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Abstract  
This paper presents two conceptually simple methods for parallelizing a Parallel 
Tempering Monte Carlo simulation in a distributed volunteer computing context, where 
computers belonging to the general public are used. The first method uses conventional 
multi-threading. The second method uses CUDA, a graphics card computing system. 
Parallel Tempering is described, and challenges such as parallel random number 
generation and mapping of Monte Carlo chains to different threads are explained. While 
conventional multi-threading on CPUs is well-established, GPGPU programming 
techniques and technologies are still developing and present several challenges, such as 
the effective use of a relatively large number of threads. Having multiple chains in 
Parallel Tempering allows parallelization in a manner that is similar to the serial 
algorithm. Volunteer computing introduces important constraints to high performance 
computing, and we show that both versions of the application are able to adapt 
themselves to the varying and unpredictable computing resources of volunteers’ 
computers, while leaving the machines responsive enough to use. We present 
experiments to show the scalable performance of these two approaches, and indicate that 
the efficiency of the methods increases with bigger problem sizes. 
 
 
1. Introduction 
Many fields of science and technology require vast computational resources. Simulation 
of physical systems is one notable example. Insufficient computing power can result in 
unfeasibly long running times or poor accuracy of results. Parallelizing such applications 
enables use of more processing power. However, parallelization of different applications 
may need different approaches in order to effectively use the processing units. In this 
paper, we parallelize a common Monte Carlo simulation technique known as Parallel 
Tempering Monte Carlo (PTMC) [8].  
 
We focus on two technologies that enable parallelism: 1) multi-core Central Processing 
Units (CPU), and 2) streaming processors on Graphics Processing Units (GPU) [15]. In 
particular, we use NVIDIA’s CUDA for GPU processing [15], though similar design 
principles may be applied to other GPU brands. Our primary design goals have been 
suitability for a volunteer computing environment, simplicity of the parallelization 



method, and low synchronization overhead. All of these goals have been achieved by 
leveraging the characteristics of our original (serial) algorithm. 
 
The nature of Parallel Tempering Monte Carlo allows us to partition a large simulation 
into smaller, independent simulations, groups of which can be solved by threads on a 
CPU. The number of threads is chosen to be the same as the number of cores present in 
the system to avoid cache contention among the threads. GPGPUs allow for the execution 
of threads on a larger number of processing elements. Although these processing 
elements are typically much slower than those of a CPU, having a large number of 
threads may make it possible to surpass the performance of current multi-core CPUs. 
 
In GPU programming, the creation of small, short-lived threads has been emphasized as a 
means towards achieving good speedup. An example would be multiplying two matrices, 
which can be done by dividing the task into threads, each of which computes one element 
of the target matrix. This low-level parallelism can be used in many algorithms and has 
been a significant source of GPU parallelization success. We show that, similar to CPU 
multi-threading, one can design a suitable GPU parallel algorithm that uses a coarser 
level of parallelization, running longer sequences of code on each GPU processor. 
  
One matter that differs between multi-threaded CPU and GPU programming is memory 
structure. In a multi-threaded CPU application, all threads have access to a common 
memory space, so the primary challenge is synchronizing access to shared data structures. 
GPU programming, on the other hand, involves threads that run in a separate memory 
space from the main application, (which runs on the CPU). The implication is that the 
code and the data on which the GPU threads operate must be transferred to the GPU 
memory before any processing can be started, and the results of the computation must be 
copied back to the main memory of a host computer. This data transfer can result in poor 
performance and must be kept to a minimum. It is thus important to make sure that the 
time spent processing data on the GPU is long compared to data transfer times. 
 
Another characteristic of parallel programming with GPUs is the ability to start a large 
number of threads with little overhead [15]. This is unlike traditional CPU threads, where 
each individual thread is treated as an entity independent of others, requiring separate 
resources such as stack memory, and whose creation and management (scheduling, 
keeping statistics of resource usage, etc.) are not cheap [15]. To absorb these costs, one 
option is to create as few CPU threads as possible and to make them run as long as 
possible. GPU threads, on the other hand, are cheaper to create and manage, since batches 
of GPU threads (blocks) are treated the same, so it is possible to create a large number of 
them and run them for shorter durations. 
 
The specific application examined in this paper, called Adiabatic QUantum Algorithms 
(AQUA) [16], uses a Quantum Monte Carlo [3] algorithm to compute the minimum 
energy gap between two quantum states undergoing an adiabatic evolution. These 
simulations require substantial computational resources, and we need to solve many 
problem instances. We have employed the Berkeley Open Infrastructure for Network 



Computing (BOINC) [2], to create the AQUA@home project and run the AQUA 
application on volunteers’ computers in a massively distributed manner.  
 
Resorting to volunteer computing entails serious considerations. An application that runs 
on a volunteer’s computer cannot drain the computing resources, as that would make it 
hard for the volunteer to use his or her machine. It also cannot dynamically communicate 
with other computers. The problem of varying system resources and processing power on 
different computers must also be considered. Our algorithm has been designed with these 
constraints in mind, and the first constraint has had a large effect on the design of the 
GPU version. The problem is that using a GPU at full throttle makes the computer’s user 
interface very slow or even non-responding, so caution must be used. 
 
The rest of the paper is organized as follows. Section 2 briefly presents the PTMC 
algorithm and how its design naturally leads to parallel execution. Section 3 describes the 
method we used to parallelize random number generation similarly in both the CPU and 
GPU environments. Section 4 shows how our application was parallelized to use multiple 
CPU cores, while Section 5 explains the corresponding design for the GPU. We dedicate 
more space to the description of GPU parallelization because it is a less developed topic. 
Section 6 presents the results of performance and scalability tests. We conclude the paper 
in Section 7. 
 
 
2. Parallel Tempering Monte Carlo 
GPUs have been used to speed up QMC simulations before [1]. In those 
implementations, the parallelized components are primarily low-level matrix operations. 
Here, we present PTMC as an algorithm that is particularly well-suited for parallel 
execution. This variant allows a natural mapping of the algorithm to parallel execution 
units such as a CPU’s cores or a GPU’s streaming processors, enabling a high-level break 
down of the algorithm. 
 
PTMC is based on the idea of running multiple Markov chains (sometimes referred to as 
replica) at the same time, each of which has as its stationary distribution that of the 
system at a different temperature.  After a certain number of sweeps through all of the 
chains, i.e. flipping bits with the Metropolis algorithm according to the relevant 
temperatures [11], adjacent chains are probabilistically swapped. The probability of a 
chain swap is determined by the relative probability of the chains’ states occurring at 
each other’s temperature. In a non-parallel implementation of PTMC, the program would 
sequentially iterate through the set of chains to perform a sweep. After all the chains have 
been swept the required number of times, the program attempts to swap the chains. This 
cycle continues until the application’s criteria for termination, such as a specified number 
of sweeps or satisfaction of a convergence test are met. More information about our 
implementation of Parallel Tempering comes in [7]. 
 
Each Monte Carlo chain can be swept independently of the others, so sweeping can be 
done in parallel. In our implementation, swapping chains can also be parallelized, 
because we consider only every two neighboring chains as possible swapping candidates, 



and then move to the next two chains. With N chains, up to N/2 swap operations could be 
done concurrently. 
 
Selecting logical temperature values to achieve a desired minimum swap rate, even in the 
presence of first-order phase transitions, is described in [7]. After the process of chain 
generation, the number of chains and their temperature values are held constant during 
the PTMC simulation. In this paper we consider the chains to have been already 
generated. 
 
 
3. Parallel Random Number Generation 
PTMC simulations, like other stochastic methods, depend on a vast supply of 
(pseudo)random numbers, because both sweeping a chain and swapping chains require 
random numbers. It is very important to make sure that in a parallel environment, random 
numbers are generated in a fast and valid manner. 
 
The original (serial) version of our application uses the well-known Mersenne-Twister 
algorithm [9]. The code for this algorithm is compact and contains simple integer 
operations. It relies on a global state vector and an index into that vector to generate 
random integers. This global set of variables makes it difficult to run the algorithm in 
parallel. Enforcing mutually exclusive access to this data structure through locks would 
cause poor performance, as a significant portion of time would be spent generating 
random numbers in serial. 
 
A simple and effective solution to this problem is to create multiple state vectors, one for 
each CPU thread. Even though the code remains almost identical, each thread uses its 
own state to generate the next random number. Each chain’s state has a different initial 
seed to prevent the problem of generating the same random numbers for different chains 
at every step. This simple solution allows us to maintain the same per-thread random 
number generation speed as in the single-thread case, with no compromise on the quality 
of the results.  
 
On a CPU, each chain is swept by a single core, but as explained later, on a GPU, each 
chain is swept by a number of streaming processors. In both cases, a state vector is 
created for every execution thread that could be running in parallel with other execution 
threads to avoid the need for synchronization. As a result, on the CPU, a chain has a 
single random state, while on the GPU, each divisible part of a chain has its own random 
state.  
 
Figures 1, 2, and 3 show how the original (serial), multi-threaded, and GPU versions 
initialize their Mersenne-Twister states, respectively. The Mersenne-Twister 
implementation itself is effectively identical between the three. 
 
 
 
 



 
 
 
#define MT_STATE_LENGTH 624 
static unsigned long randomState[MT_STATE_LENGTH]; 
static int randomIndex; 
static void initializeRandom(unsigned long seed); 
... 
initializeRandom(seed); 

Figure 1. Original (serial) Mersenne-Twister initialization. 
 
#define MT_STATE_LENGTH 624 
static void initializeRandom(unsigned long seed, 
                         unsigned long* randomState, 
                         int& randomIndex); 
... 
for (int chain=0;chain<numChains;chain++) { 
    chains[chain].randomState = new unsigned long[MT_STATE_LENGTH]; 
    initializeRandom(startSeed+chain, 
                     chains[chain].randomState, 
                     chains[chain].randomIndex); 
} 

Figure 2. Multi-threaded Mersenne-Twister initialization. Each chain has its own state. 
 
 
#define MT_STATE_LENGTH 624 
__device__ unsigned long 
      randomStates[MAX_RAND_CHAINS][MAX_RAND_THREADS][MT_STATE_LENGTH]; 
__device__ int randomIndices[MAX_RAND_CHAINS][MAX_RAND_THREADS];  
__global__ void cuda_init_genrand(unsigned long seed, 
                                  unsigned long* randomState, 
                                  int* randomIndex); 
... 
int thread = threadIdx.x; 
int chain = blockIdx.x; 
initializeRandom(startSeed + chain*threadDim.x + thread, 
                 randomStates[chain][thread], 
                 &randomIndices[chain][thread]); 

Figure 3. GPU Mersenne-Twister initialization. Each chain can have multiple threads. 
 
 
4. Multi-Threading on Multi-Core CPUs 
We parallelized the sweep and swap parts of the Parallel Tempering code using OpenMP 
[5]. By default, OpenMP creates the same number of threads as the number of available 
cores in the computer. Since this number is currently less than the number of chains 
(typically 4 or 8 cores vs. 25 to 200 chains), each thread is responsible for sweeping 
multiple chains. 
 
An alternative to one thread per core is to have one thread per chain. For a small number 
of chains, this scheme can have advantages in terms of less time spent in waiting on 
barriers. However, miscellaneous timing tests suggested that even for a relatively small 



number of chains, the performance was worse. We suspect this to be because of increased 
CPU cache misses and thread management overhead. 
 
When parallelizing a loop with I iterations, where each iteration of the loop can be done 
independently, OpenMP assigns I/N iterations (or one of the nearest integers thereof) to 
each of the N threads. Its default behavior is to start the worker threads when the loop is 
encountered, and wait for all threads to finish their iterations before continuing.  Figure 4 
shows the outline of our first attempt at parallelizing the Parallel Tempering algorithm. 
Unrelated code is omitted for brevity.  
 
while (!shouldTerminate()) { 
    #pragma omp parallel for 
    for (int chain=0; chain<numChains; chain++) { 
        for (int sweep=0; sweep<numSweepsPerSwap; sweep++) { 
            runMetropolis(chains[chain]); } } 
    doSwap(chains); 
    // Do any meaurements, gather statistics, etc. here 
} 

Figure 4. Outline of Parallel Tempering with OpenMP 
 
In Figure 4, chains contains a pointer to the Parallel Tempering chain data. The outer for-
loop is run in parallel. Each thread is thus responsible for running the inner loop for one 
or more chain values. To indicate that OpenMP should parallelize the for-loop, one adds 
the #pragma statement. No data that are modified within the for-loop are shared between 
the threads, so they can run with no need for synchronization. In this code the threads join 
before the doSwap() method. 
 
In our simulation, different chains are at different effective temperatures. Chains at higher 
temperatures have more bit flips and therefore require more work to update the state after 
a flip. OpenMP’s default assignment of chains to threads does not result in a balanced 
load distribution, because it assigns successive chains to each thread, resulting in some 
threads with many easy (cold) chains and some threads with many hard (hot) chains. 
Therefore, we form a work pool of chains, and start by assigning harder chains to each 
available thread in a first-come, first-served manner. Easier chains are assigned last. We 
observe the number of active cores to determine the efficiency of our work-assignment 
method, and the described method results in all the cores being occupied most of the 
time.  
 
Further improvement in CPU utilization was achieved by keeping the threads active 
throughout the simulation. However, barriers must then be specified explicitly to 
synchronize the threads between phases.  Swapping was also parallelized, so it required 
the current thread index and the total number of threads. 
 
Figure 5 shows the relevant code that implements the above improvements. 
 



static volatile int chain; // The workpool index 
#pragma omp parallel { 
    int thread = omp_get_thread_num(); 
    do { 
        // Sweeping through the chains selected from the workpool 
        if (thread==0) chain = numThreads; 
        #pragma omp barrier 
        int myChain = thread; 
        while (myChain < numChains) { 
            for (int sweep=0; sweep<numSweepsPerSwap; sweep++) { 
                runMetropolis(chains[myChain]); } 
            // Get the next chain without colliding with other threads 
            #pragma omp critical 
            {myChain = chain++;} 
        } 
        #pragma omp barrier 
        doSwap(chains,thread,numThreads); // Swapping 
        // Do any meaurements, gather statistics, etc. here 
    } while (!shouldTerminate()); 
} 

Figure 5. Keeping threads active; sweeping loop with workpool. 
 
AQUA@home is the first BOINC project to support CPU multi-threading. With BOINC, 
the user can determine how many cores are to be used, so BOINC provides the 
application with the number of threads that should be created. BOINC usually runs an 
application at a below-normal priority to make sure the computer remains responsive. 
However, this priority level is not respected for newly created OpenMP threads. AQUA 
explicitly sets the priority of all the newly created OpenMP threads to the same value as 
determined by BOINC. As a result, even though AQUA has a high CPU utilization rate 
(about 94% on 8-core computers), we have observed that the above method of 
parallelizing the PTMC algorithm allows volunteers to continue to use and interact with 
their machines. 
 
 
5. Parallelization on GPGPUs 
GPU programming involves more overhead than CPU programming because of the need 
to transfer data to and from the graphics card. Once the data are in place on the card, 
many threads can be started with little overhead. The code that is invoked on the GPU 
and runs in many threads is called the kernel. At the end of the computation, the results 
should be copied back to the main memory of the computer. 
 
A GPU contains a number of Multi-Processors (MP). Each of these in turn has a certain 
number of processing elements, so parallelism on a GPU is both at the MP and at the 
processing element level. These two levels of parallelism are reflected in adapting the 
PTMC method to run on a GPU. The first level involves mapping the chains to the MPs. 
This is similar to the multi-threading case, where each chain is swept by a thread. Each 
MP thus plays a role similar to a CPU core. The second level of parallelism is using the 
streaming processors in each MP to parallelize the sweep of individual chains. 
 



Significant factors in obtaining good speedup with a GPU include reducing the data 
transfer overhead, reducing the required GPU resources per thread so that more threads 
can be started, and keeping all of the MPs busy. 
 
A Monte Carlo sweep usually involves changing the state of the chain, and the implied 
write operations need synchronization if performed in parallel. However, chains in our 
simulations have regions that can be updated independently, since they are laid out such 
that a change in one region does not directly affect another. In our case, one group of 
many independent regions (64 in results below) covers half of the chain, and a second 
group covers the other half. The first group can be swept in parallel without 
synchronization. After that the threads are synchronized before continuing with the 
second group of regions. 
 
Each thread block sweeps different parts of the same chain, and some data common to the 
chain are placed in the shared memory in order to be accessed faster than if they were in 
the device’s global memory. An added benefit to this scheme is that more registers are 
freed to be used for other purposes. However, in our case managing the shared memory 
block was difficult, because each chain has more data than could fit into the shared 
memory. 
 
To keep all the streaming processors busy, we assign multiple chains to each MP, a 
method we call chain packing. This is similar to the CPU case where multiple chains 
were assigned to the same core by OpenMP. The main limiting factors in the GPU case 
are the number of registers available per MP and the maximum number of threads per 
MP. Each MP in current NVIDIA GPUs can take up to 512 threads, giving us a 
maximum of 8 chains per MP (assuming 64 threads per chain). All threads in an MP 
share a pool of registers, so the maximum number of used registers must not exceed this 
maximum. On older cards with 8,192 registers, our code can run 4 chains per MP, while 
with cards with 16,384, we can run the maximum possible 8 chains per block (these 
numbers may change for future GPUs). For example, with 30 MPs we can run 120 or 240 
chains in parallel, or more if fewer threads per chain are used. This high number explains 
the attractiveness of GPU parallelization, because in spite of streaming processors being 
slower than a typical CPU, their sheer number can result in an overall speedup. 
 
On the other hand, with a small number of chains, packing the MPs to the maximum may 
result in some idle MPs. For this reason, we stop packing chains in the MPs as soon as we 
see that some MPs are not being utilized. 
 
Under BOINC, it became apparent that volunteers expect as little CPU activity as 
possible from a GPU application. One reason is that many volunteers use their computers 
to run CPU-heavy BOINC applications at the same time as running GPU applications. 
However, loading the GPU with long-running kernels makes the system sluggish and 
eventually freezes the computer’s user interface, making it unusable for the volunteer. 
The responsiveness of the computer can be adjusted by changing the ratio of the time 
spent executing code on the GPU vs. on the CPU.  We chose for swapping to be done on 
the CPU, which allows us to change the GPU vs. CPU running time ratio by changing the 



number of sweeps between each swap operation. The application thus alternates between 
using the GPU to sweep the chains and then using the CPU to swap them. 
 
Data need to be transferred to the GPU before sweeping, and must be moved back to the 
host computer before swapping. As we mentioned before, copying data to and from the 
GPU is a concern. We increase the number of sweeps in between swap phases to absorb 
the cost of the data copying, but not so much as to make the computer unresponsive. 
 
The issue of the required floating point precision of the application must also be 
addressed. Recent graphics cards support double-precision floating point operations, but 
they may run slower than single-precision operations [15]. In our application, the 
sweeping phase performs a mix of integer and floating-point operations.  Real-valued 
data that are processed on the GPU are represented as single-precision floating-point 
numbers.  The corresponding code in the CPU-only version also uses single-precision.  In 
both versions, the results are accumulated on the CPU in double-precision numbers in 
order to minimize building up round-off error. 
 
Figure 6 shows the code for running the same loop as in Figure 4 in parallel with a GPU. 
cuda_runMetropolis(numSweepsPerSwap) performs the specified number of 
sweeps on the GPU before returning control to the CPU. 
 
cuda_alloc_mem(chains); // Allocate memory on the graphics card 
while (!shouldTerminate()) { 
  cuda_copy_chains_to_device(chains); // Copy data to the graphics card 
  cuda_runMetropolis(numSweepsPerSwap); 
  cuda_copy_chains_to_host(chains);   // Copy data back to main memory 
  doSwap(chains); 
  // Do any meaurements, gather statistics, etc. here 
} 
cuda_free_mem();        // Free memory on the graphics card 

Figure 6. Main loop of a GPU Parallel Tempering algorithm. 
 
Figure 7 shows how the code to run on the GPU is prepared. First, the number of chains 
assigned to each MP is calculated. The kernel is then invoked and a test is performed to 
see whether the kernel was successfully started given its configuration. If a failure due to 
a lack of resources is detected, the code reduces the number of packed chains, thus 
creating more blocks, and reducing the needed resources such as the number of registers. 
The kernel is then tried again. In this way, the code can adapt itself to the capabilities of 
the GPU on which it is running. 
 
 
 
 
 
 
 
 
 



//cuda_MP_count contains the number of MPs on the device 
static int block_size; // Number of threads in each block 
static int packed_chains; // number of chains in each MP 
static int num_blocks; // number of blocks in each MP 
static int num_nodes;  // numbr of nodes assigned to each thread 
static int last_num_chains = 0; // the previous number of chains 
 
void cuda_singleSiteMetropolis(/* arguments */) { 
 cudaError err; 
   
 last_num_chains = num_PT_chains; block_size = 32; packed_chains = 1; 
 num_blocks = num_PT_chains / packed_chains +   
           ((num_PT_chains % packed_chains) == 0? 0 : 1); 
 
 // pack the chains but stop when MPs start going unused. 
 while (packed_chains * block_size < MAX_CUDA_BLOCK_THREADS && 
           num_blocks > cuda_MP_count) { 
    packed_chains *= 2; 
    num_blocks = num_PT_chains / packed_chains +  
                    ((num_PT_chains % packed_chains) == 0? 0 : 1); 
 } 
 int kernel_success = 0; 
 while(kernel_success == 0) { 
   kernel_success = 1; // was the kernel started successfully? 
   dim3 gridDim(num_blocks); dim3 blockDim(block_size, packed_chains); 
   cuda_runMetropolis <<<gridDim, blockDim>>> (/* arguments */);    
   //kernel call 
   cudaThreadSynchronize(); //make sure all threads are finished 
   err = cudaGetLastError(); // did anything go wrong? 
   if(err != cudaSuccess) {  
    if(err == 7 && packed_chains>1) {//not enough resources (registers)  
         packed_chains /= 2;  
         num_blocks = num_PT_chains / packed_chains +  
                      ((num_PT_chains % packed_chains) == 0? 0 : 1);  
         kernel_success = 0; } 
    else { /* Error starting the kernel. Exit the program */ } 
   } 
 } 
} 

Figure 7. Choosing the number of threads per MP and the number of blocks. 
 
In the above code, each MP will have num_threads_per_block × packed_chains threads. 
There will be num_blocks number of such groups of threads. If this number is less than 
the number of MPs, they will all run in parallel. However, if num_blocks exceeds the 
number of MPs, then the MPs will take turns sweeping the chains. 
 
 
6. Performance and Scaling Experiments 
In this section, we investigate the performance and scaling of our CPU-only and CUDA 
applications. It is difficult to make a fair comparison between an application that runs 
only on a CPU and the same app that uses a GPU, because the comparison results will 
change if the employed CPU or GPU are changed. For this reason we will not perform 
any direct comparisons between the two implementations. 



 
We used 6 different problems for our experiments, ranging from 8 to 96 qubits, as listed 
in Table 1. In order to approximate the quantum equilibrium properties of a quantum 
system, we connect together many copies (128 in this case) of the corresponding classical 
system [14]. This larger classical system is then simulated in each chain. The total 
number of variables in the simulation is the product of the number of qubits, the number 
of copies in each chain, and the number of chains. For example, to simulate an 128 copies 
of an 8-qubit quantum system with 27 chains we have 128 × 8 × 27 = 27,648 classical 
variables to manage. The rapid increase in the number of variables required to simulate a 
quantum system necessitates good simulation performance. 
 

Qubits Chains Total  number  
of variables 

8 27 27,648 
16 34 69,632 
32 37 151,552 
48 57 350,208 
72 71 654,336 
96 111 1,363,968 

Table 1. The size of problems used in the experiments 
 
To measure the effectiveness of our multi-threaded CPU code, we ran the AQUA 
application on 32-qubit and 96-qubit Ising model [6] problems with 1, 2, 4, 6, and 8 
threads, on a Mac Pro computer with two 2.8 GHz Intel Quad Core Xeon processors 
(total of 8 cores) and 2 GB of 800 MHz DDR2 memory, running Mac OS 10.5. We 
performed 200,000 sweeps per run. Each run was repeated 10 times to obtain reliable 
average running times. The amount of time needed to perform the parallel tempering, 
which involves no I/O, is noted in Table 2. For completeness, we also note the total 
running time of the application, which involves some I/O operations. The GPU was not 
used in this case. 
 

Qubits Threads PT Time Std. Dev. Total Time Std. Dev. 
1 2,517.01 0.25 2,625.08 0.26 
2 1,300.82 14.36 1,355.10 14.44 
4 691.93 0.15 719.34 0.16 
6 480.83 0.16 499.20 0.16 

 
 

32 

8 380.43 0.18 394.32 0.18 
1 9,190.18 1.62 9,598.28 1.63 
2 4,695.24 10.02 4,901.03 10.06 
4 2,398.06 1.46 2,501.24 1.47 
6 1,653.01 0.18 1,722.86 0.18 

 
 

96 

8 1,273.01 0.12 1,324.95 0.13 
Table 2. Multi-threading performance for 32- and 96-qubit problems. 

 



Figure 8 shows the speedup obtained using different number of cores. Also shown is the 
theoretical limit of linear speedup. We see a good scaling of the running time with the 
number of threads, which improves with larger problem sizes, since larger problems have 
more chains, with each chain needing the sweeping of more variables.  There are thus 
more independent tasks that can be run in parallel between barriers. 
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Figure 8. Speedup vs. number of cores for the multi-threaded application. 

 
Our GPU experiments were performed on a mid-range NVIDIA GeForce GTX 260 
graphics card in a dual-core PC running Windows XP. In this case we packed the card to 
the maximum possible, and solved problems that differed in size, to observe performance 
of the GPU as a function of the problem size. The 32- and 96-qubit problems are the 
same as in the multi-threaded case. We again performed 200,000 sweeps per run. The 
results come in Table 3. Only one CPU thread was employed. 
 

Qubits PT Time Std. Dev. Total Time Std. Dev. 
8 274.79 0.41  276.39 0.42 
16 575.67 0.56 579.63 0.56 
32 1,138.33 0.49 1,146.72 0.49 
48 2,621.03 3.51 2,641.30 3.51 
72 4,849.05 2.84 4,892.47 2.84 
96 10,107.71 2.47 10,213.52 2.47 

Table 3. Running time for problems of different size for the GPU application in seconds 
 
Here again, we see an improvement in performance as the problem size increases. One 
reason is that with bigger problems, proportionally more time is spent sweeping the 
chains than copying data over to the host computer for swapping. Figure 9 shows this 
relative performance increase in terms of the number of variables per unit time spent in 
the parallel tempering part of the code. In this log-linear plot, the number of variables in 



the problem is displayed next to the corresponding data point. The data points are 
obtained by dividing the total number of variables by the parallel tempering time. The 
observed gain in performance saturates by 654,336 variables (72 qubits), which is where 
the maximum number of the GPU streaming processors are utilized.  
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Figure 9. GPU performance in relation to problem size  

 
The main reason for the relatively low performance of the GPU version compared to the 
CPU version is that high GPU utilization has a dramatic effect on the responsiveness of 
the computer. We consciously refrained from putting maximum load on the GPU, to 
allow the volunteers to be able to use their computers while our application is running. 
There are also algorithmic issues that rob performance: sweeping each chain involves 
randomly deciding whether or not to flip each bit. On a GPU MP, even if only one 
streaming processor decides to flip a bit, all threads on that MP must wait an amount of 
time equal to executing that flip, since they share an instruction pointer. The resulting 
performance is as if most chains always flip all bits.  
 
The main cost of data transfer to the GPU is the latency time required to start a transfer, 
while the data transfer itself is relatively fast. We observed improvements in execution 
speed by coalescing data structures into array forms, so the data can be transferred in 
fewer operations. 
 
 
7. Concluding Remarks 
We introduced two methods to parallelize a Parallel Tempering Monte Carlo algorithm 
on multi-core CPUs and on GPGPUs. The methods are conceptually simple, because they 



assign independent data processing to CPU threads (PTMC chains) or GPU threads (parts 
of PTMC chains). The resulting software is meant to run on volunteer computers 
belonging to members of the general public. It adapts itself to the available hardware, and 
employs the computing resources in a manner that leaves the computer on which it runs 
usable. 
 
We presented experimental data showing that the parallel algorithms are scalable within 
the ranges of the currently available computational resources. The constraint of leaving 
the computer with an appropriate level of usability makes our code slower than if it could 
use all of the available computing resources, particularly for the GPU application. 
However, it has the advantage of being able to run on thousands of volunteer computers, 
making up for lowered efficiency. The resulting application, AQUA, successfully solves 
problems that require vast computing resources. 
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