=120000
100000+0 records in
100000+0 records out

$ dd if=sample.jpg of=last bs=1 skip=200000
113478+0 records in
113478+0 records out

$ file first last
first: JPEG image data, JFIF standard 1.01
last: data

$ ssdeep -b sample.jpg > sigs

$ ssdeep -bm sigs first last
first matches sample.jpg (54)
last matches sample.jpg (65)

Fig. 6 – Matching partial files.

d i g i t a l i n v e s t i g a t i o n 3 S (2 0 0 6) S 9 1 – S 9 7 S97
r e f e r e n c e s

Allison Llyod. Dynamic programming algorithm (DPA) for edit-
distance. Monash University. Available from: http://www.csse.
monash.edu.au/wsimlloyd/tildeAlgDS/Dynamic/Edit/; 1999.

Foster James C, Liu Vincent T. Catch me, if you can. Blackhat
Briefings. Available from: http://www.blackhat.com/
presentations/bh-usa-05/bh-us-05-foster-liu-update.pdf;
2005.

Harbour Nicholas. Dcfldd. Defense Computer Forensics Lab.
Available from: http://dcfldd.sourceforge.net/; 2002.

Kornblum Jesse. md5deep. Available from: http://md5deep.
sourceforge.net/; 2006a.

Kornblum Jesse. Ssdeep. Available from: http://ssdeep.sourceforge.
net/; 2006b.

Lincoln Abraham. Collected works of Abraham Lincoln. In:
Basler Roy P, editor. The Abraham Lincoln Association; 1953.

Noll Landon C. Fowler/Noll/Vo Hash. Available from: http://www.
isthe.com/chongo/tech/comp/fnv/; 2001.

Tridgell Andrew. Efficient algorithms for sorting and synchroni-
zation. PhD thesis. Canberra, Australia: Department
of Computer Science, The Australian National University; 1999.
Tridgell Andrew. Spamsum README. Available from: http://
samba.org/ftp/unpacked/junkcode/spamsum/README; 2002.

White Douglas. NIST National Software Reference Library. Na-
tional Institute of Standards and Technology. Available from:
http://www.nsrl.nist.gov/; 2005.

Jesse Kornblum is a Principal Computer Forensics Engineer

for ManTech SMA’s Computer Forensics and Intrusion Analy-

sis Group. Based in the Washington DC area, his research

focuses on computer forensics and computer security. He

has authored a number of computer forensics tools including

the widely used md5deep suite of cryptographic hashing pro-

grams and the First Responder’s Evidence Disk. A graduate of

the Massachusetts Institute of Technology, Mr. Kornblum has

also served as a Computer Crime Investigator for the Air Force

Office of Special Investigations, an instructor in the U.S. Naval

Academy’s Computer Science Department, and as the Lead

Information Technology Specialist for the Department of

Justice Computer Crime and Intellectual Property Section.

According to Mr. Kornblum, the most useful animals are

members of the Capra family.

http://www.csse.monash.edu.au/%223C;simlloyd/tildeAlgDS/Dynamic/Edit/
http://www.csse.monash.edu.au/%223C;simlloyd/tildeAlgDS/Dynamic/Edit/
http://www.blackhat.com/presentations/bh-usa-05/bh-us-05-foster-liu-update.pdf
http://www.blackhat.com/presentations/bh-usa-05/bh-us-05-foster-liu-update.pdf
http://dcfldd.sourceforge.net/
http://md5deep.sourceforge.net/
http://md5deep.sourceforge.net/
http://ssdeep.sourceforge.net/
http://ssdeep.sourceforge.net/
http://www.isthe.com/chongo/tech/comp/fnv/
http://www.isthe.com/chongo/tech/comp/fnv/
http://samba.org/ftp/unpacked/junkcode/spamsum/README
http://samba.org/ftp/unpacked/junkcode/spamsum/README
http://www.nsrl.nist.gov/

	Identifying almost identical files using context triggered piecewise hashing
	Introduction
	Background
	Context triggered piecewise hashes
	Piecewise hashing
	The rolling hash
	Combining the hash algorithms

	The spamsum algorithm
	Comparing spamsum signatures
	Comparing identical files
	Without changing triggers
	Changing triggers
	Random files

	Performance issues
	Applications
	Altered document matching
	Partial file matching

	Conclusion
	Acknowledgments
	References

