
Making Linux Protection Mechanisms Egalitarian with UserFS

Taesoo Kim and Nickolai Zeldovich
MIT CSAIL

ABSTRACT

UserFS provides egalitarian OS protection mechanisms
in Linux. UserFS allows any user—not just the system
administrator—to allocate Unix user IDs, to use chroot,
and to set up firewall rules in order to confine untrusted
code. One key idea in UserFS is representing user IDs as
files in a /proc-like file system, thus allowing applica-
tions to manage user IDs like any other files, by setting
permissions and passing file descriptors over Unix do-
main sockets. UserFS addresses several challenges in
making user IDs egalitarian, including accountability, re-
source allocation, persistence, and UID reuse. We have
ported several applications to take advantage of UserFS;
by changing just tens to hundreds of lines of code, we
prevented attackers from exploiting application-level vul-
nerabilities, such as code injection or missing ACL checks
in a PHP-based wiki application. Implementing UserFS
requires minimal changes to the Linux kernel—a single
3,000-line kernel module—and incurs no performance
overhead for most operations, making it practical to de-
ploy on real systems.

1 INTRODUCTION

OS protection mechanisms are key to mediating access
to OS-managed resources, such as the file system, the
network, or other physical devices. For example, system
administrators can use Unix user IDs to ensure that dif-
ferent users cannot corrupt each other’s files; they can
set up a chroot jail to prevent a web server from access-
ing unrelated files; or they can create firewall rules to
control network access to their machine. Most operating
systems provide a range of such mechanisms that help
administrators enforce their security policies.

While these protection mechanisms can enforce the
administrator’s policy, many applications have their own
security policies for OS-managed resources. For instance,
an email client may want to execute suspicious attach-
ments in isolation, without access to the user’s files; a
networked game may want to configure a firewall to make
sure it does not receive unwanted network traffic that
may exploit a vulnerability; and a web browser may want
to precisely control what files and devices (such as a
video camera) different sites or plugins can access. Un-
fortunately, typical OS protection mechanisms are only
accessible to the administrator: an ordinary Unix user
cannot allocate a new user ID, use chroot, or change

firewall rules, forcing applications to invent their own
protection techniques like system call interposition [15],
binary rewriting [30] or analysis [13, 45], or interposing
on system accesses in a language runtime like Javascript.

This paper presents the design of UserFS, a kernel
framework that allows any application to use traditional
OS protection mechanisms on a Unix system, and a proto-
type implementation of UserFS for Linux. UserFS makes
protection mechanisms egalitarian, so that any user—not
just the system administrator—can allocate new user IDs,
set up firewall rules, and isolate processes using chroot.
By using the operating system’s own protection mecha-
nisms, applications can avoid race conditions and ambi-
guities associated with system call interposition [14, 43],
can confine existing code without having to recompile or
rewrite it in a new language, and can enforce a coherent
security policy for large applications that might span sev-
eral runtime environments, such as both Javascript and
Native Client [45], or Java and JNI code.

Allowing arbitrary users to manipulate OS protection
mechanisms through UserFS requires addressing several
challenges. First, UserFS must ensure that a malicious
user cannot exploit these mechanisms to violate another
application’s security policy, perhaps by re-using a pre-
viously allocated user ID, or by running setuid-root pro-
grams in a malicious chroot environment. Second, user
IDs are often used in Unix for accountability and auditing,
and UserFS must ensure that a system administrator can
attribute actions to users that he or she knows about, even
for processes that are running with a newly-allocated user
ID. Finally, UserFS should to be compatible with existing
applications, interfaces, and kernel components whenever
possible, to make it easy to incrementally deploy UserFS
in practical systems.

UserFS addresses these challenges with a few key ideas.
First, UserFS allows applications to allocate user IDs
that are indistinguishable from traditional user IDs man-
aged by the system administrator. This ensures that ex-
isting applications do not need to be modified to support
application-allocated protection domains, and that exist-
ing UID-based protection mechanisms like file permis-
sions can be reused. Second, UserFS maintains a shadow
generation number associated with each user ID, to make
sure that setuid executables for a given UID cannot be
used to obtain privileges once the UID has been reused by
a new application. Third, UserFS represents allocated user

1

IDs using files in a special file system. This makes it easy
to manipulate user IDs, much like using the /proc file
system on Linux, and applications can use file descriptor
passing to delegate privileges and implement authentica-
tion logic. Finally, UserFS uses information about what
user ID allocated what other user IDs to determine what
setuid executables can be trusted in any given chroot
environment, as will be described later.

We have implemented a prototype of UserFS for Linux
purely as a kernel module, consisting of less than 3,000
lines of code, along with user-level support libraries for C
and PHP-based applications. UserFS imposes no per-
formance overhead for most existing operations, and
only performs an additional check when running set-
uid executables. We modified several applications to en-
force security policies using UserFS, including Google’s
Chromium web browser, a PHP-based wiki application,
an FTP server, ssh-agent, and Unix commands like
bash and su, all with minimal code modifications, sug-
gesting that UserFS is easy to use. We further show that
our modified wiki is not vulnerable by design to 5 out of
6 security vulnerabilities found in that application over
the past several years.

The key contribution of this work is the first system
that allows Linux protection and isolation mechanisms to
be freely used by non-root code. This improves overall
security both by allowing applications to enforce their
policies in the OS, and by reducing the amount of code
that needs to run as root in the first place (for example to
set up chroot jails, create new user accounts, or config-
ure firewall rules).

The rest of this paper is structured as follows. Sec-
tion 2 provides more concrete examples of applications
that would benefit from access to OS protection mecha-
nisms. Section 3 describes the design of UserFS in more
detail, and Section 4 covers our prototype implementation.
We illustrate how we modified existing applications to
take advantage of UserFS in Section 5, and Section 6 eval-
uates the security and performance of UserFS. Section 7
surveys related work, Section 8 discusses the limitations
of our system, and Section 9 concludes.

2 MOTIVATION AND GOALS

The main goal of UserFS is to help applications reduce
the amount of trusted code, by allowing them to use tradi-
tionally privileged OS protection mechanisms to control
access to system resources, such as the file system and the
network. We believe this will allow many applications to
improve their security, by preventing compromises where
an attacker takes advantage of an application’s excessive
OS-level privileges. However, UserFS is not a security
panacea, and programmers will still need to think about
a wide range of other security issues from cryptography
to cross-site scripting attacks. The rest of this section

provides several motivating examples in which UserFS
can improve security.

Avoiding root privileges in existing applications.
Typical Unix systems run a large amount of code as root
in order to perform privileged operations. For example,
network services that allow user login, such as an FTP
server, sshd, or an IMAP server often run as root in or-
der to authenticate users and invoke setuid() to acquire
their privileges on login. Unfortunately, these same net-
work services are the parts of the system most exposed
to attack from external adversaries, making any bug in
their code a potential security vulnerability. While some
attempts have been made to privilege-separate network
services, such as with OpenSSH [39], it requires carefully
re-designing the application and explicitly moving state
between privileged and unprivileged components. By al-
lowing processes to explicitly manipulate Unix users as
file descriptors, and pass them between processes, UserFS
eliminates the need to run network services as the root
user, as we will show in Section 5.3.

In addition to network services, users themselves often
want to run code as root, in order to perform currently-
privileged operations. For instance, chroot can be useful
in building a complex software package that has many
dependencies, but unfortunately chroot can only be in-
voked by root. By allowing users to use a range of mech-
anisms currently reserved for the system administrator,
UserFS further reduces the need to run code as root.

Sandboxing untrusted code. Users often interact with
untrusted or partially-trusted code or data on their com-
puters. For example, users may receive attachments via
email, or download untrusted files from the web. Opening
or executing these files may exploit vulnerabilities in the
user’s system. While it’s possible for the mail client or
web browser to handle a few types of attachments (such
as HTML files) safely, in the general case opening the
document will require running a wide range of existing
applications (e.g. OpenOffice for Word files, or Adobe
Acrobat to view PDFs). These helper applications, even
if they are not malicious themselves, might perform unde-
sirable actions when viewing malicious documents, such
as a Word macro virus or a PDF file that exploits a buffer
overflow in Acrobat.

Guarding against these problems requires isolating the
suspect application from the rest of the system, while
providing a limited degree of sharing (such as initializing
Acrobat with the user’s preferences). With UserFS, the
mail client or web browser can allocate a fresh user ID
to view a suspicious file, and use firewall rules to ensure
the application does not abuse the user’s network connec-
tion (e.g. to send spam), and Section 5.2 will describe
how UserFS helps Unix users isolate partially-trusted or
untrusted applications in this manner.

2

Enforcing separation in privilege-separated applica-
tions. One approach to building high-security applica-
tions is to follow the principle of least privilege [40] by
breaking up an application into several components, each
of which has the minimum privileges necessary. For
instance, OpenSSH [39], qmail [3], and the Chromium
browser [2] follow this model, and tools exist to help
programmers privilege-separate existing applications [7].
One problem is that executing components with less privi-
leges requires either root privilege to start with (and appli-
cations that are not fully-trusted to start with are unlikely
to have root privileges), or other complex mechanisms.
With UserFS, privilege-separated applications can use
existing OS protection primitives to enforce isolation be-
tween their components, without requiring root privileges
to do so. We hope that, by making it easier to execute
code with less privileges, UserFS encourages more appli-
cations to improve their security by reducing privileges
and running as multiple components. As an example, Sec-
tion 5.4 shows how UserFS can isolate different processes
in the Chromium web browser.

Exporting OS resources in higher-level runtimes. Fi-
nally, there are many higher-level runtimes running on a
typical desktop system, such as Javascript, Flash, Native
Client [45], and Java. Applications running on top of
these runtimes often want to access underlying OS re-
sources, including the file system, the network, and local
devices such as a video camera. This currently forces the
runtimes to implement their own protection schemes, e.g.
based on file names, which can be fragile, and worse yet,
enforce different policies depending on what runtime an
application happens to use. By using UserFS, runtimes
can delegate enforcement of security checks to the OS
kernel, by allocating a fresh user ID for logical protection
domains managed by the runtime. For example, Sec-
tion 5.1 shows how UserFS can enforce security policies
for a PHP web application. In the future, we hope the
same mechanisms can be used to implement a coherent
security policy for one application across all runtimes that
it might use.

3 KERNEL INTERFACE DESIGN

To help applications reduce the amount of trusted code,
UserFS allows any application to allocate new principals;
in Unix, principals are user IDs and group IDs. An ap-
plication can then enforce its desired security policy by
first allocating new principals for its different components,
then, second, setting file permissions—i.e., read, write,
and execute privileges for principals—to match its secu-
rity policy, and finally, running its different components
under the newly-allocated principals.

A slight complication arises from the fact that, in many
Unix systems, there are a wide range of resources avail-

able to all applications by default, such as the /tmp direc-
tory or the network stack. Thus, to restrict untrusted code
from accessing resources that are accessible by default,
UserFS also allows applications to impose restrictions on
a process, in the form of chroot jails or firewall rules.
The rest of this section describes the design of the UserFS
kernel mechanisms that provide these features.

3.1 User ID allocation
The first function of UserFS is to allow any application
to allocate a new principal, in the form of a Unix user
ID. At a naı̈vely high level, allocating user IDs is easy:
pick a previously unused user ID value and return it to the
application. However, there are four technical challenges
that must be addressed in practice:

• When is it safe for a process to exercise the privi-
leges of another user ID, or to change to a different
UID? Traditional Unix provides two extremes, nei-
ther of which are sufficient for our requirements:
non-root processes can only exercise the privileges
of their current UID, and root processes can exercise
everyone’s privileges.

• How do we keep track of the resources associated
with user IDs? Traditional Unix systems largely rely
on UIDs to attribute processes to users, to implement
auditing, and to perform resource accounting, but if
users are able to create new user IDs, they may be
able to evade UID-based accounting mechanisms.

• How do we recycle user ID values? Most Unix sys-
tems and applications reserve 32 bits of space for
user ID values, and an adversary or a busy system
can quickly exhaust 232 user ID values. On the other
hand, if we recycle UIDs, we must make sure that
the previous owner of a particular UID cannot ob-
tain privileges over the new owner of the same UID
value.

• Finally, how do we keep user ID allocations persis-
tent across reboots of the kernel?

We will now describe how UserFS addresses these chal-
lenges, in turn.

3.1.1 Representing privileges

UserFS represents user IDs with files that we will call
Ufiles in a special /proc-like file system that, by conven-
tion, is mounted as /userfs. Privileges with respect to a
specific user ID can thus be represented by file descrip-
tors pointing to the appropriate Ufile. Any process that
has an open file descriptor corresponding to a Ufile can
issue a USERFS IOC SETUID ioctl on that file descriptor
to change the process’s current UID (more specifically,
euid) to the Ufile’s UID.

3

Aside from the special ioctl calls, file descriptors for
Ufiles behave exactly like any other Unix file descriptor.
For instance, an application can keep multiple file descrip-
tors for different user IDs open at the same time, and
switch its process UID back and forth between them. Ap-
plications can also use file descriptor passing over Unix
domain sockets to pass privileges between processes. This
can be useful in implementing user authentication or lo-
gin, by allowing an authentication daemon to accept login
requests over a Unix domain socket, and to return a file
descriptor for that user’s Ufile if the supplied credential
(e.g. password) was correct.

Finally, each Ufile under /userfs has an owner user
and group associated with it, along with user and group
permissions. These permissions control what other users
and groups can obtain the privileges of a particular UID
by opening its via path name. By default, a Ufile is owned
by the user and group IDs of the process that initially
allocated that UID, and has Unix permissions 600 (i.e.
accessible by owner, but not by group or others), allowing
the process that allocated the UID to access it initially.
A process can always access the Ufile for the process’s
current UID, regardless of the permissions on that Ufile
(this allows a process to always obtain a file descriptor for
its current UID and pass it to others via FD passing).

3.1.2 Accountability hierarchy

Ufiles help represent privileges over a particular user
ID, but to provide accountability, our system must also
be able to say what user is responsible for a particular
user ID. This is useful for accounting and auditing pur-
poses: tracking what users are using disk space, running
CPU-intensive processes, or allocating many user IDs via
UserFS, or tracking down what user tried to exploit some
vulnerability a week ago.

To provide accountability, UserFS implements a hier-
archy of user IDs. In particular, each UID has a parent
UID associated with it. The parent UID of existing Unix
users is root (0), including the parent of root itself. For
dynamically-allocated user IDs, the parent is the user ID
of the process that allocated that UID (which in turn has
its own parent UID). UserFS represents this UID hier-
archy with directories under /userfs, as illustrated in
Figure 1. For convenience, UserFS also provides sym-
bolic links for each UID under /userfs that point to the
hierarchical name of that UID, which helps the system
administrator figure out who is responsible for a particular
UID.

In addition to the USERFS IOC SETUID ioctl that was
mentioned earlier, UserFS supports three more opera-
tions. First, a process can allocate new UIDs by issuing a
USERFS IOC ALLOC ioctl on a Ufile. This allocates a new
UID as a child of the Ufile’s UID, and the value of the
newly allocated UID is returned as the result of the ioctl.

A process can also de-allocate UIDs by performing an
rmdir on the appropriate directory under /userfs. This
will recursively de-allocate that UID and all of its child
UIDs (i.e. it will work even on non-empty directories),
and kill any processes running under those UIDs, for rea-
sons we will describe shortly. Finally, a process can move
a UID in the hierarchy using rename (for example, if
one user is no longer interested in being responsible for
a particular UID, but another user is willing to provide
resources for it).

Finally, accountability information may be important
long after the UID in question has been de-allocated (e.g.
the administrator wants to know who was responsible for
a break-in attempt, but the UID in the log associated with
the attempt has been de-allocated already). To address
this problem, UserFS uses syslog to log all allocations, so
that an administrator can reconstruct who was responsible
for that UID at any point in time.

3.1.3 UID reuse

An ideal system would provide a unique identifier to ev-
ery principal that ever existed. Unfortunately, most Unix
kernel data structures and applications only allocate space
for a 32-bit user ID value, and an adversary can easily
force a system to allocate 232 user IDs. To solve this
problem, UserFS associates a 64-bit generation number
with every allocated UID1, in order to distinguish between
two principals that happen to have had the same 32-bit
UID value at different times. The kernel ensures that gen-
eration numbers are unique by always incrementing the
generation number when the UID is deallocated. How-
ever, as we just mentioned, there isn’t enough space to
store the generation number along with the user ID in
every kernel data structure. UserFS deals with this on a
case-by-case basis:

Processes. UserFS assumes that the current UID of a
process always corresponds to the latest generation num-
ber for that UID. This is enforced by killing every process
whose current UID has been deallocated.

Open Ufiles. UserFS keeps track of the generation num-
ber for each open file descriptor of a Ufile, and veri-
fies that the generation number is current before pro-
ceeding with any ioctl on that file descriptor (such as
USERFS IOC SETUID). Once a UID has been reused, the
current UID generation number is incremented, and left-
over file descriptors for the old Ufile will be unusable.
This ensures that a process that had privileges over a UID
in the past cannot exercise those privileges once the UID
is reused.

1It would take an attacker thousands of years to allocate 264 UIDs,
even at a rate of 1 million UIDs per second.

4

Path name Role
/userfs/ctl Ufile for root (UID 0).
/userfs/1001/ctl Ufile for user 1001 (parent UID 0).
/userfs/1001/5001/ctl Ufile for user 5001 (allocated by parent UID 1001).
/userfs/1001/5001/5002/ctl Ufile for user 5003 (allocated by parent UID 5001).
/userfs/1001/5003/ctl Ufile for user 5003 (allocated by parent UID 1001).
/userfs/1002/ctl Ufile for user 1002 (parent UID 0).
/userfs/5001 Symbolic link to 1001/5001.
/userfs/5002 Symbolic link to 1001/5001/5002.
/userfs/5003 Symbolic link to 1001/5003.

Figure 1: An overview of the files exported via UserFS in a system with two traditional Unix accounts (UID 1001 and 1002), and three dynamically-
allocated accounts (5001, 5002, and 5003). Not shown are system UIDs that would likely be present on any system (users such as bin, nobody, etc),
or directories that are implied by the ctl files. Each ctl file supports two ioctls: USERFS IOC SETUID and USERFS IOC ALLOC.

Setuid files. Setuid files are similar to a file descriptor
for a Ufile, in the sense that they can be used to gain the
privileges of a UID. To prevent a stale setuid file from
being used to start a process with the same UID in the
future, UserFS keeps track of the file owner’s UID gener-
ation number for every setuid file in that file’s extended
attributes. (Extended attributes are supported by many file
systems, including ext2, ext3, and ext4. Moreover, small
extended attributes, such as our generation number, are
often stored in the inode itself, avoiding additional seeks
in the common case.) UserFS sets the generation number
attribute when the file is marked setuid, or when its owner
changes, and checks whether the generation number is
still current when the setuid file is executed.

Non-setuid files, directories, and other resources.
UserFS does not keep track of generation numbers for the
UID owners of files, directories, system V semaphores,
and so on. The assumption is that it’s the previous UID
owner’s responsibility to get rid of any data or resources
they do not want to be accessed by the next process that
gets the same UID value. This is potentially risky, if sen-
sitive data has been left on disk by some process, but is
the best we have been able to do without changing large
parts of the kernel.

There are several ways of addressing the problem of
leftover files, which may be adopted in the future. First,
the on-disk inode could be changed to keep track of the
generation number along with the UID for each file. This
approach would require significant changes to the ker-
nel and file system, and would impose a minor runtime
performance overhead for all file accesses. Second, the
file system could be scanned to find orphaned files, much
in the same way that UserFS scans the process table to
kill processes running with a deallocated UID. This ap-
proach would make user deallocation expensive, although
it would not require modifying the file system itself. Fi-
nally, each application could run sensitive processes with
write access to only a limited set of directories, which can
be garbage-collected by the application when it deletes
the UID. Since none of the approaches are fully satis-

factory, our design leaves the problem to the application,
out of concern that imposing any performance overheads
or extensive kernel changes would preclude the use of
UserFS altogether.

3.1.4 Persistence

UserFS must maintain two pieces of persistent state. First,
UserFS must make sure that generation numbers are not
reused across reboot; otherwise an attacker could use a
setuid file to gain another application’s privileges when
a UID is reused with the same generation number. One
way to achieve this would be to keep track of the last
generation number for each UID; however this would
be costly to store. Instead, UserFS maintains generation
numbers only for allocated UIDs, and just one “next”
generation number representing all un-allocated UIDs.
UserFS increments this next generation number when any
UID is allocated or deallocated, and uses its current value
when a new UID is allocated. To ensure that generation
numbers are not reused in the case of a system crash,
UserFS synchronously increments the next generation
number on disk. As an important optimization, UserFS
batches on-disk increments in groups of 1,000 (i.e., it only
update the on-disk next generation number after 1,000
increments), and it always increments the next generation
counter by 1,000 on startup to account for possibly-lost
increments.

Second, UserFS must allow applications to keep using
the same dynamically-allocated UIDs after reboot (e.g.
if the file system contains data and/or setuid files owned
by that UID). This involves keeping track of the genera-
tion number and parent UID for every allocated UID, as
well as the owner UID and GID for the corresponding
Ufile. UserFS maintains a list of such records in a file
(/etc/userfs uid), as shown in Figure 2. The permis-
sions for the Ufile are stored as part of the owner value (if
the owner UID or GID is zero, the corresponding permis-
sions are 0, and if the owner UID or GID is non-zero, the
corresponding permissions are read-write). The genera-
tion numbers of the parent UID, owner UID, and owner

5

GID are not tracked; the parent UID is necessarily current
(otherwise this child would have been deallocated), and
the owner UID and GID are left up to the Ufile owner.

UserFS lazily updates this on-disk data structure; dele-
tion is implemented in-place by setting the UID value to
−1. If an application wants to rely on the Ufile being
present after reboot, it can force that Ufile’s persistent
record to be written to disk by issuing an fsync on the
Ufile’s file descriptor.

As an optimization, UserFS also allows non-persistent
UIDs to be allocated (for isolating processes that do not
store any persistent data in the file system under their
UID). To implement this, the USERFS IOC ALLOC ioctl
takes one argument that indicates whether the new UID
should be persistent or not; persistent UIDs can only be
allocated to persistent parents.

As a practical matter, UserFS partitions the 32-bit UID
space into UIDs reserved for system use (0 through 230−
1), persistent dynamically-allocated UIDs (230 through
231 − 1), non-persistent dynamically-allocated UIDs (231

through 231+230−1), and more reserved UIDs (231+230

through 232−1). This makes it easy to determine whether
a particular UID is persistent, and avoids conflicts with
most system-allocated UIDs at either end of the UID
number space. UserFS provides modified adduser and
deluser programs that create and delete Ufiles when
they add or remove users from the system (to allow those
users to allocate new UIDs via ioctls on their Ufile), and
assumes that the system administrator will not use UIDs
in the dynamically-allocated range.

3.2 Restriction mechanisms
To prevent malicious code from accessing resources that
are accessible to everyone by default (such as /tmp or the
network), UserFS allows applications to take advantage of
existing restriction mechanisms: chroot to limit access
to the file system namespace, and firewall rules to limit
access to the network.

3.2.1 File system namespaces

To prevent processes from accessing files that are accessi-
ble by default, UserFS allows any user to invoke chroot.
There are two potential problems associated with this:
setuid programs that will behave incorrectly in a chroot
environment, and arbitrary programs attempting to escape
from a chroot jail by recursive use of chroot itself.

Setuid programs. If a setuid program runs in a chroot
environment, it can behave in unpredictable ways—for in-
stance, a setuid-root su program may read a user-supplied
/etc/passwd file and grant the caller root access be-
cause it assumed that root’s password in its version of
/etc/passwd was authentic. UserFS relies on the user
ID hierarchy to address this problem. In particular, after
user U calls chroot, UserFS will only honor setuid bits

for files owned by UIDs that are descendants of U . In
the corner case of root invoking chroot, every user is a
descendant of root, and thus every setuid program will
still be honored, as on a regular Linux system.

UserFS only keeps track of the last UID to call chroot
for a given process (inherited across fork). If one user
performs chroot inside a second user’s jail, it is the re-
sponsibility of the first user to verify that it’s creating a
chroot environment acceptable to all of its descendants.
In practice, we expect that the first user will be a descen-
dant of the second user (because he is executing inside
the second user’s jail), so this requirement will not pose
significant problems.

Escaping chroot. The Linux chroot mechanism
works by effectively maintaining a single “barrier” at
the specified root directory that prevents the process from
evaluating .. (parent directory) of that process’s root di-
rectory. A process can escape a chroot jail by obtaining
a reference (either a file descriptor or current working
directory) to a directory outside the chroot’ed hierarchy,
and using that reference to walk up the .. pointers to the
true file system root. Even if an application properly uses
chroot to confine a process, the kernel only keeps track
of one root directory pointer per process, so a malicious
process in a chroot jail could confine itself to a second
chroot jail while maintaining a handle on a directory
outside this second jail, and use that handle to escape
both jails.

To prevent this problem, UserFS enforces three rules
for chroot invoked by non-root users. First, to ensure
a process cannot maintain a current working directory
outside the chroot environment, UserFS requires that
chroot callers set their directory to the chroot target
directory ahead of time. Second, UserFS checks that a
process calling chroot has no open directory file descrip-
tors. Finally, UserFS ensures that a process cannot receive
a directory file descriptor via file descriptor passing from
outside the jail: it annotates Unix domain sockets with the
sender’s root directory (or a “prohibited” value if there
are senders with different root directories) on sendmsg,
and checks that the sender’s root directory matches the re-
cipient process root directory on recvmsg, if the message
contains a directory file descriptor.

3.2.2 Firewall rules

Ideally, we would like users to be able to run a process
with a set of firewall rules attached to it, and for those
firewall rules to apply to any child processes spawned by
that process, much in the same way that chroot applies
to all child processes. Unfortunately, this would require
changing the core Linux kernel: at the very least, it would
be necessary to track the “current firewall ruleset” for each
process. Since we wanted to implement UserFS purely

6

UID Parent UID Generation number Owner UID Owner GID

32 bits 32 bits 64 bits 32 bits 32 bits

Figure 2: Record stored by UserFS on disk for each allocated UID, totaling 24 bytes per allocated UID.

in terms of loadable kernel modules, we compromised,
and associated firewall rules with UIDs instead. The
kernel already keeps track of the UID for each process,
and propagates the UID to the children of that process,
so UserFS simply needs to ensure that firewall rules for
newly-allocated UIDs inherit the firewall rules for the
parent UID.

UserFS’s firewall system consists of rules, which form
rulesets, which are in turn associated with UIDs. At the
lowest level, rules are of the form 〈action, proto, address,
netmask, port〉. Our prototype supports two kinds of
actions, ALLOW and BLOCK, and two protocols, TCP
and UDP. The protocol, address, netmask, and port are
matched against the destination of outgoing packets or the
source of incoming packets; port value 0 matches any port.
Supporting just TCP and UDP protocols suffices because,
on Linux, a non-root process cannot open a raw socket
to send arbitrary packets that are neither TCP or UDP.
For kernels that support other protocols, such as SCTP,
UserFS’s rules could be augmented to track additional
protocols.

A ruleset is an ordered sequence of rules, used to de-
termine whether a packet should be allowed or blocked.
When checking a packet against a ruleset, UserFS finds
the earliest rule in the ruleset that matches the packet, and
uses that rule’s action to determine if the packet should
be allowed or blocked. Each ruleset contains two implicit
rules at the end, 〈ALLOW, TCP, 0.0.0.0, 0.0.0.0, 0〉 and
〈ALLOW, UDP, 0.0.0.0, 0.0.0.0, 0〉, which allow any pack-
ets by default. Each UID is associated with a ruleset, and
applications can modify that UID’s ruleset by adding or
removing rules as necessary.

One potential worry in associating rulesets with a UID
is that a malicious process can create a child UID with
less-restrictive firewall rules. To mitigate this problem,
UserFS checks not only the UID’s own firewall ruleset,
but also the rulesets of all parent UIDs, and only allows
packets if they are allowed by every ruleset in this chain.

UserFS provides a Ufile ioctl to add or remove rules
from that UID’s firewall ruleset. However, there is a slight
complication: on the one hand, we want to ensure that
a process cannot modify its own firewall ruleset, but on
the other hand, a process can always open its own Ufile.
To address this problem, UserFS allows the firewall ioctl
to be invoked only by the parent UID of a Ufile. This
ensures that a process cannot change firewall rules for
itself through its own Ufile.

4 IMPLEMENTATION

We have implemented UserFS as a kernel module for
version 2.6.31 of the Linux kernel. The UserFS kernel
module comprises a little less than 3,000 lines of code,
excluding unit tests and the user-space mount.userfs
command. UserFS relies heavily on the LSM frame-
work [44] for checking generation numbers on setuid
files (using file permission and inode setattr hooks),
for confining chroot processes (using socket sendmsg
and socket recvmsg hooks), and on netfilter for imple-
menting network filtering (using NF INET LOCAL IN and
NF INET LOCAL OUT hooks). UserFS also adds support
to allow a process to chown or chgrp files between dif-
ferent UIDs that the process has privileges over.

Because UserFS is implemented as a kernel module,
and does not modify core kernel code, it makes some
trade-offs. For example, the kernel’s versions of chown,
chgrp, and chroot are not flexible enough for UserFS
to implement its desired security policy from a kernel
module. As a workaround, UserFS provides ioctls that
implement equivalent functionality with its own secu-
rity policy. Integrating UserFS into the core kernel code
would both simplify our implementation and offer a more
coherent interface to applications.

We have also implemented helper libraries for applica-
tions using UserFS, for both C and PHP. The C library
comprises about 1,500 lines of code, including functions
to execute a program in a newly-allocated jail and under a
fresh user ID, to fork with a new UID, and to manipulate
user IDs. The C library is careful to open all Ufiles with
the O CLOEXEC flag to avoid accidentally leaking Ufile
file descriptors to other processes. The PHP library adds
about 600 more lines on top of the C library to allow PHP
applications to manipulate Ufiles.

5 APPLYING USERFS
To illustrate how UserFS would be used in practice, we
modified several applications to take advantage of UserFS,
including the Chromium web browser, the DokuWiki
web application, Unix command-line utilities, and an
FTP server. The rest of this section reports on these
applications, focusing on the changes we had to make to
each application in order to use UserFS, and the resulting
benefits from doing so.

5.1 DokuWiki
Many web applications implement their own protection
mechanisms, since they do not typically run as root, and
thus cannot allocate user IDs for each application-level

7

user. This can lead to vulnerabilities if the application de-
velopers make a mistake in performing security checks [9].
To show how UserFS can prevent similar problems, we
modified DokuWiki [10], a wiki application written in
PHP that supports read-protected and write-protected
pages [11] and that stores wiki pages in the server’s file
system, to enforce the protection of wiki pages using file
system permissions.

Our modified version of DokuWiki allocates a separate
UID for each wiki user, and sets Unix permissions on
wiki page files to reflect the protection of that page (we
use ACL support in the ext4 file system [19] to repre-
sent ACLs that involve multiple users). To minimize the
amount of damage that an attacker can do, our modified
version of DokuWiki executes each HTTP request in a
separate process, and allocates a new ephemeral user ID
for the initial processing of each request2. If an HTTP
request provides the correct password for a user account,
the DokuWiki PHP process handling that request can ob-
tain a file descriptor for that user’s Ufile, and change its
UID to that user, by using the UserFS PHP module. This
in turn allows a DokuWiki process to read or write wiki
pages accessible to that user. Figure 3 shows the flow of
an HTTP request in our modified DokuWiki.

One of the key parts of our modified DokuWiki is the
login mechanism, which allows the DokuWiki process
to obtain a file descriptor to a user’s Ufile if it knows
the user’s password. We implemented this mechanism
in a short C program called dokusu. dokusu accepts a
username and password on stdin, checks the username
and password against the password database, and if the
password matches, it opens the corresponding user’s Ufile
(listed in the password database) and uses file descriptor
passing to pass it back to the caller via stdout (which
the caller should have set up as a Unix domain socket).
dokusu is typically installed as a setuid program with the
administrator’s UID, and the permissions on all Ufiles
for DokuWiki users in /userfs and on the password
database are such that only the administrator can access
them. Thus, to authenticate, DokuWiki spawns dokusu,
passes it the username and password from the HTTP
request, and waits for a Ufile in response.

DokuWiki keeps a copy of the user’s password in its
HTTP cookie, which makes it easy to authenticate sub-
sequent requests. Cookies that store a session ID could
also be supported, by augmenting dokusu to keep track
of all currently valid session IDs and the corresponding
user IDs for each session, and to accept a valid session ID
as credentials for the corresponding user.

2We changed the first line of DokuWiki’s PHP files to allocate a
new ephemeral UID for each request, and to switch to that user ID. An
alternative approach would be to modify the web server to launch each
CGI script under a fresh user ID.

Making these changes to DokuWiki involved adding
approximately 80 lines of PHP code, and implementing
the 160-line dokusu program, on top of our UserFS PHP
and C libraries, respectively. These changes allow the ker-
nel to enforce DokuWiki’s security policy, and Section 6.2
shows the effectiveness of this technique.

5.2 Command-line tools
To make it easy for ordinary users to use UserFS, we
implemented a command to allocate a new user ID, called
ualloc, which simply issues USERFS IOC ALLOC on the
Ufile of the current process UID and prints the resulting
UID value. To allow users to run code with these newly
allocated UIDs, we modified su to allow users to be spec-
ified by their Ufile pathname instead of by username (in
which case su relies on Ufile permissions to check if the
caller is allowed to run as the target user, since it has no
way of authenticating UserFS users by password). These
modifications comprised approximately 300 lines of code.

With these changes, users can easily run arbitrary Unix
applications with fewer privileges. For example, if a
user wants to run a peer-to-peer file sharing program, but
wants to avoid the risk of that program sharing private
files with the rest of the world, the user can simply run
ualloc to create a fresh UID for that program, run su
/userfs/newuid/ctl to open a shell running as that
user ID, and run the file sharing program from that shell.
The file sharing program will not be able to read any of the
user’s private files (i.e., files that are not world-readable).

Users can also create processes that are isolated from
the user’s own account. For instance, ssh-agent stores
a decrypted version of the user’s SSH private key in mem-
ory. If an attacker compromises the user’s account and
finds a running ssh-agent process, the attacker can ex-
tract the key from memory by debugging ssh-agent.
To prevent this, a user can allocate a fresh user ID
with ualloc, run ssh-agent as that user ID, change
permissions on the agent’s socket so that the user can
talk to ssh-agent3, and finally change the owner of
ssh-agent’s Ufile to ssh-agent’s UID, so that the user
can no longer access it. The only thing the user can do
at this point is to communicate with ssh-agent via the
socket, or kill ssh-agent by deallocating the UID. The
user cannot access ssh-agent’s memory to extract the
key, since ssh-agent is running under a different UID,
and the user cannot gain that UID’s privileges, because it
cannot open the corresponding Ufile.

Finally, UserFS makes it easier for users to switch user
IDs. With traditional su, the user receives a new shell run-
ning under the target UID, with a new working directory,
new command history, and new environment variables.
When the user wants to switch back to their original UID,

3We had to make a two-line change to ssh-agent to support this,
since by default ssh-agent refuses connections from other UIDs.

8

httpd
UID: www-data

fork+exec

php
UID: anonymous

/dokuwiki/users
 ACL: admin – read, write

fork+exec

system call / return

/dokuwiki/pages/page1
ACL: 5009 – read, write

write page1

write page2

read HTTP request, with
alice's id/passwd

file

ioctl(ufilefd, SETUID)

dokusu
UID: admin

alice: pwA, /userfs/5009

bob: pwB, /userfs/5011

/userfs/5009/ctl
 ACL: admin – read, write

/dokuwiki/pages/page2
ACL: 5009 – read

T
im

e

sendmsg
(id/passwd)

 sendmsg
 (Ufile fd)

X

 return Ufile fd

open Ufile

 read file contents

process

Legend:

pass
HTTP request

data

UID: 5009

Figure 3: Flow of an HTTP request in our modified version of DokuWiki, showing Alice trying to write to two protected pages. Bold labels show
process names (httpd, php, and dokusu). Italic labels show process UIDs (www-data, anonymous, admin, and 5009). After reading the users file,
dokusu checks the supplied password against the stored password. In this example, Alice can modify page 1 (to which she has read-write access), but
cannot modify page 2 (to which she has read-only access). In practice, Alice’s UID would be a value between 230 and 231 − 1, instead of 5009.

they again lose their command history and environment
variables. To show how UserFS can help, we modified
su to support an option to pass the resulting Ufile back
to the caller via FD passing, instead of running a shell
under the resulting user’s UID, and likewise modified
bash to accept the Ufile FD from su (much like the de-
sign of dokusu in the previous subsection) and invoke
USERFS IOC SETUID on it. This allows the user to switch
UIDs without having to switch shell processes, improving
user convenience.

5.3 User authentication
Many network services run as root in order to authenti-
cate users and to invoke setuid to switch to that user’s
UID afterwards. Unfortunately, these network services
are also some of the most vulnerable components in a
system, since they are directly exposed to an attacker’s
inputs from the network, and if they are compromised,
the attacker gains root access. With UserFS, network
services like ftp, ssh, telnet, or IMAP mail servers can
instead run as completely unprivileged processes4, and
perform authentication and login via Unix domain sock-
ets like in DokuWiki above. (Infact, they can reuse the
su command from the previous subsection, which passes
back the authenticated user’s Ufile to the caller.) This en-

4We provide setuid-root binaries to open specific TCP ports below
1024, such as port 80 for the web server, accessible only to the web
server’s UID.

sures that if an attacker finds a vulnerability in a network
service, they get almost no privileges on the system. To
prevent an attacker from subverting subsequent connec-
tions to a compromised service, a new service process
should be forked, with a fresh non-persistent UID, for
each connection.

To show this is feasible, we modified the Linux NetKit
FTP server [22] to authenticate users using Ufile passing;
doing this required 50 lines of code, indicating that it is rel-
atively easy to make such changes to existing applications
(unlike privilege separation in the style of OpenSSH [39],
which is much more invasive). Our modified FTP server
uses the su program as its authentication agent.

5.4 Chromium browser
One application that is already broken up into many pro-
cesses is Google’s Chromium browser [2], which main-
tains a separate process for rendering each browser win-
dow, and a single browser kernel process responsible for
coordinating with the rendering processes. This architec-
ture easily lends itself to privilege separation, by isolating
each rendering process. Indeed, Chromium already tries
to do this on Windows using tokens [17], although this
does not prevent a compromised browser process from
accessing the network or world-accessible files.

With UserFS, browser processes can be isolated by
allocating a fresh non-persistent UID for each render-
ing process, chrooting the rendering process into an

9

empty directory, and setting up firewall rules that block
all network traffic. Making these changes to Chromium
required replacing the fork call in Chromium with a call
to a UserFS library function called ufork that performs
precisely the actions mentioned above5. All communica-
tion between the browser kernel process and the rendering
processes happens via sockets, which remain intact, while
the kernel’s protection mechanisms ensure that a compro-
mised rendering process cannot access any files, signal
any processes, or use the network.

6 EVALUATION

To evaluate UserFS, we first discuss its security, then
show how UserFS helps prevent attackers from exploit-
ing vulnerabilities in DokuWiki, and then measure the
performance overheads associated with UserFS.

6.1 Kernel security
The goal of UserFS is to allow any application to use
the kernel’s protection mechanisms. This implicitly as-
sumes that the kernel’s mechanisms are secure. While
security vulnerabilities are found in the kernel from time
to time [1], this paper does not attempt to tackle this
problem, and assumes that, for the time being, users will
continue to run applications on the Linux kernel.

Thus, we mostly focus on the security of any changes
that UserFS makes to the Linux kernel. As a first-order
measure, UserFS is relatively small—less than 3,000 lines
of code—which simplifies the job of auditing our code.
The specific mechanisms that UserFS provides that could
be misused by adversaries are the USERFS IOC SETUID
ioctl, allowing a process to switch user IDs, and the
chroot mechanism that allows non-root processes to
change their root directory.

We believe the USERFS IOC SETUID mechanism is se-
cure because it only allows a process to switch user IDs
if it has an open file descriptor to the corresponding Ufile.
By default, each standard user’s Ufile can only be opened
by that user (and by root), making it no different from the
current kernel policy. Users can change permissions on
Ufiles to allow other processes to open them, but again,
a process can only change permissions on a Ufile that
they already have access to (i.e. it was initially their UID,
or it was granted to them). Applications can potentially
make mistakes and leak privileges over a Ufile to another
process by forgetting to close a Ufile file descriptor. The
UserFS library tries to mitigate this by opening all Ufiles
with the O CLOEXEC flag.

The chroot mechanism could potentially be used re-
cursively by an adversary to escape from a chroot jail. We
believe that we have implemented sufficient safeguards

5We do not provide a more fine-grained lines of code measure for
the ufork function because it internally relies on most of the other
functions provided by the UserFS library.

against this, as described in Section 3.2.1, but we have no
formal proof of their correctness.

6.2 Application security
Assuming UserFS and the Linux kernel are secure, we
wanted to show what security benefits applications could
extract from this. To do so, we decided to check whether
any previously-reported vulnerabilities for DokuWiki
would have been prevented by our changes to enforce
the DokuWiki security policy using file system permis-
sions. We found several vulnerabilities for DokuWiki in
the past few years that allowed an attacker to compromise
DokuWiki [32–37] (as opposed to information disclosure
vulnerabilities, such as printing PHP debug information,
which might help an attacker in exploiting another attack
vector).

Our modified version of DokuWiki (backported to an
older version of DokuWiki that contained the above vul-
nerabilities) was able to prevent exploits of code injec-
tion [35–37], directory traversal [33], and insufficient
permission check [34] vulnerabilities (5 out of 6), but did
not prevent exploits of a cross-site request forgery vulner-
ability [32]. Although our modified version of DokuWiki
contained all of the above vulnerabilities, the vulnerable
code was running with limited privileges (either the web
server’s ephemeral per-request UID, or the UID of a spe-
cific wiki user), which prevented the attack from doing
any server-side damage.

6.3 Performance
Performance of applications running on Linux with
UserFS depends on two factors: overheads imposed
by UserFS on system calls, and overheads associated
with privilege-separating the application to make use of
UserFS. In most cases, UserFS imposes no overheads
on system calls, because the kernel executes the same
exact access control checks based on UIDs with or with-
out UserFS. One exception to this is the invocation of
setuid binaries, for which UserFS checks the generation
number of the setuid binary against the latest generation
number for that UID. Applications that are modified to
take advantage of UserFS incur two additional sources of
overhead: the cost to invoke UserFS mechanisms, such as
ioctls to allocate or change UIDs, and the cost of privilege-
separating the application into separate Unix processes.

To evaluate these three sources of overhead, we used
microbenchmarks to measure the cost of system calls af-
fected by UserFS, and we used DokuWiki to measure the
cost of privilege-separating an application with UserFS.
Figure 4 shows the results of these experiments on a
2.8GHz Intel Core i7 system with 8GB RAM running
a 64-bit Linux 2.6.31 kernel. As can be seen from the
figure, UserFS imposes minimal overheads for both user
allocation and for checking generation numbers on setuid
binaries (which is dwarfed by the cost of forking a setuid

10

Operation Time without UserFS Time with UserFS
Allocate UID — 0.022 ms
Check generation number of setuid executable 0 0.003 ms
Run sudo ls 10.943 ms 10.946 ms
Fetch page from DokuWiki 45 ms 61 ms

Figure 4: Time taken to perform several operations with and without UserFS.

program in the first place). In the case of DokuWiki, the
performance overhead of privilege separation is largely
dominated by the cost of spawning the dokusu authen-
tication agent; we expect that having a long-running au-
thentication agent that accepts requests over Unix domain
sockets would significantly reduce the cost of running
DokuWiki with UserFS. However, the costs of privilege-
separation are not specific to UserFS, and have been stud-
ied before extensively [2, 3, 5–7, 24, 26, 39].

7 RELATED WORK

The principle of least privilege [40] is generally recog-
nized as a good strategy for building secure systems, and
has been used by many applications in practice, including
qmail [3], OpenSSH [39], OKWS [24], a number of web
browsers [2, 18, 41], and others. Current Unix protection
mechanisms make it difficult for non-root applications
to follow the principle of least privilege, by not allowing
them to create less-privileged principals. This requires
developers that want less privileges to actually have more
privileges by running as root, and UserFS directly ad-
dresses this problem.

It is well-known that reasoning about the safety of a
computer system in the presence of setuid programs is
difficult [21, 27], and there are many pitfalls in imple-
menting safe setuid programs [4, 8]. At the lowest level,
UserFS does not make it any easier to write a correct
setuid program. However, we hope that UserFS makes it
possible for programs that currently run as root, including
setuid-root programs, to run under a less privileged UID
instead, mitigating the damage from any vulnerability.

Krohn argued that applications must be given mecha-
nisms to reduce their privileges [25], and ServiceOS [42]
similarly argues for support for application-level prin-
cipals in the OS kernel. Capability-based systems like
KeyKOS [6, 20], and DIFC systems like Asbestos [12]
and HiStar [46], allow users to create new protection do-
mains of their own, at the cost of requiring a new OS
kernel. Flume [26] shows how these ideas can be im-
plemented on top of a Linux kernel to avoid the cost of
re-implementing a new OS kernel, but Flume does not
allow users to apply its protection mechanisms to unmod-
ified existing applications. UserFS shows how the idea
of egalitarian protection mechanisms can be realized in
a standard Linux kernel, in a way that cleanly applies
to most existing applications, and achieves many of the
goals suggested by Krohn [25] and Wang [42].

The use of Ufile file descriptors to represent privileges
over UIDs is inspired by capability systems [28]. Unlike
traditional capability systems, which use capabilities to
control access to all resources, UserFS only uses file
descriptors to track the set of Ufiles currently held open
by a process, and to pass Ufiles between processes. Initial
access to Ufiles for opening the file descriptor, as well as
access to all other resources, is controlled by Unix file
permissions and other Unix mechanisms. One common
problem facing capability systems is revocation of access.
UserFS uses generation numbers to ensure that, once a
UID has been reused, leftover file descriptors cannot gain
access to that UID, since their generation numbers do not
match the UID’s generation number.

Although current Unix protection mechanisms are not
egalitarian, many systems have used them to achieve priv-
ilege separation, at the cost of requiring some part of their
system to run as root. For example, OKWS [24] shows
how to build a privilege-separated web server by running
a launcher as root, and Android [16] similarly uses Linux
user IDs to isolate different applications on a cell phone.
If these platforms start running increasingly more com-
plex applications inside them, those applications will not
have the benefit of running as root and creating their own
protection domains. UserFS would address this problem.

Similarly, there have been a number of tools that help
programmers privilege-separate their existing applica-
tions [5, 7, 39]. The resulting privilege-separated applica-
tions often require root privileges to actually set up protec-
tion domains, and UserFS could be used in conjunction
with these tools to run privilege-separated applications
without root access.

System call interposition [15] could, in principle, im-
plement any policy that a kernel could implement. By
relying on the kernel’s protection mechanisms, UserFS
avoids some of the pitfalls associated with system call
interposition [14] and avoids runtime overhead for most
operations. More importantly, UserFS illustrates what
interface could be used by applications to allocate and
manage their protection domains and set policies; the
same interface could be implemented by a system call
interposition system.

Bittau et al [5] propose a new kernel abstraction called
an sthread that can execute certain pieces of an applica-
tion’s code in isolation from the rest of that application.
The key contribution of sthreads was in providing a mech-
anism that has relatively low overhead for fine-grained

11

isolation of process memory, and that can be used by any
processes in the system. UserFS, on the other hand, pro-
vides persistent UIDs that can be used to control access to
data in the file system, and to control interactions between
multiple processes in an operating system.

The Linux kernel supports several security mechanisms
in addition to traditional user ID protection, such as
SELinux [29] and Linux-vserver [38], but none of these
mechanisms allow users to create their own protection do-
mains and use them to protect system resources like files
and devices. One protection mechanism that is available
to users on Linux is running code in a virtual machine
such as qemu. Unfortunately, this is often too coarse-
grained and heavy-weight for most applications.

Taint tracking in an operating system can be used to
implement certain application-level security policies; for
example, SubOS [23] shows how this can be implemented
on OpenBSD. Unfortunately, these mechanisms are much
more invasive and impose more runtime overhead than
UserFS, which simply exposes existing mechanisms in
the OS kernel.

The protection mechanisms in Windows differ from
those found in Unix systems. Windows protection is cen-
tered around the notion of tokens [31]. Users can create
tokens that grant almost no privileges, and this is used
by applications such as Chromium to sandbox untrusted
code [17]. However, there is no way to create tokens
with a fresh user ID (without administrative privileges to
create a new user), which makes it difficult to implement
controlled sharing of system resources (as opposed to
complete isolation in a sandbox). Windows tokens can be
passed between processes, similar to how UserFS allows
passing file descriptors for Ufiles. The Windows firewall
allows associating firewall rules with executables. UserFS
associates firewall rules with user IDs, and inherits fire-
wall rules on user ID creation, which ensures that a user
cannot escape firewall rules by creating and running a
new executable.

8 LIMITATION AND FUTURE WORK

While UserFS helps applications run code with fewer priv-
ileges, it is not a panacea. Running untrusted code on a
system often exposes a wider range of possibly-vulnerable
interfaces than if we were simply interacting with the at-
tacker over the network. For example, an attacker may
try to exploit bugs in the kernel or in other applications
running on the same machine. Nonetheless, if it is neces-
sary to run untrusted or partially-trusted applications on a
machine, UserFS helps improve security with respect to
system resources.

UserFS, much like Linux itself, currently assumes that
all file systems are always mounted on the same machine,
and does not have a plan for translating UIDs from a
file system that was originally mounted on a different

machine. One possible approach to dealing with this
problem may be to maintain a globally unique name of
each UID (perhaps a public key), and to store on each file
system a mapping table between file system UIDs and the
globally unique names for those UIDs.

When a user ID is deallocated, it may be difficult to
remove non-empty directories owned by that UID in the
file system without root’s intervention. While we have not
yet implemented a solution to this problem, we imagine a
system call or a setuid-root program that, upon request,
recursively garbage-collects files or sub-directories owned
by de-allocated UIDs from a given directory, as long as
the caller has write permission on that directory.

UserFS only protects resources managed by the oper-
ating system, such as files, processes, and devices. Web
applications often use databases to store their data, which
UserFS cannot protect directly. In the future, we hope to
explore the use of OS UIDs in a database to implement
protection of data at a finer granularity (perhaps at the
row level).

Our current prototype allocates user IDs, but does
not separately allocate group IDs. We believe it is best
to have only one kind of dynamically allocated princi-
pal, such as the 32-bit integer called the UID in UserFS.
These principals can then be used to represent either users
or groups, depending on the application’s requirements.
The GID and grouplist associated with every Unix pro-
cess could then be used to represent a process that has
the privileges of multiple principals at once. To sup-
port this, UserFS could provide a USERFS IOC ADDGROUP
ioctl, which would add the Ufile’s UID to the grouplist
of the calling process. To avoid conflicts with existing
groups, this ioctl should be only allowed for dynamically-
allocated UIDs. In terms of file permissions, we also
believe that POSIX ACLs [19] are a better alternative to
the Unix user-group-other permission bits.

UserFS relies on the kernel to support 32-bit UIDs, as
opposed to 16-bit UIDs from the original Unix design.
Linux has supported 32-bit UIDs since kernel version
2.3.39 (January 2000), but UserFS cannot support older
file systems that can only keep track of a 16-bit UID, such
as the original Minix filesystem.

Our prototype faces several limitations because it is
implemented as a loadable kernel module, and avoids
making any extensive changes to the Linux kernel. For
example, the chroot system call on Linux always rejects
calls from non-root users, requiring UserFS to provide
an alternative way of invoking chroot. Performing priv-
ileged operations in the kernel also requires UserFS to
sometimes change the current UID of the calling process.
While we believe our prototype does so safely, being able
to change permission checks inside the core kernel code
would be both simpler and more secure in the long term.

12

If UserFS was integrated into the Linux kernel, we
would hope to extend our chroot mechanism to also
allow arbitrary users to use the Linux file system names-
pace mechanism (a generalization of the mount table).
In particular, we want to allow any process to invoke
clone with the CLONE NEWNS flag to create a new names-
pace, and allow a process to change its namespace using
mount --bind if it’s running as the same UID that in-
voked clone(CLONE NEWNS), along with restrictions on
setuid binaries similar to chroot. Similar support could
also be added to allow users to manage the system V IPC
namespace (CLONE NEWIPC).

Finally, if UserFS was integrated into the Linux kernel,
we would also like to replace our firewall mechanism
with a per-process iptables firewall ruleset, inherited
by child processes across fork and clone. To specify
new firewall rules, applications would specify a new flag
to the clone system call to start the child process with
a fresh iptables ruleset. To ensure that a child cannot
escape from the parent’s firewall rules, the child’s ruleset
would be chained to the parent’s.

9 CONCLUSION

This paper presented UserFS, the first system to provide
egalitarian OS protection mechanisms for Linux. UserFS
allows any user to use existing OS protection mechanisms,
including Unix user IDs, chroot jails, and firewalls. This
both allows applications to reduce their privileges, and in
many cases avoids the need for root privileges altogether.

One key idea in UserFS is representing user IDs as
files in a /proc-like file system. This allows applications
to manage user IDs much like they would any other file,
without the need to introduce any new user ID manage-
ment mechanisms. UserFS maintains a hierarchy of user
IDs for accountability and resource revocation purposes,
but allows child user IDs in the hierarchy to be made in-
accessible to parent user IDs, in order to protect sensitive
processes like ssh-agent from outside interference. To
cope with a limited 32-bit user ID namespace, UserFS in-
troduces per-UID generation numbers that disambiguate
multiple instances of a reused 32-bit UID value. Finally,
UserFS implements security checks that make it safe to
allow non-root users to invoke chroot, without allow-
ing users to escape out of existing chroot jails or abuse
setuid executables.

An important goal of the UserFS design is compati-
bility with existing applications, interfaces, and kernel
components. Porting applications to use UserFS requires
only tens to hundreds of lines of code, and prevents attack-
ers from exploiting application-level vulnerabilities, such
as code injection or missing ACL checks in a PHP-based
wiki web application. UserFS requires minimal changes
to the Linux kernel, comprising of a single 3,000-line

kernel module, and incurs no performance overhead for
most operations.

ACKNOWLEDGMENTS

We thank the anonymous reviewers, Ramesh Chandra,
Chris Laas, and Xi Wang for providing valuable feedback
that improved this paper. This work was supported in part
by Quanta Computer. Taesoo Kim is partially supported
by the Samsung Scholarship Foundation.

REFERENCES

[1] Jeff Arnold and M. Frans Kaashoek. Ksplice: Au-
tomatic rebootless kernel updates. In Proceedings
of the ACM EuroSys Conference, Nuremberg, Ger-
many, March 2009.

[2] Adam Barth, Collin Jackson, Charles Reis, and
Google Chrome Team. The Security Architecture of
the Chromium Browser. Technical report, Google
Inc., 2008.

[3] Daniel J. Bernstein. Some thoughts on security
after ten years of qmail 1.0. In Proceedings of the
Computer Security Architecture Workshop (CSAW),
Fairfax, VA, November 2007.

[4] Matt Bishop. How to write a setuid program. ;lo-
gin: The Magazine of Usenix & Sage, 12(1):5–11,
January/February 1987.

[5] Andrea Bittau, Petr Marchenko, Mark Handley, and
Brad Karp. Wedge: Splitting applications into
reduced-privilege compartments. In Proceedings
of the 5th Symposium on Networked Systems Design
and Implementation, pages 309–322, San Francisco,
CA, April 2008.

[6] Alan C. Bomberger, A. Peri Frantz, William S.
Frantz, Ann C. Hardy, Norman Hardy, Charles R.
Landau, and Jonathan S. Shapiro. The KeyKOS
nanokernel architecture. In Proceedings of the
USENIX Workshop on Micro-Kernels and Other Ker-
nel Architectures, pages 95–112, April 1992.

[7] David Brumley and Dawn Xiaodong Song. Priv-
trans: Automatically partitioning programs for priv-
ilege separation. In Proceedings of the 13th Usenix
Security Symposium, pages 57–72, San Diego, CA,
August 2004.

[8] Hao Chen, David Wagner, and Drew Dean. Setuid
demystified. In Proceedings of the 11th Usenix
Security Symposium, San Francisco, CA, August
2002.

13

[9] Michael Dalton, Nickolai Zeldovich, and Christos
Kozyrakis. Nemesis: Preventing authentication and
access control vulnerabilities in web applications. In
Proceedings of the 18th Usenix Security Symposium,
pages 267–282, Montreal, Canada, August 2009.

[10] DokuWiki. http://www.dokuwiki.org/

dokuwiki.

[11] DokuWiki. Access control lists. http://www.
dokuwiki.org/acl.

[12] Petros Efstathopoulos, Maxwell Krohn, Steve Van-
DeBogart, Cliff Frey, David Ziegler, Eddie Kohler,
David Mazières, M. Frans Kaashoek, and Robert
Morris. Labels and event processes in the Asbestos
operating system. In Proceedings of the 20th ACM
Symposium on Operating Systems Principles, pages
17–30, Brighton, UK, October 2005.

[13] Ulfar Erlingsson, Martı́n Abadi, Michael Vrable,
Mihai Budiu, and George C. Necula. XFI: software
guards for system address spaces. In Proceedings
of the 7th Symposium on Operating Systems Design
and Implementation, Seattle, WA, November 2006.

[14] Tal Garfinkel. Traps and pitfalls: Practical problems
in in system call interposition based security tools.
In Proceedings of the Network and Distributed Sys-
tems Security Symposium, February 2003.

[15] Tal Garfinkel, Ben Pfaff, and Mendel Rosenblum.
Ostia: A delegating architecture for secure system
call interposition. In Proceedings of the Network and
Distributed Systems Security Symposium, February
2004.

[16] Google, Inc. Android: Security and per-
missions. http://developer.android.com/

guide/topics/security/security.html.

[17] Google, Inc. Chromium sandbox.
http://dev.chromium.org/developers/

design-documents/sandbox.

[18] Chris Grier, Shuo Tang, and Samuel T. King. Se-
cure web browsing with the OP web browser. In
Proceedings of the IEEE Symposium on Security
and Privacy, pages 402–416, Oakland, CA, 2008.

[19] Andreas Grünbacher. POSIX access control lists on
Linux. In Proceedings of the USENIX 2003 Annual
Technical Conference, FREENIX track, pages 259–
272, San Antonio, TX, June 2003.

[20] Norman Hardy. KeyKOS architecture. ACM
SIGOPS Operating System Review, 19(4):8–25, Oc-
tober 1985.

[21] Michael A. Harrison, Walter L. Ruzzo, and Jef-
frey D. Ullman. Protection in operating systems.
Communications of the ACM, 19(8):461–471, Au-
gust 1976.

[22] David A. Holland. linux-ftpd. In Linux
NetKit. ftp://ftp.uk.linux.org/pub/

linux/Networking/netkit/linux-ftpd-0.

17.tar.gz.

[23] Sotiris Ioannidis, Steven M. Bellovin, and Jonathan
Smith. Sub-operating systems: A new approach to
application security. In SIGOPS European Work-
shop, September 2002.

[24] Maxwell Krohn. Building secure high-performance
web services with OKWS. In Proceedings of
the 2004 USENIX Annual Technical Conference,
Boston, MA, June–July 2004.

[25] Maxwell Krohn, Petros Efstathopoulos, Cliff Frey,
M. Frans Kaashoek, Eddie Kohler, David Mazières,
Robert Morris, Michelle Osborne, Steve VanDeBog-
art, and David Ziegler. Make least privilege a right
(not a privilege). In Proceedings of the 10th Work-
shop on Hot Topics in Operating Systems, Santa Fe,
NM, June 2005.

[26] Maxwell Krohn, Alexander Yip, Micah Brodsky,
Natan Cliffer, M. Frans Kaashoek, Eddie Kohler,
and Robert Morris. Information flow control for
standard OS abstractions. In Proceedings of the 21st
ACM Symposium on Operating Systems Principles,
pages 321–334, Stevenson, WA, October 2007.

[27] Tim Levin, Steven J. Padilla, and Cynthia E. Irvine.
A formal model for UNIX setuid. In Proceedings of
the 10th IEEE Symposium on Security and Privacy,
pages 73–83, Oakland, CA, May 1989.

[28] Henry M. Levy. Capability-Based Computer Sys-
tems. Digital Press, 1984.

[29] Peter Loscocco and Stephen Smalley. Integrat-
ing flexible support for security policies into the
Linux operating system. In Proceedings of the 2001
USENIX Annual Technical Conference, pages 29–
40, June 2001. FREENIX track.

[30] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish
Patil, Artur Klauser, Geoff Lowney, Steven Wal-
lace, Vijay Janapa Reddi, and Kim Hazelwood. Pin:
building customized program analysis tools with dy-
namic instrumentation. In Proceedings of the 2005
ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation, pages 190–200,
Chicago, IL, June 2005.

14

[31] Microsoft Corp. Access tokens (windows).
http://msdn.microsoft.com/en-us/

library/aa374909%28VS.85%29.aspx.

[32] MITRE Corporation. DokuWiki cross-site request
forgery vulnerability. In Common Vulnerabilities
and Exposures (CVE) database. CVE-2010-0289.

[33] MITRE Corporation. DokuWiki directory traver-
sal vulnerability. In Common Vulnerabilities and
Exposures (CVE) database. CVE-2010-0287.

[34] MITRE Corporation. DokuWiki insufficient permis-
sion checking vulnerability. In Common Vulnera-
bilities and Exposures (CVE) database. CVE-2010-
0288.

[35] MITRE Corporation. DokuWiki php code inclu-
sion vulnerability. In Common Vulnerabilities and
Exposures (CVE) database. CVE-2009-1960.

[36] MITRE Corporation. DokuWiki php code injec-
tion vulnerability. In Common Vulnerabilities and
Exposures (CVE) database. CVE-2006-4674.

[37] MITRE Corporation. DokuWiki php code upload
vulnerability. In Common Vulnerabilities and Expo-
sures (CVE) database. CVE-2006-4675.

[38] Herbert Pötzl. Linux-VServer Technol-
ogy, 2004. http://linux-vserver.org/

Linux-VServer-Paper.

[39] Niels Provos, Markus Friedl, and Peter Honeyman.
Preventing privilege escalation. In Proceedings of
the 12th Usenix Security Symposium, Washington,
DC, August 2003.

[40] J. H. Saltzer and M. D. Schroeder. The protection
of information in computer systems. Proceedings of
the IEEE, 63(9):1278–1308, September 1975.

[41] Helen J. Wang, Chris Grier, Alexander Moshchuk,
Samuel T. King, Piali Choudhury, and Herman Ven-
ter. The multi-principal OS construction of the
Gazelle web browser. In 18th USENIX Security
Symposium, August 2009.

[42] Helen J. Wang, Alexander Moshchuk, and Alan
Bush. Convergence of desktop and web applications
on a multi-service OS. In 4th Usenix Workshop on
Hot Topics in Security, August 2009.

[43] Robert N. M. Watson. Exploiting concurrency vul-
nerabilities in system call wrappers. In Proceedings
of the 1st USENIX Workshop on Offensive Technolo-
gies, Boston, MA, August 2007.

[44] Chris Wright, Crispin Cowan, James Morris,
Stephen Smalley, and Greg Kroah-Hartman. Linux
security modules: General security support for the
Linux kernel. In Proceedings of the 11th Usenix
Security Symposium, San Francisco, CA, August
2002.

[45] Bennet Yee, David Sehr, Gregory Dardyk, J. Bradley
Chen, Robert Muth, Tavis Ormandy, Shiki Okasaka,
Neha Narula, and Nicholas Fullagar. Native Client:
A sandbox for portable, untrusted x86 native code.
In Proceedings of the 30th IEEE Symposium on
Security and Privacy, Oakland, CA, May 2009.

[46] Nickolai Zeldovich, Silas Boyd-Wickizer, Eddie
Kohler, and David Mazières. Making information
flow explicit in HiStar. In Proceedings of the 7th
Symposium on Operating Systems Design and Imple-
mentation, pages 263–278, Seattle, WA, November
2006.

15

