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We consider the application of Quasi Monte Carlo methods to risk measurement.
A scenario generation technique based on low discrepancy Sobol sequences is
compared to one based on pseudo-random number generation. The comparison
methodology includes the calculation of the number of scenarios necessary to
guarantee the required accuracy level of the Value-at-Risk estimate and the
calculation of the relative performance of the two methods. The methodology is
illustrated by a case study of a multi-currency portfolio. We demonstrate that
Quasi Monte Carlo methods significantly improve the performance of the portfolio
simulation and, therefore, reduce the time to obtain reliable risk measurements.

Accurate and efficient risk measurement is at the
core of an enterprise-wide risk management
strategy. This strategy requires that financial
institutions implement a risk management engine
to compute market risk and credit risk of their
full portfolio. For example, as a regulatory
requirement banks report the Value-at-Risk
(VaR) of their portfolios daily. However, the need
for a robust risk engine extends beyond
regulation, and is becoming a central component
in the way financial institutions manage their
business today.

It is not uncommon for the portfolio of a bank or
an insurance company to contain several
hundred thousand positions, including
substantial volumes of derivative products such
as swaps, caps and floors, swaptions and
mortgage-backed securities. Various analytical
shortcuts can be used to estimate the risks of
these portfolios but, in general, simulation
methods are necessary to calculate risk
accurately when the portfolios contain
substantial positions in instruments with
optionality, or when the distributions of the
underlying risk factors are not normal. However,
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a full simulation of a large and complex portfolio
is computationally expensive, and may not even
be achievable within a reasonable time using top-
of-the-line computers.

In this paper, we contrast the use of a Quasi
Monte Carlo (QMC) method based on low
discrepancy Sobol sequences with the standard
Monte Carlo (MC) method based on pseudo-
random sampling to compute the distribution of
future portfolio value and to measure VaR.

QMC methods were first introduced in the
finance literature by Boyle (1977), and during
the past decade they have received considerable
attention for derivatives pricing. Recent papers
by Boyle (1996) and by Acworth et al. (1997)
have reported results of computational
comparisons of QMC versus MC methods for
options pricing. Studies indicate that for pricing
problems QMC methods outperform MC
simulation, and that of the low discrepancy
sequences (LDS) tested, the Sobol sequences
perform best.

However, QMC methods have not been applied
to measure portfolio risk, where the emphasis is
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on estimating the tails of distributions and not
their averages. To the best of our knowledge,
there are no published articles on their
application to VaR estimation. However, QMC
methods have a strong intuitive appeal for risk
management problems. Low discrepancy
sequences specifically attempt to cover the space
of risk factors “evenly,” thus avoiding the
clustering usually associated with pseudo-random
sampling. Sampling evenly seems to be a
desirable property not only when estimating the
average of a distribution, but also when searching
for exceptional cases in the tails.

Calfisch et al. (1997) note that QMC methods
converge slowly when applied to problems in
high dimension. It is well-known that the profit
and loss distribution of an institution’s portfolio is
a function of a large number of risk factors,
commonly hundreds. Although the application
of QMC methods to portfolio VaR calculation
seems to be problematic, the dimensionality
limitation has been overstated in two ways. It is
common to project the numerous risk factors
onto a reduced set of risk factors depending on
the calculation method used and data
availability, and of this reduced set, only a subset
will be independent risk factors. The
dimensionality of problems of the size of this
independent risk factor space is not a limitation
to the application of QMC methods

(Kreinin et al. 1998).

This paper is organized as follows. We begin with
a brief introduction of simulation methods used
to measure VaR. This is followed by an
explanation of some basic properties of Monte
Carlo methods and the ideas behind low
discrepancy sequences. The presentation is
informal, since our intention is to present in
simple, intuitive terms, the basic properties of
these techniques and the benefit of applying
them to problems in risk management. A formal
mathematical treatment can be found in
Niederreiter (1992). The next section presents
the case study. Finally, we offer some concluding
remarks and comment on directions for future
development.
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Simulation methods for VaR estimation

The Value-at-Risk of a portfolio is generally
defined as the maximum loss that is expected to
occur at some level of confidence, o, over a
specified period of time:

Pr{-AV(tr(t)) < VaR(a)} = a 0

where AV(t,r(t)) is the unrealized profit and loss
(UP&L) of the portfolio, between today and time

t:

AV(tr(t) = V(r() -V,

r(t) is the vector of risk factors, and V, is the

mark-to-market value of the portfolio today.
Usually t is one to ten days, and a is 95% to 99%.

In general, simulation approaches to estimate
VaR first generate a large number of joint
scenarios, N, on the vector of risk factors r(t) at
the time horizon t. The portfolio is then revalued
under each of these scenarios. To obtain an
accurate estimate of the portfolio distribution the
portfolio is evaluated under each of the N
scenarios. A non-parametric estimate of VaR is
obtained by ordering the changes in value under
each scenario in ascending order, calculating the
cumulative probability and identifying that
scenario with cumulative probability lower than
1 — a. Parametric approximations of VaR can also
be obtained by fitting a given parametric
distribution to the simulation outcomes.

Simulation techniques differ in

* the choice of the underlying distribution of
the risk factors

* the way in which samples are drawn from this
distribution, and

¢ the manner in which the valuation function
V(t,r(t)) is implemented.

Ideally, full valuation of each instrument is

performed under each scenario, although this
may be rather costly. To accelerate the
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computation, approximations such as Taylor
series expansions, cashflow bucketing techniques
or more general portfolio compression techniques
may be used.

Historical simulation draws scenarios from the
observable discrete historical changes in the risk
factors during a specified period of time. The
Monte Carlo simulation approach, on the other
hand, starts from a specified joint distribution of
these changes (usually estimated from historical
data) and applies statistical techniques to draw
random samples from this distribution. The most
common assumption is that the distribution of
the changes in risk factors is joint log-normal, but
this need not be the case.

In this paper, we focus on improving the
performance of the Monte Carlo simulation by
introducing an advanced sampling technique.
Standard Monte Carlo methods draw random
samples from the distribution using a pseudo-
random number generator. By contrast, Quasi
Monte Carlo methods use deterministic points
generated from a type of mathematical vector-
sequences called low discrepancy sequences. The
idea behind QMC techniques is that by choosing
points in the risk factor space more evenly, we
reduce the number of scenarios necessary to
achieve a desired level of accuracy in a VaR
calculation. In the next sections we present a
brief description of LDS and examine the
characteristics that result in accurate VaR
estimation with a reduced number of scenarios.
Thereafter, we present an example comparing the
performance of MC methods to that of a QMC
method based on the low discrepancy Sobol
sequence.

Monte Carlo methods

Let us outline several basic properties of the
Monte Carlo method that are necessary to
contrast the results to those obtained by QMC
methods.

Since the scenarios are drawn randomly in
Monte Carlo methods, simulations with a finite
number of points, N, starting from different
initial seeds, yield different results. Thus, we can
obtain probabilistic errors for the estimates.
These errors are measured by the standard
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deviation of the estimate, 0, over many similar
simulations. Clearly, as N grows, we expect the
difference between the outcomes of any two
simulations, and hence 0, to decrease. A well
known result from probability theory is that the
error varies inversely to the square root of the
number of draws:

~odlo
o ODJND

Thus, if we increase the number of draws by a
factor of four, we can expect the errors to be

reduced by half.

Applying MC methods to calculate the VaR also
yields probabilistic bounds on the VaR estimates.
If no parametric assumptions are made on the
distribution of the UP&L, these bounds are
computed using rank statistics as shown in

Morokoff et al. (1998).

The main advantages of standard Monte Carlo
methods are

* they are generally applicable to all problems

* their rate of convergence is independent of
the dimensionality of the risk factor space

* they are very popular and their properties are
well known

* they yield probabilistic errors and a priori
bounds on VaR estimates.

Their main disadvantages are

* pseudo-random number generators tend to
generate clusters of points

* they do not explicitly exploit particular
features of the problems

* the rate of convergence is slow.

Quasi Monte Carlo methods and low
discrepancy sequences

If d is the dimension of the space of independent
risk factors, then sampling methods generally
sample from a unit d-dimensional hypercube.
Whereas Monte Carlo methods are based on
points randomly generated from the hypercube,
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Quasi Monte Carlo methods are based on
deterministic sequences of points that satisfy the
property that their elements evenly cover the
hypercube. The measure of how evenly a
sequence of points covers the region is called
discrepancy; the more evenly the points are
distributed in the region, the lower the
discrepancy. Hence, these sequences have been
termed low discrepancy sequences.

Although the idea behind LDS is simple, the
mathematical theory and the algorithms for
generating the sequences are far from trivial. A
detailed explanation of the solutions and
algorithms is found in Sobol (1967) and
Niederreiter (1992).

A sequence would cover the hypercube
uniformly if the number of points in any possible
subset of the hypercube were proportional to the
volume of the subset. Discrepancy measures the
worst deviation between the volume of the subset
and the fraction of the number of points in the
subset over the total number of points, over all
possible subsets. In practice, however, the
discrepancy of a sequence is not easy to
determine. Hence, a simpler measure, called star
discrepancy, is generally used. Star discrepancy
considers only those subsets having the form of a
hypercube, instead of all possible subsets.

An important mathematical result is that the

asymptotic form of the star discrepancy, Dy, is

described by the relation:

d
* _odleN) 0
Dy~0g=55-1 @
Note that star discrepancy decreases
asymptotically as I/N, but increases with the
dimensionality, d, of the problem.

Why does QMC simulation seem like a promising
tool in risk management? In risk management,
we are particularly concerned with the behaviour
of the tails of the distribution of changes in value.
Intuitively, it seems that a method that samples
the space more evenly will better describe
behaviour in the tails. We are disposed to think
that approximations of multivariate distributions
with better coverage of the whole space will be
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superior to those based on pseudo-random
number generation and that QMC methods will
allow us to generate a smaller number of
scenarios without loss of accuracy in the final
approximation.

Figure 1 provides a comparison of two-
dimensional pseudo-random vectors and points
obtained from a two-dimensional Sobol
sequence. Note that the Sobol points cover the
unit square more uniformly than do the randomly
generated points. Thus, the discrepancy of the
Sobol points is lower than that of the pseudo-
random points. The star discrepancy of a Sobol

sequence is optimal when N=2" n=1,2, ...
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Pseudo-random points
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0 0.10.20.30.4050.60.70.80.9

Sobol sequences
Figure 1: Two-dimensional pseudo-random
points vs. two-dimensional Sobol sequences
Since points generated by LDS are deterministic,

(QMC methods do not yield probabilistic error
estimates. (Recent papers use modifications of
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LDS that lead to probabilistic errors, e.g., Boyle
(1996)). Generally, errors in QMC estimates are
measured against the true value of the derivative
price which is assumed to be known. In
structured experiments, one must choose simple
problems for which the true value can be
obtained analytically or computed with a large
number of draws. In practice this value is not
known for every portfolio or new circumstance
that arises.

In summary, the advantages of QMC methods
are

they are based on sampling techniques that
generate points evenly within the region and
avoid the clustering generally associated with

MC methods

they have been well-tested in the non-
financial and financial literature (for
derivatives pricing).

Their main disadvantages are

their lack of generality when compared to
MC methods means that their effectiveness
may be largely dependent on the problem
and extensive testing is required

they do not yield probabilistic errors or a
priori bounds on VaR estimates

their rate of convergence depends on the
dimensionality of the risk factor space, d

they may be inefficient for problems in very
large dimensions.

Case study

We compare the performance of the MC and
QMC methods to measure VaR for a simple
multi-currency test portfolio. The accuracy of the
estimations is measured with respect to the
“true” UP&L distribution of the portfolio, which
is computed with negligible error using a very
large number of MC scenarios. Our main
objectives are to measure the speed-up obtained
from QMC methods, and to assess whether it
depends on the accuracy desired in the VaR
calculation or the confidence level used.
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In what follows, the comparison methodology
and the test portfolio are described, followed by a
presentation of the results.

Comparison methodology

Obur first step is to establish the “true” portfolio
distribution. The portfolio distribution is
computed using a MC simulation with a number
of scenarios large enough to guarantee that errors
are negligible. Fixing a confidence level for VaR,
we can then compare the results of the
simulations. Then, for a given simulation, the
error, €, is the absolute difference between the
VaR estimate and the “true” VaR.

Recall that N is the number of samples drawn in
a simulation. For a given MC simulation, we
define the effective number of scenarios,
N(a,g), as the minimum number of scenarios
required to estimate VaR(a) with an error that
does not exceed €. To obtain N(a,€), for both
MC and QMC simulations we add scenarios to
the simulation until the error in the VaR remains
below the desired level when more scenarios are
added. Since the convergence of the VaR
estimates with both techniques is not necessarily
monotonic, N does not necessarily represent the
first time that the error in the simulation falls
below €.

Since MC simulations initiated with different
seeds generate different VaR estimates, the
effective number of scenarios, N(a,€), is itself a
random variable. Its probability distribution can
be estimated by performing a large number of
simulations with different initial seeds. We
denote the B quantile of this distribution by

Ng (a,€). Thus, for example, Ng g5 (0.99,0.02)
(B=95%, 0=99%, £€=2%) is the number of
scenarios required to be 95% certain that the
estimation of VaR (99%) has an error of at most
2%. Note the distribution of N cannot be
determined a priori with a single simulation, but
only after a number of similar simulations with
different initial seeds. In contrast to MC, the
effective number of scenarios for QMC is
deterministic, not a random variable.

We define the speed-up of the QMC relative to

the MC simulation as:
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NB(G,S)

SB(a,e) = NG@s)

(€)

where N*(0,¢€) is the effective number of
scenarios for the QMC method. Note that we
have explicitly made this speed-up a function of
the VaR level, the desired accuracy in the VaR
estimation, and the confidence level for the MC
simulation to achieve a given accuracy.

Test portfolio and data

The test portfolio is part of a suite of test data
used for benchmarking in the industry (Marshall
and Seigel 1996). Its base currency is USD and it
contains fourteen positions, both long and short,
in fixed-rate government bonds, in maturities
ranging from 182 days to 10 years, in five
currencies: USD, DEM, FRE ITL and JPY. The
mark-to-market of the portfolio is 357.3 million
USD.

The zero curves in each currency are modeled
using 16 node points, except for the JPY curve
which has 15 nodes. Market data for the zero

curves is as of September 26, 1997. We assume

that the vector of 83 risk factors (16%4 + 15 + 4
FX) is log-normal with zero mean and covariance

matrix as published by RiskMetrics ™ on that
day (J.R Morgan 1996).

An important property of the covariance matrix
is that although its dimensionality is 83, its rank
is less than 40 because the maximum number of
independent risk factors is less than 40.
(Mathematically, this means that the matrix
contains fewer than 40 non-zero (numerically)
eigenvalues and, hence, independent eigen-
vectors.) This property is an intrinsic
characteristic of covariance matrices computed
using exponentially weighted moving averages,
such as those provided by RiskMetrics ™

(J.P Morgan 1995), regardless of the

dimensionality of the original risk factor space.

Although the detailed explanation of this point is
beyond the scope of this paper, it is important to
note that the dimensionality of the MC and
QMC simulation arises from the number of
independent risk factors (the rank of the matrix),
not from the number of underlying risk factors.
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Results

Obur first step is to compute the “true” 1-day
UP&L distribution of the portfolio and the VaR
profile. Figure 2 depicts the portfolio VaR against
the level of confidence, a. This graph is
calculated using a very large number of MC
scenarios (over 800,000). Hence, for all intents,
the errors are negligible. From these results, the

one-day VaR(95%) is 4.81 million USD.

6 /

88 90 92 94 96 98 100

Level of confidence, O

Figure 2: True VaR vs. level of confidence, a

In what follows, we compare the performance of

QMC and MC for VaR(a), with 0=95%.

Monte Carlo simulation

Figure 3 shows the error in VaR(95%) versus the
number of scenarios, for three sample MC runs
with different seeds. Note that the convergence
for each run is not monotonic. Also, note the
dispersion of the effective number of scenarios,
N(0.95,*). For example, at a 2% error, the
effective number of scenarios, N(0.95,0.02),
varies between 4000 and 9700.

20

15

i

0 2 4 6 8 10 12 14 16 18

Number of scenarios, N (Thousands)

Figure 3: Error vs. number of scenarios for three
sample runs
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To estimate the distribution of the effective
number of scenarios, N(Q,€), we perform 50
simulations initiated with different seeds, each
with 16,384 scenarios.

The cumulative distribution function of
N(0.95,0.02) is illustrated in Figure 4. The figure
also shows the fit of a gamma distribution. The

5th percentile of the distribution gives the
number of scenarios required to ensure the VaR
estimate is within 2% accuracy, 95% of the time.
This value is N, ¢5(0.95, 0.02) = 14000 .

1

/

0.4 /
0.2

0

0 2 4 6 8 10 12 14 16 18 20

Empirical
Distribution
Gamma
Distribution

Number of scenarios, N
(Thousands)

Figure 4: Cumulative distribution function of N

Quasi Monte Carlo simulation with Sobol sequences

For comparison, we determine the number of
scenarios required to achieve 2% accuracy with
the QMC method. Since the QMC method is
deterministic, there is no notion of confidence
levels. Figure 5 illustrates the convergence
behaviour of QMC simulation, as well as that of

Sth

the average and of the 5" percentile for the MC

simulation.

18
15 \

12 \
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N BN
3\% :

0 T T T T an

0 2 4 6 8 10 12

—e—Average MC

Error, € (%)
—m—5th percentile MC

—a—Q MC

Figure 5: Sobol vs. mean N and 95%N for 2% error
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From Figure 5, the effective number of scenarios
for QMC at a 2% error is N*(0.95, 0.02) = 2048.
Hence, the speed-up at a 2% error is
S005(0.95,0.02)=6.7 . Compared to the MC

method, the QMC method requires almost seven
times fewer scenarios to compute VaR(99%) with
a 2% error at a 95% confidence level. Five out of
100 times, a MC simulation with roughly seven
times more scenarios will yield a worse VaR
estimate than can be achieved by the QMC
method. However, we do not know a priori when
this will happen.

Note from Figure 5 that the QMC method
becomes less effective as a lower accuracy is
required. Within a 5% error, the speed-up is only
S005(0.95,0.05)=2.1,

For MC simulation we have plotted the average
of the distribution of N(0.95,¢) in addition to the

5th percentile in order to provide a more general
picture of its dispersion. However, it is more
meaningful to measure the speed-ups derived
from the QMC method with respect to a high
confidence level of the MC simulation since we
are interested in calculating accurate VaR
estimates consistently, not on average. This is not
an issue in deterministic QMC simulation.

Table 1 summarizes the speed-ups obtained with
the QMC method for VaR(95%) and VaR(99%)
at 2% and 5% error levels in the estimation. For
VaR(99%), more than 1% of the runs did not
converge in over 16,000 scenarios, hence the
speed-up was estimated from the gamma
approximation to the distribution of N

(Figure 4).

Error, €
95% 6.7 2.1
99% 9.4 2.7
Table 1: Speed-ups for QMC compared to MC

(B=95%)

As this example shows, the QMC method
provides substantial speed-ups for VaR
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calculations over MC methods. Although the
QMC method generally outperforms the MC
method, it appears to provide higher benefits
when higher accuracy and a higher confidence
level are required. Thus, for example, the speed-
up for a VaR calculation with 2% accuracy
increases from 6.7 to 9.4 if we want a 99%
confidence level as opposed a 95% confidence
level in the tails (S545(0.99,0.02)=9.4).

Finally, it should also be noted that the speed-ups
for the QMC method are higher for B > 95%.
For example, the speed-up for a VaR(95%)
calculation with 2% accuracy increases from 6.7
to 8.4 times if we want to be 99% certain of this
accuracy (S;¢9(0.95,0.02)=84).

Concluding remarks

We have introduced a QMC method based on
Sobol sequences for VaR estimation, and
compared its performance to standard MC
simulation. Based on a case study of a simple
multi-currency portfolio, we find that the QMC
method provides substantial speed-ups when
compared to the standard MC method. In our
experiments, the QMC method is between two
to nine times faster than the MC simulation.
Although we report the results for only one,
reproducible, case study, we have obtained
similar results in various other applications to
real institutional portfolios.

As shown in the paper, this speed-up increases
with

¢ the confidence level for the VaR estimate, O

* the accuracy required for the VaR
estimation, £

e the certainty required in the MC simulation
to reach the required accuracy in VaR, .

This speed-up is most sensitive to the certainty
required for the MC simulation. It is also
proportional to the confidence level and to the
accuracy required on VaR, as would be expected
from the convergence properties of both
methods.
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QMC methods have not been applied generally
to measure portfolio risk. We argue, however,
that they have a strong intuitive appeal for risk
management problems. We have further shown
through an example that significant
computational gains are obtained with QMC
simulation on problems of up to dimension 40.
This is sufficient for VaR analyses based on the

RiskMetrics™ covariance matrices and, more
generally, any covariance matrix estimated with
exponentially weighted moving averages, since
the ranks of such matrices generally do not
exceed this number.

There are still numerous challenges in the
application of the QMC methods to risk
management. The estimation of VaR in many
instances requires simulation in spaces of high
dimensionality. For example, in multi-step
simulations over time, the dimensionality of the
problem is dramatically increased.

Several advanced solutions to these problems
include

* devise strategies that can be used in higher
dimensions. Examples of such methods

include mixed QMC and MC strategies and

scrambled sequences.

* attempt to reduce the dimensionality of the
problem. Techniques such as Principal
Component Analysis are generally used for
this purpose.

* introducing information on the portfolio
structure before the simulation to reduce
dimensionality.

* decompose the problem into a set of
problems, each of them simpler and of lower
dimension. This is the idea behind some
stratified sampling techniques such as that

proposed by Jamshidian and Zhu (1997).
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