
Recovering from intrusions in distributed systems with DARE

Taesoo Kim, Ramesh Chandra, and Nickolai Zeldovich
MIT CSAIL

ABSTRACT

DARE is a system that recovers system integrity after

intrusions that spread between machines in a distributed

system. DARE extends the rollback-and-reexecute recov-

ery model of Retro [14] to distributed system recovery

by solving the following challenges: tracking dependen-

cies across machines, repairing network connections,

minimizing distributed repair, and dealing with long-

running daemon processes. This paper describes an

early prototype of DARE, presents some preliminary

results, and discusses open problems.

1 INTRODUCTION

An adversary that compromises one machine in a dis-

tributed system, such as a cluster of servers, can often

leverage the trust between machines in that system to

compromise other machines as well [12]. Recovering

the integrity of these machines after an intrusion is often

a manual process for system administrators, and this pa-

per presents a system that helps administrators automate

intrusion recovery across machines.

To understand the steps involved in intrusion recovery,

consider a recent break-in at SourceForge, a source code

repository that hosts over 300K open source projects.

On January 26th, 2011, system administrators of Source-

Forge detected a targeted attack that infected multiple

machines in their network [9]. A key goal for the admin-

istrators was to determine whether any source code or

files hosted by SourceForge were modified by the attack,

and to restore their integrity, but to do that they needed

to first restore the integrity of their servers.

As a first step, SourceForge immediately locked down

possibly affected servers, and started investigating logs

of their services to determine the root cause of the at-

tack and the extent of the damage it caused. Two days

later, SourceForge decided to reset passwords of two

million accounts, due to evidence of attempts to sniff

user passwords, even though their administrators were

unable to determine whether the attempts were success-

ful [10]. Then, they validated project data such as source

commits and file releases, by comparing data of the com-

promised servers with the latest backup data before the

attack, and notified project owners if they detected sus-

picious changes. Finally, they restored services such as

SVN, file hosting, and project webspaces, to previously

working copies, by completely reinstalling servers. In

all, this recovery process required five days of effort by

the entire SourceForge team, during which time several

SourceForge services were unavailable.

This example shows that in today’s distributed sys-

tems, recovering from an attack that propagates across

machines is manual, tedious, and time-consuming.

Worse yet, there is no guarantee that the administra-

tor found all effects of the attack and recovered from

them. The SourceForge attack is not an isolated ex-

ample of these types of attacks; other such high-profile

attacks include Stuxnet [13] and the recent kernel.org
compromise [7]. Given that today’s systems are highly

interconnected, recovering from such distributed attacks

is an important problem. However, past work [12] does

not address intrusion recovery in a distributed system.

In this paper, we discuss the design of an early proto-

type of DARE,1 a system for recovering from an attack

that propagates across a distributed system, once an ad-

ministrator has identified the source of the attack. At

a high level, DARE adopts Retro’s [14] rollback-and-

reexecute approach to recovery, but additionally also

tracks dependency information across machines. Thus,

if an attack propagates to other machines, DARE auto-

matically initiates repair on them and eventually undoes

the effects of the attack on all the infected machines in

the system.

DARE’s distributed repair faces four challenges that

are not addressed by Retro. First, DARE needs to deter-

mine dependencies between events that occur on differ-

1DARE stands for Distributed Automatic REpair.

1

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
to republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
APSys '12, July 23-24, 2012, Seoul, S. Korea
Copyright 2012 ACM 978-1-4503-1669-9/12/07... $15.00

�������	
��

��
��

����������

������

��������

��������

������

��	
���

�	���������

������

���
��

��������
�
�� ����	
�����
����

�����
	���	�

 ���	
��! ���	
��"

������

 ���	
����	���	�����
����	������

�����
�����

����

������ ��� ���

���������� ���

��������� �	
����	
�	
��

�����
�
���#���������

����	�

��$�����

Figure 1: An overview of DARE’s design. Components introduced

by DARE are shaded. Components borrowed from Retro are striped.

During normal execution, the logger interposes on system calls and

logs them. The action history graph is generated from this logged

information. During repair, the distributed repair controller listens

for repair requests from the administrator locally or from remote

controllers, and uses its action history graph to perform repair on

the local machine and to invoke repair on remote controllers.

ent machines. Second, DARE needs to perform repair

on network connections by propagating repair across

machines. Third, DARE needs to minimize repair prop-

agation during distributed repair. Finally, DARE needs

to perform efficient repair on long-running server pro-

cesses.

In the rest of this paper, §2 gives an overview of

DARE, §3 describes how DARE solves the above chal-

lenges, §4 illustrates how DARE repairs a sample dis-

tributed attack, §5 and §6 present a preliminary imple-

mentation and results, §7 summarizes related work, §8

discusses open problems, and §9 concludes.

2 OVERVIEW

DARE consists of several components, shown in Fig-

ure 1. DARE’s operation consists of three phases: nor-

mal execution of the distributed system, detection of

an intrusion by an administrator, and distributed repair.

The rest of this section gives an overview of Retro, and

describes DARE’s phases of operation in more detail.

2.1 Background
Retro [14] is an intrusion recovery system that repairs a

single machine after a compromise by an adversary. It

undoes the changes by the adversary, while preserving

changes made by legitimate users. While the system

is running normally, Retro records information about

the system execution that it uses to build a detailed

dependency graph of the system’s execution, called an

action history graph. The recorded information allows

Retro to rollback the system state to a time in the past

and selectively re-execute individual actions.

The action history graph consists of two types of

objects: data objects, such as files, and actor objects,

such as processes. Each object has a set of checkpoints,

representing its state at various times. Each actor object

additionally consists of a set of actions, representing the

execution of that actor over some period of time. Each

action has dependencies from and to other objects in the

graph, representing the objects accessed and modified

by that action.

Once an administrator detects an intrusion and identi-

fies an attack action, Retro’s repair controller uses the

action history graph to perform repair by undoing the

attack action as well as all of its effects. It does so by

rolling back the direct effects of the attack action, skip-

ping the attack action, and re-executing subsequent legit-

imate actions with dependencies to or from the objects

affected by the attack. Retro separates the rollback-and-

reexecute logic, implemented by the repair controller,

from object- and action-specific logging, rollback, and

re-execution, implemented by repair managers.

2.2 Normal execution

During normal execution, each machine running DARE

constructs its own action history graph, by periodically

saving file snapshots, and recording information about

all system calls, including their arguments and return

values. For system calls that operate on a network con-

nection (e.g., send and recv), DARE records the con-

nection’s protocol and the source and destination IP

addresses and ports. DARE models the connection as

a socket data object that is present in the local action

history graphs of both the machines at either end of the

connection, and uses this recorded information about

the connection to name that socket data object.

For example, Figure 2 shows action history graphs

for a simplified version of the SourceForge attack. The

connect and send system calls on the gateway ma-

chine, and the accept and recv system calls on the

internal machine are modeled as actions writing to and

reading from the same socket data object. This socket

data object is present in both machines’ action history

graphs and connects them together. DARE inserts a sin-

gle checkpoint on the socket data object at connection

2

�����

����

	
��

��
�

������

��
�

����

����

�
�����

�
�

�
�
��

�

�������

������
���
����������

��
�����

���
�

�
�����

�����������
�
���������
������

���
��

��������

�������
�������

!�������
�������

Figure 2: Action history graphs illustrating a simplified version of

the SourceForge attack. The attacker uses a compromised account to

log into sshd on the Internet-facing gateway, which spawns a shell.

The shell reads and writes to the log that was used by administrator

to later detect the attack. Finally, the attacker logs into an internal

machine over SSH using the same compromised account. Both

machines independently record their local action history graphs,

which are connected by the socket data object.

start (i.e., before the connect), and the data object can

be rolled back to this checkpoint during repair.

2.3 Repair

Each machine in the distributed system runs a DARE

repair controller, which listens on a well-known port for

repair requests from either the administrator or from a

remote machine, performs the requested repairs locally,

and initiates repair on remote machines as necessary.

Repair starts with an administrator detecting an in-

trusion and determining its source machine. DARE pro-

vides a GUI tool that an administrator can use to visu-

alize the global action history graph across the entire

distributed system. The administrator can use this tool

to find the intrusion point from the attack symptoms, in a

manner similar to BackTracker [15]. The administrator

can also use other intrusion detection techniques such

as retroactive auditing [17] and retroactive patching [8],

to find the attack. The rest of this paper does not discuss

intrusion detection further.

After finding the attack, the administrator invokes lo-

cal repair on the source machine’s controller by specify-

ing the attack action. The controller reboots the machine

to discard non-persistent state, and enters repair mode.

To undo the attack action, the controller first rolls

back objects modified by the action to a checkpoint be-

fore the attack. The controller then replaces the attack

action with a no-op in the action history graph, and uses

the action history graph to determine other actions poten-

tially affected by the attack. The controller re-executes

each of those affected actions by first rolling back the

action’s inputs and outputs to the correct version, and

then redoing the action. The controller repeats this pro-

cess of determining affected actions and re-executing

them until there are no more affected actions.

While a machine is undergoing repair, that machine

is not available for normal execution. Though this can

be inconvenient for users, it takes a potentially infected

machine offline and helps contain further damage due to

the attack spreading to other machines in the network.

When the controller on a machine has to redo a system

call on a network connection, it propagates repair to the

machine on the other end of the network connection,

using the repair controller API described in §3.2.

As repair progresses, the controllers on all the ma-

chines to which the attack propagated are included in

the repair process. Local repair happens simultaneously

on these controllers, and they coordinate with each other

before redoing system calls that operated on network

connections. By the end of the repair process, DARE

undoes all effects of the attack on the distributed system.

2.4 Assumptions
DARE makes several assumptions. First, we assume

that attacks compromise only user-level services and

that the attack does not tamper with the kernel, file

system, or DARE’s checkpoints and logs. Second, we

assume that the administrator can identify all external

attack actions. In particular, if an adversary steals a

user’s password or other credentials, our current design

assumes an administrator pinpoints all improper uses of

those credentials. Third, we assume that all the machines

in the distributed system have DARE installed, and that

the machines are under the same administrative domain,

so that they can initiate repair on each other. We discuss

how these assumptions may be relaxed in §8.

3 CHALLENGES ADDRESSED BY DARE

This section describes several challenges addressed by

DARE’s design in more detail.

3.1 Cross-machine dependencies
Propagating repair across machines in DARE requires

addressing two problems: precisely identifying the net-

3

work connection being repaired, and authenticating the

repair request.

Identifying the network connection being repaired

is complicated by the fact that source and destination

ports can be reused over time. To uniquely identify con-

nections, the DARE kernel module generates a random

token for every connection it initiates, and includes it

as a control option in the IP header of packets for that

connection. When accepting a connection, the kernel

module records the peer’s random token and similarly

includes it in all packets for that connection. During

repair, when one controller sends a repair request to an-

other controller, it includes the token in the request to

identify the network connection to repair.

If adding IP options is undesirable, DARE kernel mod-

ules can communicate tokens for a network connection

using an out-of-band channel. However, this incurs the

overhead of an extra network round trip.

Authenticating repair requests between machines is

important because an adversary may subvert an inse-

cure repair mechanism to compromise the system. Our

current design assumes that all of the machines are in

the same administrative domain, and uses a secret cryp-

tographic key, shared by all of the repair controllers,

to authenticate repair requests, along with a nonce to

ensure freshness.

3.2 Repairing network connections
During repair, the controller on a machine MA may need

to redo a system call A that operated on a network con-

nection (e.g., send). This requires redo of the entire

connection, and can result in repair on the machine MB

that is the other end of the connection.2 To support this,

each repair controller exports the following two API

calls that can be invoked by another repair controller;

these calls take the socket data object corresponding to

the connection, identified by the connection’s token, as

the argument.

First, rollback() instructs the controller to roll back

a specified socket data object to the single checkpoint be-

fore connection start, and start local redo on the actions

that operated on that data object. rollback returns af-

ter redo is started on the first action that operated on the

socket data object.

Second, a repair controller can send a done() mes-

sage to the controller at the other end of the connection,

2Assume that MA is the client and MB is the server for this

network connection (i.e., MA executed connect and MB executed

accept during connection setup.)

to indicate that repair on its local socket data object is

complete.

To redo the system call A on a network connection,

MA’s controller invokes rollback on MB’s controller

with the connection’s token as the argument. MB’s con-

troller initiates redo on the accept system call for that

connection, and acknowledges MA’s rollback request.

MA’s controller then re-executes the connect system

call, establishing the connection. MA and MB’s con-

trollers continue redo of subsequent system calls on that

connection, including A. Once repair is complete on the

connection (e.g., at connection close), the controllers

send done messages to each other.

3.3 Minimizing network replay

DARE borrows Retro’s idea of predicate checking; Retro

uses predicate checking to selectively re-execute only

the actions whose dependencies are semantically differ-

ent during repair. For example, if the attacker modified a

file that was later read by a process P, Retro may be able

to avoid re-executing P if the part of the file accessed by

P is the same before and after repair.

DARE performs predicate checking on network con-

nections to minimize distributed re-execution. For in-

stance, in the SourceForge attack, the attacker’s SSH

client could have performed a DNS lookup during orig-

inal execution. During repair, DARE can avoid re-

executing the lookup on the DNS server if the DNS

request was unchanged during repair.

One way to do predicate checking on a network con-

nection is to compare the system calls issued on the

connection during original execution with those issued

during repair. However, this is insufficient, as non-

determinism in the connection can cause the system

calls to differ, even though their net effect is the same.

For example, reduced network latency can cause one

recv system call during repair to receive data that was

originally received by multiple recv calls.

To solve this problem, DARE inserts a proxy predi-
cate checker actor object in between the process using

the network connection and the socket data object for

the connection. The predicate checker compares the

bytes sent by the process during repair with the bytes

sent during original execution. As long as they match,

the predicate checker replays the bytes received by the

process during original execution back to the process,

and repair is not initiated on the machine at the other

end of this connection. When they do not match, the

4

predicate check fails and the predicate checker initiates

repair on the remote machine.

3.4 Repairing long-lived daemons

When repairing a process, DARE’s repair controller re-

executes it from the beginning. Although this works well

for short-lived processes, many server processes in a dis-

tributed system, such as the SSH daemon, are long-lived

daemon processes. If a daemon process was involved in

an attack, repair would require re-executing the daemon

process from its beginning (typically the boot time of

the machine), which would be time-consuming.

One way to solve this problem is to periodically snap-

shot daemon processes using techniques developed for

application migration and virtualization [1, 2, 4, 16].

This allows DARE’s repair controller to roll back the

daemons to a snapshot just before the attack. However,

these snapshot mechanisms have significant runtime and

storage overhead during normal execution. For exam-

ple, a single snapshot of sshd using DMTCP [2] takes

0.6 sec and consumes 4 MB of disk space.

To avoid these overheads, we leverage the typical pat-

tern of network services, which enter a quiescent state

between servicing each request. For example, an SSH

daemon has a known “connection accepting” state after

servicing each request and spawning an SSH session.

A daemon in the quiescent state is equivalent to having

been restarted. Building on this intuition, DARE pro-

vides daemon developers with two options. First, the

developer can have the daemon restart itself periodically,

when it is in a quiescent state. This causes daemon pro-

cesses to be short-lived, and allows DARE to repair only

the particular daemon process that was the target of the

attack, limiting the amount of re-execution.

Restarting the daemon can incur a performance

penalty, and possibly lead to (brief) downtime. To ad-

dress this limitation, a second option provided by DARE

is a new mark_quiescent system call that the daemon

developer can use to indicate that the daemon is in a qui-

escent state. During normal execution, DARE’s logger

records invocations of this system call. If the daemon

needs to be repaired, DARE’s repair controller restarts

the daemon, but re-executes operations only from the

last quiescent state before the action being repaired. Al-

though this limits re-execution of operations before the

attack, the repair controller must still re-execute subse-

quent operations on the affected daemon process, be-

cause an adversary could have subverted the process and

the quiescent marks can no longer be trusted.

The quiescent marks can always be trusted in dae-

mons that follow a common pattern of forking a child

process to service each accepted connection; such dae-

mons do not process any data from the network in the

parent process, and thus cannot be compromised via the

accepted network connections. For daemons that follow

this pattern, the developer can additionally annotate the

mark_quiescent system call as trusted, indicating to

DARE that it can skip re-executing operations on the

daemon process following the next quiescent mark after

the action being repaired.

4 REPAIRING THE SOURCEFORGE ATTACK

To understand how DARE repairs from an intrusion in

a distributed system, consider a simplified version of

the SourceForge attack, where an attacker logs into the

gateway machine using a compromised user account,

and from there proceeds to log into an internal machine.

Figure 2 shows the action history graph for this attack.

Once the administrator identifies the intrusion and pin-

points the attacker’s entry point on the gateway machine,

DARE’s repair controller on the gateway machine rolls

back sshd and removes the attacker’s login action from

the action history graph. This causes the shell to not be

forked, and the connect to internal machine’s sshd and

the subsequent send to not be invoked. The gateway’s

controller proceeds to undo the connect and the send
system calls. It rolls back its local socket data object,

and invokes rollback on the internal machine’s con-

troller, which rolls back its own local socket data object.

The gateway’s controller undoes the connect and send
system calls, and sends a done message to the internal

machine’s controller indicating that repair on the socket

data object is done. The internal machine’s controller

then undoes the accept and recv system calls, which

subsequently leads to undoing the attacker’s ssh session

and all causal effects thereof. The repair controllers

continue the repair process until all effects of the attack

are undone on all the machines.

5 IMPLEMENTATION

We implemented an early prototype of DARE for Linux,

building on top of Retro. Figure 3 shows the number

of lines of code for different DARE components. The

DARE kernel module interposes on all system calls by

remapping the syscall table in the kernel, collects

system call information needed for dependency track-

ing, and sends them to the user-level DARE daemon via

relay-fs. The kernel module also implements the new

5

Component Lines of code

Logging kernel module 3,300 lines of C

AHG GUI tool 2,000 lines of Python

Repair controller, managers 5,300 lines of Python

System library managers 800 lines of C

Figure 3: Lines of code of different components of the DARE proto-

type.

mark_quiescent system call by overwriting an unused

system call in the syscall table. We implemented a

GUI tool that, given the recorded DARE logs from dif-

ferent machines, displays a global action history graph

by connecting local graphs from different machines.

6 EVALUATION

To evaluate our preliminary DARE design, we wanted to

show that it can recover from a distributed attack, and

that the techniques described in §3 reduce the amount

of re-execution.

For evaluation, we constructed a simplified version

of the SourceForge attack. The experimental setup con-

sists of two machines running Linux with DARE in-

stalled, corresponding to the gateway and internal ma-

chines in the SourceForge attack. The internal machine

runs a modified version of sshd that forks a separate

process to handle each accepted connection, and calls

mark_quiescent after it launches each SSH session.

The mark_quiescent is annotated as trusted.

Our test workload consists of 5 legitimate users using

ssh to log into the internal machine from the gateway

machine, followed by an attacker logging into the gate-

way machine and from there into the internal machine,

followed by another 5 legitimate user logins. Each SSH

session writes session information to an append-only

log file. This workload generates a total of 8,953 nodes

in the action history graphs of both the machines.

In our test workload, the administrator identifies the

attack by inspecting the action history graph using the

GUI tool, and initiates repair by identifying the at-

tacker’s login on the gateway machine. The repair con-

troller on the gateway machine initiates remote repair

on the internal machine.

We consider two scenarios. In the first scenario, sshd
lacks quiescent marking, in which case the internal ma-

chine’s repair controller restarts sshd from the begin-

ning, re-executes all the 10 legitimate user logins and

skips the attacker’s SSH session. In the second scenario,

sshd has quiescent marking, as described above. In this

case, the repair controller restarts sshd and re-executes

starting from the quiescent period before the attacker’s

SSH session: it skips the attacker’s session, and reruns

the writes to the log file by the subsequent 5 legitimate

user sessions. Repair with and without quiescent mark-

ing take 0.44 seconds and 3.7 seconds, respectively,

showing that quiescent marking works well in practice.

7 RELATED WORK

The two closest pieces of work related to DARE are

the Retro [14] and Warp [8] intrusion recovery systems,

which provide intrusion recovery for a single machine

and for web applications, respectively. DARE builds

on Retro’s rollback and re-execute approach to provide

intrusion recovery for a distributed system.

Existing intrusion detection [6, 15] and intrusion au-

diting systems [17] allow an administrator to detect com-

promises in a distributed system. The administrator can

use them in conjunction with DARE, and can use DARE

to recover from an attack once it has been identified by

one of these systems.

Past work on worm containment [11] limits the num-

ber of machines infected by an attack by automatically

detecting the attack, generating worm filters from in-

fected machines, and deploying the filters on uninfected

machines to prevent spread of the worm. However, the

infected machines still need to be repaired after the

attack. DARE can perform this repair and is thus com-

plementary to worm containment systems.

8 OPEN PROBLEMS

DARE does not currently track the re-use of stolen cre-

dentials by an adversary. This works fine for authenti-

cation schemes that are resilient to replay attacks, such

as authentication using a remote SSH agent or the in-

creasingly popular one-time password schemes like RSA

SecurID [5] and Google Authenticator [3]. However, tra-

ditional password authentication schemes are still prone

to replay attacks. For example, an adversary could break

into the system, steal a user’s password, and later use

that password to log into the system again. Such attacks

are difficult for DARE to handle because they involve

machines outside of DARE’s control. For credentials

that are easy to identify, such as SSH private keys or

Kerberos tickets, DARE could track access to and use

of credentials, and determine suspect uses of creden-

tials that were accessed during an attack. Passwords

are harder to identify, and would likely require the ad-

ministrator to help identify accounts whose passwords

6

have been compromised. Once stolen credentials are

identified, DARE can identify and undo suspect logins.

DARE assumes that all of the machines in the dis-

tributed system are under the same administrative do-

main. Extending DARE to repair between mutually dis-

trustful machines would require several changes. First,

the tokens exchanged during normal execution of net-

work system calls need to be cryptographically secure,

so that they cannot be forged in remote repair requests.

Second, each administrative domain needs to have a pol-

icy in place indicating what remote repair requests are

allowed. Finally, the two-phase rollback-and-reexecute

model may need to be replaced with a model where one

machine sends another machine a complete proposed

change to some past message.

DARE’s repair controller API handles repairs that can-

cel a network connection or modify the data that was

sent over the connection. Adding new network connec-

tions during repair requires naming the new connections

and adding them to the right point in the action his-

tory graph’s timeline, which DARE does not currently

support.

9 CONCLUSIONS

DARE helps system administrators recover system in-

tegrity after an attack that spreads between several

machines in a cluster. DARE uses Retro’s rollback-

and-reexecute approach to recover individual machines.

Across machines, DARE tracks dependencies by as-

signing unique tokens to network connections. DARE

propagates changes between repair controllers on each

machine during repair, and minimizes distributed re-

execution with predicate checking on network connec-

tions. Finally, DARE allows software developers to

annotate quiescent periods in their code to reduce re-

execution of long-lived processes. An initial prototype

of DARE can repair from a simplified version of the

SourceForge attack, and the above techniques reduce

the amount of re-execution necessary during repair.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their feedback.

This research was partially supported by the DARPA

CRASH program (#N66001-10-2-4089), and by NSF

award CNS-1053143.

REFERENCES

[1] CryoPID - A Process Freezer for Linux. URL http:
//cryopid.berlios.de/.

[2] DMTCP: Distributed MultiThreaded CheckPointing.

URL http://dmtcp.sourceforge.net/.

[3] Google Authenticator - Two-step verfica-

tion. URL http://code.google.com/p/
google-authenticator/.

[4] OpenVZ Wiki Main Page. URL http://wiki.
openvz.org/Main_Page.

[5] RSA SecurID - Two-Factor Authentication, Secu-

rity Token. URL http://www.emc.com/security/
rsa-securid.htm.

[6] The snort intrusion detection system. URL http://
www.snort.org.

[7] kernel.org compromised, January 2011. URL http:
//lwn.net/Articles/457142/.

[8] R. Chandra, T. Kim, M. Shah, N. Narula, and N. Zel-

dovich. Intrusion recovery for database-backed web

applications. In Proc. of the 23rd ACM Symposium on
Operating Systems Principles (SOSP), pages 101–114,

Cascais, Portugal, October 2011.

[9] Community Team. Sourceforge Attack: Full Re-

port, January 2011. URL http://sourceforge.net/
blog/sourceforge-attack-full-report.

[10] Community Team. SourceForge.net

passwords reset, January 2011. URL

http://sourceforge.net/blog/
sourceforge-net-global-password-reset.

[11] M. Costa, J. Crowcroft, M. Castro, A. Rowstron,

L. Zhou, L. Zhang, and P. Barham. Vigilante: End-

to-end containment of internet worms. In Proc. of the
20th ACM Symposium on Operating Systems Principles
(SOSP), pages 133–147, Brighton, UK, October 2005.

[12] J. Dunagan, A. X. Zheng, and D. R. Simon. Heat-

ray: Combating identity snowball attacks using machine

learning, combinatorial optimization and attack graphs.

In Proc. of the 22nd ACM Symposium on Operating
Systems Principles (SOSP), Big Sky, MT, October 2009.

[13] N. Falliere, Murchu, and E. Chien. W32.Stuxnet

Dossier. Symantec Security Response online report,

February 2011.

[14] T. Kim, X. Wang, N. Zeldovich, and M. F. Kaashoek.

Intrusion recovery using selective re-execution. In Proc.
of the 9th Symposium on Operating Systems Design and
Implementation (OSDI), Vancouver, Canada, October

2010.

[15] S. T. King and P. M. Chen. Backtracking intrusions.

ACM Transactions on Computer Systems, 23(1):51–76,

February 2005.

[16] O. Laadan and S. E. Hallyn. Linux-CR: Transparent

application checkpoint-restart in Linux. In Proc. of the
12th Annual Linux Symposium, Ottawa, Canada, July

2010.

[17] X. Wang, N. Zeldovich, and M. F. Kaashoek. Retroac-

tive auditing. In Proc. of the 2nd Asia-Pacific Workshop
on Systems, Shanghai, China, July 2011.

7

