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Abstract-The value-at-risk (VAR) measurements are widely applied to estimate exposure to 
market risks. The traditional approaches to VAR computation--the variance-covariance method, 
historical simulation, Monte Carlo simulation. and stress-testing+io not, provide satisfactory eval- 
uation of possible losses. In this paper, we analyze the use of stable Paretian distributions in VAR 
modeling. @ 2001 Elsevier Science Ltd. A11 rights reserved. 
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1. INTRODUCTION 

One of the most important tasks of financial institutions is evaluating the exposure to market 

risks, which arise from variations in prices of equities, commodities, exchange rates, and interest 

rates. The dependence on market, risks can be measured by changes in the portfolio value, or 

profits and losses. A commonly used methodology for estimation of market risks is the value at 

7lisIc (VAR). 

A VAR measure is the highest possible loss over a. certain period of time at a given confidence 

level. For example, if the daily VAR for a given portfolio of assets is reported to be $2 million 

at the 95% confidence level; it means that, without abrupt changes in the market conditions, 

one-da,y losses will exceed $2 million 5% of the time. 

Formally, a VAR = VARt,, is defined as the upper bound of the one-sided confidence interval: 

Pr[AP(,) < -VAR] = 1 - c, (1) 
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where c is the confidence level and AP(r) = Apt(r) is the relative change (return) in the portfolio 
value over the time horizon r: 

AP,(r) = P(t + 7) - P(t), 

where P(t) = logs(t), S(t) is the portfolio value at t, the time period is [t,T], with T - t = 7, 

and t is the current time. 
The time horizon, or the holding period, should be determined from the liquidity of the assets 

and the trading activity. The confidence level should be chosen to provide a comfortable level of 
downside risk.’ 

The essence of the VAR computations is estimation of low quantiles in the portfolio return 
distributions. The VAR techniques suggest different ways of constructing the portfolio return 
distributions. The common methods are the delta method, historical simulation, Monte Carlo 
simulation, and stress-testing. The delta methods are based on the normal assumption for the 
distribution of financial returns. However, financial data often violate the normality assumption. 
The empirical observations exhibit “fat” tails and excess kurtosis. The historical method does 
not impose distributional assumptions but it is not reliable in estimating low quantiles of AP 
with a small number of observations in the tails. The performance of the Monte Carlo method 
depends on the quality of distributional assumptions on the underlying risk factors. 

The existing methods do not provide satisfactory evaluation of VAR. The main drawback is 
the lack of a convincing unified model for VAR capturing the following phenomena generally 
observed in financial data, such as asset returns, interest rates, exchange rates, equities: 

l heavy tails of the marginal distributions of the process of financial returns, 
l time-varying volatility, 
l short- and long-range dependence. 

In this article, we propose using stable distributions for constructing models that encompass 
these empirical features and develop more precise VAR-estimation techniques. Adequate approx- 
imation of distributional forms of portfolio returns is a key condition for accurate VAR derivation. 
Given the leptokurtic nature (thick tails and excess kurtosis) of empirical financial data, the sta- 
ble Paretian distributions seem to be the most appropriate distributional models [l-16]. The 
conditional heteroskedastic models based on the o-stable hypothesis can be applied to describe 
both thick tails and time-varying volatility. The fractional-stable GARCH models can explain 
all observed phenomena: heavy-tails, time-varying volatility, and temporal dependence. 

The remainder of the paper is organized as follows. In Section 2, we discuss traditional ap- 
proaches to VAR computations. Section 3 provides a finance-oriented description of stable distri- 
butions. In Section 4, we estimate the VAR measurements for financial returns following a stable 
law (see also [17]). Section 5 states conclusions and outlines future research on VAR modeling 
with stable processes. 

2. COMPUTATION OF VAR 

From the definition of VAR = VARt,, in equation (l), the VAR values are obtained from the 
probability distribution of portfolio value returns: 

1 -c = FaP(-VAR) = 
s 

-VAR 

fAP(z) ds, _-oo 

where Pap(x) = Pr(AP 5 X) is the cumulative distribution function (cdf) of portfolio returns in 
one period, and f&P(x) is the probability density function (pdf) of AP.2 The VAR methodologies 
mainly differ in the way of constructing fAp(z). 

‘In practice, the time horizon varies from one day to two weeks (ten trading days) and the confidence level-from 
95% to 99%. The regulators recommend to calculate VAR at the ten-day holding period and the 99% confidence 
level. 
21f HAP does not exist, then VAR can be obtained from (cdf) FA,D. 
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The traditional techniques of approximating the distribution of AP are (see [17-28)): 

l the parametric method (analytic or models-based), 

l historical simulation (nonparametric or empirical-based), 

l Monte Carlo simulation (stochastic simulation), and 

l the stress- testing (scenario analysis). 
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2.1. Parametric Method 

If the changes in the portfolio value are characterized by a parametric distribution, VAR can 

be computed using the distribution parameters. In this section, we briefly review: VAR for a 

single asset, portfolio VAR, a parametric method based on the normal distribution, and linear 

approximation to price movements. 

2.1.1. VAR for a single asset 

Assume that a portfolio consists of a single asset, which depends only on one risk factor. 

Traditionally, in this setting, the distribution of asset returns is assumed to be the &variate 

normal distribution, identified by two parameters: the mean 1-1, and the standard deviation ~7’. 

The problem of calculating VAR is then reduced to finding the (1 -c)~~ percentile of the standard 

normal distribution ZI_~: 

s 

X’ 

J 
21-c l-c= g(x) dx = 4(z) dz = N(~I-4, with X* = zI-~~ + p, 

--03 --oo 

where 4(z) is the standard normal density function, N(z) is the cumulative normal distribution 

function, X is the portfolio return, g(x) is the normal distribution function for returns with 

mean I_L and standard deviation u, and X* is the lowest return at a given confidence level c. 

In many applications, investors assume that the expected return I_L equals 0. This assumption 

is based on the conjecture that the magnitude of p is substantially smaller than the magnitude 

of the standard deviation (T and, therefore, can be ignored. Then we have 

and therefore, 

VAR = -YaX* = -Ya~i_~o, 

where Ya is the initial portfolio value. 

2.1.2. Portfolio VAR 

If a portfolio consists of many assets, the computation of VAR is performed in several steps. 

Portfolio assets are decomposed into “building blocks”, which depend on a finite 

risk factors. Exposures of the portfolio securities are combined into risk categories. 
total portfolio risk is obtained by aggregating risk factors and their correlations. We 
following. 

l X, is the portfolio return in one period. 
l N is the number of assets in the portfolio. 

number of 

Then, the 
denote the 

l X, is the it” asset return in one period (7 = l), Xi = AP(l) = P,(l) - Pi(O), where Pi is 

the log-spot price of asset i, i = 1, . . . , N. More generally, Xi can be the risk factor that 
enters linearly3 in the portfolio return. 

l w, is the ith asset’s weight in the portfolio, i = 1,. . . , N. 

31f the risk factor does not enter linearly (as in a case of an option), then a linear approximation is used. 
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The portfolio return is 
N 

Xp = C U'tXi. 
i=l 

In mat,rix notation, 

xp = UITX, 

where tu = (~1, ~2.. . ,wN)~, X = (Xi, X2,. . , .XN)~. 

Then the portfolio variance is 

V(Xp) = WTCW = 5 wfff7,t + 9 F WiWjpijOiUj, 
i=l 2=1 j=l 

where otl is the variance of returns on the 9” asset, 0-t is the standard deviation of returns on 

the ith asset, pi3 is the correlation between the returns on the it” and the jth assets, C is the 

covariance matrix, C = [Uij], 1 < i < N, 1 5 j 5 N. 

If all portfolio returns are jointly normally distributed, the portfolio return, as a linear combi- 

nation of normal variables, is also normally distributed. The portfolio VAR based on the normal 

distribution assumption is 

VAR = -Y~z~-~cJ(X~), 

where o(Xp) is the portfolio standard deviation (the portfolio volatility), 

Thus, risk can be represented by a combination of linear exposures to normally distributed 

factors. 

In this class of parametric models, to estimate risk, it is sufficient to evaluate the covariance 

matrix of portfolio risk factors (in the simplest case, individual asset returns). 

The estimation of the covariance matrix is based on the historical data or on implied data from 

securities pricing models. 

If portfolios contain zero-coupon bonds, stocks, commodities, and currencies, VAR can be 

computed from correlations of these basic risk factors and the asset weights. If portfolios include 

more complex securities, then the securities are decomposed into building blocks. 

The portfolio returns are often assumed to be normally distributed [23,26]. One of methods 

employing the normality assumption for returns is the delta met,hod (the delta-normal or the 

variance-covariance method). 

2.1.3. Delta method 

The delta. method estimates changes in prices of securities using their “deltas” with respect to 

basic risk factors. The method involves a linear (also named as delta or local) approtimation to 

(log) price movements: 

P(X + U) zz P(X) + P’(X) u 

or 

&J(X) = P(X + U) - P(X) E P’(X) u, 

where X is the level of the basic risk factor (i.e., an equity, an exchange rate), U is the change 

in X, P(X + U) = P(t + 7,X + U), P(X) = P(t, X),” P(X) is the (log) price of the asset at the 

“Because the t,itne horizon (T) is fixed and t is the present time, we shall omit the time argument and shall write 
P(X + U) instead of tinderlying P(t + 7, X + U) and P(X) instead of P(t, X). We shall consider the dependency 
of P on the risk factor X only. 
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X level of the underlying risk factor, P’(X) = g is the first derivative of P(X), it is commonly 

called the delta (A = A(X)) of the asset. 

Thus, the price movements of the securities are approximately 

AI’(X) z P’(X)V = AU. 

The delta-normal (the variance-covariance) method computes the portfolio VAR as 

VAR = -YO~l_c~r 

where d = d(X) = (A,(X), A,(X), . . . , A,(X)) T is a vector of the delta-positions, Aj(X) is 

the security’s delta with respect to the jth risk factor, Aj = $$J. 

2.2. Historical Simulation 

The historical simulation approach constructs the distribution of the portfolio value changes 

AP from historical data without imposing distribution assumptions and estimating parame- 

ters. Hence, sometimes the historical simulation method is called a nonparametric method. The 
method assumes that trends of past price changes will continue in the future. Hypothetical future 
prices for time t + s are obtained by applying historical price movements to the current (log) 

prices: 

where t is the current time, s = 1,2,. . . , K, K is the horizon length of going back in time, 

qt+s is the hypothetical (log) price of the ith asset at time t + s, P<, = P+, APi,t+s-n = 

Pi,t+s--n - G,t+s-l-n, Pi,t is the historical (log) price of the ith asset at time t. Here we assumed 

that the time horizon T = 1. 
A portfolio value Pp,t+s is computed using the hypothetical (log) prices P<t+s and the current 

portfolio composition. The portfolio return at time t + s is defined as 

R;*t+s = pp,t+s - Pp,t, 

where Pp,t is the current portfolio (log) price. 

The portfolio VAR is obtained from the density function of the computed hypothetical returns. 

Formally, VAR = VARt,, is estimated by the negative of the (1 - c)~~ quantile, VAR’; namely, 

F ,,ap(-VAR) = F,,ap(VAR*) = l- c, where F,,ap(x) is the empirical cumulative distribution 

function F,+p(s) = (l/r;) Cz=, l{R;,,+, 5 x}, z E R. 

2.3. Monte Carlo Simulation 

The Monte Carlo approach requires specification of statistical models for the basic risk factors 
and the underlying assets. The method simulates the behavior of risk factors and asset prices by 
generating random price paths. Monte Carlo simulations provide possible portfolio values on a 
given date T after the present time t, T > t. The VAR.(VART) value can be determined from 
the distribution of simulated portfolio values. The Monte Carlo method is performed according 
to the following algorithm. 

1. Specify stochastic processes and process parameters for financial variables and correlations. 
2. Simulate the hypothetical price trajectories for all variables of interest. Hypothetical price 

changes are obtained by random draws from the specified distribution. 
3. Obtain asset prices at time T, P~,T, from the simulated price trajectories. Compute the 

portfolio value Pp,~ = C Wi,TPi,T. 
4. Repeat Steps 2 and 3 many times to form the distribution of the portfolio value Pp.T. 
5. Measure VART as the negative of the (1 - c)th percentile of the simulated distribution 

for Pp,~. 
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2.4. Stress Testing 

The parametric, historical simulation, and Monte Carlo methods estimate the VAR (expected 

losses) depending on risk factors. The stress testing method examines the effects of large move- 

ments in key financial variables on the portfolio value. The price movements are simulated in line 

with the certain scenarios5 Portfolio assets are reevaluated under each scenario. The portfolio 

return is derived as 

where Ri,, (wi,,) is the hypothetical return (weight) on the ith security under the new scenario s. 

Estimating a probability for each scenario s allows us to construct a distribution of portfolio 

returns, from which VAR can be derived. 

2.5. Weaknesses of Traditional VAR Methods 

The traditional VAR methods do not provide accurate estimation of VAR. The delta methods 

are based on the normal assumption for the distribution of financial returns. However, financial 

data violate the normality assumption. The empirical observations exhibit “fat” tails and excess 

kurtosis. Thus, the delta-normal technique does not fit well data with heavy tails. The historical 

simulation does not impose distributional assumptions. Models based on historical data assume 

that the past trends will continue in the future. However, the future might encounter extreme 

events. The historical simulation technique is limited in forecasting the range of portfolio value 

changes and is not reliable in estimating low quantiles with a small number of observations in the 

tails. One weakness of stress-testing is that it is subjective. The performance of the Monte Carlo 

method depends on the quality of distributional assumptions on the underlying risk factors. 

We propose the use of stable processes in VAR modeling. In the next section, we first provide 

a finance-oriented description of stable laws. Then, we describe modeling VAR with stable 

distributions and compare the stable VAR approach with the existing methodologies. 

3. A FINANCE-ORIENTED DESCRIPTION 
OF STABLE DISTRIBUTIONS 

In this part, we describe parameters and some finance-oriented properties of stable distribu- 

tions. We also examine methods of estimating parameters of stable laws. 

3.1. Parameters and Properties of Stable Distributions 

A random variable R is said to be stable” if for any a > 0 and b > 0, there exist constants 

c > 0 and d E R such that 

aR, +aRz gcR+d, 

where RI and R2 are independent copies of R and 2 denotes the equality in distribution. 

In general, the stable distributions do not have closed form expressions for density and distri- 

bution functions. Stable random variables (R) ue commonly described by their characteristic 

functions: 

@R(O) = E(exp(iRB)) 

= exp { -anlQla (1 - iDsign tan y) + i@} , ifa#l, 

@R(B) = E(exp(iRQ)) 

= exp ifo= 1, 

5Scenarios include possible movements of the yield curve. changes 111 exchange rates, etc., together with estimates 
of the underlying probabilities. 
“Often R is called a-stable or Pareto stable or Pareto-Le’vy-slable (for CI < 2). 
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where Q is the index of stability, 0 < Q 5 2, p is the skewness parameter, -1 5 p 5 1, ~7 is the 

scale parameter, o 2 0, and p is the location parameter, ~1 E R. To indicate the dependence of 

a stable random variable R on its parameters, we write R w S,(p, 0, p). If the index of stability 

(y = 2, then the stable distribution reduces to the Gaussian distribution. In empirical studies, the 

modeling of financial return data is done typically with stable distributions having 1 < (Y < 2.7 

Stable distributions are unimodal and the smaller Q is, the stronger the leptokurtic feature of the 
distribution (the peak of the density becomes higher and the tails are heavier). Thus, the index 

of stability can be interpreted as a measure of kurtosis. When cy > 1, the location parameter p 

measures the mean of the distribution. If the skewness parameter p = 0, the distribution of R is 

symmetric and the characteristic function is 

@R(O) = E(exp(iRB)) = exp {--cPlOla + i@} . 

If /3 > 0, the distribution is skewed to the right. If /3 < 0, t,he distribution is skewed to the left. 

Larger magnitudes of p indicate stronger skewness. If /3 = 0 and p = 0, then the stable random 

variable R is called symmetric a-stable (SOS). The scale parameter (the volatility) c allows any 

stable random variable R to be expressed as R = aRor where R, has a unit scale parameter, and 

the same index of stability a and skewness parameter p as R. The scale parameter generalizes 

the definition of standard deviation. The stable analog of variance is the variation: V, = 0”. 

In VAR estimations, we are interested in investigating the behavior of the distributions in the 

tails. The tails of the stable (non-Gaussian) distributions have a power decay and are character- 

ized by the following properties: 

and 

xliyaAaP(R < -X) = k-,9@, 

where 

1 

l-0 

q2 - cl!) cos(742) ’ 
ifcufl, 

k, = 
2 

F’ 
if cy = 1 (see footnotes). 

The pth absolute moment, ElRlp = &O” P( lR\P > cc) dx, is 

l finiteifp<aorcr=2,and 

l infinite otherwise. 

Thus, the second moment of any non-Gaussian stable distribution is infinite. 

Stable distributions possess the additivity property: a linear combination of independent stable 

random variables with stability index cy is again a stable random variable with the same Q.~ 

EXAMPLE. If RI, Rz, . . , R, are independent stable random variables with stability index a, Ri N 

S,(Pi, gzr CL,), then R = C&, WiRi is a stable random variable with the same cy and parameters: 

(a) if Q # 1, 

fl= ((lwllal)a + ..’ + (IW,lO,)a)l’a, 

p = skn(w)P1(Iwl~l)a + ... + ~ign(wn)Pn(lwnl~n)” 
(Iw1lmP + “. + (lwlh)a 

1 

P = WPl + . . + ‘w&L,, 

7The financial returns modeled with a-stable laws exhibit finite means but infinite variances. 
‘Note that, in contrast to the normal case, the tails of the non-Gaussian (Pareto) stable distributions are much 
fatter, which will be an important issue in estimating VAR. 
‘This property is shared only by normal and stable laws, and is the main advantage of the use of stable laws for 
portfolio returns. 
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(b) if Q = 1, 

(T = JW11~1 + . . . + Iw&J,, 

P= 
sign(w)Pllwlal + ... +sign(wn)Pnlwnl~, 

lw1lm + ... + l%lGl 
, 

p = wp1 + . . . + w,p, - ~(w~ln~w~~~~~~ + ..f + wnlnjwnlan&). 

Since the Pareto-stable distributions have infinite variances, one cannot estimate risk by vari- 
ance and dependence by correlations. We shall introduce variance- and covariance-similar notions 
for stable laws. These notions are based on the multivariate assumptions of stable distributions. 

A random vector R of dimension d is stable if for any a > 0 and b > 0, there exist c > 0 and a 
d-dimensional vector D such that 

where RI and RZ are independent copies of R. 

If a random vector is stable with Q > 1, then it means that all components of the vector 
are stable with the same index of stability and any linear combination (for example, portfolio 
returns) is again stable.” 

The characteristic function of a d-dimensional vector is given by: 

(a) if f2 # 1, 

@R(e) = @R(&, 02,. . . 1 &i) 

= E exp (ieTR) = exp { ~C~~OTs/(l-isign(B’s)tan~)I’(ds)+IBT~}, - 

(b) if cy = 1, 

where P is a bounded nonnegative measure on the unit sphere Sd, s is the integrand unit vector 
(s E Sd), and p is the shift vector. The measure I’ is named a spectral measure. Let H be the 
distribution function of I?. Then, the characteristic function in polar coordinates is as follows: 

(a) ifafl, 

sign (cos(8, $)) tan y) dH($) + ieTp , 

(b) if (u = 1, 

@R(e) = exp -p { 

z ln(pl co46 $4) 
> 

dfW,) + 6 , 
> 

where 0 = (~cos~1,psin~1cos~2,...,psin~1...sin~,-2cos~,-1,psin~1...sin~,_~)~, p_= 

PI, $ = ($1,. . . ,&-I)~, and 

cos(e,Ij,) = ( f~~sinhsin$%) + [ijsin&sin&) n COSh-lCOS$J’d_l +‘~~+cosqfJlcos$f~. 

loWe shall model the dependence structure of the vector of returns (RI, , &) of a portfolio by assuming that 
(RI, , Rd) is an a-stable vector. 
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0 1000 2ooo 3000 4ooo 5ooo 

Figure 1. Hill estimator for 10,000 standard stable observations with index cy = 1.9 

Hill estimator with 95% confidence bounds 

0 5oooo low00 150000 2oooocl 250000 

Figure 2. Hill estimator for 500,000 standard stable observations with index a = 1.9. 

If a > 1, then p is the mean vector, p = ER. The scale parameter of a linear combination of 
the components of a stable vector R satisfies the relation 

CP (WTR) = 6(WlRlt-. . . + WdRd) = s sd lWTSla r (ds). 

Viewing R = (RI, . . . , Rd) as the vector of individual returns in a portfolio with weights 

W1,...r wd, a”(wTR) will be the portfolio risk-measure. As we defined above, u, = ua is the 
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Table 1. Financial data series. 

Number of 
Series Source Time Period Frequency 

Observations 

Yen/BP Datastream 6285 1.02.74-1.30.98 Daily (D) 

BP/US$ D. Hindsmov 6157 1.03.74-1.30.98 D 

DM/BP Data.stream 6285 1.02.74-1.30.98 D 

S&P 500 Datastream 7327 1.01.70-1.30.98 D 

DAX30 Datastream 8630 1.04.65-1.30.98 D 

CAC40 Datastream 2756 7.10.87-1.30.98 D 

Nikkei 225 Datastream 4718 1.02.80-1.30.98 D 

D J CP I D at astream 5761 1.02.76-1.30.98 D 

Table 2. Parameters of stable and normal densities.* 

Series 
Normal 

Mean 

Yen/BP -0.012 0.649 

Standard 

Deviation 

BP/US 0.006 0.658 

DM/BP -0.012 0.489 

S&P 500 0.032 0.930 

Method 

ML 
FT 

FTT 

ML 

FT 

FTT 

ML 

FT 

FTT 

1.647 --0.170 

0.038 

--0.195 

Stable 

ML 

FT 

FTT 

1.61 

[1.57, 1.661 
[1.55, 1.68] 

1.50 

[1.46, 1.55] 

[1.44, 1.64] 

1.582 
1.57 

[1.53, 1.65] 
[1.51, 1.75] 

1.45 
[1.41, 1.51] 
[1.40, 1.62] 

1.590 
1.60 

[1.54, 1.75] 
[1.53, 1.75] 

1.45 

[1.41, 1.55] 

[1.40, 1.771 

1.708 
1.82 

[1.78, 1.841 
[1.77, 1.84] 

1.60 
[1.56, 1.651 
[1.54, 1.66] 

0.004 

-0.023 
-0.018 

[-0.095, 0.0151 
[-0.178,0.0251 

-0.018 
[-0.131, 0.0341 
[-0.261, 0.0701 

0.007 

0.006 
[-0.096, 0.045] 
[-0.393, 0.0651 

0.006 
[-0.134, 0.070] 

[-0.388, 0.097] 

0.018 
-0.012 

[-0.064, 0.013] 
[--0.165, 0.022] 

-0.012 
[-0.114, 0.038] 
[-0.402, 0.061] 

0.036 
0.032 

[-0.013, 0.057] 
[-0.062, 0.067] 

0.032 
[-0.066, 0.078] 
[-0.120, 0.0951 

*The CIs right below the estimates are the 95% CIs, the next CIs are the 99% CIs. 

0.361 
0.34 

[0.33, 0.361 
[0.33, 0.37] 

0.32 
[0.31, 0.34] 
[0.31, 0.39] 

0.349 

0.33 
[0.32, 0.361 
[0.32, 0.47] 

0.31 
[0.30, 0.33] 
[0.30, 0.47] 

0.256 
0.24 

[0.23, 0.261 
[0.23, 0.27] 

0.23 
[0.22, 0.26] 

[o.22, o.4ol 

0.512 
0.54 

[0.53, 0.541 
[0.53, 0.551 

0.48 
[0.47, 0.49] 
[0.46, 0.50] 
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l- 
Series 

DAXBO 0.026 

CAC40 

Nikkei 

225 

0.028 

0.020 

T- 
Mean 

Normal 

DJCPI 0.006 0.778 

Standard 

Deviation 

1.002 

1.198 

1.185 

Table 2. (cont.) 

T 
Method Q P P D 

ML 

FT 

FTT 

ML 

FT 

FTT 

ML 

FT 

FTT 

ML 

FT 

FTT 

1.823 

1.84 

[1.81,1.88] 

[1.80,1.89] 

1.73 

[1.69, 1.771 

[1.68,1.79] 

1.784 

1.79 

[1.73,1.85] 

[1.71, 1.871 

1.76 

[1.71, I.841 

(1.69,1.87] 

1.444 

1.58 

[1.53,1.64] 

[1.52, I.671 

1.30 

[1.26, 1.471 

[1.05, 1.671 

1.569 

1.58 

[1.53,1.66] 

[1.52, 1.671 

1.49 

[1.44,1.55] 

[1.44, 1.69] 

Stable 

-0.084 0.027 

0.026 

[-0.015,0.050] 

[-0.050,0.057] 

0.026 

[-0.031,0.061] 

[-0.124,0.073] 

-0.153 0.027 0.698 

0.028 0.70 

[-0.050,0.088] [0.68,0.73] 

[-0.174,o. 1031 [0.67,0.74] 

0.028 0.69 

[-0.053,0.091] [0.67,0.72] 

[-0.394,0.101] [0.66,0.77] 

-0.093 -0.002 

0.02 

[ -0.127,O. 1021 

[-0.421,0.130] 

0.02 

[-0.451,0.316] 

I-1.448.0.8601 

-0.060 0.003 

0.006 

[-0.026,0.100] 

[-0.140,o. 1201 

0.006 

[-0.160,0.062) 

/-0.396,0.100] 

0.592 

0.60 

[0.59,0.60] 

[0.58,0.62] 

0.57 

[0.56,0.58] 

[0.56,0.59] 

0.524 

0.59 

[0.57,0.62] 

[0.57,0.69] 

0.49 

[0.47,0.69] 

[0.47, 1. lo] 

0.355 

0.35 

[0.34,0.37] 

(0.33,0.39] 

0.33 

[0.32,0.36] 

[0.32,0.46] 

1 

*The CIs right below the estimates are the 95% CIs, the next CIs are the 99% CIs 

variation, the stable equivalent of variance. Similarly to the traditional interpretation of co- 

variance as an indicator of dependence, one can use the covariation to estimate the dependence 

between two SQS distributions: 

where (RI, R2) is an sas vector (1 < o < 2) and x<‘> = lzjk sign(z) (signed power). The matrix 

of covariations [Ri; Rj]a, 1 < i 5 d, 1 5 j 5 d, determines the dependence structure among the 

individual returns in the portfolio. 

3.2. Estimation of Parameters of Stable Distributions” 

We shall examine the methods of estimating the stable parameters and their applicability in 

VAR computations, where the primary concern is the tail behavior of distributions. It has been 

“For additional references on estimation of four parameters of stable univariate laws, see [2,4-6,11,12,29-311. 
Par the multivariate case estimation of the spectral measure, the index of stability. the covariation and tests for 
dependence of stable distributed returns, see (1,4-6,14.17,32,33]. 
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Table 3. Empirical, normal, and stable 99% VAR estimates.* 

99% VAR 

Series 
Empirical 

T 
==I-=- 
=-F- 

Yen/BP 1.979 1.528 2.247 2.212 2.494 

[1.968, 2.2521 [2.276, 2.7361 

I 
/1.919, 2.4151 [2.230, 2.8361 

BP/US$ 1.774 1.526 2.221 2.200 2.668 

[2.014, 2.4121 [2.436, 2.9251 

11.956, 2.5931 [2.358, 3.0291 

1.149 1.819 1.520 1.996 

[1.190, 1.7121 [1.792, 2.2111 

[1.179, 1.7421 [1.700, 2.3291 

2.131 2.559 2.200 2.984 

12.117, 2.2581 [2.757, 3.2431 

[2.106, 2.4701 [2.700, 3.3361 

2.306 2.464 2.375 2.746 

(2.260, 2.5021 [2.557, 2.9491 

I 
12.240. 2.5691 12.523, 2.9971 

CAC 40 1 3.068 2.760 3.195 3.019 3.144 

[2.753, 3.3641 12.788, 3.5041 

[2.682, 3.5201 [2.700, 3.8411 

2.737 4.836 3.842 6.013 

[3.477, 4.2541 (5.190, 6.7011 

13.367, 4.4531 [4.658, 19.9501 

1.804 2.446 2.285 2.603 

[1.955, 2.423) [2.382, 2.8701 

11.916. 2.4741 [2.288, 3.0351 

*The CIs right below the estimates are the 95% Cls, the next CIs are the 99% CIs 

Normal 

ML FT FTT 

Stable 

proposed that it is more useful to evaluate directly the tail index (the index of stability) instead 
of fitting the whole distribution. The latter method is claimed to negatively affect the estimation 

of the tail behavior by its use of “center” observations. We shall describe both approaches: 

tail estimation and entire-distribution modeling. We suggest a method which combines the two 

techniques: it is designed for fitting the overall distribution with greater emphasis on the tails. 

3.2.1. Tail estimation 

Tail estimators for the index of stability (Y are based on the asymptotic Pareto tail behavior of 

stable distributions (see Section 3.1). We shall consider the following estimators of tail thickness: 

the Hill, the Pickands, and the modified unconditional Pickands.” The Hill estimator [35] is 

described by 

&Hill = 
1 

(l/k) j$ ln(.L+l-jzn) - In X-h ’ 

where X,:, denotes the jth -order statistic of sample X1, . . , Xn;13 the integer Ic points where 

“For details on the Hill, Pickands, and the modified unconditional Pickands estimators, see [34] and references 

therein. 
13Given a sample of observations Xl,. ,X,,, we rearrange the sample in iFcreasing order Xlz7, < ... 5 X,:,, 

then the jth -order statistic is equal to Xi:,. 
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Table 4. Empirical, normal, and stable 95% VAR estimates.* 

ML FT 

Yen/BP 1.103 1.086 1.033 0.968 

[0.926, 1.0471 

jo.911, 1.1861 

FTT 

0.995 

10.937, 1.1321 

[0.911, 1.3291 

BP/US$ 1.038 1.077 0.981 0.944 

[0.898, 1.0721 

[0.876, 1.5991 

DM/BP 0.806 0.816 0.772 0.687 

[0.652, 0.7491 

[0.641, 0.8941 

0.986 

[0.917, 1.1581 

[0.895, 1.5881 

0.748 

[0.695, 0.8941 

IO.678, 1.4181 

S&P 500 1.384 1.497 1.309 1.308 1.319 

[1.275, 1.361) [1.265, 1.4231 

[1.265, 1.4111 [1.246, 1.5031 

DAX 30 1.508 1.623 1.449 1.451 1.452 

[1.415, 1.5001 [1.405, 1.5211 

[1.402, 1.5331 [1.395, 1.6501 

CAC 40 1.819 1.943 1.756 1.734 1.734 

(1.653, 1.8371 (1.647, 1.8451 

[1.621, 1.9441 [1.616, 2.288) 

Nikkei 225 1.856 1.929 1.731 1.666 1.840 

[1.570, 1.8391 [1.582, 2.5121 

[1.558, 2.2801 [1.500, 5.0221 

DJCPI 1.066 1.274 1.031 0.994 1.011 

[O.SSS, 1.0471 10.944, 1.1881 

[0.870, 1.2001 [0.915, 1.6151 

99% VAR 

Series Stable 
Empirical Normal 

*The CIs right below the estimates are the 95% CIs, the next CIs are the 99% CIs. 

the tail area “starts”. The selection of k is complicated by a tradeoff: it must be adequately 
small so that XIL-kzn is in the tail of the distribution; but if it is too small, the estimator is 
not accurate. The disadvantage of the estimator is the condition to explicitly determine the 
order stat,istic Xn_k:n. It is proved that, for stable Paretian distributions, the Hill estimator is 
consistent and asymptotically normal. Mittnik, Paolella and Rachev [34] found that the small 
sample performance of &uiir does not resemble its asymptotic behavior, even for n > 10,000 (see 
Figure 1).14 

It is necessary to have enormous data series in order to obtain unbiased estimates of o, for 
example, with cr = 1.9, reasonable estimates are produced only for n > 100,000 (see Figure 2).15 
Alternatives to the Hill estimator are the Pickands and the modified unconditional Pickands 
estimators. The “original” Pickands estimator [36] takes the form 

&Pick = 
In 2 

ln(-%-k+l:n - Xn--2k+l:n) - ln(Xn-2kfl:n - Xn-4kfl:n) ’ 
4k < n. 

i41n Figure 1 the true value of a is 1.9, the sample size is n = 10,000; the x-axis shows values of k from 1 
to n/2 = 5OdO. Notice that the estimator for d = &(k(n),n) is unbiased when lim+.+,(k(n)/n) -+ 0. So, 
unbiasedness of the estimator requires very small values of k. However, for a small value of k, the variance of the 
estimator is large. A close look at the estimator &(k, n) suggests a value of ir around 2.2, whereas a = 1.9. 
151n Figure 2, the true a is again 1.9, the sample size is n = 500,000, k = 1,. , n/2 = 250,000. One can see 
that, for very small values of k, Q x 1.9. 
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Figure 3. VAR estimation for the D M / B P  exchange rate. 
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Figure 3. (cont.) 

The Pickands estimator requires choice of the optimal Ic, which depends on the true unknown cr. 
Mittnik and Rachev [37] proposed a new tail estimator named “the modified unconditional 
Pickands (MUP) estimator”, &Up. An estimate of a is obtained by applying the nonlinear 
least squares method to the following system: 

k [ ‘--I 1 and k 3k-1 1 = 2 = 2k - 1 [ 4k-1 1 ’ 

Mittnik, Paolella and Rachev [34] found that the optimal k for &UP is far less dependent 
on Q than in the case of either the Hill or Pickands estimators. Studies demonstrated that &up 
is approximately unbiased for (Y E [l.OO, 1.95) and nearly normally distributed for large sample 
sizes. The MUP estimator appears to be useful in empirical analysis. 

3.2.2. Entire-distribution modeling 

We shall describe the following methods of estimating stable parameters with fitting the en- 
tire distribution: quantile approaches, characteristic function (CF) techniques, and maximum 
likelihood (ML) methods. 

Fama and Roll [38] suggested the first quantile approach based on observed properties of stable 
quantiles. Their method was designed for evaluating parameters of symmetric stable distributions 
with index of stability o > 1. The estimators exhibited a small asymptotic bias. McCulloch (391 
offered a modified quantile technique, which provided consistent and asymptotically normal esti- 
mators of all four stable parameters, for Q E [0.6,2.0] and p E i-1, I]. The estimators are derived 
using functions of five sample quantiles: the 5%, 25%, 50%, 75%, and 95% quantiles. Since the 
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Figure 4. (cont.) 

estimators do not consider observations in the tails (below the 5% quantile and above the 95% 

quantile), the McCulloch method does not appear to be suitable for estimating parameters in 

VAR modeling. 

Characteristic function techniques are built on fitting the sample CF to the theoretical CF. 

Press [40,41] proposed several CF methods: the minimum distance, the minimum rth mean 

distance, and the method of moments. Koutrouvelis [42,43] developed the iterative regression 

procedure. Kogon and Williams [44] modified the Koutrouvelis method by eliminating iterations 

and limiting the estimation to a common frequency interval. ‘6 CF estimators are consistent and 

under certain conditions are asymptotically normal [32]. 

Maximum likelihood methods for estimating stable parameters differ in a way of computing 

the stable density. DuMouchel [48] evaluated the density by grouping data and applying the fast 

Fourier transform to “center” values and asymptotic expansions-in the t,ails. Mittnik, Rachev 

and Paolella [16] calculated the density at equally spaced grid points via an fast Fourier trans- 

form of the characteristic function and at intermediate points-by linear interpolation. Nolan [49] 

computed the density using numerical approximation of integrals in the Zolotarev integral for- 

mulas for the stable density. l7 DuMouchel [51] proved that the ML estimator is consistent and 

asymptotically normal. In Section 4, we analyze applicability of the ML method in VAR estima- 

tions. 

3.2.3. Tail estimation: Fast Fourier transform method 

Tail estimation using the Fourier transform (FT) method is based on fitting the characteristic 

function in a neighborhood of the origin t = 0. Here we use the classical tail estimate: 

.(x<-i) <p(]X]>i) <~~“(1-S,(t))dt(seefootnote18), for all a > 0, 

16For additional references, see [16,45-471. 
r7For additional references, see [50]. 
lBThe last inequality is by Shiryaev [52]. 
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VAR. Quanlile MLE FT FIT Normal Empirical 
-2.221 -2.200 -2.599 -1.526 
-0.99l -0.944 -0.996 -1.077 

-2.5 

where fz(t) is the characteristic function of a random variable X. Precise estimation of the 

characteristic function guarantees accurate tail estimation, which leads to an adequate evaluation 

of VAR. 

Suppose that the distribution of returns r is symmetric-cY-stable,1g that is, the characteristic 

function of T is given by f,.(t) = EeiTt = ei@-ICtl”. If a > 1,20 then, given observations ~1, . . . ,f,, 
we estimate p by the sample mean j!i = F = (l/n) ~~=, rk. For large values of n, the charac- 

teristic function of observations & = rk - r approaches f~(t) = e’+l”. Consider the empirical 

characteristic function of the centered observations: fR,n(t) = (l/n) C;=, eiRLt. Because the 

theoretical characteristic function, f~(t), is real and positive, we have that 

_fR,n(t) = Re = k g cos(&t). 

Now the problem of estimating Q and c is reduced to determining & and t such that s,” 1(1/n) 

~~=, COS(Rkt) - e-(i.t)” 1 dt is minimal, where M is a sufficiently large value. 

The realization of the FT method is performed in the following steps. 

STEP 1. Given the asset returns ~1,. . . ,rn, compute the centered returns & = rk - F, k = 
1 >...> n, where ?= = (l/n) ~~=, rk. 

STEP 2. Construct the sample characteristic function 

.f&) = ; $lCO@itj), 
lgEmpirical evidence suggests that p does not play a significant role for VAR estimation. 
20As we have already observed, in all financial return data, fitting an o-stable model results in a > 1, which 
implies existence of the first moment. 
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Figure 6. (cont.) 

where t, = ~(KT/T), j = 1,. . . , T, rnr is the maximal value oft, T is the number of grid points on 

(0, Mr]? 

STEP 3. Do the search for best d and ? such that CgT1 1(1/n) X:=1 cos(&t,) - e-(Et~)“j is 

minimal. 

4. VAR ESTIMATES FOR STABLE 
DISTRIBUTED FINANCIAL RETURNS 

In this section, we consider a stable VAR model, which assumes that the portfolio return 

distribution follows a stable law. We derive “stable” VAR estimates and analyze their properties 

applying in-sample and forecast evaluations. We use “normal” VAR measurements as benchmarks 

for investigating characteristics of “stable” VAR measurements. We conduct analysis for various 

financial data sets: 

l the Yen/British Pound (BP) exchange rate, 

l the BP/US$ exchange rate, 

l the Deutsche Mark (DM)/BP exchange rate, 

l the S&P 500 index, 

l the DAXSO index, 

l the CAC40 index, 

l the Nikkei 225 index, 

l the Dow Jones Commodities Price Index (DJCPI). 

A short description of the data is given in Table 1. 

21For computation purposes. we have chosen K = 20 and 7 = 10000. In the realization of the FT method, we 

selected the following grid steps &: if 0 5 t < 1, /it = 207r/50000; if t > 1, t&t = 20n/lOOO. In order to emphasize 

the tail behavior. we refined the mesh near t = 0 and named that approach FT-tail (FTT): if 0 5 t < 0.1, 

ht = 20~/100000; if 0.1 < t 5 1.0, ht = 2On/lOOOO; if t > I, /it = 207~/1000. The numerical results are reported 

in Section 4. 
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Figure  7. (cont.) 

4.1. I n - S a m p l e  E v a l u a t i o n  o f  V A R  E s t i m a t e s  

In this part ,  we evaluate stable and normal VAR models by examining distances between the 
VAR estimates and the empirical VAR measures. 

By a formal definition of VAR in equation (1), VAR estimates, VARt,r, are such tha t  

e r  [APt(w) < -VARt,T] ~ 1 - c, (2) 

where c is the confidence level, APt(7)  is the relative change in the portfolio value over the t ime 

horizon 7, i.e., APt(T) = Rt , r  is the portfolio return at moment  t over the t ime horizon 7, and t 
is the current time. 

For the purpose of testing VAR models, financial regulators advise to choose a t ime horizon 

of one day, so we take 7 = 1. In the text below, if the t ime horizon is not s ta ted explicitly, 
it is assumed to equal one day. At each time t, an est imate VARt is obtained using l w  recent 
observations of portfolio returns R t -  1, R t -  2, . • •, -Rt-lw: 

VARt = VAR(Rt_ 1, R t - 2 , . . . ,  R t - t w ) .  (3) 

The  lw  parameter  is called the w i n d o w  length. In this subsection, VAR is est imated employing 
the entire sample of observations, i.e., l w  = N ,  where N is the sample size. Hence, we do not 
point out the present t ime t. 

We obtain "stable" ("normal")  VAR measurements at the confidence level c in two steps: 

(i) fitting empirical da ta  by a stable (normal) distribution, 

(ii) calculating a VAR as the negative of the (1 - c) TM quantile of a fitted stable (normal) 
distribution. 

"Stable" fitting is implemented using three methods: maximum likelihood (ML), Fourier Trans- 
form (FT),  and Fourier Transform-Tail  (FTT).  22 Est imated parameters  of densities and corre- 
sponding confidence intervals are presented in Table 2. In the FT  and F T T  fitting, we assume 

22Evalua t ion  of p a r a m e t e r s  of s tab le  d i s t r ibu t ions  is provided in Section 3.2. 
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Figure 8. (cont.) 

that distributions of returns are symmetric, i.e., the skewness parameter p is equal to zero. Since 

the index of stability cr > 1 for our data series, the location parameter /.L is approximated by the 

sample mean. The ML estimates were computed applying the STABLE program by Nolan.23 The 

confidence intervals (CI) for the FT and FTT parameter estimates were derived using a bootstrap 

method with 1000 replications.24 Empirical ana y 1 sis showed that a set of 1000 replications is: 

(i) satisfactory for constructing 95% CI; 

(ii) insufficient for obtaining reliable 99% CI. 

In our experiments, sets of 1000 replications generated: 

(i) 95% CI for cx and 0 whose bounds coincided up to two decimal points; 95% CI for I_L with 

slightly varying bounds; 

(ii) varying 99% CI, with insignificant variation of left limits. 

VAR measurements were calculated at confidence levels c = 99% and c = 95%. The 99% (95%) 

VAR was determined as the negative of the 1% (5%) q uantile. For calculating stable quantiles, 
we used our program, built on the Zolotarev integral representation form of the cumulative distri- 
bution function. The 99% and 95% VAR estimates are reported in Tables 3 and 4, respectively. 

Biases of stable and normal VAR measurements are provided in Tables 5 and 6.25 
We accompany our computations with plots of: 

l daily price levels, 

l daily returns, 

l fitted empirical, normal, and stable densities with the ML, FT, and FTT estimated pa- 

rameters, 

l daily empirical, normal, and stable VAR* estimates at the 99% and 95% confidence lev- 
els.26 

23The STABLE program is described in [53]. 
24For references on bootstrapping, see [32]; for discussion on CI based on ML parameter estimates, see [49]. 
25Biases are computed by subtracting the empirical VAR from the model VAR estimates. 
26The VAR’ numbers are the negative values of the VAR estimates, VAR’ = -VAR. 
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Figure 9. VAR estimation for the DAX30 index. 
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VAR’ Quantile MLE FT FTT Normal Empirical 
99% 1% -2.464 -2.375 -2.746 -2.306 -2.564 
95% 5% -1.449 -1.451 -1.452 -1.623 -1.506 , 
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DAX30 Daily Returns, (%) 

Figure 9. (cont.) 

Combined plots of price levels, returns, densities, and VAR estimation are displayed in Fig- 

ures 3-10. In order to illustrate that confidence intervals for the FT parameter estimates are 

sufficiently narrow, we show stable densities and VAR measures at boundary values of confidence 

intervals for &Y~“,FT and &en.~~ in Figures 11-14. 

As Figures 3-10 demonstrate, the VAR estimat,es obtained at confidence level c = 95% seem 

to belong to the area between the “tail” and the “center”. The VAR at level c = 99% is really 

in the tail area. Hence, we compare performance of stable and normal models separately for the 

cases c = 95% and c = 99%. 

In general, the stable modeling (ML, FT, and FTT) p rovided evaluations of the 99% VAR 

greater than the empirical 99% VAR (see F’ igures 3-10 and Tables 3 and 5). It underestimated 

the sample 99% VAR in the applications of two methods: FT-for the CAC40. S&P 500, and 

DAXSO indices; and ML-for the DAXSO index. Biased downwards stable VAR estimates were 

closer to the true VAR than the normal estimates (see Table 5). Among the methods of stable 

approximation, the FT method provided more accurate VAR estimates for seven data sets (see 

Table 5). For all analyzed data sets7 the normal modeling underestimated the empirical 99% 

VAR. St,able modeling provided more accurat,e 99% VAR estimates: mean absolute bia.?’ under 

the stable (FT) method is 42% smaller than under the normal method. 

At 95% confidence level, the stable VAR estimates were lower than the empirical VAR for all 

data sets. The normal VAR. measurements exceeded the true VAR, except the Yen/BP exchange 

rate series (see Table 6). For the exchange rate series (Yen/BP, BP/US$, and DM/BP), the 

normal method resulted in more exact VAR estimates. For the S&P 500, DAX30, CAC40, and 

DJCPI indices, stable methods underestimated VAR, though the estimat,es were closer to the 

true VAR than the normal estimates. Mean absolute biases under stable and normal modeling 

are of comparable magnitudes. 

27Let b,,, be a bias of a VAR estimate: b,,, = VAR,,,, - ~~~~~~~~~~~~~~~ The mean absolute bias equals 

MAB, = (Cf=, Ibm,sl)/8r where m denotes normal, stable-ML, stable-FT, and stable-FTT methods, and s - a 
series. 
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Figure 10. VAR estimation for the DJCPI index. 
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Figure 10. (cont.) 

- StableFT Fit (Fr) 

Stable-FT at .. Left-alpha (FT-LA) 

- StableFT at - - Right-alpha (Ff-RA) 

Parameters FT FT-LA FT-RA 
alpha 1.61 1.57 1.66 
beta 0.00 0.00 0.00 
mu -0.018 -0.018 -0.018 
sigma 0.34 0.34 0.34 

-8 -4 -2 0 2 

Returns, (%) 

Figure 11. Stable fitting at limiting values of a confidence interval for alpha. 

In-sample examination of VAR models showed: 

l the stable modeling generally results in conservative and accurate 99% VAR estimates, 
which is preferred by financial institutions and regulators,28 

281n the 99% VAR estimation for data series from Table 1, mean absolute bias under the stable modeling was 
42% smaller than under the normal modeling. 
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Figure 12. VAR estimation at limiting values of a confidence interval for alpha. 

~ Stable-FrFit(FT) 
........ Stable-FT at LafWgma (FFLS) 
- - - Stable-FT at Right-sigma (FWiS) 

Parameters Ff FT-LS Fr-RS 

beta 0.00 0.00 0.00 
mu -0.018 -0.018 -0.018 
sigma 0.34 0.33 0.38 

-6 -4 -2 0 2 4 

Returns, (%) 

Figure 13. Stable fitting at limiting values of a confidence interval for sigma. 

the normal approach leads to overly optimistic forecasts of losses in the 99% VAR estima- 

tion, 
from a conservative point of view, the normal modeling is acceptable for the 95% VAR 

estimation, 
the stable models underestimate the 95% VAR. In fact, the stable 95% VAR measurements 
are closer to the empirical VAR than the normal 95% VAR measurements. 
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Figure 14. VAR estimation at limiting values of a confidence interval for sigma. 

Table 5. Biases of normal and stable 99% VAR estimates. 

99% VAR,,-99% VAR&,,pirica, 

Series 
Normal 

Stable 
I I 

Yen/BP 

ML FT FTT 

-0.451 0.268 0.133 0.515 

1 BP/US$ 1 -0.248 1 0.447 1 0.426 1 0.894 1 

DM/BP -0.340 0.330 0.031 0.507 

S&P 500 -0.162 0.266 -0.093 0.691 

1 DAX30 1 -0.258 1 -0.100 1 -0.189 1 0.182 1 

CAC40 -0.308 0.127 -0.049 0.076 

Nikkei 225 -0.691 1.408 0.414 2.585 

DJCPI -0.249 0.393 0.232 0.550 

1 Mean absolute bias 1 0.338 1 0.416 1 0.196 1 0.750 I 

S 

‘m denotes normal, stable-ML, stable-FT, and stable-FTT methods. 

The next step in evaluating VAR models is analysis of their forecasting characteristics. 

4.2. Forecast-Evaluation of VAR Estimates 

In this section, we investigate the forecasting properties of stable and normal VAR modeling 

by comparing predicted VAR with observed returns. 

We test the null hypothesis that equation (1) for a time horizon of one day (7 = 1) holds at 

any time t: 

Pr[AP, < -VARt] = 1 - c, (4) 

where AP, is the relative change (return) in the portfolio value, i.e., AP, = Rt is the portfolio 

return at moment t, VARt is the VAR measure at time t, c is the VAR confidence level, t is the 
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Table 6. Biases of normal and stable 95% VAR estimates, 

*m denotes normal, stable-ML, stable-FT, and stable-FTT methods. 

Table 7. Admissible VAR exceedings and exceeding frequencies. 

VAR Confidence 

Level, c 

95% 

99% 

Admissible VAR Admissible VAR 

Length of a 
Exceedings, E Frequencies, E/T 

Testing Interval, T Significance Level, z Significance Level, z 

5% 1% 5% 1% 

500 [17,331 [14,36] [3.40%, 6.60%] [2.80%, 7.20%] 

1500 [61,39] 156,941 [4.07%, 5.93%] [3.73%, 6.27%] 

500 IV’1 P,101 [0.40%, l.SO%] [O.OO%, 2.00%] 

1500 19,211 [6,23] [0.60%, 1.40%] [0.40%, 1.53%) 

current time, t E [l,T], and T is the length of the testing interval. The test is performed by 

checking whether Pr[& < -VARt] is reasonably close to 1 - c, where VARt is the estimate of 

VARt. Recall that VARt is computed using the last lw observations.2g 

Let bt be the indicator function l{& < -VARt}, 1 2 t 5 T. If equation (4) holds, then 

bt = 1 (Rt < -VARt} = 
- i 

1, probability = 1 - c, 

0, probability = c. 

Let us denote by E the number of exceedings (Rt < -VARt)s’ over the testing interval [I, T]. 

If equation (4) is valid, then the variable E = CT=, bt has a binomial distribution. We can 

formulate a testing rule: reject the null hypothesis at level of significance 5 if 

or 

For large T and sufficiently high VAR confidence levels, the binomial distribution can be ap- 

proximated by the normal distribution. Hence, the testin g rule for large T is: reject the null 

hypothesis at level of significance zr if 

E < T(l - c) - ~i__~,2~~ or E > T(l - c) + ~i-~,~~~, 

2gSee equation (3). 
301n nominal levels, an exceeding implies a case when actual losses exceeded the predicted losses. 



Series 
a Testing 

Interval, T 

DM/BP 500 

1500 

S&P 500 

500 1500 

DAX30 500 

1500 

CAC40 500 

1500 

Nikkei 500 

225 1500 

DJCPI 500 

1500 

Series 

Yen/BP 

BP/US$ 

DM/BP 

S&P 

500 

DAX30 

CAC40 

Nikkei 

225 

DJCPI 

Value at Risk 

Table 8. 99% VAR exceedings. 
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Table 9. 95% VAR exceedings. 

95% VAR Exceedings 
Length of 

a Testing 
Window Length = 260 obs. Window Length = 1560 obs. 

I I 

500 29 5.80 35 7.00 37 7.40 46 9.20 

1500 70 4.67 93 6.20 77 5.13 108 7.20 

where zP is the p% standard normal quantile. The bounds of admissible VAR exceedings E 

and exceedings frequencies, E/T, for testing at level of significance 5% and 1% are provided in 

Table 7. 
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We examined forecasting properties of stable and VAR models for data series described in 

Table 1. In testing procedures, we considered the following parameters: 

l window lengths lw = 260 observations (data over one yea.r) and lw = 1560 observations 

(data over six years), 

l lengths of testing intervals T = 500 days and T = 1500 days. 

Evaluation results are reported in Tables 8 and 9. We indicate by the bold font the numbers 

which are outside of acceptable ranges. 

From Table 8, we can see that normal models for the 99% VAR computations commonly pro- 

duce numbers of exceedings above the acceptable range, which implies that normal modeling 

significantly underestimates VAR (losses). At window length of 260 observations, stable model- 

ing is not satisfactory. It provided permissible number of exceptions only for the BP/US$ and 

DJCPI series. At sample size of 1560 and testing interval of 500 observations, exceedings by the 

stable-FT method are outside of the admissible interval for the S&P 500, DAXSO, and CAC40 

indices. Testing on the longer interval with T = 1500 showed that numbers of “st.able” excep- 

tions are within permissible range. Table 8 demonstrates that increasing the window length from 

260 observations to 1560 observat,ions reduces the number of stable-F-r exceedings. In contrast, 

extending the window length for normal models does not decrease E, in some cases, even ele- 

vates it. Results illust,rate that stable modeling outperforms normal modeling in the 99% VAR 

estimations. 

The 95% VAR normal estimates (except the DAX30 series), obtained using 260 observations, 

are within the permissible range. Increasing the window length generally worsens the normal VAR 

measurements. The stable-FT method provided sufficient 95% VAR estimates for the Yen/BP 

and BP/US$ exchange rates and the CAC40 and Nikkei 225 indices. A study of the predictive 

power of VAR. models suggests that: 

l t,he normal modeling significantly underestimates 99% VAR, 

l the stable method results in reasonable 99% VAR. estimates, 

l 95% normal measurements are in the admissible range for the window length of 260 obser- 

vations. Increasing lw to 1560 observations might deteriorate the precision of the estimates. 

5. CONCLUSIONS 

The value-at-risk (VAR) measurements are widely applied to estimate t,he exposure to market 

risks. The tradit,ional approaches to VAR computations--the delta method, hist,orical simulation, 

Monte Carlo simulation, and stress-testing-do not provide satisfactory evaluation of possible 

losses. The delta-normal methods do not describe well financial data with heavy tails. Hence, 

they underestimate VAR measurements in the tails. The historical simulation does not produce 

robust VAR estimates since it is not reliable in approximating low quantiles with a small number 

of observations in the tails. The stress-testing VAR estimates are subjective. The Monte Carlo 

VAR numbers rnight be affected by model misspecification. 

We suggest to apply stable processes in VAR estimation. The in-sample and forecast-evaluation 

shows that stable VAR modeling outperforms the normal modeling for high values of the> VAR 

confidence level: 

l the stable modeling generally produces conservative and accurate 99% VAR estimates, 

which is preferred by financial institutions and regulators, 

o the normal method leads to overly optimistic forecasts of losses in the 99’% VAR estimation, 

l the normal modeling is acceptable for the 95% VAR estimation. 

The stable Paretian model, while sharing the rnain properties of the normal dist,ribution leading 

to the CLT (central limit theorem), provides at the same time superior fit in modeling VAR. 

However, additional research is needed. Future work in this direction will be construction of 

models that capture the features of financial empirical data such as heavy tails, time-varying 
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volatility, and short and long range dependence. 31 In order to describe thick tails, one can employ 

the conditional homoskedastic models based on the stable hypothesis.32 ARMA-stable_GARCH 

models can incorporate both heavy tails and time-varying volatility.33 The fractional-stable 

GARCH model can capture all observed phenomena in financial data: heavy tails, time-varying 

volatility, and short- and long-range dependence. An analysis of VAR estimation with ARMA- 
a-stable, ARMA-stable-GARCH, and fractional-stable GARCH models will be provided in a 

subsequent paper. 
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