
High-Performance Physics Simulations Using Multi-Core CPUs
and GPGPUs in a Volunteer Computing Context

Kamran Karimi Neil G. Dickson Firas Hamze

D-Wave Systems Inc.
100-4401 Still Creek Drive
Burnaby, British Columbia

Canada, V5C 6G9
{kkarimi, ndickson, fhamze}@dwavesys.com

Abstract
This paper presents two conceptually simple methods for parallelizing a Parallel
Tempering Monte Carlo simulation in a distributed volunteer computing context, where
computers belonging to the general public are used. The first method uses conventional
multi-threading. The second method uses CUDA, a graphics card computing system.
Parallel Tempering is described, and challenges such as parallel random number
generation and mapping of Monte Carlo chains to different threads are explained. While
conventional multi-threading on CPUs is well-established, GPGPU programming
techniques and technologies are still developing and present several challenges, such as
the effective use of a relatively large number of threads. Having multiple chains in
Parallel Tempering allows parallelization in a manner that is similar to the serial
algorithm. Volunteer computing introduces important constraints to high performance
computing, and we show that both versions of the application are able to adapt
themselves to the varying and unpredictable computing resources of volunteers’
computers, while leaving the machines responsive enough to use. We present
experiments to show the scalable performance of these two approaches, and indicate that
the efficiency of the methods increases with bigger problem sizes.

1. Introduction
Many fields of science and technology require vast computational resources. Simulation
of physical systems is one notable example. Insufficient computing power can result in
unfeasibly long running times or poor accuracy of results. Parallelizing such applications
enables use of more processing power. However, parallelization of different applications
may need different approaches in order to effectively use the processing units. In this
paper, we parallelize a common Monte Carlo simulation technique known as Parallel
Tempering Monte Carlo (PTMC) [8].

We focus on two technologies that enable parallelism: 1) multi-core Central Processing
Units (CPU), and 2) streaming processors on Graphics Processing Units (GPU) [15]. In
particular, we use NVIDIA’s CUDA for GPU processing [15], though similar design
principles may be applied to other GPU brands. Our primary design goals have been
suitability for a volunteer computing environment, simplicity of the parallelization

method, and low synchronization overhead. All of these goals have been achieved by
leveraging the characteristics of our original (serial) algorithm.

The nature of Parallel Tempering Monte Carlo allows us to partition a large simulation
into smaller, independent simulations, groups of which can be solved by threads on a
CPU. The number of threads is chosen to be the same as the number of cores present in
the system to avoid cache contention among the threads. GPGPUs allow for the execution
of threads on a larger number of processing elements. Although these processing
elements are typically much slower than those of a CPU, having a large number of
threads may make it possible to surpass the performance of current multi-core CPUs.

In GPU programming, the creation of small, short-lived threads has been emphasized as a
means towards achieving good speedup. An example would be multiplying two matrices,
which can be done by dividing the task into threads, each of which computes one element
of the target matrix. This low-level parallelism can be used in many algorithms and has
been a significant source of GPU parallelization success. We show that, similar to CPU
multi-threading, one can design a suitable GPU parallel algorithm that uses a coarser
level of parallelization, running longer sequences of code on each GPU processor.

One matter that differs between multi-threaded CPU and GPU programming is memory
structure. In a multi-threaded CPU application, all threads have access to a common
memory space, so the primary challenge is synchronizing access to shared data structures.
GPU programming, on the other hand, involves threads that run in a separate memory
space from the main application, (which runs on the CPU). The implication is that the
code and the data on which the GPU threads operate must be transferred to the GPU
memory before any processing can be started, and the results of the computation must be
copied back to the main memory of a host computer. This data transfer can result in poor
performance and must be kept to a minimum. It is thus important to make sure that the
time spent processing data on the GPU is long compared to data transfer times.

Another characteristic of parallel programming with GPUs is the ability to start a large
number of threads with little overhead [15]. This is unlike traditional CPU threads, where
each individual thread is treated as an entity independent of others, requiring separate
resources such as stack memory, and whose creation and management (scheduling,
keeping statistics of resource usage, etc.) are not cheap [15]. To absorb these costs, one
option is to create as few CPU threads as possible and to make them run as long as
possible. GPU threads, on the other hand, are cheaper to create and manage, since batches
of GPU threads (blocks) are treated the same, so it is possible to create a large number of
them and run them for shorter durations.

The specific application examined in this paper, called Adiabatic QUantum Algorithms
(AQUA) [16], uses a Quantum Monte Carlo [3] algorithm to compute the minimum
energy gap between two quantum states undergoing an adiabatic evolution. These
simulations require substantial computational resources, and we need to solve many
problem instances. We have employed the Berkeley Open Infrastructure for Network

Computing (BOINC) [2], to create the AQUA@home project and run the AQUA
application on volunteers’ computers in a massively distributed manner.

Resorting to volunteer computing entails serious considerations. An application that runs
on a volunteer’s computer cannot drain the computing resources, as that would make it
hard for the volunteer to use his or her machine. It also cannot dynamically communicate
with other computers. The problem of varying system resources and processing power on
different computers must also be considered. Our algorithm has been designed with these
constraints in mind, and the first constraint has had a large effect on the design of the
GPU version. The problem is that using a GPU at full throttle makes the computer’s user
interface very slow or even non-responding, so caution must be used.

The rest of the paper is organized as follows. Section 2 briefly presents the PTMC
algorithm and how its design naturally leads to parallel execution. Section 3 describes the
method we used to parallelize random number generation similarly in both the CPU and
GPU environments. Section 4 shows how our application was parallelized to use multiple
CPU cores, while Section 5 explains the corresponding design for the GPU. We dedicate
more space to the description of GPU parallelization because it is a less developed topic.
Section 6 presents the results of performance and scalability tests. We conclude the paper
in Section 7.

2. Parallel Tempering Monte Carlo
GPUs have been used to speed up QMC simulations before [1]. In those
implementations, the parallelized components are primarily low-level matrix operations.
Here, we present PTMC as an algorithm that is particularly well-suited for parallel
execution. This variant allows a natural mapping of the algorithm to parallel execution
units such as a CPU’s cores or a GPU’s streaming processors, enabling a high-level break
down of the algorithm.

PTMC is based on the idea of running multiple Markov chains (sometimes referred to as
replica) at the same time, each of which has as its stationary distribution that of the
system at a different temperature. After a certain number of sweeps through all of the
chains, i.e. flipping bits with the Metropolis algorithm according to the relevant
temperatures [11], adjacent chains are probabilistically swapped. The probability of a
chain swap is determined by the relative probability of the chains’ states occurring at
each other’s temperature. In a non-parallel implementation of PTMC, the program would
sequentially iterate through the set of chains to perform a sweep. After all the chains have
been swept the required number of times, the program attempts to swap the chains. This
cycle continues until the application’s criteria for termination, such as a specified number
of sweeps or satisfaction of a convergence test are met. More information about our
implementation of Parallel Tempering comes in [7].

Each Monte Carlo chain can be swept independently of the others, so sweeping can be
done in parallel. In our implementation, swapping chains can also be parallelized,
because we consider only every two neighboring chains as possible swapping candidates,

and then move to the next two chains. With N chains, up to N/2 swap operations could be
done concurrently.

Selecting logical temperature values to achieve a desired minimum swap rate, even in the
presence of first-order phase transitions, is described in [7]. After the process of chain
generation, the number of chains and their temperature values are held constant during
the PTMC simulation. In this paper we consider the chains to have been already
generated.

3. Parallel Random Number Generation
PTMC simulations, like other stochastic methods, depend on a vast supply of
(pseudo)random numbers, because both sweeping a chain and swapping chains require
random numbers. It is very important to make sure that in a parallel environment, random
numbers are generated in a fast and valid manner.

The original (serial) version of our application uses the well-known Mersenne-Twister
algorithm [9]. The code for this algorithm is compact and contains simple integer
operations. It relies on a global state vector and an index into that vector to generate
random integers. This global set of variables makes it difficult to run the algorithm in
parallel. Enforcing mutually exclusive access to this data structure through locks would
cause poor performance, as a significant portion of time would be spent generating
random numbers in serial.

A simple and effective solution to this problem is to create multiple state vectors, one for
each CPU thread. Even though the code remains almost identical, each thread uses its
own state to generate the next random number. Each chain’s state has a different initial
seed to prevent the problem of generating the same random numbers for different chains
at every step. This simple solution allows us to maintain the same per-thread random
number generation speed as in the single-thread case, with no compromise on the quality
of the results.

On a CPU, each chain is swept by a single core, but as explained later, on a GPU, each
chain is swept by a number of streaming processors. In both cases, a state vector is
created for every execution thread that could be running in parallel with other execution
threads to avoid the need for synchronization. As a result, on the CPU, a chain has a
single random state, while on the GPU, each divisible part of a chain has its own random
state.

Figures 1, 2, and 3 show how the original (serial), multi-threaded, and GPU versions
initialize their Mersenne-Twister states, respectively. The Mersenne-Twister
implementation itself is effectively identical between the three.

#define MT_STATE_LENGTH 624
static unsigned long randomState[MT_STATE_LENGTH];
static int randomIndex;
static void initializeRandom(unsigned long seed);
...
initializeRandom(seed);

Figure 1. Original (serial) Mersenne-Twister initialization.

#define MT_STATE_LENGTH 624
static void initializeRandom(unsigned long seed,
 unsigned long* randomState,
 int& randomIndex);
...
for (int chain=0;chain<numChains;chain++) {
 chains[chain].randomState = new unsigned long[MT_STATE_LENGTH];
 initializeRandom(startSeed+chain,
 chains[chain].randomState,
 chains[chain].randomIndex);
}

Figure 2. Multi-threaded Mersenne-Twister initialization. Each chain has its own state.

#define MT_STATE_LENGTH 624
__device__ unsigned long
 randomStates[MAX_RAND_CHAINS][MAX_RAND_THREADS][MT_STATE_LENGTH];
__device__ int randomIndices[MAX_RAND_CHAINS][MAX_RAND_THREADS];
__global__ void cuda_init_genrand(unsigned long seed,
 unsigned long* randomState,
 int* randomIndex);
...
int thread = threadIdx.x;
int chain = blockIdx.x;
initializeRandom(startSeed + chain*threadDim.x + thread,
 randomStates[chain][thread],
 &randomIndices[chain][thread]);

Figure 3. GPU Mersenne-Twister initialization. Each chain can have multiple threads.

4. Multi-Threading on Multi-Core CPUs
We parallelized the sweep and swap parts of the Parallel Tempering code using OpenMP
[5]. By default, OpenMP creates the same number of threads as the number of available
cores in the computer. Since this number is currently less than the number of chains
(typically 4 or 8 cores vs. 25 to 200 chains), each thread is responsible for sweeping
multiple chains.

An alternative to one thread per core is to have one thread per chain. For a small number
of chains, this scheme can have advantages in terms of less time spent in waiting on
barriers. However, miscellaneous timing tests suggested that even for a relatively small

number of chains, the performance was worse. We suspect this to be because of increased
CPU cache misses and thread management overhead.

When parallelizing a loop with I iterations, where each iteration of the loop can be done
independently, OpenMP assigns I/N iterations (or one of the nearest integers thereof) to
each of the N threads. Its default behavior is to start the worker threads when the loop is
encountered, and wait for all threads to finish their iterations before continuing. Figure 4
shows the outline of our first attempt at parallelizing the Parallel Tempering algorithm.
Unrelated code is omitted for brevity.

while (!shouldTerminate()) {
 #pragma omp parallel for
 for (int chain=0; chain<numChains; chain++) {
 for (int sweep=0; sweep<numSweepsPerSwap; sweep++) {
 runMetropolis(chains[chain]); } }
 doSwap(chains);
 // Do any meaurements, gather statistics, etc. here
}

Figure 4. Outline of Parallel Tempering with OpenMP

In Figure 4, chains contains a pointer to the Parallel Tempering chain data. The outer for-
loop is run in parallel. Each thread is thus responsible for running the inner loop for one
or more chain values. To indicate that OpenMP should parallelize the for-loop, one adds
the #pragma statement. No data that are modified within the for-loop are shared between
the threads, so they can run with no need for synchronization. In this code the threads join
before the doSwap() method.

In our simulation, different chains are at different effective temperatures. Chains at higher
temperatures have more bit flips and therefore require more work to update the state after
a flip. OpenMP’s default assignment of chains to threads does not result in a balanced
load distribution, because it assigns successive chains to each thread, resulting in some
threads with many easy (cold) chains and some threads with many hard (hot) chains.
Therefore, we form a work pool of chains, and start by assigning harder chains to each
available thread in a first-come, first-served manner. Easier chains are assigned last. We
observe the number of active cores to determine the efficiency of our work-assignment
method, and the described method results in all the cores being occupied most of the
time.

Further improvement in CPU utilization was achieved by keeping the threads active
throughout the simulation. However, barriers must then be specified explicitly to
synchronize the threads between phases. Swapping was also parallelized, so it required
the current thread index and the total number of threads.

Figure 5 shows the relevant code that implements the above improvements.

static volatile int chain; // The workpool index
#pragma omp parallel {
 int thread = omp_get_thread_num();
 do {
 // Sweeping through the chains selected from the workpool
 if (thread==0) chain = numThreads;
 #pragma omp barrier
 int myChain = thread;
 while (myChain < numChains) {
 for (int sweep=0; sweep<numSweepsPerSwap; sweep++) {
 runMetropolis(chains[myChain]); }
 // Get the next chain without colliding with other threads
 #pragma omp critical
 {myChain = chain++;}
 }
 #pragma omp barrier
 doSwap(chains,thread,numThreads); // Swapping
 // Do any meaurements, gather statistics, etc. here
 } while (!shouldTerminate());
}

Figure 5. Keeping threads active; sweeping loop with workpool.

AQUA@home is the first BOINC project to support CPU multi-threading. With BOINC,
the user can determine how many cores are to be used, so BOINC provides the
application with the number of threads that should be created. BOINC usually runs an
application at a below-normal priority to make sure the computer remains responsive.
However, this priority level is not respected for newly created OpenMP threads. AQUA
explicitly sets the priority of all the newly created OpenMP threads to the same value as
determined by BOINC. As a result, even though AQUA has a high CPU utilization rate
(about 94% on 8-core computers), we have observed that the above method of
parallelizing the PTMC algorithm allows volunteers to continue to use and interact with
their machines.

5. Parallelization on GPGPUs
GPU programming involves more overhead than CPU programming because of the need
to transfer data to and from the graphics card. Once the data are in place on the card,
many threads can be started with little overhead. The code that is invoked on the GPU
and runs in many threads is called the kernel. At the end of the computation, the results
should be copied back to the main memory of the computer.

A GPU contains a number of Multi-Processors (MP). Each of these in turn has a certain
number of processing elements, so parallelism on a GPU is both at the MP and at the
processing element level. These two levels of parallelism are reflected in adapting the
PTMC method to run on a GPU. The first level involves mapping the chains to the MPs.
This is similar to the multi-threading case, where each chain is swept by a thread. Each
MP thus plays a role similar to a CPU core. The second level of parallelism is using the
streaming processors in each MP to parallelize the sweep of individual chains.

Significant factors in obtaining good speedup with a GPU include reducing the data
transfer overhead, reducing the required GPU resources per thread so that more threads
can be started, and keeping all of the MPs busy.

A Monte Carlo sweep usually involves changing the state of the chain, and the implied
write operations need synchronization if performed in parallel. However, chains in our
simulations have regions that can be updated independently, since they are laid out such
that a change in one region does not directly affect another. In our case, one group of
many independent regions (64 in results below) covers half of the chain, and a second
group covers the other half. The first group can be swept in parallel without
synchronization. After that the threads are synchronized before continuing with the
second group of regions.

Each thread block sweeps different parts of the same chain, and some data common to the
chain are placed in the shared memory in order to be accessed faster than if they were in
the device’s global memory. An added benefit to this scheme is that more registers are
freed to be used for other purposes. However, in our case managing the shared memory
block was difficult, because each chain has more data than could fit into the shared
memory.

To keep all the streaming processors busy, we assign multiple chains to each MP, a
method we call chain packing. This is similar to the CPU case where multiple chains
were assigned to the same core by OpenMP. The main limiting factors in the GPU case
are the number of registers available per MP and the maximum number of threads per
MP. Each MP in current NVIDIA GPUs can take up to 512 threads, giving us a
maximum of 8 chains per MP (assuming 64 threads per chain). All threads in an MP
share a pool of registers, so the maximum number of used registers must not exceed this
maximum. On older cards with 8,192 registers, our code can run 4 chains per MP, while
with cards with 16,384, we can run the maximum possible 8 chains per block (these
numbers may change for future GPUs). For example, with 30 MPs we can run 120 or 240
chains in parallel, or more if fewer threads per chain are used. This high number explains
the attractiveness of GPU parallelization, because in spite of streaming processors being
slower than a typical CPU, their sheer number can result in an overall speedup.

On the other hand, with a small number of chains, packing the MPs to the maximum may
result in some idle MPs. For this reason, we stop packing chains in the MPs as soon as we
see that some MPs are not being utilized.

Under BOINC, it became apparent that volunteers expect as little CPU activity as
possible from a GPU application. One reason is that many volunteers use their computers
to run CPU-heavy BOINC applications at the same time as running GPU applications.
However, loading the GPU with long-running kernels makes the system sluggish and
eventually freezes the computer’s user interface, making it unusable for the volunteer.
The responsiveness of the computer can be adjusted by changing the ratio of the time
spent executing code on the GPU vs. on the CPU. We chose for swapping to be done on
the CPU, which allows us to change the GPU vs. CPU running time ratio by changing the

number of sweeps between each swap operation. The application thus alternates between
using the GPU to sweep the chains and then using the CPU to swap them.

Data need to be transferred to the GPU before sweeping, and must be moved back to the
host computer before swapping. As we mentioned before, copying data to and from the
GPU is a concern. We increase the number of sweeps in between swap phases to absorb
the cost of the data copying, but not so much as to make the computer unresponsive.

The issue of the required floating point precision of the application must also be
addressed. Recent graphics cards support double-precision floating point operations, but
they may run slower than single-precision operations [15]. In our application, the
sweeping phase performs a mix of integer and floating-point operations. Real-valued
data that are processed on the GPU are represented as single-precision floating-point
numbers. The corresponding code in the CPU-only version also uses single-precision. In
both versions, the results are accumulated on the CPU in double-precision numbers in
order to minimize building up round-off error.

Figure 6 shows the code for running the same loop as in Figure 4 in parallel with a GPU.
cuda_runMetropolis(numSweepsPerSwap) performs the specified number of
sweeps on the GPU before returning control to the CPU.

cuda_alloc_mem(chains); // Allocate memory on the graphics card
while (!shouldTerminate()) {
 cuda_copy_chains_to_device(chains); // Copy data to the graphics card
 cuda_runMetropolis(numSweepsPerSwap);
 cuda_copy_chains_to_host(chains); // Copy data back to main memory
 doSwap(chains);
 // Do any meaurements, gather statistics, etc. here
}
cuda_free_mem(); // Free memory on the graphics card

Figure 6. Main loop of a GPU Parallel Tempering algorithm.

Figure 7 shows how the code to run on the GPU is prepared. First, the number of chains
assigned to each MP is calculated. The kernel is then invoked and a test is performed to
see whether the kernel was successfully started given its configuration. If a failure due to
a lack of resources is detected, the code reduces the number of packed chains, thus
creating more blocks, and reducing the needed resources such as the number of registers.
The kernel is then tried again. In this way, the code can adapt itself to the capabilities of
the GPU on which it is running.

//cuda_MP_count contains the number of MPs on the device
static int block_size; // Number of threads in each block
static int packed_chains; // number of chains in each MP
static int num_blocks; // number of blocks in each MP
static int num_nodes; // numbr of nodes assigned to each thread
static int last_num_chains = 0; // the previous number of chains

void cuda_singleSiteMetropolis(/* arguments */) {
 cudaError err;

 last_num_chains = num_PT_chains; block_size = 32; packed_chains = 1;
 num_blocks = num_PT_chains / packed_chains +
 ((num_PT_chains % packed_chains) == 0? 0 : 1);

 // pack the chains but stop when MPs start going unused.
 while (packed_chains * block_size < MAX_CUDA_BLOCK_THREADS &&
 num_blocks > cuda_MP_count) {
 packed_chains *= 2;
 num_blocks = num_PT_chains / packed_chains +
 ((num_PT_chains % packed_chains) == 0? 0 : 1);
 }
 int kernel_success = 0;
 while(kernel_success == 0) {
 kernel_success = 1; // was the kernel started successfully?
 dim3 gridDim(num_blocks); dim3 blockDim(block_size, packed_chains);
 cuda_runMetropolis <<<gridDim, blockDim>>> (/* arguments */);
 //kernel call
 cudaThreadSynchronize(); //make sure all threads are finished
 err = cudaGetLastError(); // did anything go wrong?
 if(err != cudaSuccess) {
 if(err == 7 && packed_chains>1) {//not enough resources (registers)
 packed_chains /= 2;
 num_blocks = num_PT_chains / packed_chains +
 ((num_PT_chains % packed_chains) == 0? 0 : 1);
 kernel_success = 0; }
 else { /* Error starting the kernel. Exit the program */ }
 }
 }
}

Figure 7. Choosing the number of threads per MP and the number of blocks.

In the above code, each MP will have num_threads_per_block × packed_chains threads.
There will be num_blocks number of such groups of threads. If this number is less than
the number of MPs, they will all run in parallel. However, if num_blocks exceeds the
number of MPs, then the MPs will take turns sweeping the chains.

6. Performance and Scaling Experiments
In this section, we investigate the performance and scaling of our CPU-only and CUDA
applications. It is difficult to make a fair comparison between an application that runs
only on a CPU and the same app that uses a GPU, because the comparison results will
change if the employed CPU or GPU are changed. For this reason we will not perform
any direct comparisons between the two implementations.

We used 6 different problems for our experiments, ranging from 8 to 96 qubits, as listed
in Table 1. In order to approximate the quantum equilibrium properties of a quantum
system, we connect together many copies (128 in this case) of the corresponding classical
system [14]. This larger classical system is then simulated in each chain. The total
number of variables in the simulation is the product of the number of qubits, the number
of copies in each chain, and the number of chains. For example, to simulate an 128 copies
of an 8-qubit quantum system with 27 chains we have 128 × 8 × 27 = 27,648 classical
variables to manage. The rapid increase in the number of variables required to simulate a
quantum system necessitates good simulation performance.

Qubits Chains Total number
of variables

8 27 27,648
16 34 69,632
32 37 151,552
48 57 350,208
72 71 654,336
96 111 1,363,968

Table 1. The size of problems used in the experiments

To measure the effectiveness of our multi-threaded CPU code, we ran the AQUA
application on 32-qubit and 96-qubit Ising model [6] problems with 1, 2, 4, 6, and 8
threads, on a Mac Pro computer with two 2.8 GHz Intel Quad Core Xeon processors
(total of 8 cores) and 2 GB of 800 MHz DDR2 memory, running Mac OS 10.5. We
performed 200,000 sweeps per run. Each run was repeated 10 times to obtain reliable
average running times. The amount of time needed to perform the parallel tempering,
which involves no I/O, is noted in Table 2. For completeness, we also note the total
running time of the application, which involves some I/O operations. The GPU was not
used in this case.

Qubits Threads PT Time Std. Dev. Total Time Std. Dev.
1 2,517.01 0.25 2,625.08 0.26
2 1,300.82 14.36 1,355.10 14.44
4 691.93 0.15 719.34 0.16
6 480.83 0.16 499.20 0.16

32

8 380.43 0.18 394.32 0.18
1 9,190.18 1.62 9,598.28 1.63
2 4,695.24 10.02 4,901.03 10.06
4 2,398.06 1.46 2,501.24 1.47
6 1,653.01 0.18 1,722.86 0.18

96

8 1,273.01 0.12 1,324.95 0.13
Table 2. Multi-threading performance for 32- and 96-qubit problems.

Figure 8 shows the speedup obtained using different number of cores. Also shown is the
theoretical limit of linear speedup. We see a good scaling of the running time with the
number of threads, which improves with larger problem sizes, since larger problems have
more chains, with each chain needing the sweeping of more variables. There are thus
more independent tasks that can be run in parallel between barriers.

0

1

2

3

4

5

6

7

8

0 2 4 6 8

Number of cores

S
p

ee
d

u
p 32-qubit

96-qubit

limit

Figure 8. Speedup vs. number of cores for the multi-threaded application.

Our GPU experiments were performed on a mid-range NVIDIA GeForce GTX 260
graphics card in a dual-core PC running Windows XP. In this case we packed the card to
the maximum possible, and solved problems that differed in size, to observe performance
of the GPU as a function of the problem size. The 32- and 96-qubit problems are the
same as in the multi-threaded case. We again performed 200,000 sweeps per run. The
results come in Table 3. Only one CPU thread was employed.

Qubits PT Time Std. Dev. Total Time Std. Dev.
8 274.79 0.41 276.39 0.42
16 575.67 0.56 579.63 0.56
32 1,138.33 0.49 1,146.72 0.49
48 2,621.03 3.51 2,641.30 3.51
72 4,849.05 2.84 4,892.47 2.84
96 10,107.71 2.47 10,213.52 2.47

Table 3. Running time for problems of different size for the GPU application in seconds

Here again, we see an improvement in performance as the problem size increases. One
reason is that with bigger problems, proportionally more time is spent sweeping the
chains than copying data over to the host computer for swapping. Figure 9 shows this
relative performance increase in terms of the number of variables per unit time spent in
the parallel tempering part of the code. In this log-linear plot, the number of variables in

the problem is displayed next to the corresponding data point. The data points are
obtained by dividing the total number of variables by the parallel tempering time. The
observed gain in performance saturates by 654,336 variables (72 qubits), which is where
the maximum number of the GPU streaming processors are utilized.

27,648

69,632

350,208

151,552

654,336

1,363,968

95

100

105

110

115

120

125

130

135

140

10,000 100,000 1,000,000 10,000,000

Number of variables

V
ar

ia
b

le
s

p
ro

ce
ss

ed
 p

er
 s

ec
o

n
d

Figure 9. GPU performance in relation to problem size

The main reason for the relatively low performance of the GPU version compared to the
CPU version is that high GPU utilization has a dramatic effect on the responsiveness of
the computer. We consciously refrained from putting maximum load on the GPU, to
allow the volunteers to be able to use their computers while our application is running.
There are also algorithmic issues that rob performance: sweeping each chain involves
randomly deciding whether or not to flip each bit. On a GPU MP, even if only one
streaming processor decides to flip a bit, all threads on that MP must wait an amount of
time equal to executing that flip, since they share an instruction pointer. The resulting
performance is as if most chains always flip all bits.

The main cost of data transfer to the GPU is the latency time required to start a transfer,
while the data transfer itself is relatively fast. We observed improvements in execution
speed by coalescing data structures into array forms, so the data can be transferred in
fewer operations.

7. Concluding Remarks
We introduced two methods to parallelize a Parallel Tempering Monte Carlo algorithm
on multi-core CPUs and on GPGPUs. The methods are conceptually simple, because they

assign independent data processing to CPU threads (PTMC chains) or GPU threads (parts
of PTMC chains). The resulting software is meant to run on volunteer computers
belonging to members of the general public. It adapts itself to the available hardware, and
employs the computing resources in a manner that leaves the computer on which it runs
usable.

We presented experimental data showing that the parallel algorithms are scalable within
the ranges of the currently available computational resources. The constraint of leaving
the computer with an appropriate level of usability makes our code slower than if it could
use all of the available computing resources, particularly for the GPU application.
However, it has the advantage of being able to run on thousands of volunteer computers,
making up for lowered efficiency. The resulting application, AQUA, successfully solves
problems that require vast computing resources.

Acknowledgement
We would like to thank Geordie Rose for his help with this project. We are grateful to the
developers of BOINC, at the University of California at Berkeley, for their help with the
AQUA@home project. We thank all of the volunteers of AQUA@home, without whom
this project would not be successful.

References
[1] Anderson, A.G., Goddard, W.A., Schröder, P., Quantum Monte Carlo on Graphical
Processing Units, Computer Physics Communications, Volume 177, Issue 3, 2007.
[2] Anderson, D.P., BOINC: A System for Public-Resource Computing and Storage, The
fifth IEEE/ACM International Workshop on Grid Computing, pp. 365-372, Pittsburgh,
PA, USA, 2004.
[3] Anderson, J.B., Quantum Monte Carlo: Origins, Development, Applications, Oxford
University Press US, 2007
[4] Berg, B.A., Markov Chain Monte Carlo Simulations and Their Statistical Analysis,
World Scientific, 2004
[5] Chapman, B., Jost, G. and van der Pas, R., Using OpenMP: Portable Shared Memory
Parallel Programming, The MIT Press, 2007
[6] Fischer, K. H. and Hertz, J. A. Spin Glasses, Canbridge University Press, 1993.
[7] Hamze, F., Dickson, N., Karimi, K., Robust Parameter Selection for Parallel
Tempering, International Journal of Modern Physics C, accepted.
[8] Hukushima, K. and Nemoto, K., Exchange Monte Carlo Method and Application to
Spin Glass Simulations, Journal of the Physical Society of Japan 65, 1996, pp. 1604-
1608.
[9] Matsumoto, M. and Nishimura, T., Mersenne Twister: A 623-Dimensionally
Equidistributed Uniform Pseudo-Random Number Generator, ACM Transactions on
Modeling and Computer Simulation, Vol. 8, No. 1, January 1998, pp 3--30.
[10] Neven, H., Denchev, V.S., Rose, G., Macready, W.G., Training a Binary Classifier
with the Quantum Adiabatic Algorithm, Neural Information Processing Systems (NIPS)
workshop on Optimization for Machine Learning, 2008.

[11] Robert C.P., and Casella, G., Monte Carlo Statistical Methods , Springer, 2005.
[12] Rubinstein, R. Y.; Kroese, D. P., Simulation and the Monte Carlo Method (2nd ed.),
John Wiley & Sons, 2007.
[13]Wu, J., Distributed System Design, CRC Press, 1999.
[14] Young, A.P., Knysh, S. , Smelyanskiy, V. N., Size dependence of the minimum
excitation gap in the Quantum Adiabatic Algorithm, Physical Review Letters 101,
170503, 2008
[15] Kirk, D. and Hwu, W., Programming Massively Parallel Processors: A Hands-on
Approach, Morgan Kaufmann, 2010.
[16] AQUA’s home page at http://aqua.dwavesys.com

