
Second Preimages on n-bit Hash Functions for
Much Less than 2n Work

John Kelsey1 and Bruce Schneier2

1 National Institute of Standards and Technology, john.kelsey@nist.gov
2 Counterpane Internet Security, Inc., schneier@counterpane.com

Abstract. We provide a second preimage attack on all n-bit iterated
hash functions with Damgard-Merkle strengthening and n-bit interme-
diate states, allowing a second preimage to be found for a 2k-message-
block message with about k× 2n/2+1 + 2n−k+1 work. Using SHA1 as an
example, our attack can find a second preimage for a 260 byte message
in 2106 work, rather than the previously expected 2160 work. We also
provide slightly cheaper ways to find multicollisions than the method
of Joux[J04]. Both of these results are based on expandable messages–
patterns for producing messages of varying length, which all collide on
the intermediate hash result immediately after processing the message.3

We also provide algorithms for finding expandable messages for a hash
function, using only a small multiple of the work done to find a single
collision in the hash function.

1 Introduction

The security goal for an n-bit hash function is that collisions require
about 2n/2 work, while preimages and second preimages require about 2n

work. In this paper, we demonstrate that the standard way of construct-
ing iterated hash functions (the Damgard-Merkle construction) cannot
meet this goal: For a message of 2k message blocks, we provide a second
preimage attack requiring about k × 2n/2+1 + 2n−k+1 work. For some
widely used compression functions, such as the SHA family[SHA02], the
attack is even cheaper, requiring only 3×2n/2+1 +2n−k+1 work. Our at-
tacks are made possible by the notion of expandable messages–patterns of
messages of different lengths which all yield the same intermediate hash
value after processing them. These expandable messages do not directly
yield collisions on the whole hash function because of the length padding
done at the end of modern hash functions, and in any event, they are no
easier to find than collisions. However, they allow second preimages and
multicollisions to be found much more cheaply than had previously been
expected.

The remainder of the paper is organized as follows: First, we discuss
basic hash function constructions and security requirements. Next, we

3 We have heard of a previous paper, possibly never published, that independently
introduced the idea of expandable messages based on fixed points. We would appre-
ciate any pointers to this paper so that we can cite it. Thanks!

demonstrate two ways to find “expandable messages.” We then demon-
strate how these expandable messages can be used to violate the second
preimage resistance of essentially all currently specified cryptographic
hash functions with less than 2n work. Finally, we demonstrate an even
more efficient (albeit much less elegant) way to find multicollisions than
the method of Joux. We end with a discussion of how this affects our
understanding of iterated hash function security.

2 Hash Function Basics

In 1989, Merkle and Damgard [M89,D89] independently invented the
basic construction used for essentially all modern cryptographic hash
functions. Here, we describe this construction, and its normal security
claims.

A hash function with an n-bit output is expected to have three
minimal security properties. (In practice, a number of other properties
are expected, as well.)

1. Collision-resistance: An attacker should not be able to find a pair of
messages M 6= M ′ such that hash(M) = hash(M ′) with less than
about 2n/2 work.

2. Preimage-resistance: An attacker given a possible output value for
the hash Y should not be able to find an input X so that Y =
hash(X) with less than about 2n work.

3. Second preimage-resistance: An attacker given one message M should
not be able to find a second message, M ′ to satisfy hash(M) =
hash(M ′) with less than about 2n work.

A collision attack on an n-bit hash function with less than 2n/2

work, or a preimage or second preimage attack with less than 2n work,
is formally a break of the hash function. Whether the break poses a
practical threat to systems using the hash function depends on specifics
of the attack.

Following the Damgard-Merkle construction, an iterated hash func-
tion is built from a fixed-length component called a compression function,
which takes an n-bit input chaining value and an m-bit message block,
and derives a new n-bit output chaining value. In this paper, F (H, M)
is used to represent the application of this compression function on hash
chaining variable H and message block M .

In order to hash a full message, the following steps are carried out:

1. The input string is padded to ensure that it is an integer multiple
of m bits in length, and that the length of the original, unpadded
message appears in the last block of the padded message.

2. The hash chaining value h[i] is started at some fixed IV, h[−1], for
the hash function, and updated for each successive message block
M [i] as

h[i] = F (h[i− 1], M [i])

3. The value of h[i] after processing the last block of the padded mes-
sage is the hash output value.

This construction gives a reduction proof: If an attacker can find a
collision in the whole hash, then he can likewise find one in the compres-
sion function. The inclusion of the length at the end of the message is
important for this reduction proof, and is also important for preventing
a number of attacks, including long-message attacks [MvOV96].

Besides the claimed security bounds, there are two concepts from
this brief discussion that are important for the rest of this paper:

1. A message made up of many blocks, M [0, 1, 2, ..., 2k − 1], has a cor-
responding sequence of intermediate hash values, h[0, 1, 2, ..., 2k−1].

2. The padding of the final block includes the length, and thus prevents
collisions between messages of different lengths in the intermediate
hash states from yielding collisions in the full hash function.

3 Finding Expandable Messages

An expandable message is a kind of multicollision, in which the colliding
messages have different lengths, and the message hashes collide in the
input to the last compression function computation, before the length
of the message is processed. Consider a starting hash value h[−1]. Then
an “expandable message” from h[−1] is a pattern for generating mes-
sages of different lengths, all of which yield the same intermediate hash
value when they are processed by the hash, starting from h[−1], with-
out the final padding block with the message length being included. In
the remainder of the paper, an expandable message that can take on
any length between a and b message blocks, inclusive, will be called an
(a, b)-expandable message.

3.1 A Generic Technique: Multicollisions of Different
Lengths

Finding an expandable message for any compression function with n-bit
intermediate hash values takes only a little more work than finding a
collision in the hash function. This technique is closely related to the
technique for finding k-collisions in iterated hash functions from Joux.

In Joux’s technique, a sequence of single-message-block collisions is
found, and then pasted together to provide a large number of different
messages of equal length that lead to the same hash value. In our tech-
nique, a sequence of collisions between messages of different lengths is
found, and pasted together to provide a set of messages that can take
on a wide range of different lengths without changing the resulting in-
termediate hash value—an expandable message.

Finding a Collision on Two Messages of Different Lengths
Finding an expandable message requires the ability to find many pairs of
messages of different specified lengths that have the same resulting inter-
mediate hash value. Finding such a pair is not fundamentally different
than finding a pair of equal-length messages that collide: The attacker

who wants a collision between a one-block message and an α-block mes-
sage constructs about 2n/2 messages of length 1, and about the same
number of length α, and looks for a collision. For efficiency, the attacker
chooses a set of α-block messages whose hashes can be computed about
as efficiently as the same number of single-block messages.

ALGORITHM: FindCollision(α, hin)
Finding a collision pair with lengths 1 and α, starting from hin.

Variables:
1. α=desired length of second message.
2. A, B = lists of intermediate hash values.
3. q = a fixed “dummy” message used for getting the desired

length.
4. hin = the input hash value for the collision.
5. htmp = intermediate hash value used in the attack.
6. M(i) = the ith distinct message block used in the attack.
7. n = width of hash function output in bits.

Steps:
1. Compute the starting hash for the α-block message by process-

ing α− 1 dummy message blocks:
– htmp = hin.
– For i = 0 to α− 2:
• htmp = F (htmp, q)

2. Build lists A and B as follows:
– for i = 0 to 2n/2 − 1:
• A[i] = F (hin, M(i))
• B[i] = F (htmp, M(i))

3. Find i, j such that A[i] = B[j]
4. Return colliding messages (M(i), q||q||...||q||M(j)), and the re-

sulting intermediate hash F (hin, M(i)).
Work: α− 1 + 2n/2+1 compression function calls

Building a Full (k, k + 2k − 1)-expandable message We can
use the above algorithm to construct expandable messages that cover a
huge range of possible lengths. We first find a colliding pair of messages,
where one is of one block, and the other of 2k−1 +1 blocks. Next, we find
a collision pair of length either 1 or 2k−2 + 1, then 1 or 2k−3 + 1, and so
on, until we reach a collision pair of length 1 or length 2.

ALGORITHM: MakeExpandableMessage(hin, k)
Make a (k, k + 2k − 1)-expandable message.

Variables:
1. htmp is the current intermediate hash value.
2. C is a list of pairs of messages of different lengths; C[i][0] is the

first message of pair i, while C[i][1] is that pair’s second message.
Steps:

1. Let htmp = hin.
2. For i = 0 to k − 1:

– (m0, m1, htmp) = FindCollision(2i + 1, htmp)
– C[k − i− 1][0] = m0

– C[k − i− 1][1] = m1

3. Return the list of message pairs C.

Work: k × 2n/2+1 + 2k ≈ k × 2n/2+1 compression function calls.

At the end of this process, we have an k × 2 array of messages, for
which we have done approximately 2k +k×2n/2+1 compression function
computations, and with which we can build a message consisting of be-
tween k and k + 2k − 1 blocks, inclusive, without changing the result of
hashing the message until the final padding block.

Producing a Message of Desired Length Finally, there is a
simple algorithm for producing a message of desired length from an ex-
panded message.

ALGORITHM: ProduceMessage(C, k, L)

Produce a message of length L, if possible, from the expandable mes-
sage specified by (C, k).

Variables:

1. L = desired message length.
2. k = parameter specifying that C contains a (k, k + 2k − 1)-

expandable message.
3. C = a k × 2 array of message fragments of different lengths.
4. M = the message to be constructed.
5. T = a temporary variable holding the remaining length to be

added.
6. i = an integer counter.

Steps:

1. Start with an empty message M = ∅.
2. If L > 2k + k − 1 or L < k, return an error condition.
3. Let T = L− k.
4. Concatenate message fragments from the expandable message

together until we get the desired message length. Note that this
is very similar to writing T in binary.

– i = 0
– While T > 0:

• If T > 2k−1−i, then:

∗ M = M ||C[i][1]
∗ T = T − 2k−1−i

• Else:

∗ M = M ||C[i][0]

• i = i + 1

5. Return M.

Work: Negligible (about k table lookups and string copying opera-
tions).

The result of this is a message of the desired length, with the same
hash result before the final padding block is processed as all the other
messages that can be produced from this expandable message.

3.2 More Efficient Expandable Messages with Fixed
Points

There is a more efficient technique for building expandable messages
when fixed points can easily be found in the compression function. For
a compression function h[i] = F (h[i − 1], M [i]), a fixed point is a pair
(h[i− 1], M [i]) such that h[i− 1] = F (h[i− 1], M [i]). Compression func-
tions based on the Davies-Meyer construction[MvOV96], such as the SHA
family [SHA02], MD4, MD5 [R92], and Tiger [AB96], have easily found
fixed points. Similarly, Snefru[M90] has easily found fixed points. Tech-
niques for finding these fixed points appear in an appendix; these tech-
niques produce a pair (h[i−1], M [i]), but allow no control over the value
of h[i].

We can construct an expandable message using fixed points for about
twice as much work as is required to find a collision in the hash function.

ALGORITHM: MakeFixedPointExpandableMessage(h[in])
Make an expandable message from initial hash value h[in], using a

fixed point finding algorithm.
Variables:

1. h[in] = initial chaining value for the expandable messages.
2. FindRandomFixedPoint() = an algorithm returning a pair (h[i], M [i])

such that h[i] = F (h[i], M [i]).
3. A, C = two lists of hash values.
4. B, D = two lists of message blocks.
5. i, j = integers.
6. M(i) = a function that produces a unique message block for

each integer i less than 2n.
Steps:

1. Construct a list of 2n/2 fixed points:
– For i = 0 to 2n/2 − 1:
• h, m = FindRandomFixedPoint()
• A[i] = h
• C[i] = m

2. Construct a list of 2n/2 hash values we can reach from h[−1]:
– For i = 0 to 2n/2 − 1:
• h = F (h[in], M(i))
• B[i] = h
• D[i] = M(i)

3. Find a match between lists A and B; let i, j satisfy A[i] = B[j].
4. Return expandable message (D[j], C[i]).

Work: About 2n/2+1 compression function computations, assuming
abundant memory.

If an n-bit hash function has a maximum of 2k blocks in its mes-
sages, then this technique takes about 2n/2+1 work to discover (1, 2k)-
expandable messages. Producing a message of the desired length is triv-
ial.

ALGORITHM: ProduceMessageFP(L, X, Y)
Produce a message of desired length from the fixed-point expandable

messages.

Variables:
1. L is the desired length in message blocks; must be at least one

and no more than the maximum number of message blocks sup-
ported by the hash.

2. X is the first message block in the expandable message.
3. Y is the second (repeatable) block in the expandable message.

Steps:
1. M = X.
2. For i = 0 to L− 1:

– M = M ||Y
3. Return M .

Work: Negligible work, about L steps.

3.3 Variants

The expandable messages found by both of these methods can start at
any given hash chaining value. As a result, we can build expandable
messages with many useful properties:

1. The expandable message can start with any desired prefix.
2. The expandable message can end with any desired suffix.
3. While both algorithms given here for finding expandable messages

assume complete freedom over choice of message block, a variant of
the generic method can be used even if the attacker is restricted to
only two possible values for each message block4.

4. The fixed-point method requires about 2n/2 possible values for each
message block, but this is sufficiently flexible that for existing hash
functions, it can typically be used with only ASCII text, legitimate
sequences of Pentium opcodes, etc.

5. The trick from Joux can be used to make expandable messages that
are also 2k-collisions; that is, a set of 2k different expandable mes-
sages for any length that the expandable message can accommodate.

4 Using Expandable Messages to Find Second
Preimages

An n-bit hash function is supposed to resist second preimage attacks up
to about 2n work. That is, given one message M , the attacker ought to
have to spend about 2n work to find another message that has the same
hash value as output.

4.1 The Long Message Attack

Here is a general (and previously known) way to violate Second-preimage
resistence [MvOV96], which the Damgard-Merkle construction prevents
from working: Start with an extremely long message: e.g., of 255 blocks.

4 This works in almost the same way as a natural extension of the Joux technique for
finding multicollisions.

An attacker who wishes to find another message that hashes to the same
value with SHA1 can do so by finding a message M such that, from the
IV of the hash, h[−1], h∗ = C(h[−1], M) yields a value h∗ that matches
one of the intermediate values of the hash function in processing the long
message. Since the message has about 255 such intermediate values, the
attacker expects to need to try only about 2105 message blocks to get
a match. That is, the attacker has 255 available target values, so each
message block he tries has about a 2−105 chance of yielding the same hash
output as one of the 255 intermediate hash values of the target message.
He thus has a shorter message, which has the same hash output up until
the final block is processed.

The length padding at the end of the Damgard-Merkle construction
foils this attack. Note that in the above situation, the attacker has a
message that is shorter than 255-block target message, which leads to the
same intermediate hash value . But now, the last block has a different
length field, and so the attack fails—the attacker can find something
that’s almost a second preimage, but the length block changes, and so
the final hash output is different.

4.2 Long-Message Attacks with Expandable Messages

Using expandable messages, we can bypass this defense, and carry out
a second-preimage attack despite the length block at the end. We start
with a long message as our target for a second preimage. The attack
works as follows:

ALGORITHM: LongMessageAttack(Mtarget)

Find the second preimage for a message of 2k + k + 1 blocks.
Variables:

1. Mtarget = the message for which a second preimage is to be
found.

2. Mlink = a message block used to link the expandable message
to some point in the target message’s sequence of intermediate
hash values.

3. A = a list of intermediate hash values
4. hexp= intermediate chaining value from processing an expand-

able message.
Steps:

1. C = MakeExpandableMessage(k)
2. hexp = the intermediate hash value after processing the expand-

able message in C.
3. Compute the intermediate hash values for Mtarget:

– h[−1] = the IV for the hash function
– m[i] = the ith message block of Mtarget.
– h[i] = F (h[i − 1], m[i]), the ith intermediate hash output

block. Note that h will be organized in some searchable
structure for the attack, such as a hash table, and that ele-
ments h[0, 1, ..., k − 1] are excluded from the hash table.

4. Find a message block that links the expandable message to one
of the intermediate hash values for the target message after the
kth block.

– Try linking messages Mlink until F (hexp, Mlink) = h[j].
5. Use the expandable message to produce a message M∗ that is j

blocks long.
6. Return second preimage M∗||Mlink||m[j+1]||m[j+2]...m[2k+k].

Work: The total work done is the work to find the expandable message
plus the work to find the linking message.
1. For the generic expandable message-finding algorithm, this is

k × 2n/2+1 + 2n−k+1 compression function calls.
2. For the fixed-point expandable message-finding algorithm, this

is 3× 2n/2+1 + 2n−k+1

An Illustration To illustrate this, consider a second preimage attack
on SHA1[SHA02]. The longest possible message for SHA1 is 264−1 bits,
which translates into just under 255 blocks. For simplicity, we will assume
the target message is 254 +54+1 message blocks (about 260 bytes) long.
1. Receive the target message and compute and store all the interme-

diate hash values.
2. Produce a (1, 54 + 254)-expandable message. This requires about

3 × 281 compression function computations, because SHA1 permits
easy finding of fixed points.

3. Starting from the end of the expandable message, we try about 2106

different message blocks, until we find one whose hash output is the
same as one of the last 54+254 intermediate hash values of the target
message. This requires computing about 2106 compression functions
on aveage.

4. Expand the expandable message to compensate for the message
blocks of the target message skipped over, and thus produce a second
preimage. This takes very little time.

Summary of the Attack The long-message attack can be summa-
rized as follows: For a target message substantially less than 2n/2 blocks
in length, the work is dominated by the long message attack. Thus, a
second preimage attack on a 2k-block message takes about 2n−k+1 com-
pression function computations, assuming abundant memory.

4.3 Variations on the Attack

Some straightforward variations of this attack are also possible, draw-
ing from the variations available to the expandable messages. For ex-
ample, the algorithms for producing an expandable message work from
any starting hash value, and are not affected by the message blocks
that come after the expanded message. Thus, this attack can be used
to “splice together” two very long messages, with an expandable part in
the middle. Similarly, if it is important that the second preimage mes-
sage start with the same first few hundred or thousand message blocks
as the target message, or end with the same last few hundred or thou-
sand blocks, this can easily be accommodated in the attack. Another
variation is available by using Joux’s multicollision-finding trick, or the

related ones described below: By setting up the expandable message to
be a 2u-multicollision, we can find 2u distinct second preimages for a
given long message, without adding substantial cost to the attack. Addi-
tionally, keyed constructions that leave the attacker with offline collision
search abilities are vulnerable to the attack; for example, the “suffix
mac” construction, MACK(X) = Hash(X||K) is vulnerable to a second
preimage attack, as well as the much more practical, previously-known
collision attack.

Low-Memory and Parallel Versions of the Attack These
methods for finding expandable messages assume unlimited memory.
In the real world, memory is limited, and bandwidth between process-
ing units and memory units is likewise limited. In the full paper, we
will consider how the parallel meet-in-the-middle attack techniques of
[vOW96,vOW99] can be applied to this attack.

Briefly, even a rather naive technique for mounting the attack with
less memory still beats the 2n bound for n = 160. Consider a second-
preimage attack on a 248 block message, in which we have 248 n-bit
memory locations to use. One simple way to do the meet-in-the-middle
attack used to find a collision between two tables of 280 items with 248

memory locations is to simply run the 280 items from the first table
(generated computationally each time) against 248 items from the second
table, and to iterate this process 232 times. This requires total work of
280×232 = 2112 compression function computations, and it must be done
48 times, for a total of less than 2118 compression function computations.
The resulting (48, 48 + 248 − 1)-expandable message is then used in the
long-message attack on the 248-block message, requiring about 2112 work.
The attack is thus dominated by the difficulty of finding an expandable
message, but at less than 2118 work, it is still substantially faster than
the 2160 compression function computations expected to find a second
preimage.

The enormous memory requirements apply only to finding expand-
able messages; the long-message attack requires a great deal of computa-
tion, but in general, it requires no more memory than is needed to hold
the target message. Thus, it may make sense to precompute a single
(a, b)-expandable message, and amortize the cost of doing so over many
second-preimage attacks on different messages.

The attack can reuse an expandable message as the base for finding
second preimages on as many target messages as may be provided.

5 Expandable Messages and Multicollisions

In [J04], Joux demonstrates a beautiful way to produce a large number of
messages that collide for an iterated hash function, with only a little more
work than is needed to find a single pair of messages that collide. Here,
we demonstrate ways to use expandable messages to find multicollisions,
and ways to combine the Joux technique with expandable messages to
add flexibility to the structure of the multicollisions.

5.1 A Simple Multicollision Technique

Consider two (a, b)-expandable messages concatenated together. We can
produce (b− a + 1) different messages that all have the same value with
this pair of expandable messages, by choosing to expand the first message
to a + i blocks, and the second to b− i blocks, for 0 ≤ i ≤ b− a.

In the case where the compression function allows fixed points to
be easily found, a (2, Z) expandable message (where Z is the maximum
number of blocks that the hash function will process) can be produced for
twice the work of a collision search. Concatenating two such expandable
messages gives a Z − 2-multicollision for four times the work of collision
search. For concreteness, with SHA1 (which allows easy finding of fixed
points), we have Z ≈ 254, and thus can find 254 − 2-collisions for only
4 × 280 work, rather than the approximately 54 × 280 work of the Joux
attack5.

5.2 A More Powerful Method for Finding Multicollisions

Consider concatenating k (a, b)-expandable messages. We can vary the
lengths of the different expandable messages so that the total message
length stays the same, and produce, for long messages, enormously large
numbers of multicollisions.

For example, a (54, 54+254−1)-expandable message costs about 54×
2n/2+1 work to construct, and a set of 16 of them costs 16 times as much

work. However, these then permit a
(
254

16

)
-collision to be constructed.

This is cheaper than the Joux attack for the same size of multicollision.
With hash functions with easily findable fixed points, the multicolli-

sions are still easier to find: each (2, 254)-expandable message costs only
2n/2+1 work. With 64× 2n/2 work, the Joux attack finds a 264-collision;

this technique finds a
(
254

64

)
-collision, albeit an impractically long one.

5.3 Combining With Joux

Finally, it is possible to combine Joux multicollisions with expandable-
message multicollisions. This allows multicollisions to be constructed
that look quite different from the Joux multicollisions, and are somewhat
more flexible in structure. This may allow Joux attacks to go forward
even on cascaded constructions that attempt to foil his attack.

6 Conclusions and Open Questions

In this paper, we have described a generic way to carry out long-message
second preimage attacks, despite the Damgard-Merkle strengthening done
on all modern hash functions.

These attacks are theoretical because 1) they require more work than
is necessary to find collisions on the underlying hash functions, and 2)

5 We note, however, that Joux’s multicollisions are of reasonable length, whereas ours
are not.

the messages for which second preimages may be found are generally
impractically long. However, they demonstrate some new lessons about
hash function design:

1. An n-bit iterated hash function provides fundamentally different se-
curity properties than a random oracle with an n-bit output. This
was demonstrated in one way by Joux in [J04], and by another here.

2. An n-bit iterated hash function begins to show some surprising prop-
erties as soon as an attacker can do the work necessary to find col-
lisions in the underlying compression function.

3. An n-bit iterated hash function cannot support second-preimage re-
sistance at the n-bit security level, as previously expected, for long
messages.

4. Easily found fixed points in compression functions (such as those
based on the Davies-Meyer construction) allow an even more power-
ful second-preimage attack, as well as allowing multicollisions to be
found even more cheaply than by the Joux attack.

We believe that the important lesson here is that the standard con-
struction of iterated hashes from Merkle and Damgard does not provide
all the protection we might expect against attackers that can do more
than 2n/2 compression function computations. In some sense, the hash
function is “brittle,” and begins to lose its claimed security properties
very quickly once the attacker can violate its collision resistance by brute
force.

We believe these results, when combined with those of Joux, require a
rethinking of what promises are being made by an iterative hash function
with an n-bit intermediate state. We see three sensible directions for this
rethinking to take:

1. A widespread consensus that an n-bit iterated hash function should
never be expected to resist attacks requiring more than 2n/2 oper-
ations. This would invalidate widespread uses of hash functions in
cryptographic random-number generation, as in [KSF99,DHL02,B98],
key derivation functions [AKMZ04,NIST03,X963], and many other
applications, and seems the least palatable outcome.

2. A clear theoretical treatment of the limits that exist for n-bit hash
functions, and precisely what attacks more demanding than collision
search they may be expected to resist. (For example, neither our
results, nor those of Joux, appear to be applicable when the attacker
cannot do offline collision search; perhaps this observation can be
formalized.)

3. New constructions for hash functions in the vein of [L04], which
maintain much more than n bits of intermediate state in order to
make collision attacks on intermediate states harder (require 2n

work).

The important open questions are defined by the above list. Specif-
ically, absent a solid theoretical treatment of the security properties of
n-bit iterative hashes, along the lines of [PGV93] and [BRS02], but ex-
panded to deal thoroughly with the full hash construction, it is difficult
to justify using them in applications requiring more than n/2 bits of
security with any confidence. We hope this work spurs such a treatment.

7 Acknowledgements

The authors wish to thank Bill Burr, Morris Dworkin, Niels Ferguson,
Phil Hawkes, Julie Kelsey, Ulrich Kuhn, Stefan Lucks, Bart Preneel,
Vincent Rijmen, and David Wagner for useful comments and discussions
on the results in this paper.

References

[AB96] Anderson and Biham, “Tiger—A Fast New Hash Function,”
in proceedings of FSE96, Springer-Verlag, 1996.

[AKMZ04] Adams, Kramer, Mister, and Zuccherato, “On the Security
of Key Derivation Functions,” Proceedings of the 7th Infor-
mation Security Conference (ISC ’04), Palo Alto, CA, USA,
Springer-Verlag, 2004 (to appear).

[B98] Baldwin, “Preliminary Analysis of the BSAFE 3.x Pseu-
dorandom Number Generators,” RSA Laboratories Bulletin
No. 8, RSA Laboratories, 1998.

[BRS02] Black, Rogaway, and Shrimpton, “Black-Box Analysis of
the Block-Cipher-Based Hash-Function Constructions from
PGV,” Advances in Cryptology–Crypto 02 Proceedings,
Springer-Verlag, 2002.

[BS93] Biham and Shamir, Differential Cryptanalysis of the Data
Encryption Standard, Springer-Verlag, 1993.

[D89] Damgard, “A design principle for hash functions,” Advances
in Cryptology–Crypto 89 Proceedings, Springer-Verlag, 1989.

[DHL02] Desai, Hevia, and Yin, “A Practice-Oriented Treat-
ment of Pseudorandom Number Generators,” Advances in
Cryptology–Eurocrypt 02 Proceedings, Springer-Verlag, 2002.

[J04] Joux, “Multicollisions in Iterated Hash Functions. Applica-
tions to Cascaded Constructions,” Advances in Cryptology–
Crypto 2004 Proceedings, Springer-Verlag, 2004.

[KSF99] Kelsey, Schneier, and Ferguson, “Yarrow-160: Notes on the
Design and Analysis of the Yarrow Cryptographic Pseudo-
random Number Generator,” SAC 1999.

[L04] Lucks, “Design Principles for Iterated Hash Functions,”
IACR preprint archive, http://eprint.iacr.org/2004/253.pdf,
2004.

[M89] Merkle, “One way hash functions and DES,” Advances in
Cryptology–Crypto 89 Proceedings, Springer-Verlag, 1989.

[M90] Merkle, “A fast software one-way hash function,” Journal of
Cryptology, 3(1):43–58, 1990

[MOI91] Miyaguchi, Ohta, Iwata, “Confirmation that some hash func-
tions are not collision free,” Advances in Cryptology–Crypto
90 Proceedings, Springer-Verlag, 1990.

[MvOV96] Menezes, van Oorschot, Vanstone, Handbook of Applied
Cryptography, CRC Press, 1996.

[NIST03] NIST Special Publication 800-56, Recommendations on Key
Establishment Schemes, Draft 2.0, Jan 2003, available from
csrc.nist.gov/CryptoToolkit/kms/keyschemes-jan02.pdf.

[PGV93] Preneel, Govaerts, and Vandewalle, “Hash Functions Based
on Block Ciphers: A Synthetic Approach,” Advances in
Cryptology–Crypto 93 Proceedings, Springer-Verlag, 1993.

[R92] Rivest, “The MD5 message-digest algorithm,” RFC1321,
April 1992.

[SHA02] National Institute of Standards and Technology, Secure Hash
Standard,’ FIPS180-2, August 2002.

[vOW99] van Oorschot and Wiener, “Parallel collision search with
cryptanalytic applications,” J. of Cryptology, 12:1–28, 1999.

[vOW96] van Oorschot and Wiener, “Improving Implementable Meet-
in-the-Middle Attacks by Orders of Magnitude,” Advances in
Cryptology–Crypto 96 Proceedings, Springer-Verlag, 1996.

[X963] “ANSI X9.63—Public Key Cryptography for the Financial
Services Industry: Key Agreement and Transport Using El-
liptic Curve Cryptography,” American Bankers Association,
1999. Working Draft.

A Finding Fixed Points Efficiently in Many
Compression Functions

Finding fixed points in many hash compression functions is simple.
Most widely used hash functions have compression functions de-

signed around very large block-cipher-like constructions, following the
general Davies-Meyer model. For the SHA and MD4/MD5 families, as
well as Tiger, if E(K, X) is a very wide block cipher, with K the key and
X the value being encrypted, then the compression function is:

C(H, M) = E(M, H) + H

for some group operation “+”. For these compression functions, it is
possible to compute the inverse of this block-cipher-like construction,
which we can denote as E−1(K, X). This makes it possible to find fixed
points in a simple way, as discussed in [MOI91]:

1. Select a message M .
2. Compute H = E−1(M, 0).
3. The result gives a fixed point: C(H, M) = H.

A property of this method for finding fixed points is that the attacker
is able to choose the message, but he has no control whatsoever over the
hash value that is a fixed point for a given message. Also note that for
these hash functions, each message block has exactly one fixed point.

Snefru is derived from a block-cipher-like operation that operates on
a much larger block than the hash output, and which effectively has a
fixed “key.” Let E(X) be this fixed “encryption” of a block. Further, let
n be the hash block size, m be the message block size, lsbn(X) be the
least significant n bits of X, and msbn(X) be the most significant n bits
of X. Note that E(X) operates on n + m-bit blocks.

The compression function is derived from E(X):

C(H, M) = lsbn(E(H||M)) + H

where the hash input and output are each n bits wide, and where
lsbx(Y) represents the least significant x bits of the value Y . We can
find fixed points for Snefru-like compression functions as follows, letting
E−1(X) be the inverse of E(X) once again:

1. Choose any X whose least significant n bits are 0.
2. Compute Y = E−1(X).
3. Let H = msbn(Y) and M = lsbm(Y).
4. The result gives a fixed point: C(H, M) = H.

This method gives the attacker no control over the message block.
Unlike the Davies-Meyer construction, there is no guarantee that a given
message block has even one fixed point; we would expect for some mes-
sage blocks to have many, and for others to have none.

Note that the Snefru construction could easily be altered to make
fixed points very hard to find, when the size of the message and hash
blocks are equal, by the compression function as:

C(H, M) = lsbn(E(H||M)) + H + M

or
C(H, M) = lsbn(E(H||M)) + H + M + msbm(E(H||M))

Also note that many other compression function constructions, such
as the Miyaguchi-Preneel construction used by Whirlpool and N-Hash,
do not permit a generic method for finding fixed points.

