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Abstract

Text-based passwords remain the dominant authentication method in computer systems, despite significant ad-
vancement in attackers’ capabilities to perform password cracking. In response to this threat, password composition
policies have grown increasingly complex. However, there is insufficient research defining metrics to characterize
password strength and evaluating password-composition policies using these metrics. In this paper, we describe an
analysis of 12,000 passwords collected under seven composition policies via an online study. We develop an efficient
distributed method for calculating how effectively several heuristic password-guessing algorithms guess passwords.
Leveraging this method, we investigate (a) the resistance of passwords created under different conditions to pass-
word guessing; (b) the performance of guessing algorithms under different training sets; (c) the relationship between
passwords explicitly created under a given composition policy and other passwords that happen to meet the same
requirements; and (d) the relationship between guessability, as measured with password-cracking algorithms, and en-
tropy estimates. We believe our findings advance understanding of both password-composition policies and metrics
for quantifying password security.

1 Introduction

Text-based passwords are the most commonly used authentication method in computer systems. As shown by previous
research (e.g., [2]), passwords are often easy for attackers to compromise. A common threat model is an attacker who
steals a list of hashed passwords, enabling him to attempt to crack them offline at his leisure. The many recent
examples of data breaches involving large numbers of hashed passwords (Booz Allen Hamilton, HBGary, Gawker,
Sony Playstation, etc.), coupled with the availability of botnets that offer large computational resources to attackers,
make such threats very real [3, 5,6, 10]. Once these passwords have been cracked, they can be used to gain access
not only to the original site, but also to other accounts where users have reused their passwords. This is an important
consideration because studies indicate that password reuse (exactly and with minor variations) is a common and
growing practice as users acquire more online accounts [18,38].

To mitigate the danger of such attacks, system administrators specify password-composition policies. These poli-
cies force newly created passwords to adhere to various requirements intended to make them harder to guess. Typical
requirements are that passwords include a number or a symbol, that they exceed a certain minimum length, and that
they are not words found in a dictionary.

Although it is generally believed that password-composition policies make passwords harder to guess, and hence
more secure, research has struggled to quantify the level of resistance to guessing provided by different password-
composition policies or the individual requirements they comprise. The two most commonly used methods for
quantifying the effect of password-composition policies are estimating the entropy of passwords induced by pass-
word-composition policies using NIST guidelines [8], and empirically analyzing passwords created under different
password-composition policies with password-guessing tools (e.g., [46]). The former, however, is not based on em-
pirical data, and the latter is difficult to apply because of the dearth of password sets created under different password-
composition policies.

In this paper, we take a substantial step forward in understanding the effects of password-composition policies
on the guessability of passwords. First, we compile a dataset of 12,000 plaintext passwords collected from different



participants under seven different password-composition policies during a six-month online study. Second, we develop
approaches for calculating how long it would take for various password-guessing tools to guess each of the passwords
we collected. This allows us to evaluate the impact on security of each password-composition policy.

Contributions. Our paper makes the following specific contributions:

1. We implement a distributed technique (guess-number calculator) to determine if and when a given password-
guessing algorithm, trained with a given data set, would guess a specific password. This allows us to evaluate
the effectiveness of password-guessing attacks much more quickly than we could using existing cracking tech-
niques.

2. We compare, more accurately than was previously possible, the guessability of passwords created under dif-
ferent password-composition policies. Because of the efficiency of our calculations (compared to guessing
passwords directly), we can investigate the effectiveness of multiple password-guessing approaches with mul-
tiple tunings. Our findings show that a password-composition policy requiring long passwords with no other
restrcitions provides (relative to other policies we tested) excellent resistance to guessing.

3. We study the impact of tuning on the effectiveness of password-guessing algorithms. We also investigate the
significance of test-set selection when evaluating the strength of different password-composition policies.

4. We investigate the effectiveness of entropy as a measure of password guessability. For each composition policy,
we compare our guessability calculations to two independent entropy estimates: one based on the NIST guide-
lines mentioned above, and a second that we calculate empirically from the plaintext passwords in our dataset.
We find that both measures of entropy have only very limited relationships to password strength as measured by
guessability.

Mechanical Turk and controlled password collection. As with any user study, it is important to reflect on the
origin of our dataset to understand the generalizability of our findings. We collected a dataset of 12,000 plaintext
passwords using Amazon’s Mechanical Turk crowdsourcing service (MTurk). Many researchers have examined the
use of MTurk workers (Turkers) as participants in human-subjects research [7, 15,21, 22,23,31]. About half of all
Turkers are American, with Indian participation increasing rapidly in the last 2-3 years to become about one third
of Turkers [31]. American Turkers are about two-thirds women, while Indian Turkers are similarly weighted toward
men [21]. Overall, the Turker population is younger and more educated than the general population, with 40% holding
at least a bachelor’s degree; both of these trends are more pronounced among Indian Turkers [21,31].

Buhrmester et al. find that the Turker population is significantly more diverse than samples used in typical lab-
based studies that heavily favor college-student participants [7]. This study, and others, found that well-designed
MTurk tasks provide high-quality user-study data [7, 15,23,41].

This analysis of MTurk has important implications in the context of studying passwords. We expect our find-
ings will be more generalizable than those from lab studies with a more constrained participant base. Because we
collected demographic information from our participants, our sample (and any biases it introduces) can be more ac-
curately characterized than samples based on stolen password lists from various websites collected under uncertain
circumstances.

A related consideration is that while our participants created real passwords that were needed several days later to
complete the study and obtain a small bonus payment, these passwords did not protect high-value accounts. Password
research has consistently been limited by the difficulty of studying passwords used for high-value accounts. Lab
studies have asked participants to create passwords that protect simulated accounts, $5, a chance to win an iPod in
a raffle, or access to university course materials including homework and grades [9, 11, 26,49]. Other studies have
relied on the leaked password lists like the RockYou set [42,46]. While this set contains millions of passwords, it
also contains non-password artifacts that are difficult to filter out definitively, its provenance and completeness are
unclear, and it is hard to say how much value users place on protecting an account from a social gaming service. Other
commonly used leaked password lists come from sites including MySpace, silentwhisper.net, and a variety of
Finnish websites, with user valuations that are similarly difficult to assess [13,47].

Overall, although our dataset is not ideal, we contend that our findings do provide significant insight into the effects
of password-composition policies on password guessability. Because so little is known about this important topic, even
imperfect information constitutes progress.

Roadmap. We proceed as follows. In Section 2 we survey related work. We describe our data collection and analysis
methodology in Sections 3 and 4. We convey our main results in Section 5, and discuss the generalizability of our
findings and some ethical considerations in Section 6. We conclude in Section 7 with a discussion of the applicability
of our work to future research and the implications of our findings on defining practical password-composition policies.



2 Background and related work

Research on passwords has been active for many years. In this section, we review the work most closely related to our
research, first summarizing the different types of data collection and analysis that have been used. We then discuss
work focused on evaluating the impact of password policies, followed by metrics proposed to evaluate password
strength.

Collection and analysis of password data. Many prior studies of passwords have used small sample sizes [19,24,
29,51], obtained through user surveys or lab studies. Kuo et al. asked 290 users to create passwords through an online
survey and used a password-cracking tool to estimate the security of the passwords so acquired [26]. We also use an
online survey, but we consider larger and more varied sets of passwords. In addition, we recruit participants using
Mechanical Turk, which produces more diverse samples than typical lab studies [7].

Other studies analyze large samples of passwords ostensibly created by users for actual accounts of varying im-
portance [2,4, 13, 16,46, 50]. Unlike these studies, we study the impact of different password policies on password
strength and use passwords collected under controlled password-policy conditions.

Impact of password policies. Several studies have considered the impact of different password policies on password
strength. In lab studies, Proctor et al. [30] and Vu et al. [44] found that passwords created under stricter composi-
tion requirements were more resistant to automated cracking, but also more difficult for participants to create and
remember. We consider similar data, but for a much larger set of users, allowing us to evaluate the effectiveness
of various requirements more comprehensively. Other findings suggest that too-strict policies (those that make cre-
ating and remembering passwords too difficult) induce coping strategies that can hurt both security and productiv-
ity [1,20,36,37,40]. Further, Floréncio and Herley found that the strictest policies are often used not by organizations
with high-value assets to protect, but organizations that do not have to compete on customer service [17].

An increasingly popular password-strengthening measure that we also investigate is subjecting new passwords
to a blacklist check. Spafford demonstrated that a blacklist check can be performed in constant time regardless of
size [39], making large blacklist checking feasible. Schechter et al. proposed a password policy in which passwords
chosen by too many users are blacklisted for subsequent users [32]. This offers many theoretical advantages over other
password-composition schemes.

Measuring password strength. Effective evaluation of password strength requires defining a proper metric. One
possible metric is information entropy, defined by Shannon as the expected value (in bits) of the information contained
in a string [34]. Massey connects entropy with password strength by demonstrating that entropy provides a lower
bound on the expected number of guesses to find a text [28]. A 2006 National Institute of Standards and Technology
(NIST) publication uses entropy to represent the strength of a password [8]. Verheul derives a theoretical distribution
of variable-length passwords with optimal entropy and guess resistance [43]. Neither calculated entropy empirically.
Floréncio and Herley estimated theoretical entropy for the field data they analyzed [16].

An alternative to entropy as a metric of password strength is the notion of “guessability,” which characterizes the
time needed by an efficient password-cracking algorithm to discover a password. In one use of this metric, Weir et al.
divide a large set of existing passwords into different categories based on composition, then apply automated cracking
tools to examine how well NIST’s entropy estimates predict measured guessing difficulty [46]. Similarly to our work,
Dell’Amico et al. [13] also attempt to evaluate password strength by calculating guessing probabilities yielded by
popular password-cracking heuristics.

Narayanan et al. discuss a password-cracking technique based on a Markov model, in which password guesses are
made based on contextual frequency of characters [29]. Marechal [27] and Weir [45] both examine this model and find
it more effective for password cracking than the popular password-cracking program John the Ripper [14]. Weir et al.
present a novel password-cracking technique that uses the text structure from training data while applying mangling
rules to the text itself [47]. The authors found their technique to be more effective than John the Ripper. In a separate
study, Zhang et al. found Weir’s algorithm most effective among the techniques they used [50].

In this work, we apply the Weir et al. algorithm and a variation of the Markov model to generate blacklists that
restrict password creation in some of our study conditions, and as the basis for one implementation of a new measure of
password strength, the guess number, which we apply to user-created passwords collected under controlled password-
composition policies.



3 Methodology: Data collection

In this section, we discuss our methodology for collecting plaintext passwords, the word lists we used to assemble
the blacklists used in some conditions, and the eight conditions under which we gathered data. We also summarize
participant demographics.

3.1 Collection instrument

From August 2010 to January 2011, we advertised a two-part study on Mechanical Turk, paying between 25 and 55
cents for the first part and between 50 and 70 cents for the second part. The consent form indicated the study pertained
to visiting secure websites.

Each participant was given a scenario for making a new password, then asked to create a password that met a set
of password-composition requirements; the scenarios and requirements are detailed in Section 3.3. Participants who
entered a password that did not conform to requirements were shown an error message indicating which requirements
were not met, then asked to try again until a satisfactory password was created. After creating a password, participants
took a brief survey about demographics and password creation. Participants were then asked to recall the password
just created; after five failed attempts, the password was displayed. For the second part of the study, participants were
emailed two days later and asked to return to the website and recall their passwords. We also measured the incidence
of passwords being written down or otherwise stored (via detecting browser storage and copy-paste behavior, as well
as asking participants; see Section 6 for details). Unless otherwise noted, only data from the first part of the study
is reported in this paper. Data from the second part of the study, which is primarily used to assess memorability and
usability factors, is omitted due to space constraints. Prior research has considered memorability and usability factors
for a subset of the policies we examine [25]; we briefly revisit these findings when we discuss our results in Section 5.

3.2 Word lists for algorithm training

We use six publicly available word lists as training data in our analysis and to assemble the blacklists used in some
of our experimental conditions. The RockYou password set [42] includes more than 30 million passwords, and the
MySpace password set [33] contains about 45,000 passwords. (We discuss ethical considerations related to these
datasets in Section 6.) The inflection list' contains words in varied grammatical forms such as plurals and past tense.
The simple dictionary contains about 200,000 words and is a standard English dictionary available on most Unix
systems. We also used two cracking dictionaries from the Openwall Project? containing standard and mangled versions
of dictionary words and common passwords. The free Openwall list contains about 4 million words, while the paid
Openwall list contains more than 40 million. While these data sources are not ideal, they are publicly available; we
expect attackers would use these word lists or others like them for training data. In Section 5.2, we consider the effect
of a variety of training sets drawn from these word lists as well as our collected password data.

3.3 Conditions

Our participants were divided into eight conditions comprising seven sets of password-composition requirements and
two password-creation scenarios. We used two scenarios in order to measure the extent to which giving participants
different instructions affects password strength. The survey scenario was designed to simulate a scenario in which
users create low-value passwords, while the email scenario was designed to elicit higher-value passwords. All but one
condition used the email scenario.

In the survey scenario, participants were told, “To link your survey responses, we will use a password that you
create below; therefore it is important that you remember your password.”

In the email scenario, participants were told, “Imagine that your main email service provider has been attacked,
and your account became compromised. You need to create a new password for your email account, since your old
password may be known by the attackers. Because of the attack, your email service provider is also changing its
password rules. Please follow the instructions below to create a new password for your email account. We will ask
you to use this password in a few days to log in again, so it is important that you remember your new password. Please
take the steps you would normally take to remember your email password and protect this password as you normally
would protect the password for your email account. Please behave as you would if this were your real password!”

Ihttp://wordlist.sourceforge.net
2http://www.openwall.com/wordlists/



The eight conditions are detailed below.

basic8survey: Participants were given the survey scenario and the password-composition policy “Password must
have at least 8 characters.” This is the only condition using the survey scenario.

basic8: Participants were given the email scenario and the password-composition policy “Password must have at
least 8 characters.” Only the scenario differentiates this from basic8survey.

basicl16: Participants were given the email scenario and the password-composition policy “Password must have at
least 16 characters.”

dictionary8: Participants were given the email scenario and the password-composition policy “Password must have
at least 8 characters. It may not contain a dictionary word.” We performed a dictionary check by removing non-
alphabetic characters and checking the remainder against a dictionary, ignoring case. This method is used in practice,
including at our institution. We used the free Openwall list as the dictionary.

comprehensive8: Participants were given the email scenario and the password-composition policy “Password must
have at least 8 characters including an uppercase and lowercase letter, a symbol, and a digit. It may not contain a
dictionary word.” We performed the same dictionary check as in dictionary8. This condition reproduced NIST’s
comprehensive password-composition requirements [8].

blacklistEasy: Participants were given the email scenario and the password-composition policy ‘“Password must
have at least 8 characters. It may not contain a dictionary word.” We checked the password against the simple Unix
dictionary, ignoring case. Unlike the dictionary8 and comprehensive8 conditions, the password was not stripped of
non-alphabetic characters before the check.

blacklistMedium: This condition is the same as the blacklistEasy condition, except we used the paid Openwall list.

blacklistHard: This condition is the same as the blacklistEasy condition, except we used a five-billion-word dictio-
nary we created using the algorithm outlined by Weir et al. [47]. For this condition, we trained Weir et al.’s algorithm
on the MySpace, RockYou, and inflection lists. Both the training and testing were conducted case-insensitively, in-
creasing the strength of the blacklist.

3.4 Participant demographics

Among participants who completed part one of our study, 55% returned within 3 days and completed part two. We
detected no statistically significant differences in the guessability of passwords between participants who took just the
first part of the study and those who participated in both parts. As a result, to maximize the participant data in our
analyses and use the same number of participants for each condition, our dataset includes passwords from the first
1,000 participants in each condition to successfully complete the first part of the study. To conduct a wider variety of
experiments, we used data from an additional 2,000 participants each in basic8 and comprehensive8.

Among these 12,000 participants, 53% percent reported being male and 45% female, with a mean reported age of
29 years. This makes our sample more male and slightly younger than Mechanical Turk participants in general [7,31].
About one third of participants reported studying or working in computer science or a related field. The proportion re-
lated to computer science did not vary significantly across conditions, except between blacklistEasy and blacklistHard
(38% to 31%, respectively; pairwise Holm-corrected Fisher’s exact test [PHFET], p < 0.03). Participants in the
basic16 condition were slightly but significantly older (mean 30.3 years) than those in blacklistHard, basic8, and com-
prehensive8 (means 28.6, 28.9, and 29.1 years respectively; PHFET, p < 0.03). We observed no significant difference
in gender between any pair of conditions (PHFET, p > 0.05).

4 Methodology: Data analysis

This section explains how we analyzed our collected password data. First, and most importantly, Section 4.1 discusses
our approach to measuring how resistant passwords are to cracking, i.e., guessing by an adversary. We present a novel,
efficient method that allows a broader exploration of guessability than would otherwise be possible. For comparison
purposes, we also compute two independent entropy approximations for each condition in our dataset, using methods
described in Section 4.2.

4.1 Guess-number calculators

Traditionally, password guess resistance is measured by running one or more password-cracking tools against a pass-
word set and recording when each password is cracked. This works well when the exploration is limited to a relatively



small number of guesses (e.g., 10, or roughly the number of guesses a modern computer could try in one day). How-
ever, as the computational power of potential adversaries increases, it becomes important to understand how many
passwords an adversary could crack with many more guesses.

To this end, we introduce the guess number calculator, a novel method for measuring guess resistance more
efficiently. We take advantage of the fact that, for most deterministic password-guessing algorithms, it is possible
to create a calculator function that maps a password to the number of guesses required to guess that password. We
call this output value the guess number of the password. A new guess number calculator must be implemented for
each cracking algorithm under consideration. For algorithms like [46] that use a fraining set of known passwords to
establish guessing priority, a new funing of the calculator is generated for each new training set to be tested.

Because we collect plaintext passwords, we can use a guessing algorithm’s calculator function to look up the
associated guess number for each password, without actually running the algorithm. This works for the common case
of deterministic guessing algorithms (e.g., [14,27,29,46]).

We use this approach to measure the guessability of a set of passwords in several ways. We compute the percentage
of passwords that would be cracked by a given algorithm, which is important because the most efficient cracking tools
use heuristics and do not explore all possible passwords. We can also compute the percentage that would be cracked
within a given number of guesses, or the number of guesses required to crack a certain percentage of passwords. We
also use calculators to compare the performance of different cracking algorithms, and different training-set tunings
within each algorithm. By combining guess-number results across a variety of algorithms and training sets, we can
develop a general picture of the overall strength of a set of passwords.

We implemented two guess-number calculators: one for a brute-force algorithm loosely based on the Markov
model, and one for the heuristic algorithm proposed by Weir et al., which is currently the state-of-the-art approach to
password cracking [46,50]. We selected these two algorithms as the most promising brute-force and heuristic options,
respectively, after comparing the passwords we collected to lists of 1, 5, and 10 billion guesses produced by running a
variety of cracking tools and tunings. From this point forward, we will refer to them as the brute-force Markov (BFM)
and Weir algorithms.

4.1.1 Training sets

Both algorithms for which we implemented calculators require a training set. a corpus of known passwords used to
generate a list of guesses and determine in what order they should be tried.

We explore a varied space of training sets constructed from different combinations of the publicly available word
lists described in Section 3.2 and subsets of the passwords we collected. This allows us to assess whether comple-
menting publicly available data with passwords collected from the system under attack improves the performance of
the cracking algorithms. We further consider training-set variations specifically tuned to our two most complex policy
conditions, comprehensive8 and basic16.

Each of our experiments calculates guess numbers only for those passwords on which we did not train, using a
cross-validation approach. For a given experiment, we split our passwords into n partitions, or folds. We generate a
training set from public data plus (n — 1) folds of our data, and test it on the remaining fold. We use each of the n folds
as test data exactly once, requiring n iterations of testing and training. We recombine results from the n folds, yielding
guess-number results for all of our passwords. Because training often involves significant computational resources, as
described in Section 4.1.3, we limit to two or three the number of iterations in our validation. Based on the similarity
of results we observed between iterations, this seems sufficient. We describe our training and test sets in detail in
Appendix A.

We do not claim these training sets or algorithms represent the optimal technique for guessing the passwords we
collected; rather, we focus on comparing guess resistance across password-composition policies. Investigating the
performance of guessing algorithms with different tunings also provides insight into the kind of data set an attacker
might need in order to efficiently guess passwords created under a specific password-composition policy.

4.1.2 BFM calculator

The BFM calculator determines guess numbers for a brute-force cracking algorithm loosely based on Markov chains [27,
29]. Our algorithm differs from previous work by starting with the minimum length of the password policy, and in-
creasing the length of guesses until all passwords are guessed. Unlike other implementations, this covers the entire
password space, but does not try guesses in strict probability order.

The BFM algorithm uses the training set to calculate the frequency of first characters and of digrams within the
password body, and uses these frequency to deterministically construct guessing orders of unknown passwords. For



example, assume an alphabet of {A, B, C} and a three-character-minimum configuration. If A is the most likely starting
character learned from the training data, the character most likely to follow A is B, and the character most likely to
follow B is C, then the first guess will be ABC. If the next-most-likely character to follow B is A, the second guess will
be ABA, and so forth.

Our guess-number calculator for this algorithm processes the training data to generate a lookup table that maps
each string to the number of guesses needed to reach it, as follows. For an alphabet of IV characters, and passwords
of length L, any time the first character tried is incorrect, we know that the algorithm will try N“~1 incorrect guesses
before switching to a different first character. So, if the first character of the password to be guessed is the k-th
character to be tried, there will be at least (k — 1) N %~ incorrect guesses. We can then iterate the computation: when
the first character is correct, but the second character is incorrect, the algorithm will try N L=2 incorrect guesses, and
so forth. By looking up the order in which characters are tried, we can then simply add up the total number of incorrect
guesses to discover how many iterations will be needed before hitting a successful guess for a given password, without
having to actually try the guesses.

4.1.3 Weir algorithm calculator

We also apply the principle of calculating guess numbers to Weir et al.’s more complex algorithm, both to demonstrate
the feasibility of our approach and to evaluate the strength of our collected password sets. The Weir algorithm is
explained in detail in [47], and uses the following definitions: structures are patterns of character types such as letters,
digits, and symbols; a terminal is one instantiation of a structure; and a probability group is a set of terminals with the
same probability of occurring.

As with the BFM calculator, we process training data to create a lookup table, then calculate the guess number
for each password. The mechanism for processing training data is outlined in Algorithm 1. To calculate the guess
number for a password, we determine that password’s probability group. Using the lookup table created from the
training set, we determine how many guesses would be required to reach that probability group. We then add the
number of guesses required to reach the exact password within that probability group. This works because once the
Weir algorithm reaches a given probability group, all terminals in that group are tried in a deterministic order.

Because creating this lookup table is time-intensive, we set a cutoff point—>50 trillion guesses, which allows most
Weir-calculator experiments to run in 24 hours or less in our setup—past which we do not calculate the guess number
for additional passwords. By checking the available terminals, we can still determine whether passwords that are not
guessed by this point will ever be guessed, but not exactly when they will be guessed.

Algorithm 1 Creation of a lookup table which, given a probability group, returns the number of guesses required for
the Weir algorithm to begin guessing terminals of that group. An Lc.s. is a longest common substring, the longest
substrings in a probability group made from characters of the same type. For example, for UUssQUUU, the l.c.s.’s
would be UU, ss, 9, and UUU. (In this example, U represents uppercase letters, s represents lowercase letters, and 9
represents digits.)
T = New Lookup Table
for all structures s do
for all probability_group pg € s do
for all [.c.s. € pg do
¢;=Number of terminals of [.c.s.
p;=Probability of [.c.s. in training data
end for
probability =[] ps
7 .add: probability, pg, [] ¢
end for
end for
Sort(T) by probability
Add to each value in (7) the sum of prior values

Distributed computation. Calculating guess numbers for Weir’s algorithm becomes data intensive for the sets of
structures used in this work. More specifically, Algorithm 1 generates a large number of elements to build the lookup
table 7. To accelerate the process, we implemented a distributed version of Algorithm 1 as follows. We split the
top-most loop into coarse-grained units of work that are assigned to m tasks, each of which processes a subset of the



structures in s. Each task reads a shared dictionary with the training data and executes the two internal loops of the
algorithm. Each iteration of the loop for the probability groups in s emits an intermediate tuple. The intermediate
tuples produced by all the tasks are grouped by probability ranges, sorted, and stored. A final sequential pass over the
sorted table adds the sum of prior values.

We implemented our distributed ap-
proach using Hadoop [48], an open-source
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version of the MapReduce framework [12]. E . | | Identity | Sorted T
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4.2 Entropy

In order to investigate how well entropy estimates correlate with guess resistance in practice, we compare our guess
number results for each condition in our dataset to two independently calculated entropy approximations. First, we
apply the commonly used NIST guidelines, which suggest that each password-composition rule contributes a specific
amount of entropy and that the entropy of the policy is the sum of the entropy contributed by each rule. Our second
approximation is calculated empirically from the plaintext passwords in our dataset, using the technique described by
Shay et al. [38]. In this method, we calculate for each password in the condition the entropy contributed by the number,
content, and type of each character, using Shannon’s formula [35]. We then sum the individual entropy contributions
to estimate the total entropy of the passwords in that condition.

5 Findings

We calculated guess numbers under 32 different combinations of algorithm and training data. Although we do not
have space to include all the raw results, we distill from them four major findings with application both to selecting
password policies and to conducting password research:

e Among conditions we tested, basic16 provides the greatest security against a powerful attacker, outperforming
the more complicated comprehensive8 condition. We also detail a number of other findings about the relative
difficulty of cracking for the different password-composition policies we tested.

e Access to abundant, closely matched training data is important for successfully cracking passwords from stronger
composition policies. While adding more and better training data provides little to no benefit against passwords
from weaker conditions, it provides a significant boost against stronger ones.

e Passwords created under a specific composition policy do not have the same guess resistance as passwords
selected from a different group that happen to meet the rules of that policy; effectively evaluating the strength
of a password policy requires examining data collected under that policy.

e While a limited relationship between Shannon information entropy (computed and estimated as described in
Section 4.2) and guessability can be observed, especially when considering attacks on the order of a trillion
guesses or more, entropy can provide no more than a very rough approximation of overall password strength.

We discuss these findings in detail in the rest of this section. We introduce individual experiments in detail before
discussing their results. For convenience, after introducing an experiment we may refer to it using a shorthand name
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Figure 2: The number of passwords cracked vs. number of guesses, per condition, for experiment E. This experiment uses the
Weir calculator and our most comprehensive training set, which combines our passwords with public data.

that maps to some information about that experiment, such as P for trained with public data, E for trained with
everything, S for tested on password subsets, C8 for specialized training for comprehensive8, etc. A complete list of
experiments and abbreviations can be found in Appendix A.

5.1 Comparing policies for guessability

In this section, we compare the guessability of passwords created under the seven password-composition policies we
tested. We focus on two experiments that we consider most comprehensive. In each experiment we evaluate the
guessability of all seven password-composition policies, but against differently trained guessing algorithms.

Experiment P4 is designed to simulate an attacker with access to a broad variety of publicly available data for
training. It consists of a Weir-algorithm calculator trained on all the public word lists we use and tested on 1000 pass-
words from each condition. Experiment E simulates a powerful attacker with extraordinary insight into the password
sets under consideration. It consists of a Weir-algorithm calculator trained with all the public data used in P4 plus 500
passwords from each of our eight conditions. We test on 500 other passwords from those conditions, with two-fold
cross-validation for a total of 1000 test passwords. The results from experiments E and P4 are shown in Figures 2 and
3, respectively.

As suggested by these figures, which password-composition policy is best at resisting guessing attacks depends
on how many attempts an attacker is expected to make. At one million and one billion guesses in both experiments,
significantly fewer blacklistHard and comprehensive8 passwords were guessed than in any other condition.> At one
billion guesses in experiment E, 9.5%, 1.4%, and 2.9% of passwords were cracked in basic16, comprehensive8, and
blacklistHard respectively; 40.3% of basic8 passwords were cracked.

As the number of guesses increases, basic16 begins to outperform the other conditions. At one trillion guesses,
significantly fewer basic16 passwords were cracked than comprehensive8 passwords, which were in turn cracked sig-
nificantly less than any other condition. After exhausting the Weir-algorithm guessing space in both experiments,
basic16 remains significantly hardest to crack. The next best at resisting cracking were comprehensive8 and black-
listHard, performing significantly better than any of the other conditions. Condition comprehensive8 was significantly
better than blacklistHard in experiment P4 but not in experiment E. In experiment E, 14.6, 26.4, and 31.0% of pass-
words were cracked in basic16, comprehensive8, and blacklistHard respectively; in contrast, 63.0% basic8 passwords
were cracked.

Although guessing with the Weir algorithm proved more effective, we also compared the conditions using BFM.
The findings (shown in Figure 4) are generally consistent with those discussed above: basic16 performs better than
the other conditions.

3All comparisons in Sections 5.1, 5.2, and 5.3 tested using PHFET, significance level o = 0.05.
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from harder-to-guess conditions, but less so ing the BFM calculator trained on a combination of our data and public data
when cracking passwords from easier ones. (B2). We place a red vertical line at 50 trillion guesses to facilitate comparison
with the Weir experiments. We stopped the Weir calculator at this point (as
described in Section 4.1.3), but because the BFM algorithm is so much less
efficient, we ran it for many more guesses in order to collect useful data.

For purposes of examining the impact
of training data, the password-policy condi-
tions we consider divide fairly neatly into
two groups. For the rest of this section, we will refer to the harder-to-guess conditions of comprehensive8, basic16,
and blacklistHard as group 1, and the rest as group 2.

Training with general-purpose data.

We first measure, via three experiments, the effect of increasing the amount and variety of training data. Experi-
ment P3 was trained on public data including the MySpace and RockYou password lists as well as the inflection list
and simple dictionary, and tested on 1000 passwords from each of our eight conditions. Experiment P4, as detailed
in Section 5.1, was trained on everything from P3 plus the paid Openwall list. Experiment E, also described in 5.1,
was trained on all the public data from P4 as well as 500 passwords from each of our conditions, using two-fold
cross-validation. Figure 5 shows how these three training sets affect four example conditions, two from each group.

The cracking totals in each experiment reflect the overall increase in knowledge as training data is added. For
group 1, adding Openwall increases total cracking on average 45%, while adding both Openwall and our data provides
an average 96% improvement (all significant). In group 2, by contrast, the increases are more modest and only
occasionally significant.

At one trillion and one billion guesses, the results are less straightforward, but increasing training data remains
generally more effective against group 1 than group 2. Adding Openwall alone is not particularly helpful for group
1, providing few significant improvements at either guessing point, but it actually decreases cracking at one billion
guesses significantly for several group 2 conditions. (We hypothesize this decrease occurs because Openwall is a

10



dictionary and not a password set, so it adds knowledge of structures and strings at the cost of accurately assessing
their probabilities.) At these guessing points, adding our data is considerably more effective for group 1 than adding
Openwall alone, increasing cracking for each of the three conditions by at least 50% (all significant). By contrast,
adding our data provides little to no improvement against group 2 conditions at either guessing point.

Taken together, these results demonstrate that increasing the amount and variety of information available in the
training data provides significant improvement in cracking the harder-to-guess conditions, while providing little benefit
and sometimes decreasing efficiency for the easier-to-guess conditions.

Training with specialized data. Having determined that training with specalized data is extremely valuable for
cracking group 1 passwords, we wanted to examine what quantity of closely related training data is needed to effec-
tively crack these “hard” conditions. For these tests, we focus on comprehensive8 as an example of a harder-to-guess
condition, using the easier-to-guess basic8 condition as a control; for each of these conditions, we collected 3000
passwords.

We conducted five Weir-algorithm experiments, C8a through C8e, in which we trained on all the word lists de-
scribed in Section 3.2, as well as between 500 and 2500 comprehensive8 passwords, in 500-password increments. For
each experiment, we tested on the remaining comprehensive8 passwords. We also carried out a similar set of five
experiments, B8a through B8e, in which we trained and tested with basic8 rather than comprehensive8 passwords.

Our results, illustrated in Figure 6, show that incrementally adding more of our collected data to the training
set improves total cracking slightly for comprehensive8 passwords, but not for basic8. On average, for each 500
comprehensive8 passwords added to the training set, 2% fewer passwords remain uncracked. This effect is not linear,
however; the benefit of additional training data levels off sharply between 2000 and 2500 training passwords. The
differences between experiments begin to show significance around one trillion guesses, and increase as we approach
the total number cracked.

For basic8, by contrast, adding more collected passwords to the training set has no significant effect on total
cracking, with between 61 and 62% of passwords cracked in each experiment. No significant effect is observed at
earlier guessing points including one million, one billion, or one trillion guesses, either.

One way to interpret this result is to consider the diversity of structures found in our basic8 and comprehensive8
password sets. The comprehensive8 passwords are considerably more diverse, with 1598 structures among 3000
passwords, as compared to only 733 structures for basic8. For comprehensive8, the single most common structure
maps to 67 passwords, the most common 180 structures account for half of all passwords, and 1337 passwords have
structures that are unique within the password set. By contrast, the most common structure in basic8 maps to 293
passwords, the top 13 structures account for half the passwords, and only 565 passwords have unique structures. As a
result, small amounts of training data go considerably farther in cracking basic8 passwords than in comprehensiveS.

Weighting training data. The publicly available word lists we used for training are all considerably larger than
the number of passwords we collected. As a result, we needed to weight our data (i.e., include multiple copies in
the training set) if we wanted it to have significant impact on the probabilities used by our guess-number calculators.
Different weightings have no effect on the total number of passwords cracked, as all the same passwords are eventually
guessed; however, they can affect the order and, therefore, the efficiency of guessing.

We tested three weightings, using 500 passwords from each of our eight conditions weighted to one-tenth, equal,
and ten times the cumulative size of the included public lists. In each case, we tested on 500 other passwords from
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Figure 5: The effect of increasing training data by adding the Openwall list (experiment P4) and then our collected passwords
(experiment E) on the effectiveness of cracking passwords, for four example conditions. Adding training data proves more helpful
for the group 1 conditions (left two graphs) than for the others (right two graphs).
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Figure 6: Left: Results of experiments B8a through B8e. Increasing the amount of specialized training data has limited effect
on the basic8 condition. Right: Results of experiments C8a through C8e. Increasing the amount of specialized training data has a
small but significant effect on the comprehensive8 condition.

each condition.

Overall, we found that weighting had only a minor effect. There were few significant differences at one million,
one billion, or one trillion guesses, with equal weighting occasionally outperforming the other two in some conditions.
From these results, we concluded that the choice of weighting was not particularly important, but we use an equal
weighting in all other experiments that train with passwords from our dataset because it provides an occasional benefit.

BFM training. We also investigated the effect of training data on the performance of the BFM calculator, using
four training sets: one with public data only, one that combined public data with collected passwords across our
conditions, and one each specialized for basic8 and comprehensive8. Because the BFM algorithm eventually guesses
every password, we were concerned only with efficiency, not total cracking. We found that adding our data had
essentially no effect at either smaller or larger numbers of guesses. Specialized training for basic8 was similarly
unhelpful. Specialized training for comprehensive8 does increase efficiency somewhat, reaching 50% cracked with
about 30% fewer guesses.

5.3 Effects of test-data selection

Researchers typically don’t have access to passwords created under the password-composition policy they want to
study. To compensate, they start with a larger set of passwords (e.g., the RockYou set), and pare it down by discarding
passwords that don’t meet the desired composition policy (e.g., [16,46]). A critical question, then, is whether subsets
like these are representative of passwords actually created under a specific policy. We find that such subsets are not
representative, and may in fact contain passwords that are more difficult to guess than passwords created under the
policy in question.

In our experiments, we compared the guessability of 1000 comprehensive8 passwords to the guessability of the
206 passwords that meet the comprehensive8 requirements but were collected across our other seven conditions (the
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Figure 7: Varying the weighting of our passwords within the public training data among one-tenth (X1/10), equal weighting (X1),
and ten times (X10) has little to no effect on the efficiency of cracking passwords. Results shown for four example conditions.
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Figure 8: Passwords generated under the comprehensive8 condition proved significantly easier to guess than passwords that
conform to the comprehensive8 requirements but are generated under other composition policies. In experiment S1, shown at
left, the Weir calculator was trained with only public data; in experiment S2, shown at right, the Weir calculator was trained on a
combination of our data and public data.

comprehensiveSubset set). We performed this comparison with two different training sets: public data, with an em-
phasis on RockYou passwords that meet comprehensive8 requirements (experiment S1); and the same data enhanced
with our other 2000 collected comprehensive8 passwords (experiment S2).

Both experiments show significant differences between the guessability of comprehensive8 and comprehensiveSub-
set test sets, as shown in Figure 8. In the two experiments, 40.9% of comprehensive8 passwords were cracked on
average, compared to only 25.8% comprehensiveSubset passwords. The two test sets diverge as early as one billion
guesses (6.8% to 0.5%).

Ignoring comprehensiveSubset passwords that were created under the basic16 condition allows us to analyze 171
passwords, all created under less strict conditions. Only 25.2% of these passwords are cracked on average, suggesting
that subsets drawn exclusively from less strict conditions are more difficult to guess than passwords created under
stricter requirements.

To understand this result more deeply, we examined the distribution of structures in the two test sets. There are
618 structures in the 1000-password comprehensive8 set, compared to 913 for comprehensiveSubset (normalized).
Fifty-two percent of comprehensive8 passwords have unique structures, compared to 85% for comprehensiveSubset.
This distribution of structures explains why comprehensive$ is significantly easier to guess.

We do not know why the two samples are different, although we suspect it may be related to the comprehen-
siveSubset subset isolating those users who make the most complex passwords. Regardless of the reason for this
difference, however, researchers seeking to compare password policies should be aware that such subsets may not be
representative.

5.4 Guessability and entropy

Historically, Shannon entropy (computed or estimated using various methods) has provided a convenient single statis-
tic to summarize password strength. It remains unclear, however, how well entropy reflects the guess resistance of
a password set. While information entropy does provide a theoretical lower bound on the guessability of a set of
passwords [28], in practice a system administrator may be more concerned about how many passwords can be cracked
in a given number of guesses than about the average guessability across the population. Although there is no math-
ematical relationship between entropy and this definition of guess resistance, we examine the possibility that the two
are correlated in practice. To do this, we consider two independent measures of entropy, as defined in Section 4.2:
an empirically calculated estimate and a theoretical NIST estimate. For both measures, we find that entropy esti-
mates roughly indicate which composition policies provide more guess resistance than others, but provide no useful
information about the magnitude of these differences.

Empirically estimated entropy. We ranked our password conditions based on the proportion of passwords cracked
in our most complete experiment (E) at one trillion guesses, and compared this to the rank of conditions based on
empirically estimated entropy. We found these rankings, shown in Figure 9, to be significantly correlated (Kendall’s
7 = 0.71, Holm-corrected p = 0.042). However, looking at the proportion of passwords cracked at a million or a
billion guesses, the correlation in rankings is no longer significant (Holm-corrected p = 0.275,0.062). The same
pattern of significance, correlation at one trillion guesses but not at one billion or one million, was found in our largest
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Figure 9: Relationship among the resistance of our collected password sets to heuristic cracking (experiment E); emprical entropy
estimates we calculate from those sets; and NIST entropy estimates for our password conditions.

public-data experiment (P4). These results indicate that entropy might be useful when considering an adversary who
can make a large number of guesses, but is not useful when considering a smaller number of guesses.

Further, empirically estimated entropy was unable to predict correctly the ranking of dictionary8, even when
considering a large number of guesses. This condition displayed greater resistance to guessability than basic8, yet
its empirically estimated entropy was lower. This might indicate a flaw in how entropy was estimated, a flaw in the
guessing algorithm, or an innate shortcoming of the use of entropy to predict guessability. Since entropy can only
lower-bound the guessability of passwords, it is possible for the frequency distribution of dictionary8 to have low
entropy but high guess resistance. If this is the case, Verheul theorized that such a distribution would be optimal for
password policy [43].

NIST entropy. Computing the NIST entropy of our password conditions produces three equivalence classes, as
shown in Figure 9. These arise because NIST entropy is not granular enough to capture all differences between our
conditions. First, NIST entropy does not take into account the size of a dictionary or its implementation. All five
of our dictionary and blacklist conditions meet the NIST requirement of a dictionary with at least 50,000 words [8].
Implementation details, such as case-insensitive blacklist checking or the removal of non-alphabetic characters before
a dictionary check, are not considered in the entropy score. Our results show that these details lead to password
policies with very different levels of password strength and should be considered in a future heuristic.

Second, the NIST entropy scores for basic16 and comprehensive§ are the same, even though basic16 appears to be
much more resistant to powerful guessing attacks. This may suggest that future heuristics should assign greater value
to length than does the NIST heuristic.

Perhaps surprisingly, the equivalence classes given by NIST entropy are ordered correctly based on our results
for guessability after 50 trillion guesses. Though its lack of granularity fails to capture differences between similar
password conditions, NIST entropy seems to succeed at its stated purpose of providing a “rough rule of thumb” [8].

We stress that although both measures of entropy provide a rough ordering among policies, they do not always
correctly classify guessability (see for example dictionary8), and they do not effectively measure how much additional
guess resistance one policy provides as compared to another. These results suggest that a “rough rule of thumb” may
be the limit of entropy’s usefulness as a metric.

6 Discussion

We next discuss a number of important issues regarding ethics, ecological validity, and the limitations of our method-
ology.

Ethical considerations. Most of our results rely on passwords we have collected during a user study (approved by
our institution’s IRB). However, we also use the RockYou and MySpace password lists. Although these passwords
have collectively been used by a number of scientific works that study passwords (e.g., [4,13,46,47]), this nevertheless
creates an ethical conundrum: Should our research use passwords acquired illicitly? Since this data has already been
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made public and is easily available, using it in our research does not increase the harm to the victims. We use
these passwords only to train and test guessing algorithms, and not in relationship with any usernames or other login
information. Furthermore, as attackers are likely to use these password sets as training sets or cracking dictionaries,
our use of them to evaluate password strength implies our results are more likely to be of practical relevance to security
administrators.

Ecological validity. As with any user study, the ecological validity of our approach is important to the generalizability
of our results. First, it is important to understand the results in the context of our participant sample. As we describe
in Sections 1 and 3.4, our sample of Mechanical Turk participants is somewhat younger and more educated than the
general population, but more diverse than typical small-sample password studies.

A second factor inviting consideration is that the passwords we collected did not protect high-value accounts. As
we describe in Section 1, this is a longstanding limitation of password research. To gain insight into the extent to
which our participants behaved as they would in non-study conditions, we tested two password-creation scenarios
(Section 3.3): one was taking a survey, designed to observe user behavior with passwords for short-term, low-value
accounts; and one was a simulated change to a longer-term, higher-value email account. Our users provided stronger
passwords (measured by guessability and entropy) in the email scenario, a result consistent with users picking better
passwords to protect a (hypothetical) high-value e-mail account than a low-value survey account. All our conditions
except basic8 used the email scenario.

In our study, as in the real world, some users wrote down or otherwise stored their passwords. We asked participants
who returned for the second half of the study whether or not they stored the password they had created (after reassuring
them they would get paid either way), and we also instrumented the password-entry form to detect copy-paste and
browser auto-fill behavior. We detected about 6% of participants using these methods of storage, while overall about
one third admitted storing their passwords. Participants in comprehensive8 stored their passwords significantly more
often than those in the other conditions (PHFET, p < 0.05).

We designed our study to minimize the impact of sampling and account-value limitations. All our findings result
from comparisons between conditions. caused by the ways in which conditions differ (e.g., using a different technique
to choose longer passwords than shorter ones) would be correctly captured and appropriately reflected in the results.
Thus, we believe it is likely that our findings hold in general, at least for some classes of passwords and some classes
of users.

Other limitations. We tested all sets of passwords with a number of password-guessing tools; the one we focus on
(the Weir algorithm) always performed best. There may exist algorithms or training sets that would be more effective
at guessing passwords than anything we tested. While this might affect some of our conclusions, we believe that most
of them are robust, partly because many of our results are supported by multiple experiments and metrics.

In this work, we focused on automated offline password-guessing attacks. There are many other real-life threats
to password security, such as phishing and shoulder surfing. Our analysis of password strength does not account for
these. The password-composition policies we tested may induce different behaviors, e.g., writing down or forgetting
passwords or using password managers, that affect password security. Although such effects have previously been
studied for a subset of the policies in this study [25], space constraints dictate that a comprehensive investigation is
beyond the scope of this paper.

7 Conclusion

Although the number and complexity of password-composition requirements imposed by systems administrators at
a wide range of organizations have been steadily increasing, the actual value added by these requirements is poorly
understood. In this work, we take a substantial step forward in understanding not only these requirements themselves,
but also the process of evaluating them.

We introduced a new, efficient technique for evaluating password strength that can be implemented for a variety
of password-guessing algorithms and tuned using a variety of training sets to gain insight into the comparative guess
resistance of different sets of passwords. Using this technique, we were able to perform a more comprehensive
password analysis than had previously been possible.

We found several notable results about the comparative strength of different composition policies. Although NIST
considers basicl6 and comprehensive8 equivalent, we found that basic16 is superior for large numbers of guesses.
Combined with a prior result that basicl6 is also easier for users, this suggests that basic16 is the better policy
choice [25]. We also found that the effectiveness of a dictionary check depends heavily on the choice of dictionary;
in particular, a large blacklist created using state-of-the-art password-guessing techniques is much more effective than
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a standard dictionary at preventing users from choosing easily guessed passwords. Our findings highlight several in-
teresting points in the password-policy space and suggest some directions for further research to more fully detail a
complete set of tradeoffs among composition-policy requirements.

Our results also reveal important information about conducting guess-resistance analysis. Effective attacks on
passwords created under complex or rare-in-practice composition policies require access to abundant, closely matched
training data. In addition, this type of password set cannot be characterized correctly simply by selecting a subset of
conforming passwords from a larger corpus; such a subset is unlikely to be representative of passwords created under
the policy in question. Finally, we report that Shannon entropy, though a convenient single-statistic metric of pass-
word strength, provides only a rough correlation with guess resistance and is unable to correctly predict quantitative
differences in guessability among password sets.
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A Calculator Experiments

Here we detail the complete training and test data used in each of our Weir-algorithm experiments. The first column
gives the experiment number. The next three columns list the three types of training data used to create a Weir-
calculator experiment. The structures column describes the wordlist(s) used to generate the set of character-type
structures that define the Weir algorithm’s search space. The digits and symbols column lists the wordlist(s) that
determine the probabilities with which combinations of digits and symbols can be filled into those structures. The
strings column shows which wordlists provide the probabilities with which alphabetic strings are filled into structures.
In most cases, we train strings on as much data as possible, while restricting structure and digit/symbol training to
those wordlists that contain a quality sample of multi-character-class passwords. In the final column, we describe the
set(s) of passwords that we attempted to guess in a given experiment.

We also list the complete training and test data used in each of our BFM experiments. The experiment number
and test set columns are the same as in the Weir subtable. Training for the BFM calculator, however, is considerably
simpler, using only one combined wordlist per experiment; these lists are detailed in the training set column.

Abbreviations for all the training and test sets we use are defined in the key below the tables.

Weir experiment descriptions

Name Training sets Testing Set
Structures Digits and symbols Strings

Trained from public password data

P1 MSS8 MS MS 1000-All

P2 MSS8 MS MS, W2, 1 1000-All

P3 MS8 MS, RY MS, W2, 1, RY 1000-All

P3-C8 MSC MS, RY MS, W2, 1, RY 1000-C8

P3-Bl16 MS16 MS, RY MS, W2, 1, RY 1000-B16

P4 MSS8, OWS8 MS, RY, OW MS, W2, 1, RY, OW 1000-All

P4-B16 MS16, OW16 MS, RY, OW MS, W2, 1, RY, OW 1000-B16

Trained on half of our dataset, weighted to 1/10th, equal-size, or 10x the cumulative size of the public data

X1/10 MSS, 500-All MS, RY, 500-All MS, W2, I, RY, 500-All 500-All
X1 MS8, 500-All MS, RY, 500-All MS, W2, I, RY, 500-All 500-All
X10 MSS, 500-All MS, RY, 500-All MS, W2, 1, RY, 500-All 500-All
Everything

E MS8, OW8, 500-All MS, RY, OW, 500-All MS, W2, 1, RY, OW, 500-All 500-All

Testing password subsets that meet comprehensive8 requirements

SOa MSC, OWC MS, OW MS, W2, 1, OW 1000-C8, 206-C8S

SOb MSC, OWC, 2000-C8  MS, OW, 2000-C8 MS, W2, I, OW, 2000-C8 1000-C8, 206-C8S

S1 MSC, OWC, RYCD MS, OW, RY MS, W2, 1, OW, RY 1000-C8, 206-C8S

S2 MSC, OWC, 2000-C8, MS, OW, 2000-C8, RY MS, W2, 1, OW, 2000C8, RY 1000-CS8, 206-C8S
RYCD

Split ratio testing on basic8

B8a MS8, OW38, 500-B8 MS, RY, OW, 500-B8 MS, W2, 1, RY, OW, 500-B8 2500-B8

B8b MSS8, OWS8, 1000-B8 MS, RY, OW, 1000-B8  MS, W2, I, RY, OW, 1000-B8 2000-B8

B8c MSS8, OW8, 1500-B8 MS, RY, OW, 1500-B8  MS, W2, I, RY, OW, 1500-B8 1500-B8

B8d MS8, OW8, 2000-B8 MS, RY, OW, 2000-B8  MS, W2, I, RY, OW, 2000-B8 1000-B8

B&e MSS8, OW8, 2500-B8 MS, RY, OW, 2500-B8  MS, W2, I, RY, OW, 2500-B8 500-B8

Split ratio testing on comprehensive8

C8test1/10 MSC, 500-C8 MS, RY, 500-C8 MS, W2, 1, RY, 500-C8 2500-C8

C8testl MSC, 500-C8 MS, RY, 500-C8 MS, W2, 1, RY, 500-C8 2500-C8

C8a MSC, OWC, 500-C8 MS, RY, OW, 500-C8 MS, W2, I, RY, OW, 500-C8 2500-C8

C8b MSC, OWC, 1000-C8  MS, RY, OW, 1000-C8  MS, W2, 1, RY, OW, 1000-C8 2000-C8

C8c MSC, OWC, 1500-C8  MS, RY, OW, 1500-C8  MS, W2, 1, RY, OW, 1500-C8 1500-C8

C8d MSC, OWC, 2000-C8  MS, RY, OW, 2000-C8 MS, W2, I, RY, OW, 2000-C8 1000-C8

C8e MSC, OWC, 2500-C8  MS, RY, OW, 2500-C8  MS, W2, 1, RY, OW, 2500-C8 500-C8
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BFM experiment descriptions

Name Training set Test set
Bl RY, MS, I 1000-All
B2 RY, MS, I, 500-All  500-All
B3 RY, MS, I, 2000-B8  1000-B8
B4 RY, MS, I, 2000-C8  1000-C8
Key to password sets
RY RockYou list I inflection list
RYCD RY, filtered w/ all regs. of C8 W2  simple Unix dictionary
MS MySpace list OW  paid Openwall dictionary
MS8 MS, filtered w/ min length of 8 OWS8  OW, filtered w/ min length of 8
MS16 MS, filtered w/ min length of 16 OW16 OW, filtered w/ min length of 16
MSC MS, filtered w/ min length of 8 OWC OW, filtered w/ min length 8
and character class reqs. of C8 and character class reqs. of C8
n-All  n passwords from each of our conditions n-B8  n basic8 passwords
n-B16  n basicl6 passwords n-C8 n comprehensive8 passwords
n-C8S  n comprehensiveSubset passwords n-RYCD  n RYCD passwords
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