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Abstract—The value-at-risk (VAR) measurements are widely applied to estimate exposure to
market risks. The traditional approaches to VAR computations—the variance-covariance method,
historical simulation, Monte Carlo simulation, and stress-testing—do not provide satisfactory eval-
uation of possible losses. In this paper, we analyze the use of stable Paretian distributions in VAR
modeling. © 2001 Elsevier Science Ltd. All rights reserved.
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1. INTRODUCTION

One of the most important tasks of financial institutions is evaluating the exposure to market
risks, which arise from variations in prices of equities, commodities, exchange rates, and interest
rates. The dependence on market risks can be measured by changes in the portfolio value, or
profits and losses. A commonly used methodology for estimation of market risks is the value at
risk (VAR).

A VAR measure is the highest possible loss over a certain period of time at a given confidence
level. For example, if the daily VAR for a given portfolio of assets is reported to be $2 million
at the 95% confidence level, it means that, without abrupt changes in the market conditions,
one-day losses will exceed $2 million 5% of the time.

Formally, a VAR = VAR, , is defined as the upper bound of the one-sided confidence interval:

Pr[AP(r) < —VAR] =1 —¢, (1)
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where c is the confidence level and AP{r) = AP,(7) is the relative change (return) in the portfolio

value over the time horizon 7:
AP(1) = P(t+ 1) — P(t),

where P(t) = log S(t), S(t) is the portfolio value at t, the time period is [¢t,T], with T — ¢ = 7,
and t is the current time.

The time horizon, or the holding period, should be determined from the liquidity of the assets
and the trading activity. The confidence level should be chosen to provide a comfortable level of
downside risk.!

The essence of the VAR computations is estimation of low quantiles in the portfolio return
distributions. The VAR techniques suggest different ways of constructing the portfolio return
distributions. The common methods are the delta method, historical simulation, Monte Carlo
simulation, and stress-testing. The delta methods are based on the normal assumption for the
distribution of financial returns. However, financial data often violate the normality assumption.
The empirical observations exhibit “fat” tails and excess kurtosis. The historical method does
not impose distributional assumptions but it is not reliable in estimating low quantiles of AP
with a small number of observations in the tails. The performance of the Monte Carlo method
depends on the quality of distributional assumptions on the underlying risk factors.

The existing methods do not provide satisfactory evaluation of VAR. The main drawback is
the lack of a convincing unified model for VAR capturing the following phenomena generally
observed in financial data, such as asset returns, interest rates, exchange rates, equities:

e heavy tails of the marginal distributions of the process of financial returns,
e time-varying volatility,
e short- and long-range dependence.

In this article, we propose using stable distributions for constructing models that encompass
these empirical features and develop more precise VAR-estimation techniques. Adequate approx-
imation of distributional forms of portfolio returns is a key condition for accurate VAR derivation.
Given the leptokurtic nature (thick tails and excess kurtosis) of empirical financial data, the sta-
ble Paretian distributions seem to be the most appropriate distributional models {1-16]. The
conditional heteroskedastic models based on the a-stable hypothesis can be applied to describe
both thick tails and time-varying volatility. The fractional-stable GARCH models can explain
all observed phenomena: heavy-tails, time-varying volatility, and temporal dependence.

The remainder of the paper is organized as follows. In Section 2, we discuss traditional ap-
proaches to VAR computations. Section 3 provides a finance-oriented description of stable distri-
butions. In Section 4, we estimate the VAR measurements for financial returns following a stable
law (see also [17]). Section 5 states conclusions and outlines future research on VAR modeling
with stable processes.

2. COMPUTATION OF VAR

From the definition of VAR = VAR, , in equation (1), the VAR values are obtained from the
probability distribution of portfolio value returns:

—VAR
1—c= Fap(—VAR) :/ fap(z)dz,

—00
where Fap(z) = Pr(AP < z) is the cumulative distribution function (cdf) of portfolio returns in
one period, and fap(z) is the probability density function (pdf) of AP.2 The VAR methodologies
mainly differ in the way of constructing fap(z).

ln practice, the time horizon varies from one day to two weeks (ten trading days) and the confidence level—from
95% to 99%. The regulators recommend to calculate VAR at the ten-day holding period and the 99% confidence
level.

21f fa p(z) does not exist, then VAR can be obtained from (cdf) Fap.
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The traditional techniques of approximating the distribution of AP are (see [17-28}):

e the parametric method (analytic or models-based),

o historical simulation (nonparametric or empirical-based),
e Monte Carlo simulation (stochastic simulation), and

e the stress-testing (scenario analysis).

2.1. Parametric Method

If the changes in the portfolio value are characterized by a parametric distribution, VAR can
be computed using the distribution parameters. In this section, we briefly review: VAR for a
single asset, portfolio VAR, a parametric method based on the normal distribution, and linear
approximation to price movements.

2.1.1. VAR for a single asset

Assume that a portfolio consists of a single asset, which depends only on one risk factor.
Traditionally, in this setting, the distribution of asset returns is assumed to be the univariate
normal distribution, identified by two parameters: the mean u, and the standard deviation o.
The problem of calculating VAR is then reduced to finding the (1—c)*" percentile of the standard
normal distribution zj_.:

X Zl1—c
1—c= / glz)dx = / d(z)dz = N(z1-¢), with X* = z1_.0 + pu,

— — 00

where ¢(z) is the standard normal density function, N(z) is the cumulative normal distribution
function, X is the portfolio return, g(z) is the normal distribution function for returns with
mean p and standard deviation ¢, and X* is the lowest return at a given confidence level c.

In many applications, investors assume that the expected return g equals 0. This assumption
is based on the conjecture that the magnitude of u is substantially smaller than the magnitude
of the standard deviation ¢ and, therefore, can be ignored. Then we have

X' = 21-¢0,

and therefore,
VAR = —Y()X* = —Yozl_CO',

where Y} is the initial portfolio value.

2.1.2. Portfolio VAR

If a portfolio consists of many assets, the computation of VAR is performed in several steps.
Portfolio assets are decomposed into “building blocks”, which depend on a finite number of
risk factors. Exposures of the portfolio securities are combined into risk categories. Then, the
total portfolio risk is obtained by aggregating risk factors and their correlations. We denote the
following.

¢ X, is the portfolio return in one period.

e N is the number of assets in the portfolio.

o X, is the i*" asset return in one period (7 = 1), X; = AP(1) = P,(1) — P;(0), where P, is
the log-spot price of asset i, i = 1,..., N. More generally, X; can be the risk factor that
enters linearly? in the portfolio return.

e w; is the i*? asset’s weight in the portfolio, t = 1,..., N.

31f the risk factor does not enter linearly (as in a case of an option), then a linear approximation is used.
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The portfolio return is
N
XP = Z win'.
=1

In matrix notation,
Xp=w'X,
where w = (wi,ws, ..., wy)", X = (X1, Xo,...,Xn)".
Then the portfolio variance is

N N N
T 2
ViXp)=w' Zw= Zwl Oi; + ZZwiwjpijaiaj,
=1 i=1j=1
i#g

where o;; is the variance of returns on the i*h asset, o; is the standard deviation of returns on

the ith asset, p;; is the correlation between the returns on the i*! and the j'" assets, X is the
covariance matrix, ¥ = [0y], 1 <i <N, 1< j < N.

If all portfolio returns are jointly normally distributed, the portfolio return, as a linear combi-
nation of normal variables, is also normally distributed. The portfolio VAR based on the normal
distribution assumption is

VAR = -Yoz1_.0(Xp),

where ¢(Xp) is the portfolio standard deviation (the portfolio volatility),

o(Xp) =V V(Xp).

Thus, risk can be represented by a combination of linear exposures to normally distributed
factors.

In this class of parametric models, to estimate risk, it is sufficient to evaluate the covariance
matrix of portfolio risk factors (in the simplest case, individual asset returns).

The estimation of the covariance matrix is based on the historical data or on implied data from
securities pricing models.

If portfolios contain zero-coupon bonds, stocks, commodities, and currencies, VAR can be
computed from correlations of these basic risk factors and the asset weights. If portfolios include
more complex securities, then the securities are decomposed into building blocks.

The portfolio returns are often assumed to be normally distributed [23,26]. One of methods
employing the normality assumption for returns is the delta method (the delta-normal or the
variance-covariance method).

2.1.3. Delta method

The deita method estimates changes in prices of securities using their “deltas” with respect to
basic risk factors. The method involves a linear (also named as delta or local) approzimation to

(log) price movements:
P(X +U)=~ P(X)+ P(X)U

or

AP(X)=P(X +U) - P(X)~ P'(X)U,

where X is the level of the basic risk factor (i.e., an equity, an exchange rate), U is the change
in X, P(X+U)=Pt+7,X+U), P(X)=P(t, X),* P(X) is the (log) price of the asset at the

4Because the time horizon () is fixed and t is the present time, we shall omit the time argument and shall write
P(X + U) instead of underlying P(t + 7, X + U) and P(X) instead of P(t, X). We shall consider the dependency
of P on the risk factor X only.
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X level of the underlying risk factor, P'(X) = % is the first derivative of P(X), it is commonly

called the delta (A = A(X)) of the asset.
Thus, the price movements of the securities are approximately

AP(X) =~ P'(X)U = AU.
The delta-normal (the variance-covariance) method computes the portfolio VAR as
VAR = —Y()Zl_C Vv dTEd,

where d = d(X) = (A1(X), A2(X),...,A,(X))7 is a vector of the delta-positions, A;(X) is

the security’s delta with respect to the j*! risk factor, A; = 59—)2.

2.2. Historical Simulation

The historical simulation approach constructs the distribution of the portfolio value changes
AP from historical data without imposing distribution assumptions and estimating parame-
ters. Hence, sometimes the historical simulation method is called a nonparametric method. The
method assumes that trends of past price changes will continue in the future. Hypothetical future
prices for time t + s are obtained by applying historical price movements to the current (log)
prices:

Pi,‘:t+s = ‘Pitt+s—1 + Api,t+s—m

where t is the current time, s = 1,2,...,k, & is the horizon length of going back in time,
P}, is the hypothetical (log) price of the it" asset at time t + s, Py = Py, AP 4455 =

P tys—x — Pitts—1-x, Pi is the historical (log) price of the i*M asset at time t. Here we assumed
that the time horizon 7 = 1.

A portfolio value P;,, , is computed using the hypothetical (log) prices P}, , and the current
portfolio composition. The portfolio return at time ¢ + s is defined as

* _ *
Rp.H—s - Pp,t+s - Ppyt’

where P, is the current portfolio (log) price.

The portfolio VAR is obtained from the density function of the computed hypothetical returns.
Formally, VAR = VAR, ; is estimated by the negative of the (1 — c)t® quantile, VAR*; namely,
F, ap(—VAR) = F; ap(VAR*) = 1 — ¢, where Fy; ap(z) is the empirical cumulative distribution
function Feap(z) = (1/8) 35 {Ry 1s <z}, 2 € R.

2.3. Monte Carlo Simulation

The Monte Carlo approach requires specification of statistical models for the basic risk factors
and the underlying assets. The method simulates the behavior of risk factors and asset prices by
generating random price paths. Monte Carlo simulations provide possible portfolio values on a
given date T after the present time t, 7" > t. The VAR(VARy) value can be determined from
the distribution of simulated portfolio values. The Monte Carlo method is performed according
to the following algorithm.

1. Specify stochastic processes and process parameters for financial variables and correlations.

2. Simulate the hypothetical price trajectories for all variables of interest. Hypothetical price
changes are obtained by random draws from the specified distribution.

3. Obtain asset prices at time T, P; r, from the simulated price trajectories. Compute the
portfolio value P,r = > w, v P r.

4. Repeat Steps 2 and 3 many times to form the distribution of the portfolio value P, r.

5. Measure VARt as the negative of the (1 — ¢)th percentile of the simulated distribution
for P, 7.
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2.4. Stress Testing

The parametric, historical simulation, and Monte Carlo methods estimate the VAR (expected
losses) depending on risk factors. The stress testing method examines the effects of large move-
ments in key financial variables on the portfolio value. The price movements are simulated in line
with the certain scenarios.® Portfolio assets are reevaluated under each scenario. The portfolio
return is derived as

Rp,s = E wi,sRi,s»

where R; , (w;,) is the hypothetical return (weight) on the i*! security under the new scenario s.
Estimating a probability for each scenario s allows us to construct a distribution of portfolio
returns, from which VAR can be derived.

2.5. Weaknesses of Traditional VAR Methods

The traditional VAR methods do not provide accurate estimation of VAR. The delta methods
are based on the normal assumption for the distribution of financial returns. However, financial
data violate the normality assumption. The empirical observations exhibit “fat” tails and excess
kurtosis. Thus, the delta-normal technique does not fit well data with heavy tails. The historical
simulation does not impose distributional assumptions. Models based on historical data assume
that the past trends will continue in the future. However, the future might encounter extreme
events. The historical simulation technique is limited in forecasting the range of portfolio value
changes and is not reliable in estimating low quantiles with a small number of observations in the
tails. One weakness of stress-testing is that it is subjective. The performance of the Monte Carlo
method depends on the quality of distributional assumptions on the underlying risk factors.

We propose the use of stable processes in VAR modeling. In the next section, we first provide
a finance-oriented description of stable laws. Then, we describe modeling VAR with stable
distributions and compare the stable VAR approach with the existing methodologies.

3. A FINANCE-ORIENTED DESCRIPTION
OF STABLE DISTRIBUTIONS
In this part, we describe parameters and some finance-oriented properties of stable distribu-
tions. We also examine methods of estimating parameters of stable laws.
3.1. Parameters and Properties of Stable Distributions

A random variable R is said to be stableS if for any a > 0 and b > 0, there exist constants

¢> 0 and d € R such that
aR, + aRy £ ¢R + d,

where R; and R; are independent copies of R and £ denotes the equality in distribution.

In general, the stable distributions do not have closed form expressions for density and distri-
bution functions. Stable random variables (R) are commonly described by their characteristic
functions:

Dr(0) = E(exp(iftf))

B aipe (1 iaco o . .

= exp{ a®6| (1 ifBsign(f) tan 5 ) + zm‘)} , ifa#1,
$r(6) = E(exp(iRY))

= exp {—UIH} (1 + zﬂ;— sign(6) In 9) + iuﬁ} , ifa=1,

5Scenarios include possible movements of the yield curve, changes in exchange rates, etc., together with estimates
of the underlying probabilities.
60Often R is called a-stable or Pareto stable or Pareto-Lévy-stable (for o < 2).
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where a is the index of stability, 0 < a < 2, 3 is the skewness parameter, —1 < 3 <1, o is the
scale parameter, o > 0, and p is the location parameter, 4 € R. To indicate the dependence of
a stable random variable R on its parameters, we write R ~ S,(3, 0, ). If the inder of stability
a = 2, then the stable distribution reduces to the Gaussian distribution. In empirical studies, the
modeling of financial return data is done typically with stable distributions having 1 < a < 2.7
Stable distributions are unimodal and the smaller « is, the stronger the leptokurtic feature of the
distribution (the peak of the density becomes higher and the tails are heavier). Thus, the index
of stability can be interpreted as a measure of kurtosis. When a > 1, the location parameter p
measures the mean of the distribution. If the skewness parameter § = 0, the distribution of R is
symmetric and the characteristic function is

O r(0) = Flexp(iRO)) = exp {—0®|0|* + iu8}.

If 3 > 0, the distribution is skewed to the right. If 8 < 0, the distribution is skewed to the left.
Larger magnitudes of 3 indicate stronger skewness. If § = 0 and p = 0, then the stable random
variable R is called symmetric a-stable (sas). The scale parameter (the volatility) o allows any
stable random variable R to be expressed as R = o R, where R, has a unit scale parameter, and
the same index of stability o and skewness parameter 3 as R. The scale parameter generalizes
the definition of standard deviation. The stable analog of variance is the variation: v, = .

In VAR estimations, we are interested in investigating the behavior of the distributions in the
tails. The tails of the stable (non-Gaussian) distributions have a power decay and are character-
ized by the following properties:

1
lim ACP(R > A) = kot g0
A—+o00 2
and
. 1-0
lim A*P(R < —A) = ky——0°,
A—+oo
where 1—a
if 1
ko = (2 — a) cos{ma/2)’ ifa 1,
o =
z, if & = 1 (see footnote®).
T

The pt? absolute moment, E|R|P = fooo P(|RP > z)dz, is
e finite if p < @ or a =2, and
e infinite otherwise.
Thus, the second moment of any non-Gaussian stable distribution is infinite.
Stable distributions possess the additivity property: a linear combination of independent stable
random variables with stability index « is again a stable random variable with the same a.°

ExaMPLE. If Ry, R,,..., R, are independent stable random variables with stability index o, R; ~
SolBi 04, pi), then R = Z?zl w; R; is a stable random variable with the same a and parameters:

(a) f a # 1,

o = ((lwilo)® + -+ (Jwalon)®)/*,

8= sign(w)B1 (Jwi]o1)* + - - + sign(wn ) Bn (|wn|on)”
(lwilo1)® + -+ + (Jwn|on)®
H = Wil +“‘+wn;ufna

k]

7The financial returns modeled with a-stable laws exhibit finite means but infinite variances.

8Note that, in contrast to the normal case, the tails of the non-Gaussian (Pareto) stable distributions are much
fatter, which will be an important issue in estimating VAR.

9This property is shared only by normal and stable laws, and is the main advantage of the use of stable laws for
portfolio returns.
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(b) if o =1,

o = |wiloy + -+ + |wp|on,
5= sign(wy)Bi|wiloy + -+ - + sign(wn) Bn|wn|on
lunloy + -+ + |wn|on

2
p@=wipy + -+ Wplhy — ;(w1 Injwilo1f1 + - + wn In|wp|onBn).

Since the Pareto-stable distributions have infinite variances, one cannot estimate risk by vari-
ance and dependence by correlations. We shall introduce variance- and covariance-similar notions
for stable laws. These notions are based on the multivariate assumptions of stable distributions.

A random vector R of dimension d is stable if for any a > 0 and b > 0, there exist ¢ > 0 and a
d-dimensional vector D such that

aR, + bRy £ cR+ D,

where R, and R, are independent copies of R.

If a random vector is stable with « > 1, then it means that all components of the vector
are stable with the same index of stability and any linear combination (for example, portfolio
returns) is again stable.!0

The characteristic function of a d-dimensional vector is given by:

(a) if a # 1,
Pr(0) = ®Rr(6:1,62,...,04)

= Fexp (iGTR) = exp{—/
s
(b) ifa=1,

dr(6) :exp{—/ 67 s] <1+2281gn (87s )ln|0Ts]) (ds) +1i0" }
S4

|9Ts| (1 — isign (GTs) tan %) I'(ds) + iﬁTu} ,

d

where I' is a bounded nonnegative measure on the unit sphere Sy, s is the integrand unit vector
(s € S4), and u is the shift vector. The measure I' is named a spectral measure. Let H be the
distribution function of I". Then, the characteristic function in polar coordinates is as follows:

(a) f v £ 1,
Dp(f) = exp{ /27r/ / | cos(6, )|~ (1 — isign {cos(8, w))tan—) H(y) + iQTp,},

(b) ifa=1,

D R(0) = exp {—p/:7r /07' e /07‘ | cos(8, )] <1 + i sign (cos(8, ¥))

2 In(pl cos(6 wm) dH(%) + wTu} ,

where § = (pcos ¢y, psinqSlcosqbz,...,psinqbl‘..sinq&n_gcosd)n_l,psinqbl...sin¢n_1)T, p.=
'9|77/J=(1/11x--~y1/)n—1)T,3nd X
d—2

d—1
cos(8,9) = (H sin ¢; sin 7,Z1i> + (H sin ¢; sin 1,[),-) COS Pg_1COS P41 + + -+ + cOs Py cos Y.
i=1

=1

10We shall model the dependence structure of the vector of returns (R, ..., Rg) of a portfolio by assuming that
(Ri1,...,Ry) is an a-stable vector.
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Hill estimator with 95% confidence bounds
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Figure 1. Hill estimator for 10,000 standard stable observations with index a = 1.9.

Hill estimator with 95% confidence bounds
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Figure 2. Hill estimator for 500,000 standard stable observations with index a = 1.9.

If a > 1, then p is the mean vector, 4 = FER. The scale parameter of a linear combination of
the components of a stable vector R satisfies the relation

0% (w'R) = o%(w Ry + -+ + wgRy) = / 1wTs]a I (ds).
Sa

Viewing R = (Ry,...,Rq) as the vector of individual returns in a portfolioc with weights
wi, ..., wq, o%(w' R) will be the portfolio risk-measure. As we defined above, v, = ¢ is the
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Table 1. Financial data series.
Number of
Series Source Obls]enrlv::i:ns Time Period Frequency
Yen/BP Datastream 6285 1.02.74-1.30.98 Daily (D)
BP/USS D. Hindanov 6157 1.03.74-1.30.98
DM/BP Datastream 6285 1.02.74-1.30.98 D
S&P 500 Datastream 7327 1.01.70-1.30.98 D
DAX30 Datastream 8630 1.04.65-1,30.98 D
CAC40 Datastream 2756 7.10.87-1.30.98 D
Nikkei 225 Datastream 4718 1.02.80-1.30.98 D
DJCPI Datastream 5761 1.02.76-1.30.98 D
Table 2. Parameters of stable and normal densities.*
Normal Stabile
Seri
eres Standard
Mean . Method o fol n o
Deviation
Yen/BP —0.012 0.649 ML 1.647 —0.170 -0.023 0.361
FT 1.61 —0.018 0.34
[1.57, 1.66] [-0.095,0.015] | [0.33,0.36)
[1.55, 1.68] [-0.178,0.025] | [0.33,0.37]
FTT 1.50 —-0.018 0.32
[L.46, 1.55] [-0.131,0.034] | [0.31,0.34]
[1.44, 1.64] [-0.261,0.070) | [0.31,0.39]
BP/US 0.006 0.658 ML 1.582 0.038 0.007 0.349
FT 1.57 0.006 0.33
{1.53,1.65] [—0.096,0.045] | [0.32,0.36)
[1.51,1.75] [-0.393,0.065] | [0.32,0.47]
FTT 1.45 0.006 0.31
[1.41,1.51] [-0.134,0.070] | [0.30,0.33)
[1.40,1.62) [-0.388,0.007] | [0.30,0.47]
DM/BP —0.012 0.489 ML 1.590 —-0.195 0.018 0.256
FT 1.60 —0.012 0.24
[1.54,1.75) [-0.064,0.013] | [0.23,0.26]
[1.53,1.75] [-0.165,0.022] | [0.23,0.27]
FTT 1.45 —-0.012 0.23
[1.41,1.55] [-0.114,0.038] | [0.22,0.26]
[1.40,1.77] [-0.402,0.061] | [0.22.0.40]
S&P 500 0.032 0.930 ML 1.708 0.004 0.036 0.512
FT 1.82 0.032 0.54
[1.78,1.84] [-0.013,0.057] [0.53,0.54]
[1.77,1.84] [~0.062,0.067] | [0.53,0.55]
Frr 1.60 0.032 0.48
{1.56, 1.55] [-0.066,0.078] | [0.47,0.49]
{1.54, 1.66] [—0.120,0.095] | [0.46,0.50)

*The Cls right below the estimates are the 95% Cls, the next Cls are the 99% Cls.
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Table 2. (cont.)

Normal Stable
Series
Mean Scar}dérd Method o B m o
Deviation
DAX30 0.026 1.002 ML 1.823 —-0.084 0.027 0.592
FT 1.84 0.026 0.60
[1.81,1.88] [~0.015,0.050] | [0.59,0.60]
[1.80, 1.89) [-0.050,0.057) | [0.58,0.62)
FTT 1.73 0.026 0.57
[1.69, 1.77] [-0.031,0.061] | [0.56,0.58]
[1.68,1.79] [-0.124,0.073] | [0.56,0.59]
CAC40 0.028 1.198 ML 1.784 —0.153 0.027 0.698
FT 1.79 0.028 0.70
[1.73,1.85) [-0.050,0.088] | [0.68,0.73)
[1.71,1.87] [~0.174,0.103] | [0.67,0.74)
FTT 1.76 0.028 0.69
[1.71,1.84] [-0.053,0.001] | [0.67,0.72]
[1.69,1.87) [-0.394,0.101] | [0.66,0.77]
Nikkei 0.020 1.185 ML 1.444 ~0.093 —0.002 0.524
225 FT 1.58 0.02 0.59
(1.53,1.64] [~0.127,0.102] | [0.57,0.62)
(1.52,1.67] [-0.421,0.130] | [0.57,0.69)
FTT 1.30 0.02 0.49
[1.26,1.47] [-0.451,0.316] | [0.47,0.69)
[1.05, 1.67) (—1.448,0.860} | [0.47,1.10]
DJCPI | 0.006 0.778 ML 1.569 ~0.060 0.003 0.355
FT 1.58 0.006 0.35
[1.53,1.66] [-0.026,0.100] | [0.34,0.37)
[1.52,1.67) [—0.140,0.120] | [0.33,0.39)
FTT 1.49 0.006 0.33
[1.44,1.55] [-0.160,0.062] | [0.32,0.36)
[1.44,1.69] {~0.396,0.100] | {0.32,0.46]

*The Cls right below the estimates are the 95% Cls, the next Cls are the 99% Cls.

variation, the stable equivalent of variance. Similarly to the traditional interpretation of co-
variance as an indicator of dependence, one can use the covariation to estimate the dependence
between two sas distributions:

1 0c%(u R oR
[R1; Rola = — o (wifs + woRy)
o owy

= / 5155717 T (ds),
w1 =0iwz=1 Sa

where (Ry, Rz) is an sas vector (1 < a < 2) and z<*> = |z|¥ sign(z) (signed power). The matrix
of covariations [R;; Rjla, 1 < <d, 1 < j <d, determines the dependence structure among the
individual returns in the portfolio.

3.2. Estimation of Parameters of Stable Distributions!?

We shall examine the methods of estimating the stable parameters and their applicability in
VAR computations, where the primary concern is the tail behavior of distributions. It has been

1 For additional references on estimation of four parameters of stable univariate laws, see [2,4-6,11,12,29-31].
For the multivariate case estimation of the spectral measure, the index of stability, the covariation and tests for
dependence of stable distributed returns, see {1,4-6,14,17,32,33).
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Table 3. Empirical, normal, and stable 99% VAR estimates.*

99% VAR
Series . Stable
Empirical Normal

ML FT FTT

Yen/BP 1.979 1.528 2.247 2.212 2.494
[1.968, 2.252} [2.276, 2.736]
{1.919, 2.415] {2.230, 2.836)

BP/US$ 1.774 1.526 2.221 2.200 2.668
(2.014, 2.412] [2.436, 2.925]
[1.956, 2.593] [2.358, 3.029]

DM/BP 1.489 1.149 1.819 1.520 1.996
(1.190, 1.712) [1.792, 2.211]
[1.179, 1.742] [1.700, 2.329]

S&P 500 2.293 2.131 2.559 2.200 2.984
[2.117, 2.258] [2.757, 3.243]
[2.106, 2.470] [2.700, 3.336]

DAX 30 2.564 2.306 2.464 2.375 2.746
[2.260, 2.502] [2.557, 2.949]
[2.240, 2.569] [2.523, 2.997]

CAC 40 3.068 2.760 3.195 3.019 3.144
[2.753, 3.364] [2.788, 3.504]
(2.682, 3.520] (2.700, 3.841]

Nikkei 225 3.428 2.737 4.836 3.842 6.013
[3.477, 4.254] [5.190, 6.701]
[3.367, 4.453] [4.658, 19.950]

DJCPI 2.053 1.804 2.446 2.285 2.603
(1.955, 2.423) [2.382, 2.870]
[1.916, 2.474] [2.288, 3.035)

*The ClIs right below the estimates are the 95% Cls, the next Cls are the 99% Cls.

proposed that it is more useful to evaluate directly the tail index (the index of stability) instead
of fitting the whole distribution. The latter method is claimed to negatively affect the estimation
of the tail behavior by its use of “center” observations. We shall describe both approaches:
tail estimation and entire-distribution modeling. We suggest a method which combines the two
techniques: it is designed for fitting the overall distribution with greater emphasis on the tails.

3.2.1. Tail estimation

Tail estimators for the index of stability « are based on the asymptotic Pareto tail behavior of
stable distributions (see Section 3.1). We shall consider the following estimators of tail thickness:
the Hill, the Pickands, and the modified unconditional Pickands.!? The Hill estimator [35] is

described by .

k
(l/k) Z ln(Xn+1—j:n) —In Xn—k:n
j=1

Gl =

1

where X., denotes the j'"-order statistic of sample Xi,..., X,;'® the integer k points where

12For details on the Hill, Pickands, and the modified unconditional Pickands estimators, see [34] and references

therein.
13Given a sample of observations X1i,..., Xn, we rearrange the sample in increasing order X1.p < -+ < Xp:n,
then the j*h-order statistic is equal to Xj.n.
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Table 4. Empirical, normal, and stable 95% VAR estimates.*

99% VAR
Seri Stable
eries Empirical Normal

ML FT FTT

Yen/BP 1.103 1.086 1.033 0.968 0.995
[0.926, 1.047] {0.937, 1.132]
[0.911, 1.186] [0.911, 1.329]

BP/USS$ 1.038 1.077 0.981 0.944 0.986
[0.898, 1.072] [0.917, 1.158]
[0.876, 1.599] [0.895, 1.588]

DM/BP 0.806 0.816 0.772 0.687 0.748
[0.652, 0.749] [0.695, 0.894]
[0.641, 0.894] {0.678, 1.418]

S&P 500 1.384 1.497 1.309 1.308 1.319
(1.275, 1.361] [1.265, 1.423]
[1.265, 1.411] [1.246, 1.503)

DAX 30 1.508 1.623 1.449 1.451 1.452
[1.415, 1.500] [1.405, 1.521]
{1.402, 1.533] [1.395, 1.650]

CAC 40 1.819 1.943 1.756 1.734 1.734
[1.653, 1.837] {1.647, 1.845]
[1.621, 1.944) [1.616, 2.288]

Nikkei 225 1.856 1.929 1.731 1.666 1.840
[1.570, 1.839] [1.582, 2.512]
[1.558, 2.280] [1.500, 5.022]

DJCPI 1.066 1.274 1.031 0.994 1.011
[0.888, 1.047] [0.944, 1.188]
[0.870, 1.200] [0.915, 1.615]

*The ClIs right below the estimates are the 95% Cls, the next Cls are the 99% Cls.

the tail area “starts”. The selection of k is complicated by a tradeoff: it must be adequately
small so that X,,_g.. is in the tail of the distribution; but if it is too small, the estimator is
not accurate. The disadvantage of the estimator is the condition to explicitly determine the
order statistic X,_k.n. It is proved that, for stable Paretian distributions, the Hill estimator is
consistent and asymptotically normal. Mittnik, Paolella and Rachev [34] found that the small
sample performance of ;) does not resemble its asymptotic behavior, even for n > 10,000 (see
Figure 1).14

It is necessary to have enormous data series in order to obtain unbiased estimates of «, for
example, with & = 1.9, reasonable estimates are produced only for n > 100, 000 (see Figure 2).13
Alternatives to the Hill estimator are the Pickands and the modified unconditional Pickands
estimators. The “original” Pickands estimator [36] takes the form

In2

&pick = 4k < n.
IC ln(Xn—k+1:n - n—2k+1:n) - ln(Xn—2k+1:n - Xn—4k+1:n) ’

141n Figure 1, the true value of a is 1.9, the sample size is n = 10,000; the z-axis shows values of k from 1
to n/2 = 5000. Notice that the estimator for & = @&(k(n),n) is unbiased when limn_.co(k(n)/n) — 0. So,
unbiasedness of the estimator requires very small values of k. However, for a small value of k, the variance of the
estimator is large. A close look at the estimator &(k, n) suggests a value of & around 2.2, whereas o = 1.9.

151n Figure 2, the true o is again 1.9, the sample size is n = 500,000, k = 1,...,n/2 = 250,000. One can see
that, for very small values of k, a ~ 1.9.
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Figure 3. VAR estimation for the DM/BTI exchange rate.




Value at Risk 1237

VAR Estimation

——  Stable-MLE Fit /
— —  Stable-FTFt /
——  Stable-FT-Tail (FTT) Fit

4 fj - Empirical Density 4
|
— - Normal Fit / ,l,

0.15
~

B |I
'l //
VAR® Quantie MLE FT  FTT Normal Empirical 7S,
89% 1% -1819 -1520 -1996 -1.149 -1.489 /s
4 es% 5% 0772 0687 0748 0816 -0.808 y; / i

Estimated Density

- e — === 1—%;411%5 Lo 5%: N* Mk b

0.0 0.05

-2.0 -1.8 -1.6 -1.4 -1.2 -1.0 -0.8

DM/BP Daily Returns, (%)

Figure 3. (cont.)

The Pickands estimator requires choice of the optimal k, which depends on the true unknown a.
Mittnik and Rachev [37] proposed a new tail estimator named “the modified unconditional
Pickands (MUP) estimator”, dmup. An estimate of « is obtained by applying the nonlinear
least squares method to the following system:

k2 ~ X2X1_1k1 + £,

where 2 2
X X2 —a X2
X, = n—-k+1:n n—k+1l:n Xo = n—3k+1l:n n—3k+1n
1= xX-« X—2a ’ 2= —-a X—2cz ’
n—2k+1:n n—2k+1l:n n—4k+1:n n—4k+1n

k-1 3k -1
kl:[%—l] and k2~[4k_1].

Mittnik, Paolella and Rachev [34] found that the optimal k for amyp is far less dependent
on « than in the case of either the Hill or Pickands estimators. Studies demonstrated that Gyup
is approximately unbiased for & € [1.00,1.95) and nearly normally distributed for large sample
sizes. The MUP estimator appears to be useful in empirical analysis.

3.2.2. Entire-distribution modeling

We shall describe the following methods of estimating stable parameters with fitting the en-
tire distribution: quantile approaches, characteristic function (CF) techniques, and maximum
likelihood (ML) methods.

Fama and Roll [38] suggested the first quantile approach based on observed properties of stable
quantiles. Their method was designed for evaluating parameters of symmetric stable distributions
with index of stability o > 1. The estimators exhibited a small asymptotic bias. McCulloch [39]
offered a modified quantile technique, which provided consistent and asymptotically normal esti-
mators of all four stable parameters, for a € [0.6,2.0] and 8 € [—1,1]. The estimators are derived
using functions of five sample quantiles: the 5%, 25%, 50%, 75%, and 95% quantiles. Since the
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Figure 4. VAR estimation for the Yen/BP exchange rate.
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Figure 4. (cont.)

estimators do not consider observations in the tails (below the 5% quantile and above the 95%
quantile), the McCulloch method does not appear to be suitable for estimating parameters in
VAR modeling.

Characteristic function techniques are built on fitting the sample CF to the theoretical CF.
Press [40,41] proposed several CF methods: the minimum distance, the minimum r** mean
distance, and the method of moments. Koutrouvelis [42,43] developed the iterative regression
procedure. Kogon and Williams [44] modified the Koutrouvelis method by eliminating iterations
and limiting the estimation to a common frequency interval.'® CF estimators are consistent and
under certain conditions are asymptotically normal [32].

Maximum likelihood methods for estimating stable parameters differ in a way of computing
the stable density. DuMouchel [48] evaluated the density by grouping data and applying the fast
Fourier transform to “center” values and asymptotic expansions——in the tails. Mittnik, Rachev
and Paolella [16] calculated the density at equally spaced grid points via an fast Fourier trans-
form of the characteristic function and at intermediate points—by linear interpolation. Nolan [49]
computed the density using numerical approximation of integrals in the Zolotarev integral for-
mulas for the stable density.'” DuMouchel [51] proved that the ML estimator is consistent and
asymptotically normal. In Section 4, we analyze applicability of the ML method in VAR estima-
tions.

3.2.3. Tail estimation: Fast Fourier transform method

Tail estimation using the Fourier transform (FT) method is based on fitting the characteristic
function in a neighborhood of the origin ¢ = 0. Here we use the classical tail estimate:

1 1 K ¢
P <X < _E> <P <|X| > E) < E/ (1 — fo(t)) dt (see footnote'®), for all a > 0,
0

16Por additional references, see [16,45-47).
17For additional references, see [50].
18 The last inequality is by Shiryaev [52].
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Figure 5. VAR estimation for the BP/US$ exchange rate.
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Figure 5. (cont.)

where f.(t) is the characteristic function of a random variable X. Precise estimation of the
characteristic function guarantees accurate tail estimation, which leads to an adequate evaluation
of VAR.

Suppose that the distribution of returns r is symmetric-a-stable,'® that is, the characteristic
function of r is given by f,(t) = Eet = ei#=letl”  If o > 1,2% then, given observations rq, ..., 7,
we estimate p by the sample mean i = 7 = (1/n)>_}_, rk. For large values of n, the charac-
teristic function of observations Ry = ry — 7 approaches fr(t) = e~letl”  Consider the empirical
characteristic function of the centered observations: frn(t) = (1/n) Y p_, ¢/®**. Because the
theoretical characteristic function, fr(t), is real and positive, we have that

. 1< 1<
frn(t) =Re <ﬁ Z €1R“"> == Z cos(Ryt).
k=1 k=1

Now the problem of estimating o and ¢ is reduced to determining & and é such that fOM [(1/n)
> h_ cos(Rkt) — e~ @)7| dt is minimal, where M is a sufficiently large value.
The realization of the FT method is performed in the following steps.

STEP 1. Given the asset returns ri,...,7n, compute the centered returns Ry = rp — 7, k =
1,...,n, where 7 = (1/n) 3} _; 7%

STEP 2. Construct the sample characteristic function

£t = % 3 con(Ruty),
k=1

19Empirical evidence suggests that 8 does not play a significant role for VAR estimation.
20As we have already observed, in all financial return data, fitting an a-stable model results in a > 1, which
implies existence of the first moment.
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Figure 6. VAR estimation for the CAC40 index.



Value at Risk 1243

VAR Estimation

----- Empirical Density /f / /','
u ——  Stable-MLE Fit / h
— —  Stable-FT Fit I "
> ——  Stable-FT-Tail (FTT) Fit VA
= ~— - Normal Fit / | .‘
c (=] by / : / ) l
o o VAR Quantie MLE FT  FTT Normal Empirical V A0
Qo 99% 1% -3.195 -3.019 -3.144 2760 -3.068 Ry .
o 95% 5% -1.756 -1.734 -1.734 -1.943 -1.819 / ! | ‘|
3 ] ARl
[1°] / / P
E S g S Lo ‘l
o
7 [a] A I
wi o /_./‘]/ | | il
(@) B i ! i
____________ s T . i‘
__________________ i 1 1
e F=== 1%: ML e 5%:NL E‘M& FT<FTT
o T T . T T
-4.0 -3.5 -3.0 2.5 2.0

CACA40 Daily Returns, (%)

Figure 6. (cont.)

where t; = j(kn/7), j =1,...,7, &7 is the maximal value of ¢, 7 is the number of grid points on
(0, km].2t

STEP 3. Do the search for best & and ¢ such that 3°7_, [(1/n) 3}, cos(Ryt;) — e~ ()7 i
minimal.

4. VAR ESTIMATES FOR STABLE
DISTRIBUTED FINANCIAL RETURNS

In this section, we consider a stable VAR model, which assumes that the portfolio return
distribution follows a stable law. We derive “stable” VAR estimates and analyze their properties
applying in-sample and forecast evaluations. We use “normal” VAR measurements as benchmarks
for investigating characteristics of “stable” VAR measurements. We conduct analysis for various
financial data sets:

o the Yen/British Pound (BP) exchange rate,

o the BP/USS exchange rate,

the Deutsche Mark (DM)/BP exchange rate,

the S&P 500 index,

the DAX30 index,

the CAC40 index,

the Nikkei 225 index,

the Dow Jones Commodities Price Index (DJCPI).

A short description of the data is given in Table 1.

21For computation purposes, we have chosen x = 20 and 7 = 10000. In the realization of the FT method, we
selected the following grid steps ht: if 0 < t < 1, ht = 207/50000; if t > 1, ht = 207/1000. In order to emphasize
the tail behavior, we refined the mesh near ¢ = 0 and named that approach FT-tail (FTT): if 0 < t < 0.1,
ht = 20m/100000; if 0.1 <t < 1.0, ht = 207/10000; if t > 1, ht = 20m/1000. The numerical results are reported
in Section 4.
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Figure 7. VAR estimation for the Nikkei 225 index.
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Figure 7. (cont.)

4.1. In-Sample Evaluation of VAR Estimates

In this part, we evaluate stable and normal VAR models by examining distances between the
VAR estimates and the empirical VAR measures.
By a formal definition of VAR in equation (1), VAR estimates, VAR, r, are such that

Pr[AP(7) < =VAR;.| =1 -¢, (2)

where ¢ is the confidence level, AF;(7) is the relative change in the portfolio value over the time
horizon 7, i.e., AP(7) = R, , is the portfolio return at moment ¢ over the time horizon 7, and ¢
is the current time.

For the purpose of testing VAR models, financial regulators advise to choose a time horizon
of one day, so we take 7 = 1. In the text below, if the time horizon is not stated explicitly,
it is assumed to equal one day. At each time ¢, an estimate VAR, is obtained using [w recent
observations of portfolio returns R, 1. R;_»,..., Ri_jw:

VAR, = VAR(Ry_1, Re_s, ..., Re_tn)- (3)

The lw parameter is called the window length. In this subsection, VAR is estimated employing
the entire sample of observations, i.e., lw = N, where N is the sample size. Hence, we do not
point out the present time .

We obtain “stable” (“normal”) VAR measurements at the confidence level ¢ in two steps:

(i) fitting empirical data by a stable (normal) distribution,
(ii) calculating a VAR as the negative of the (1 — ¢)*" quantile of a fitted stable (normal)
distribution.

“Stable” fitting is implemented using three methods: maximum likelihood (ML), Fourier Trans-
form (FT), and Fourier Transform-Tail (FTT).2? Estimated parameters of densities and corre-
sponding confidence intervals are presented in Table 2. In the FT and F'I'T fitting, we assume

?2Evaluation of parameters of stable distributions is provided in Section 3.2.
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Figure 8. VAR estimation for the S&T 500 index.
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Figure 8. (cont.)

that distributions of returns are symmetric, i.e., the skewness parameter 3 is equal to zero. Since
the index of stability a > 1 for our data series, the location parameter p is approximated by the
sample mean. The ML estimates were computed applying the STABLE program by Nolan.?3 The
confidence intervals (CI) for the FT and FTT parameter estimates were derived using a bootstrap
method with 1000 replications.?* Empirical analysis showed that a set of 1000 replications is:

(i) satisfactory for constructing 95% CI;
(i) insufficient for obtaining reliable 99% CI.

In our experiments, sets of 1000 replications generated:

(i) 95% CI for @ and o whose bounds coincided up to two decimal points; 95% CI for p with

slightly varying bounds;

(ii) varying 99% CI, with insignificant variation of left limits.

VAR measurements were calculated at confidence levels ¢ = 99% and ¢ = 95%. The 99% (95%)
VAR was determined as the negative of the 1% (5%) quantile. For calculating stable quantiles,
we used our program, built on the Zolotarev integral representation form of the cumulative distri-
bution function. The 99% and 95% VAR estimates are reported in Tables 3 and 4, respectively.
Biases of stable and normal VAR measurements are provided in Tables 5 and 6.2°

We accompany our computations with plots of:

e daily price levels,

e daily returns,

e fitted empirical, normal, and stable densities with the ML, FT, and FTT estimated pa-
rameters,

e daily empirical, normal, and stable VAR* estimates at the 99% and 95% confidence lev-
els.26

23The STABLE program is described in [53].

24For references on bootstrapping, see (32]; for discussion on CI based on ML parameter estimates, see [49}.
25Biases are computed by subtracting the empirical VAR from the model VAR estimates.

26The VAR* numbers are the negative values of the VAR estimates, VAR* = —VAR.
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Figure 9. VAR estimation for the DAX30 index.
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Figure 9. (cont.)

Combined plots of price levels, returns, densities, and VAR estimation are displayed in Fig-
ures 3-10. In order to illustrate that confidence intervals for the FT parameter estimates are
sufficiently narrow, we show stable densities and VAR measures at boundary values of confidence
intervals for Gyen rr 2nd Gven rr in Figures 11-14.

As Figures 3-10 demonstrate, the VAR estimates obtained at confidence level ¢ = 95% seem
to belong to the area between the “tail” and the “center”. The VAR at level ¢ = 99% is really
in the tail area. Hence, we compare performance of stable and normal models separately for the
cases ¢ = 95% and ¢ = 99%.

In general, the stable modeling (ML, FT, and FTT) provided evaluations of the 99% VAR
greater than the empirical 99% VAR (see Figures 3-10 and Tables 3 and 5). It underestimated
the sample 99% VAR in the applications of two methods: FT—for the CAC40, S&P 500, and
DAX30 indices; and ML—for the DAX30 index. Biased downwards stable VAR estimates were
closer to the true VAR than the normal estimates {see Table 5). Among the methods of stable
approximation, the F'T method provided more accurate VAR estimates for seven data sets (see
Table 5). For all analyzed data sets, the normal modeling underestimated the empirical 99%
VAR. Stable modeling provided more accurate 99% VAR estimates: mean absolute bias®” under
the stable (FT) method is 42% smaller than under the normal method.

At 95% confidence level, the stable VAR estimates were lower than the empirical VAR for all
data sets. The normal VAR measurements exceeded the true VAR, except the Yen/BP exchange
rate series (see Table 6). For the exchange rate series (Yen/BP, BP/US$, and DM/BP), the
normal method resulted in more exact VAR estimates. For the S&P 500, DAX30, CAC40, and
DJCPI indices, stable methods underestimated VAR, though the estimates were closer to the
true VAR than the normal estimates. Mean absolute biases under stable and normal modeling
are of comparable magnitudes.

27Let bm.s be a bias of a VAR estimate: by,s = VARpm,s — VAREmpirical.s- The mean absolute bias equals

MAB, = (Z§=l lbm,s|)/8, where m denotes normal, stable-ML, stable-FT, and stable-FTT methods, and s — a
series.
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Figure 11. Stable fitting at limiting values of a confidence interval for alpha.

In-sample examination of VAR models showed:

e the stable modeling generally results in conservative and accurate 99% VAR estimates,
which is preferred by financial institutions and regulators,?®

281n the 99% VAR estimation for data series from Table 1, mean absolute bias under the stable modeling was
42% smaller than under the normal modeling.
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Figure 13. Stable fitting at limiting values of a confidence interval for sigma.

e the normal approach leads to overly optimistic forecasts of losses in the 99% VAR estima-
tion,
e from a conservative point of view, the normal modeling is acceptable for the 95% VAR

estimation,
¢ the stable models underestimate the 95% VAR. In fact, the stable 95% VAR measurements
are closer to the empirical VAR than the normal 95% VAR measurements.
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Table 5. Biases of normal and stable 99% VAR estimates.

99% VARm—99% VAREmpirical
Series Normal Stable

ML FT FTT
Yen/BP —0.451 0.268 0.133 0.515
BP/USS —0.248 0.447 0.426 0.894
DM/BP —0.340 0.330 0.031 0.507
S&P 500 -0.162 0.266 —0.093 0.691
DAX30 —0.258 —0.100 —-0.189 0.182
CAC40 —-0.308 0.127 —0.049 0.076
Nikkei 225 —0.691 1.408 0.414 2.585
DJCPI —0.249 0.393 0.232 0.550
Mean absolute bias 0.338 0.416 0.196 0.750

*m denotes normal, stable-ML, stable-FT, and stable-FTT methods.

The next step in evaluating VAR models is analysis of their forecasting characteristics.

4.2. Forecast-Evaluation of VAR Estimates

In this section, we investigate the forecasting properties of stable and normal VAR modeling
by comparing predicted VAR with observed returns.
We test the null hypothesis that equation (1) for a time horizon of one day (7 = 1) holds at

any time t:

PI’[APt < —VAR,g] =1- C,

(4)

where AP, is the relative change (return) in the portfolio value, i.e., AP, = R, is the portfolio
return at moment ¢, VAR, is the VAR measure at time t, c is the VAR confidence level, ¢ is the
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Table 6. Biases of normal and stable 95% VAR estimates.

95% VARm-95% VAREmpirical
Series Normal Stable
ML FT FTT
Yen/BP -0.017 —0.070 -0.135 —0.108
BP/US 0.039 —0.057 —0.094 —0.052
DM/BP 0.010 —0.034 -0.119 —0.058
S&P 500 0.113 -0.075 —0.076 —0.085
DAX30 0.115 -0.059 —0.057 —0.056
CAC40 0.124 —0.063 —0.085 —0.085
Nikkei 225 0.073 -0.125 —0.190 —0.016
DJCPI 0.208 —0.035 —0.072 —0.055
Mean absolute bias 0.087 0.065 0.104 0.070

*m denotes normal, stable-ML, stable-FT, and stable-FTT methods.

Table 7. Admissible VAR exceedings and exceeding frequencies.

Admissible VAR Admissible VAR
E dings, £ F) ies, E/T
VAR Confidence Length of a xceedqines requencies, £/
Level, ¢ Testing Interval, T’ Significance Level, x Significance Level, z
5% 1% 5% 1%
95% 500 [17,33] [14,36) [3.40%, 6.60%] [2.80%, 7.20%]
1500 (61,89 [56,94] [4.07%, 5.93%)] {3.73%, 6.27%)
99% 500 [2,8] [0,10] [0.40%, 1.60%] [0.00%, 2.00%)
1500 [9,21) [6,23] [0.60%, 1.40%] [0.40%, 1.53%)

current time, ¢t € [1,T], and T is the length of the testing interval. The test is performed by
checking whether Pr[R, < —Wt] is reasonably close to 1 — ¢, where VAR, is the estimate of
VAR,. Recall that VAR, is computed using the last lw observations.?°

Let b; be the indicator function 1{R; < —VAR,}, 1 <t < T. If equation (4) holds, then

TiE 1, probability =1 —¢,
b =1{R; < —VAR;} =
t R L { 0, probability = c.

Let us denote by E the number of exceedings (R; < —VAR;)3® over the testing interval [1, 7.
If equation (4) is valid, then the variable £ = 23;1 b; has a binomial distribution. We can
formulate a testing rule: reject the null hypothesis at level of significance z if

E
Z (f)(l —o)telt>1 - g

t=0

i (f)u — o)t t < g or

t=0

For large T and sufficiently high VAR confidence levels, the binomial distribution can be ap-
proximated by the normal distribution. Hence, the testing rule for large 7" is: reject the null
hypothesis at level of significance z if

E<T(1—c)—21-2/2V/T(1 = c)c

298ee equation (3).
30Tn nominal levels, an exceeding implies a case when actual losses exceeded the predicted losses.

E>T(—-c)+z1_z2vVT(1 = ¢)c,

or
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Table 8. 99% VAR exceedings.

99% VAR Exceedings
Length of -
. Window Length = 260 obs. Window Length = 1560 obs.
Series a Testing
Interval, T Normal FT Normal FT
E E/T E E/T E E/T E E/T
Yen/BP 500 15 3.00% 13 2.60% 10 2.00% 2 0.40%
1500 40 1.67 34 2.27 45 3.00 21 1.40
BP/US$ 500 10 2.00 5 1.00 1 0.20 0 0.00
1.500 26 1.73 13 0.86 17 1.33 5 0.33
DM/BP 500 18 3.60 14 2.80 17 3.40 1.60
1500 45 3.00 33 2.20 50 3.33 19 1.27
S&P 500 17 3.40 13 2.60 25 5.00 13 2.60
500 1500 35 2.33 27 1.80 28 1.87 14 0.93
DAX30 500 21 4.20 14 2.80 19 3.80 18 3.60
1500 41 2.73 29 1.93 25 1.67 20 1.33
CAC40 500 16 3.20 14 2.80 14 2.80 13 2.60
1500 34 2.27 29 1.93 17 1.63 19 1.27
Nikkei 500 15 3.00 14 2.80 13 2.60 7 1.40
225 1500 31 2.07 23 1.53 26 1.73 10 0.67
DJCPI 500 12 2.40 7 1.40 15 3.00 10 2.00
1500 29 1.93 15 1.00 28 1.87 17 1.13
Table 9. 95% VAR exceedings.
95% VAR Exceedings
Length of
. Window Length = 260 obs. Window Length = 1560 obs.
Series a Testing
Interval, T Normal FT Normal FT
E E/T E E/T E E/T E E/T
Yen/BP 500 35 7.00% 38 7.60% 27 5.40% 31 6.2%
1500 94 6.27 104 6.93 109 7.27 122 8.13
BP/USS$ 500 33 6.60 45 9.00 10 2.00 17 3.40
1.500 73 4.87 96 6.40 46 3.07 57 3.80
DM/BP 500 32 6.40 38 7.60 29 5.80 37 7.40
1500 89 5.93 114 7.60 105 7.00 139 9.27
S&P 500 34 6.80 39 7.80 43 8.60 47 9.40
500 1500 79 5.27 98 6.53 62 4.13 69 4.60
DAX30 500 47 9.40 50 10 42 8.40 45 9.00
1500 98 6.53 109 7.27 62 4.13 79 5.27
CAC40 500 32 6.40 34 6.80 31 6.20 32 6.40
1500 81 5.40 87 5.80 51 4.90 82 5.47
Nikkei 500 37 7.40 40 8.00 28 5.60 33 6.60
225 1500 85 5.67 90 6.00 68 5.43 87 5.80
DJCPI 500 29 5.80 35 7.00 37 7.40 46 9.20
1500 70 4.67 93 6.20 77 5.13 108 7.20

1255

where z, is the p% standard normal quantile. The bounds of admissible VAR exceedings E
and exceedings frequencies, E/T, for testing at level of significance 5% and 1% are provided in

Table 7.
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We examined forecasting properties of stable and VAR models for data series described in
Table 1. In testing procedures, we considered the following parameters:

¢ window lengths lw = 260 observations {data over one year) and [w = 1560 observations
(data over six years),
e lengths of testing intervals 7' = 500 days and T' = 1500 days.

Evaluation results are reported in Tables 8 and 9. We indicate by the bold font the numbers
which are outside of acceptable ranges.

From Table 8, we can see that normal models for the 99% VAR computations commonly pro-
duce numbers of exceedings above the acceptable range, which implies that normal modeling
significantly underestimates VAR (losses). At window length of 260 observations, stable model-
ing is not satisfactory. It provided permissible number of exceptions only for the BP/US$ and
DJCPI series. At sample size of 1560 and testing interval of 500 observations, exceedings by the
stable-F'T method are outside of the admissible interval for the S&P 500, DAX30, and CAC40
indices. Testing on the longer interval with 7' = 1500 showed that numbers of “stable” excep-
tions are within permissible range. Table 8 demonstrates that increasing the window length from
260 observations to 1560 observations reduces the number of stable-FT exceedings. In contrast,
extending the window length for normal models does not decrease E, in some cases, even ele-
vates it. Results illustrate that stable modeling cutperforms normal modeling in the 99% VAR
estimations.

The 95% VAR normal estimates (except the DAX30 series), obtained using 260 observations,
are within the permissible range. Increasing the window length generally worsens the normal VAR
measurements. The stable-F'T method provided sufficient 95% VAR estimates for the Yen/BP
and BP/US$ exchange rates and the CAC40 and Nikkei 225 indices. A study of the predictive
power of VAR models suggests that:

e the normal modeling significantly underestimates 99% VAR,

¢ the stable method results in reasonable 99% VAR estimates,

e 95% normal measurements are in the admissible range for the window length of 260 obser-
vations. Increasing lw to 1560 observations might deteriorate the precision of the estimates.

5. CONCLUSIONS

The value-at-risk (VAR) measurements are widely applied to estimate the exposure to market
risks. The traditional approaches to VAR computations-—the delta method, historical simulation,
Monte Carlo simulation, and stress-testing—do not provide satisfactory evaluation of possible
losses. The delta-normal methods do not describe well financial data with heavy tails. Hence,
they underestimate VAR measurements in the tails. The historical simulation does not produce
robust VAR estimates since it is not reliable in approximating low quantiles with a small number
of observations in the tails. The stress-testing VAR estimates are subjective. The Monte Carlo
VAR numbers might be affected by model misspecification.

We suggest to apply stable processes in VAR estimation. The in-sample and forecast-evaluation
shows that stable VAR modeling outperforms the normal modeling for high values of the VAR
confidence level:

e the stable modeling generally produces conservative and accurate 99% VAR estimates,
which is preferred by financial institutions and regulators,

e the normal method leads to overly optimistic forecasts of losses in the 99% VAR estimation,

e the normal modeling is acceptable for the 95% VAR estimation.

The stable Paretian model, while sharing the main properties of the normal distribution leading
to the CLT (central limit theorem), provides at the same time superior fit in modeling VAR.
However, additional research is needed. Future work in this direction will be construction of
models that capture the features of financial empirical data such as heavy tails, time-varying
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volatility, and short and long range dependence.3! In order to describe thick tails, one can employ
the conditional homoskedastic models based on the stable hypothesis.3? ARMA-stableeGARCH
models can incorporate both heavy tails and time-varying volatility.3® The fractional-stable
GARCH model can capture all observed phenomena in financial data: heavy tails, time-varying
volatility, and short- and long-range dependence. An analysis of VAR estimation with ARMA-
a-stable, ARMA-stable-GARCH, and fractional-stable GARCH models will be pwovided in a
subsequent paper.

10.
11.

12.

13.

14.

15.

16.

17.

18.

19.
20.

21.

22.

23.
24.

REFERENCES

. B. Cheng and S.T. Rachev, Multivariate stable futures prices, Journal of Mathematical Finance 5, 133~153

(1995).

G. Chobanov, P. Mateev, S. Mittnik and S.T. Rachev, Modeling the distribution of highly volatile ex-
change-rate time series, In Time Series, (Edited by P. Robinson and M. Rosenblatt), pp. 130-144, Springer-
Verlag, (1996).

E. Fama, The behavior of stock market prices, Journal of Business 38, 34-105 (1965).

B. Gamrowski and S.T. Rachev, Stable models in testable asset pricing, In Approzimation, Probability and
Related Fields, pp. 223~236, Plenum Press, New York, (1994).

B. Gamrowski and S.T. Rachev, A testable version of the Pareto-stable CAPM, Technical Report 292,
Department of Statistics and Applied Probability, University of California, Santa Barbara, CA, (1995).

B. Gamrowski and 8.T. Rachev, Financial models using stable laws, In Probability Theory and Its Applica-
tions, Surveys in Applied and Industrial Mathematics, Volume 2, (Edited by Yu.V. Prohorov), pp. 556-604,
(1995).

B.B. Mandelbrot, Sur certain prix spéculatifs: Faits empiriques et modéle basé sur les processes stables
additifs de Paul Lévy, Comptes Rendus 254, 3968-3970 (1962).

B.B. Mandelbrot, New methods in statistical economics, Journal of Political Economy T1, 421-440 (1963).
B.B. Mandelbrot, The variation of certain speculative prices, Journal of Business 26, 394-419 (1963).
B.B. Mandelbrot, The valuation of some other speculative prices, Journal of Business 40, 393-413 (1967).
J.H. McCulloch, Financial applications of stable distributions, In Handbook of Statistics—Statistical Methods
in Finance, Volume 14, (Edited by G.S. Maddala and C.R. Rao), pp. 393-425, Elsevier Science, Amsterdam,
(1996).

S. Mittnik and S.T. Rachev, Alternate multivariate stable distributions and their applications to financial
modeling, In Stable Processes and Related Topics, (Edited by S. Cambanis et al.), pp. 107-119, Birkhiuser,
Boston, MA, (1991).

S. Mittnik and S.T. Rachev, Modeling asset returns with alternative stable distributions, Econometric
Reviews 12 (3), 261-330 (1993).

S. Mittnik and S.T. Rachev, Reply to comments on ‘Modeling asset returns with alternate stable laws’ and
some extensions, Econometric Reviews 12 (3), 347-389 (1993).

S. Mittnik, S.T. Rachev and D. Chenyao, Distribution of exchange rates: A geometric summation-stable
model, In Proceedings of the Seminar on Data Analysis, September 12-17, 1996, Sozopol, Bulgaria, (1996).
S. Mittnik, S.T. Rachev and M.S. Paolella, Stable Paretian modeling in finance: Some empirical and
theoretical aspects, In A Practical Guide to Heavy Tails: Statistical Technigues and Applications, (Edited
by R. Adler et al.), pp. 79-110, Birkh&user, Boston, MA, (1998).

B. Gamrowski and S.T. Rachev, Testing the validity of value at risk measures, In Athens Conference on
Applied Probability and Time Series, Volume I: Applied Probability, (Edited by C. Heyde, Yu. Prohorov
and S.T. Rachev), pp. 307-320, Springer-Verlag, (1996).

R.D. Dave and G. Stahl, On the accuracy of VAR estimates based on the variance-covariance approach,
Working Paper, (1997).

D. Duffie and J. Pan, An overview of value at risk, The Journal of Derivatives 4 (Spring), 7-49 (1997).
W. Fallon, Calculating value at risk, Wharton Financial Institutions Center Working Paper Series, Working
Paper 96-49, (1996).

G. Hopper, Value at risk: A new methodology for measuring portfolio risk, Federal Reserve Bank of
Philadelphia Business Review (July/August), 19-30 (1996); and in VAR: Understanding and Applying
Value-at-Risk, (Edited by S. Grayling), pp. 141-149, Risk, London, (1997).

P. Jorion, Value at Risk: The New Benchmark for Controlling Market Risk, Irwin Professional, (1996).
JP Morgan, RiskMetrics, Third edition, JP Morgan, (1995).

T. Linsmeier and N. Pearson, Risk measurement: An introduction to value at risk, Manuscript, Department
of Accountancy and Department of Finance, University of Illinois at Urbana-Champaign, (1996).

31For some preliminary results, see [16, 54-58].
32These models are named as ARMA-a-stable models.
33For discussion of stable-GARCH models, see [55,58].



125

8

I. KHINDANOVA et al.

25. J. Mahoney, Empirical-based versus model-based approaches to value-at-risk: An examination of foreign ex-

26.

27.

28.

36.
37.
38.

39.

40.

41,

42.

46.

47.

43.

49.

change and global equity portfolios, In Risk Measurement and Systemic Risk, Proceedings of a Joint Central
Bank Research Conference, pp. 199-217, Board of Governors of the Federal Reserve System, Washington,
DC, (1996).

M.J. Phelan, Probability and statistics applied to the practice of financial risk management: The case of
JP Morgan’s Riskmetrics™, Wharton Financial Institutions Center Working Paper Series, Working Paper
95-19, (1995).

M. Pritsker, Evaluating value at risk methodologies: Accuracy versus computational time, Wharton Finan-
cial Institutions Center Working Paper Series, Working Paper 96-48, (1996); and in VaR: Understanding
and Applying Value-at-Risk, (Edited by S. Grayling), pp. 233-255, Risk, London, (1997).

K. Simons, Value at risk—New approaches to risk management, Federal Reserve Bank of Boston New Eng-
land Economic Review (Sept/Oct), 313 (1996); and in VaR: Understanding and Applying Value-at-Risk,
(Edited by S. Grayling), pp. 133-139, Risk, London, (1997).

L.B. Klebanov, J.A. Melamed and S.T.Rachev, On the joint estimation of stable law parameters, In Ap-
prozimation, Probability, and Related Fields, pp. 315-320, Plenum Press, New York, (1994).

T.J. Kozubowski and S.T. Rachev, The theory of geometric stable distributions and its use in modeling
financial data, Furopean Journal of Operations Research: Financiael Modeling T4, 310-324 (1994).

. S.T. Rachev and A. SenGupta, Laplace-Weibull mixtures for modeling price changes, Management Science,

1029-1038 (1993).
C.R. Heathcote, B. Cheng and S.T. Rachev, Testing multivariate symmetry, Journal of Multivariate Analysis
54, 91112 (1995).

. S.T. Rachev and H. Xin, Test on association of random variables in the domain of attraction of multivariate

stable law, Probability and Mathematical Statistics 14 (1), 125-141 (1993).

. S. Mittnik, M.S. Paolella and S.T. Rachev, A tail estimator for the index of the stable Paretian distribution,

Communications in Statistics— Theory and Methods 27, 1239-1262 (1998).

B.M. Hill, A simple general approach to inference about the tail of a distribution. Annals of Statistics 3
(5), 1163-1174 (1975).

J. Pickands, Statistical inference using extreme order statistics, Annals of Statistics 3 (1), 119-131 (1975).
S. Mittnik and S.T. Rachev, Tail estimation of the stable index «, Appl. Math. Lett. 9 (3), 53-56 (1996).
E. Fama and R. Roll, Parameter estimates for symmetric stable distributions, Journal of American Statistical
Association 66, 331-338 (1971).

J.H. McCulloch, Simple consistent estimators of stable distribution parameters, Communications in Statis-
tics—Stmulation and Computation 15, 1109-1136 (1986).

J.S. Press, Estimation of univariate and multivariate stable distributions, Journal of American Statistical
Association 67 (340), 842-846 (1972).

J.S. Press, Applied Multivariate Analysis, Holt, Rinehart, and Winston, New York, (1972).

I.A. Koutrouvelis, Regression-type estimation of the parameters of stable laws, Journal of American Sta-
tistical Association 75, 918-928 (1980).

I.A. Koutrouvelis, An iterative procedure for the estimation of the parameters of stable laws, Communica-
tions in Statistics—Simulation and Computation B10, 17-28 {1981).

S.M. Kogon and D.B. Williams, Characteristic function based estimation of stable distribution parameters,
In A Practical Guide to Heavy Tails: Statistical Techniques and Applications, (Edited by R. Adler et al.),
pp. 311-335, Birkh&duser, Boston, MA, (1998).

R.W. Arad, Parameter estimation for symmetric stable distributions. International Economic Review 21,
209-220 (1980).

A. Feuerverger and P. McDunnough, On eflicient inference in symmetric stable laws and processes, In
Statistics and Related Topics, (Edited by M. Csorgo et al.), North-Holland, Amsterdam, (1981).

A.S. Paulson, E.W. Holcomb and R.A. Leitch, The estimation of the parameters of the stable laws, Bio-
metrica 62, 163—-170 (1975).

W.H. DuMouchel, Stable distributions in statistical inference, Ph.D. Dissertation, Department of Statistics,
Yale University, (1971).

J.P. Nolan, Maximum likelihood estimation and diagnostics for stable distributions, Working Paper, De-
partment of Mathematics and Statistics, American University, (1998).

S. Mittnik, S.T. Rachev, T. Doganoglu and D. Chenyao, Maximum likelihood estimation of stable Paretian
models, Manuscript, Institute of Statistics and Econometrics, University of Kiel, Germany, (1997).

W.H. DuMouchel, Ou the asymptotic normality of the maximum-likelihood estimate when sampling from
a stable distribution. Annals of Statistics 1. 948-957 (1973).

A.N. Shiryaev, Probability, Springer-Verlag, New York, (1995).

3. J.P. Nolan, Numerical computation of stable densities and distribution functions, Commaunications in Statis-

tics—-Stochastic Models 13 (4), T59-774 (1997).

. S.-M. Liu and B.W. Brorsen, Maximum likelihood estimation of a GARCH-stable model, Journal of Applied

Econometrics 10. 273-285 (1995).

S. Mittnik, M.S. Paolella and S.T. Rachev, Modeling the persistence of conditional volatilities with GARCH-
stable processes, Manuscript, Tustitute of Statistics and Econometrics, University of Kiel, Germany, (1997).
S. Mittnik, M.S. Paolella and S.T. Rachev, Unconditional and conditional distributional models for the
Nikkei’s Index. Asia-Pacific Financial Markets 5, 99-128 (1998).



Value at Risk 1259

57. S. Mittnik, M.S. Paolella and S.T. Rachev, The prediction of down-side risk with GARCH-stable models,
Technical Report, Institute of Statistics and Econometrics, University of Kiel, Germany, {1998).

58. A.K. Panorska, S. Mittnik and S.T. Rachev, Stable GARCH models for financial time series, Appl. Math.
Lett. 8 (5), 33-37 (1995).



