
Divide�and�Conquer Frontier Search
Applied to Optimal Sequence Alignment

Richard E� Korf
Computer Science Department

University of California� Los Angeles
Los Angeles� CA �����

korf�cs�ucla�edu

Weixiong Zhang
USC Information Sciences Institute

���� Admiralty Way
Marina del Rey� CA ��	�	
����

zhang�isi�edu

Abstract

We present a new algorithm that reduces the space
complexity of heuristic search� It is most e�ective for
problem spaces that grow polynomially with problem
size� but contain large numbers of short cycles� For ex�
ample� the problem of �nding an optimal global align�
ment of several DNA or amino�acid sequences can be
solved by �nding a lowest�cost corner�to�corner path
in a d�dimensional grid� A previous algorithm� called
divide�and�conquer bidirectional search �Korf ������
saves memory by storing only the Open lists and not
the Closed lists� We show that this idea can be ap�
plied in a unidirectional search as well� This extends
the technique to problems where bidirectional search
is not applicable� and is more e	cient in both time and
space than the bidirectional version� If n is the length
of the strings� and d is the number of strings� this
algorithm can reduce the memory requirement from
O�nd� to O�nd���� While our current implementa�
tion of DCFS is somewhat slower than existing dy�
namic programming approaches for optimal alignment
of multiple gene sequences� DCFS is a more general al�
gorithm �

Introduction� Sequence Alignment

While we present a completely general heuristic search
algorithm� it was motivated by a problem in compu

tational biology� known as sequence alignment� Con

sider the two DNA sequences ACGTACGTACGT and
ATGTCGTCACGT� The problem is to align these se

quences� by inserting gaps in each one� so that the
number of matches between corresponding positions is
maximized� For example� if we insert gaps as follows�
ACGTACGT ACGT and ATGT CGTCACGT� then all the let

ters in corresponding positions are the same� except
for the substitution of T for C in the second position�
The optimal solution to this problem is de�ned by a

cost function� For example� we may charge a penalty
of one unit for a mismatch or substitution between
characters� and two units for a gap in either string� The

�Copyright c� 
���� American Association for Arti�cial
Intelligence �www�aaai�org�� All rights reserved�

cost of an alignment then is the sum of the individual
substitution and gap costs� With this cost function�
the alignment above has a cost of �ve� since there is
one substitution and two gaps� The optimal alignment
of a pair of strings is the alignment with the lowest
cost� and the above alignment is optimal� Alignments
are important for determining the structural similarity
between di
erent genes� and identifying subsequences
that are conserved between them�

This problem can be mapped to the problem of �nd

ing a lowest
cost path from corner to corner in a two

dimensional grid �Needleman and Wunsch� ������ One
sequence is placed on the horizontal axis from left to
right� and the other sequence on the vertical axis� from
top to bottom� An alignment is represented by a path
from the upper
left corner of the grid to the lower
right
corner� Figure � shows the path that represents our ex

ample alignment� If there is no gap in either string at
a given position� the path moves diagonally down and
right� since this consumes both characters� The cost
of such a move is zero if the corresponding characters
match� or the substitution penalty if they di
er� A
gap in the vertical string is represented by a horizon

tal move right� since that consumes a character in the
horizontal string� but leaves the position in the verti

cal string unchanged� Similarly� a gap in the horizontal
string is represented by a vertical move down� Hori

zontal and vertical moves are charged the gap penalty�
Given this mapping� the problem of �nding an optimal
sequence alignment corresponds to �nding a lowest

cost path from the upper
left corner to the lower
right
corner in the grid� where the legal moves at each point
are right� down� and diagonally down and right�

This problem readily generalizes to aligning multi

ple strings simultaneously� For example� to align three
strings� we �nd a lowest
cost path in a cube from one
corner to the opposite corner� The cost of a multiple
alignment is often computed as the sum
of
pairs cost�
or the sum of each of the di
erent pairwise alignments
�Setubal and Meidanis� ������ Equivalently� we can



A C G T A C G T A C G T

A

T

G

T

C

G

T

C

A

C

G

T

Figure �� Sequence alignment as path
�nding in a grid

score each character position by summing the cost of
each of the character pairs� For example� if we have a
C� a G� and a gap at one position� the cost at that po

sition is two gap penalties plus a substitution penalty�
If we have two gaps and a character at one position�
the cost is two gap penalties� since no cost is charged
for two gaps in the pair of strings that contain them�

Overview

We �rst discuss existing techniques for this prob

lem� These include a dynamic programming algo

rithm �Hirschberg� ������ a bounded dynamic pro

gramming algorithm �Spouge� ������ and our previous
best
�rst search algorithm� divide
and
conquer bidirec

tional search �DCBDS� �Korf� ������ These methods
save memory by only storing the frontier nodes of the
search� and not the interior nodes� Our new algorithm�
divide
and
conquer frontier search �DCFS�� is closely
related to DCBDS� but uses unidirectional rather than
bidirectional search� This is more general� since bidi

rectional search is not always applicable� more e�cient
in time and space� and easier to implement� We also
discuss the relative e�ciencies of unidirectional and
bidirectional search� For two
dimensional alignment�
Hirschberg�s algorithm seems to be the best� For three
dimensions� however� an accurate heuristic evaluation
function exists� and DCFS outperforms Hirschberg�s
algorithm and DCBDS� but is slower than bounded
dynamic programming� All the algorithms apply to
strings of unequal length� but we use strings of equal

length in our experiments� Typical size problems that
we can readily solve with these techniques are aligning
pairs of strings of length ������� each� or three strings
of length ����� each� The sizes of the corresponding
grids are �� billion nodes and 	�� billion nodes� re

spectively�

Previous Work

For simplicity� we describe previous work in the context
of aligning two strings� but all the algorithms can be
generalized to multiple
string alignment as well� While
most of the work in this area �nds approximate align

ments� we only consider here algorithms that are guar

anteed to �nd optimal alignments�

Problems that Fit in Memory

If the grid is small enough to �t into memory� Dijkstra�s
single
source shortest path algorithm �Dijkstra� �����
will solve the problem in O�n�� time and O�n�� space�
for two strings of length n�
The particular problem of sequence alignment� as

opposed to the general shortest
path problem� can also
be solved by a much simpler dynamic programming
algorithm� We scan the grid from left to right and
from top to bottom� storing at each node the cost of
a lowest cost path from the start node to that node�
For each node� we add the gap cost to the cost of the
nodes immediately to the left and immediately above�
we add the substitution cost or no cost to the cost of
the node diagonally above and to the left� and we store
the smallest of these three sums in the current node�
This also requires O�n�� time and O�n�� space�
Since both algorithms have to store the whole grid

in memory� space is the main constraint� For example�
if we assume that we can store ��� million nodes in
memory� this limits us to aligning two strings of length
������ each� or three strings of length ��� each�

Problems that Don�t Fit in Memory

The interesting case is when the grid doesn�t �t in
memory� One approach is to use a heuristic search�
such as A� �Hart� Nilsson� and Raphael� ������ to re

duce the size of the search� This requires e�ciently
computing a lower bound on the cost of a given align

ment� and has been applied to sequence alignment by
�Ikeda and Imai� ������ Unfortunately� A� stores every
node it generates� and is still memory limited�
The memory limitation of best
�rst search algo


rithms like Dijkstra�s and A� has been addressed �Korf�
������ Many algorithms� such as iterative
deepening

A� �IDA�� �Korf� ������ rely on depth
�rst search to
avoid this memory limitation� The key idea is that a
depth
�rst search only has to store the path of nodes



from the start to the current node� and hence only
requires space that is linear in the maximum search
depth�

While depth
�rst search is very e
ective on problem
spaces that are trees� or only contain a small number
of cycles� it is hopeless on problem spaces with a large
number of short cycles� such as a grid� The reason is
that a depth
�rst search must generate every distinct
path to a given node� In an n � m grid� the num

ber of shortest paths from one corner to the opposite
corner� ignoring diagonal moves� is �n�m����n� �m���
For example� a �� � �� grid� which contains only ���
nodes� has ���� ��� di
erent corner
to
corner paths�
and a 	�� 	� grid� with only �	� nodes� has over ����

such paths� Adding diagonal moves increases these
numbers further� As a result� depth
�rst searches are
completely hopeless on this problem�

Other techniques� such as caching some nodes that
are generated� have been applied to sequence alignment
�Miura and Ishida� ������ The di�culty with these
techniques is that they can only cache a small fraction
of the total nodes generated on a large problem� and
can only solve relatively easy problems�

Hirschberg�s Algorithm

�Hirschberg� ����� presented an algorithm for comput

ing a maximal common subsequence of two character
strings in linear space� based on a two
dimensional
grid� with each of the strings placed along one axis�
A node of the grid corresponds to a pair of initial sub

strings of the original stings� and contains the length
of a maximal common subsequence of the substrings�

The standard dynamic programming algorithm for
this problem requires O�n�� time and O�n�� space� for
two strings of length n� To compute an element of the
grid� however� we only need the value immediately to
its left and the value above it� Thus� we can solve the
problem by only storing two rows at a time� deleting
each row as soon as the next row is completed� In fact�
only one row is needed� since we can replace elements
of the row as soon as they are used� Unfortunately�
this only yields the length of a maximal common sub

sequence� and not the subsequence itself�

Hirschberg�s algorithm computes the �rst half of this
grid from the top down� and the second
half from the
bottom up� storing only one row at a time� Then�
given the two versions of the middle row� one from
each direction� it �nds a column for which the sum of
the two corresponding elements from each direction is
a minimum� This point splits both original strings in
two parts� and the algorithm is then called recursively
on the initial substrings� and on the �nal substrings�
Hirschberg�s algorithm is easily generalized to solve the

sequence alignment problem� It can also be general

ized to more than two dimensions� These generaliza

tions reduce the space complexity of the d
dimensional
alignment problem from O�nd� to O�nd���� a very sig

ni�cant reduction� The additional cost in time is only
a constant factor of two in two dimensions� and even
smaller in higher dimensions�

Bounded Dynamic Programming

This algorithm can be improved by using upper and
lower bounds on the cost of an optimal solution
�Spouge� ������ For pairwise alignments� a lower
bound on the cost to reach the lower right corner of the
grid is the gap penalty times the number of gaps needed
to reach the corner� For multiple sequence alignments�
a much more e
ective lower bound is available� which
will be described in the section on experimental results�
An upper bound on the cost of an optimal alignment is
the cost of aligning the strings directly� with no gaps in
either one� Given an upper bound on the optimal align

ment cost� and a lower bound on the cost of aligning
any pair of substrings� we can limit the dynamic pro

gramming algorithm to that region around the main
diagonal in which the cost to reach each node� plus
the estimated cost to reach the goal� is no greater that
the upper bound on solution cost� For the top
level
search� we start with an upper bound equal to the lower
bound� and run a series of iterations� incrementally in

creasing the upper bound until it equals or exceeds the
actual optimal alignment cost� and the iteration aligns
the entire strings �Ukkonen� ������ After each recur

sive search completes� we know the optimal solution
costs of the next recursive searches� and use those val

ues for the upper bounds� We refer to this algorithm
as iterative
deepening bounded dynamic programming
�IDBDP�� These ideas are also used in MSA �Gupta�
Kececioglu� and Scha
er� ������ one of the best pro

grams for optimal multiple sequence alignment�

Divide�and�Conquer Bidirectional Search

Divide
and
conquer bidirectional search �DCBDS�
�Korf� ����� generalizes Hirschberg�s dynamic pro

gramming algorithm to arbitrary path
�nding prob

lems� To apply dynamic programming� we have to
know in advance which neighbors of a node are its
ancestors and which are its descendents� in order to
evaluate the ancestors of a node before the node it

self� We can do this in the sequence alignment prob

lem because only moves down� right� and diagonally
down and right are allowed� making the nodes above�
to the left� and diagonally up and left the ancestors�
In the general case� where moves to any neighboring
nodes are allowed� we can�t apply dynamic program

ming� but rather must apply a best
�rst search such



as Dijkstra�s algorithm� DCBDS achieves the same
memory savings of Hirschberg�s algorithm� but for the
general shortest
path problem in any graph�

A best
�rst search� such as Dijkstra�s or A�� stores
both a Closed list of nodes that have been expanded�
and an Open list of nodes that have been generated�
but not yet expanded� The Open list corresponds to
the frontier of the search� while the Closed list cor

responds to the interior region� In the A� cost func

tion� f�x� � g�x� � h�x�� g�x� is the cost from the
initial state to node x� and h�x� is a heuristic esti

mate of the cost from node x to a goal� If h has the
property that for all nodes x and their neighbors x��
h�x� � c�x� x�� � h�x��� where c�x� x�� is the cost from
node x to its neighbor x�� we say that h is consistent�
Since consistency is similar to the triangle inequality
of all metrics� almost all naturally occurring heuristic
functions are consistent� If the heuristic function is
consistent� or in the absence of a heuristic function�
once an Open node is expanded� an optimal path has
been found to it� and it never is expanded again� In
that case� we can execute a best
�rst search without
storing the Closed list at all�

In an exponential problem space with a branching
factor of two or more� the Open list is larger than the
Closed list� and not storing the Closed list doesn�t save
much� In a polynomial space� however� the dimension
of the frontier is one less than that of the interior�
resulting in signi�cant memory savings� For example�
in a two
dimensional grid� the Closed list is quadratic
in size� while the size of the Open list is only linear�

There are two challenges with this approach� The
�rst is that duplicate node expansions are normally
eliminated by checking new nodes against the Open
and Closed lists� Without the Closed list� to prevent
the search from �leaking� back into the closed region�
DCBDS stores with each Open node a list of forbid

den operators that lead to closed nodes� For each node�
this is initially just the operator that leads to its par

ent� As each node is generated� it is compared against
the nodes on the Open list� and if it already appears on
Open� only the copy arrived at via a lowest
cost path
is saved� When this happens� the new list of forbid

den operators for the node becomes the union of the
forbidden operators of each copy�

In some problem spaces the operators or edges are di

rected� For example� in the two
dimensional sequence
alignment problem� the only legal operators from a
node are to move down� right� or diagonally down and
right� After expanding a given node and removing it
from Open� if the node immediately above it has not
yet been expanded for example� when it is expanded
it will regenerate the given node� and place it back on

Open� This will cause the search to leak back into the
closed region� eliminating the space savings� One solu

tion to this problem is that when a node is expanded�
all of its neighboring nodes are generated� including
nodes generated by an edge going the wrong way� such
as the nodes above� to the left� and diagonally up and
left in this case� These latter nodes are also placed on
Open� but their cost is set to in�nity� indicating that
they haven�t been arrived at via a legal path yet� By
placing all the neighbors of a node on Open when it
is expanded� we ensure that a closed node can�t be re

generated� and prevent the search from leaking back
into the closed region�

Saving only the Open list can be used to speed up
the standard Dijkstra�s and A� algorithms as well� It
is faster not to generate a node at all� than to generate
it and then search for it in the Open and Closed lists�
On a two
dimensional grid� this technique alone speeds
up Dijkstra�s algorithm by over 	���

The main value of this technique� however� is that it
executes a best
�rst search without a Closed list� and
never expands a state more than once� When the algo

rithm completes� it has the cost of an optimal path to a
goal� but unfortunately not the path itself� If the path
to each node is stored with the node� each node will re

quire space linear in its path length� eliminating all of
the space savings� In fact� this approach requires more
space than the standard method of storing the paths
via pointers through the Closed list� since it doesn�t
allow the sharing of common subpaths�

One way to construct the path is the following� Per

form a bidirectional search from both initial and goal
states simultaneously� until the two search frontiers
meet� at which point a node on a solution path has
been found� Its cost is the sum of the path costs from
each direction� Continue the search� saving the mid

dle node on the best path found so far� until the best
solution cost is less than or equal to the sum of the
lowest
cost nodes on each search frontier� At this point
we have a node on a lowest
cost solution path� Save
this node in a solution vector� Then� recursively apply
the same algorithm to �nd an optimal path from the
initial state to the middle node� and from the middle
node to the goal state� Each of these searches adds
another node to the �nal solution path� and generates
two more recursive subproblems� etc� until the entire
solution is reconstructed�

Divide�and�Conquer Frontier Search

Our new algorithm� divide
and
conquer frontier search
�DCFS�� also saves memory by storing only the Open
list and not the Closed list� but using unidirectional
rather than bidirectional search�



Consider our problem of �nding an optimal corner

to
corner path in a two
dimensional grid� DCFS begins
with a single search from the initial state to the goal
state� saving only the Open list� in the same manner
as described for DCBDS� When the search encounters
a node on a horizontal line that splits the grid in half�
each of the children of that node store the coordinates
of the node� For every Open node that is past this
halfway line� we save the coordinates of the node on
the halfway line that is on the current path from the
initial state to the given Open node� Once the search
reaches the goal state via an optimal path� the corre

sponding node on the halfway line is an intermediate
node roughly halfway along this optimal path� We
then recursively solve two subproblems using the same
algorithm� �nd an optimal path from the initial state
to this middle node� and �nd an optimal path from the
middle node to the goal node� If the original grid� or
one de�ned by a recursive subproblem� is wider than
it is tall� we choose a vertical line to represent the set
of possible halfway nodes instead of a horizontal line�

In a grid problem space� we can easily identify a set
of nodes that will contain a node roughly halfway along
the optimal solution� In a three
dimensional grid� for
example� the halfway line becomes a halfway plane�
cutting the cube in half either horizontally or verti

cally� In a general problem
space graph however� iden

tifying such nodes is only slightly more di�cult� If we
have a heuristic evaluation function� we can choose as
a midpoint node one for which g�x�� the cost from the
initial state to node x� equals h�x�� the heuristic es

timate from node x to a goal node� If we don�t have
a heuristic function� but have an estimate of the total
solution cost c� we can use as a halfway node any node
x for which g�x� is approximately c�	�

There are several advantages of unidirectional DCFS
over bidirectional DCBDS� One is that unidirectional
search is more general� and can be applied to prob

lems that bidirectional search cannot be applied to�
For example� if we only have a test for a goal� and
don�t have an explicit goal state in advance� we may
not be able to apply bidirectional search� Secondly�
unidirectional search may be more e�cient� as we will
see below� Finally� unidirectional search is simpler and
easier to implement correctly�

Bidirectional vs� Unidirectional Search

Which is more e�cient� bidirectional or unidirectional
search� The answer is di
erent for brute
force and
heuristic searches� A common unidirectional brute

force algorithm is Dijkstra�s algorithm or uniform

cost search� a best
�rst search using the cost function
f�x� � g�x�� The algorithm terminates when a goal

node is chosen for expansion� or the cost of a goal node
is less than or equal to the cost of all Open nodes�

To guarantee an optimal solution� bidirectional
uniform
cost search terminates when the cost of the
best solution found so far is less than or equal to the
sum of the minimum f�x� � g�x� costs in the two
search frontiers� Thus� the two search frontiers only
go half the distance to the goal� instead of one frontier
extending all the way to the goal� As a result� bidirec

tional uniform
cost search usually expands fewer nodes
than unidirectional uniform
cost search� with the dif

ference increasing with increasing branching factor of
the problem space�

The situation is di
erent for A�� however� which uses
f�x� � g�x� � h�x� for its cost function� To guarantee
optimal solutions� bidirectional A� terminates when
the best solution found so far costs no more than the
minimum f�x� � g�x� � h�x� cost in either direction�
Since this is the same terminating condition for each of
the unidirectional searches� bidirectional A� generates
more nodes than unidirectional A�� by virtue of per

forming two such searches� We could also terminate
bidirectional A� when the sum of the minimum g�x�
costs in the two directions exceeds the cost of the best
solution so far� but with an accurate heuristic function
the former terminating condition will occur �rst�

In addition to the number of nodes generated� we
also need to consider the time per node generation� In
our experiments� described below� various overheads in
bidirectional search made it more expensive per node
generation than the unidirectional version�

In terms of memory� unidirectional search only has
to maintain a single search horizon� while bidirectional
search has to maintain two� This can result in up to a
factor of two di
erence in space complexity� In prac

tice� the di
erence may be smaller� since the unidirec

tional search horizon will be larger than an individual
bidirectional search horizon�

Finally� unidirectional search is much simpler to
implement than bidirectional search� Thus� unidi

rectional heuristic search is often preferable to bidi

rectional heuristic search because it generates fewer
nodes� takes less time per node generation� requires
less memory� and is easier to implement� For a more
thorough treatment of bidirectional heuristic search�
see �Kaindl and Kainz� ������

Experimental Results

We tested our algorithms on random sequence align

ment problems� Each triple of DNA base pairs encodes
one of 	� di
erent amino acids� For each problem in

stance we generated random 	�
character strings� sim

ulating amino
acid sequences� and computed an opti




Length DCBDA� DCFA� IDBDP
Nodes Mbytes Seconds Nodes Mbytes Seconds Nodes Mbytes Seconds

���� ��������� �� ���� 	��	����� �� ���� ��������� 	� 	���
	��� ���������� ��� ����� 	��������� �� ����� �	�������	 �� �����
���� ����������	 	�� 	�	��� ��������		 ��� ����� ���������� ��� �����
���� �����	����	 ��	 ������ 	��������	� 		� ��	��� ����������	 ��� ������
���� ����	������ ��� ������� ����������� 	�	 ������ 	���������	 ��� 	�����
���� ������	���� ��� ������ ����������� ��� ������	

Table �� �
Way Alignment of Random 	�
Character Strings

mal alignment between them� We chose random prob

lems to allow generating a large number of problem in

stances� Our cost function charges nothing for a match�
one unit for a substitution� and two units for a gap�

For aligning two strings� the best lower
bound
heuristic is the number of gap penalties required to
reach the bottom
right corner� This allows us to
use the A� cost function� f�x� � g�x� � h�x�� with
DCBDS and DCFS� We refer to the A� versions of
these algorithms as divide
and
conquer bidirectional
A� �DCBDA�� and divide
and
conquer frontier A�
�DCFA��� respectively� This heuristic is relatively
weak� however� and both algorithms examine a large
fraction of the nodes in the grid� Since Hirschberg�s
algorithm has signi�cantly lower overhead per node� it
is more e�cient in this case� In practice� Hirschberg�s
algorithm will optimally align two strings of length
������� in about 	� minutes� on a ��� megahertz Sun
Ultra �� workstation� the machine used for all our ex

periments� This requires generating 	� billion nodes�

In three dimensions� corresponding to the simultane

ous alignment of three strings� there is a much more ef

fective lower
bound heuristic function available� Recall
that the cost function for multiple
string alignment is
the sum
of
pairs cost� meaning the sum of the costs of
each of the pairwise alignments induced by the three

way alignment� To compute this heuristic function�
we optimally align each pair of strings� and then use
the sum of the optimal pairwise alignments as a lower
bound on the cost of the best three
way alignment�
This is a very accurate heuristic function� and greatly
reduces the number of nodes that are expanded by the
best
�rst algorithms� The reason this heuristic is not
the same as the actual cost is that in the optimal three

way alignment� each of the pairs of strings will not be
optimally aligned in general� The reason it is a lower
bound is that the cost of the actual alignment of each
pair induced by the three
way alignment must be at
least as great as the cost of their optimal pairwise align

ments� To compute the optimal pairwise alignments�
we use the standard dynamic programming algorithm�
since it is the most e�cient for pairwise alignment�

These values are precomputed and stored� instead of
recomputed for each node�

For each problem instance� we generated three ran

dom strings� and optimally aligned them� Table �
shows the average results of ��� problem instances for
each case� We ran three di
erent algorithms� all of
which return optimal alignments� For each algorithm
we give the average number of nodes generated� the
amount of memory used in megabytes� and the aver

age running time per problem instance in seconds�

Hirschberg�s algorithm is not competitive in more
than two dimensions� since it doesn�t use a lower bound
function� and generates every node in the space at least
once� For example� for three strings of length ����� it
generates ��� billion nodes� and takes ��� seconds to
run� compared to a few seconds for the other algo

rithms�

The �rst algorithm in the table is divide
and

conquer bidirectional A� �DCBDA��� and the second
is divide
and
conquer frontier A� �DCFA��� both using
the same heuristic function� DCFA� generates about
half the nodes of DCBDA�� and runs more than twice
as fast� due to higher overhead per node� It also uses
about half the memory� ��� megabytes was not enough
memory to run DCBDA� on strings of length �����

The last algorithm in the table is iterative
deepening
bounded dynamic programming �IDBDP�� described
above in the previous work section� IDBDP generates
fewer nodes than DCFA�� primarily because DCFA�
applies operators in all directions� including the ille

gal backward directions� to keep the search from leak

ing into the closed region� IDBDP also runs faster
than DCFA� on strings of length 	��� or longer� Our
current implementation of IDBDP uses more memory
than DCFA�� but this can be reduced�

It should be noted that the absolute performance
of these algorithms is sensitive to the cost function�
the size of the alphabet� and the correlation of the
strings� Thus� these results can only be used for rela

tive comparison of the di
erent algorithms� For exam

ple� changing the alphabet to � characters to simulate
random DNA strings degrades the performance of all



three algorithms signi�cantly� On the other hand� since
real data is much more highly correlated than random
strings� we expect the performance on real data to be
signi�cantly better�

Conclusions

We have generalized divide
and
conquer bidirectional
search �DCBDS� to unidirectional divide
and
conquer
frontier search �DCFS�� DCFS is a completely gen

eral heuristic search algorithm� Like DCBDS� DCFS
reduces the space complexity of �nding a lowest
cost
path in a d
dimensional grid from O�nd� to O�nd����
Unlike DCBDS� however� DCFS can be applied to
problems that don�t allow bidirectional search� In ad

dition� DCFS uses less memory� runs faster� and is eas

ier to implement than DCBDS�

We applied DCFA�� the A� version of DCFS� to �nd
optimal alignments for three random strings of up to
���� characters each� The performance of DCFA� is
compared to that of existing dynamic programming al

gorithms for optimal sequence alignment of more than
three strings� Our current implementation runs faster
on problems of length less than 	��� characters� but
slower on larger problems�

Acknowledgements

We�d like to thank Matt Ginsberg� Andrew Parks�
Louis Steinberg� and Victoria Cortessis for helpful dis

cussions on this research� This research was supported
by NSF grants No� IRI
������� and IRI
��������

References

��� Dijkstra� E�W�� A note on two problems in con

nexion with graphs� Numerische Mathematik� Vol�
�� ����� pp� 	��
���

�	� Hart� P�E�� N�J� Nilsson� and B� Raphael� A formal
basis for the heuristic determination of minimum
cost paths� IEEE Transactions on Systems Science
and Cybernetics� Vol� SSC
�� No� 	� July ����� pp�
���
����

��� Hirschberg� D�S�� A linear space algorithm for com

puting maximal common subsequences� Communi�
cations of the ACM� Vol� ��� No� �� June� ����� pp�
���
����

��� Gupta� S�K�� J�D� Kececioglu� and A�A� Scha
er�
Improving the practical space and time e�ciency of
the shortest
paths approach to sum
of
pairs multi

ple sequence alignment� Journal of Computational
Biology� Vol� �� No� 	� ����� pp� ���
��	�

��� Ikeda� T�� and H� Imai� Enhanced A� algorithms
for multiple alignments� optimal alignments for sev

eral sequences and k
opt approximate alignments for
large cases� Theoretical Computer Science� Vol� 	���
No� 	� Jan� ����� pp� ���
����

��� Kaindl� H�� and G� Kainz� Bidirectional heuris

tic search reconsidered� Journal of Arti�cial Intel�
ligence Research� Vol� �� ����� pp� 	��
����

��� Korf� R�E�� Depth
�rst iterative
deepening� An op

timal admissible tree search� Arti�cial Intelligence�
Vol� 	�� No� �� ����� pp� ��
����

��� Korf� R�E�� Space
e�cient search algorithms� Com�
puting Surveys� Vol� 	�� No� �� Sept�� ����� pp� ���

����

��� Korf� R�E�� Divide
and
conquer
bidirectional search� First results� Proceedings of the
Sixteenth International Joint Conference on Arti�
�cial Intelligence �IJCAI����� Stockholm� Sweden�
August ����� pp� ����
�����

���� Miura� T�� and T� Ishida� Stochastic node caching
for memory
bounded search� Proceedings of the Na�
tional Conference on Arti�cial Intelligence �AAAI�
���� Madison� WI� July� ����� pp� ���
����

���� Needleman� S�B�� and C�D� Wunsch� A general
method applicable to the search for similarities in
the amino acid sequences of two proteins� Journal
of Molecular Biology� Vol� ��� ����� pp� ���
����

��	� Setubal� J�� and J� Meidanis� Introduction to
Computational Molecular Biology� PWS Publishing�
Boston� MA� �����

���� Spouge� J�L�� Speeding up dynamic programming
algorithms for �nding optimal lattice paths� SIAM
Journal of Applied Math� Vol� ��� No� �� ����� pp�
���	
�����

���� Ukkonen� E�� Algorithms for approximate string
matching� Information and Control� Vol� ��� �����
pp� ���
����


