High-Performance Physics Simulations Using MultcEGPUs
and GPGPUs in a Volunteer Computing Context

Kamran Karimi Neil G. Dickson Firas Hamze

D-Wave Systems Inc.
100-4401 Still Creek Drive
Burnaby, British Columbia
Canada, V5C 6G9
{kkarimi, ndickson, fhamze}@dwavesys.com

Abstract

This paper presents two conceptually simple methfmis parallelizing a Parallel
Tempering Monte Carlo simulation in a distributeglunteer computing context, where
computers belonging to the general public are u$kd.first method uses conventional
multi-threading. The second method uses CUDA, sluca card computing system.
Parallel Tempering is described, and challengeth sae parallel random number
generation and mapping of Monte Carlo chains ttedht threads are explained. While
conventional multi-threading on CPUs is well-ess&idd, GPGPU programming
techniques and technologies are still developird) @esent several challenges, such as
the effective use of a relatively large number lofedds. Having multiple chains in
Parallel Tempering allows parallelization in a mannhat is similar to the serial
algorithm. Volunteer computing introduces importaonstraints to high performance
computing, and we show that both versions of theliegtion are able to adapt
themselves to the varying and unpredictable comgutiesources of volunteers’
computers, while leaving the machines responsiveugm to use. We present
experiments to show the scalable performance skth@o approaches, and indicate that
the efficiency of the methods increases with biggeblem sizes.

1. Introduction

Many fields of science and technology require washputational resources. Simulation
of physical systems is one notable example. Ingefit computing power can result in
unfeasibly long running times or poor accuracyesfults. Parallelizing such applications
enables use of more processing power. Howeverllgaation of different applications
may need different approaches in order to effeltiuse the processing units. In this
paper, we parallelize a common Monte Carlo simoiatiechnique known as Parallel
Tempering Monte Carlo (PTMC) [8].

We focus on two technologies that enable paratfelis) multi-core Central Processing
Units (CPU), and 2) streaming processors on GrapRrocessing Units (GPU) [15]. In
particular, we use NVIDIA’s CUDA for GPU processifgs], though similar design
principles may be applied to other GPU brands. @imary design goals have been
suitability for a volunteer computing environmersimplicity of the parallelization

method, and low synchronization overhead. All adsin goals have been achieved by
leveraging the characteristics of our original i@galgorithm.

The nature of Parallel Tempering Monte Carlo allaygsto partition a large simulation

into smaller, independent simulations, groups ofcwtcan be solved by threads on a
CPU. The number of threads is chosen to be the santliee number of cores present in
the system to avoid cache contention among thadsr&GPGPUs allow for the execution
of threads on a larger number of processing elesneAlthough these processing
elements are typically much slower than those &&RU, having a large number of

threads may make it possible to surpass the peafocenof current multi-core CPUs.

In GPU programming, the creation of small, shorédi threads has been emphasized as a
means towards achieving good speedup. An examphdvioe multiplying two matrices,
which can be done by dividing the task into threadsh of which computes one element
of the target matrix. This low-level parallelismnche used in many algorithms and has
been a significant source of GPU parallelizatioocess. We show that, similar to CPU
multi-threading, one can design a suitable GPU lighralgorithm that uses a coarser
level of parallelization, running longer sequencesode on each GPU processor.

One matter that differs between multi-threaded Gidd GPU programming is memory
structure. In a multi-threaded CPU application, thleads have access to a common
memory space, so the primary challenge is synchiramaccess to shared data structures.
GPU programming, on the other hand, involves trsethdt run in a separate memory
space from the main application, (which runs on @®J). The implication is that the
code and the data on which the GPU threads operagt be transferred to the GPU
memory before any processing can be started, ancesults of the computation must be
copied back to the main memory of a host compUteis data transfer can result in poor
performance and must be kept to a minimum. It iss timportant to make sure that the
time spent processing data on the GPU is long coedpa data transfer times.

Another characteristic of parallel programming w@PUs is the ability to start a large
number of threads with little overhead [15]. Tleaunlike traditional CPU threads, where
each individual thread is treated as an entity pedeent of others, requiring separate
resources such as stack memory, and whose creatidnmanagement (scheduling,
keeping statistics of resource usage, etc.) arelmedp [15]. To absorb these costs, one
option is to create as few CPU threads as possiheto make them run as long as
possible. GPU threads, on the other hand, are ehéapreate and manage, since batches
of GPU threads (blocks) are treated the same,is@issible to create a large number of
them and run them for shorter durations.

The specific application examined in this papeliedaAdiabatic QUantum Algorithms
(AQUA) [16], uses a Quantum Monte Carlo [3] alglnit to compute the minimum
energy gap between two quantum states undergoin@dgabatic evolution. These
simulations require substantial computational resesj and we need to solve many
problem instances. We have employed the BerkelegnQpfrastructure for Network

Computing (BOINC) [2], to create the AQUA@home g and run the AQUA
application on volunteers’ computers in a massidgetyributed manner.

Resorting to volunteer computing entails serioussaterations. An application that runs
on a volunteer’s computer cannot drain the comgutesources, as that would make it
hard for the volunteer to use his or her machinalsb cannot dynamically communicate
with other computers. The problem of varying systesources and processing power on
different computers must also be considered. Qgorghm has been designed with these
constraints in mind, and the first constraint had ha large effect on the design of the
GPU version. The problem is that using a GPU attfubttle makes the computer’s user
interface very slow or even non-responding, soioauhust be used.

The rest of the paper is organized as follows. i&ec2 briefly presents the PTMC
algorithm and how its design naturally leads tcapjar execution. Section 3 describes the
method we used to parallelize random number gdoaraimilarly in both the CPU and
GPU environments. Section 4 shows how our apptinatias parallelized to use multiple
CPU cores, while Section 5 explains the correspundesign for the GPU. We dedicate
more space to the description of GPU parallelizabiecause it is a less developed topic.
Section 6 presents the results of performance ealdslity tests. We conclude the paper
in Section 7.

2. Parallel Tempering Monte Carlo

GPUs have been used to speed up QMC simulation®rebefl]. In those
implementations, the parallelized components airegily low-level matrix operations.
Here, we present PTMC as an algorithm that is q@dsily well-suited for parallel
execution. This variant allows a natural mappingh& algorithm to parallel execution
units such as a CPU’s cores or a GPU’s streamiogegsors, enabling a high-level break
down of the algorithm.

PTMC is based on the idea of running multiple Markbains (sometimes referred to as
replica) at the same time, each of which has astasonary distribution that of the
system at a different temperature. After a certaimber of sweeps through all of the
chains, i.e. flipping bits with the Metropolis atgbm according to the relevant
temperatures [11], adjacent chains are probal#iltyi swapped. The probability of a
chain swap is determined by the relative probabiit the chains’ states occurring at
each other’s temperature. In a non-parallel implaateon of PTMC, the program would
sequentially iterate through the set of chainseidgsm a sweep. After all the chains have
been swept the required number of times, the progéempts to swap the chains. This
cycle continues until the application’s criteria fermination, such as a specified number
of sweeps or satisfaction of a convergence testnae More information about our
implementation of Parallel Tempering comes in [7].

Each Monte Carlo chain can be swept independemttiieoothers, so sweeping can be
done in parallel. In our implementation, swappingaios can also be parallelized,
because we consider only every two neighboringnshas possible swapping candidates,

and then move to the next two chains. Witlshains, up tdN/2 swap operations could be
done concurrently.

Selecting logical temperature values to achievesirdd minimum swap rate, even in the
presence of first-order phase transitions, is desdrin [7]. After the process of chain
generation, the number of chains and their temperatalues are held constant during
the PTMC simulation. In this paper we consider tiiains to have been already
generated.

3. Parallel Random Number Generation

PTMC simulations, like other stochastic methodspedel on a vast supply of
(pseudo)random numbers, because both sweepingim ah@ swapping chains require
random numbers. It is very important to make shea in a parallel environment, random
numbers are generated in a fast and valid manner.

The original (serial) version of our applicationeasthe well-known Mersenne-Twister
algorithm [9]. The code for this algorithm is compand contains simple integer
operations. It relies on a global state vector andndex into that vector to generate
random integers. This global set of variables makesfficult to run the algorithm in
parallel. Enforcing mutually exclusive access tis tthata structure through locks would
cause poor performance, as a significant portiortimé would be spent generating
random numbers in serial.

A simple and effective solution to this problentascreate multiple state vectors, one for
each CPU thread. Even though the code remains tldestical, each thread uses its
own state to generate the next random number. Elaain’'s state has a different initial

seed to prevent the problem of generating the sam#om numbers for different chains
at every step. This simple solution allows us tanmt@n the same per-thread random
number generation speed as in the single-threas wath no compromise on the quality
of the results.

On a CPU, each chain is swept by a single coreabwxplained later, on a GPU, each
chain is swept by a number of streaming procesdord&oth cases, a state vector is
created for every execution thread that could lming in parallel with other execution
threads to avoid the need for synchronization. Assalt, on the CPU, a chain has a
single random state, while on the GPU, each dilagilart of a chain has its own random
state.

Figures 1, 2, and 3 show how the original (serialylti-threaded, and GPU versions
initialize their Mersenne-Twister states, respeadfiv The Mersenne-Twister
implementation itself is effectively identical betan the three.

#defi ne MI_STATE_LENGTH 624

static unsigned | ong randontt at e[MT_STATE_LENGTH] ;
static int random ndex;

static void initializeRandon(unsi gned | ong seed);

i nl tializeRandon(seed);

Figure 1. Original (serial) Mersenne-Twister initiation.

#define MI_STATE_LENGTH 624

static void initializeRandon{unsigned | ong seed,
unsi gned | ong* randontt at e,
i nt & random ndex) ;

for (int chai n=0; chai n<nuntChai ns; chai n++) {
chai ns[chai n] . randontSt ate = new unsi gned | ong[MI_STATE_LENGTH] ;
initializeRandon(start Seed+chai n,
chai ns[chai n] . randontst at e,
chai ns[chai n] . random ndex) ;

}

Figure 2. Multi-threaded Mersenne-Twister initialion. Each chain has its own state.

#define MI_STATE_LENGTH 624
__device__ unsigned | ong
randontt at es[MAX_RAND_CHAI NS] [MAX_RAND_THREADS] [MT_STATE_LENGTH] ;
__device__ int random ndi ces[MAX_RAND_CHAI NS] [MAX_RAND_ THREADS] ;
__global __ void cuda_init_genrand(unsigned | ong seed,
unsi gned | ong* randontt at e,
i nt* random ndex) ;

int thread = threadldx. x;

int chain = bl ockl dx. x;

initializeRandom(startSeed + chai n*threadDim x + thread,
randontt at es[chai n] [t hread],
& andom ndi ces[chai n][thread]);

Figure 3. GPU Mersenne-Twister initialization. E@tfain can have multiple threads.

4. Multi-Threading on Multi-Core CPUs

We parallelized the sweep and swap parts of thallBeTfempering code using OpenMP
[5]. By default, OpenMP creates the same numbehrefads as the number of available
cores in the computer. Since this number is cugdats than the number of chains
(typically 4 or 8 cores vs. 25 to 200 chains), ettulead is responsible for sweeping
multiple chains.

An alternative to one thread per core is to hawetbnead per chain. For a small number
of chains, this scheme can have advantages in tefrtess time spent in waiting on
barriers. However, miscellaneous timing tests ssiggethat even for a relatively small

number of chains, the performance was worse. Weestighis to be because of increased
CPU cache misses and thread management overhead.

When parallelizing a loop withiterations, where each iteration of the loop cardbne
independently, OpenMP assigiBl iterations (or one of the nearest integers thé¢neof
each of theN threads. Its default behavior is to start the wortkreads when the loop is
encountered, and wait for all threads to finishrtherations before continuing. Figure 4
shows the outline of our first attempt at paratiely the Parallel Tempering algorithm.
Unrelated code is omitted for brevity.

whil e (!shoul dTerm nate()) {
#pragnma onp parallel for
for (int chain=0; chain<nuntChains; chain++) {
for (int sweep=0; sweep<nunBweepsPer Swap; sweep++) {
runMetropolis(chains[chain]); } }
doSwap(chai ns) ;
/1 Do any meaurenents, gather statistics, etc. here

Figure 4. Outline of Parallel Tempering with OpenMP

In Figure 4chains contains a pointer to the Parallel Tempering cldaita. The outer for-
loop is run in parallel. Each thread is thus resjaa for running the inner loop for one
or morechain values. To indicate that OpenMP should paralldieefor-loop, one adds
the #pragma statement. No data that are modifitiiimihe for-loop are shared between
the threads, so they can run with no need for sgmehation. In this code the threads join
before the doSwap() method.

In our simulation, different chains are at diffdreffective temperatures. Chains at higher
temperatures have more bit flips and thereforeireqnore work to update the state after
a flip. OpenMP’s default assignment of chains teedlds does not result in a balanced
load distribution, because it assigns successiainsho each thread, resulting in some
threads with many easy (cold) chains and some der@ath many hard (hot) chains.
Therefore, we form a work pool of chains, and sbgriassigning harder chains to each
available thread in a first-come, first-served mamiasier chains are assigned last. We
observe the number of active cores to determinestfi@ency of our work-assignment
method, and the described method results in allctives being occupied most of the
time.

Further improvement in CPU utilization was achieusd keeping the threads active
throughout the simulation. However, barriers musent be specified explicitly to

synchronize the threads between phases. Swap@aqiso parallelized, so it required
the current thread index and the total number iefaitis.

Figure 5 shows the relevant code that implememrtabiove improvements.

static volatile int chain; // The workpool index
#pragma onp parallel {
int thread = onp_get _thread_nun{();
do {
/'l Sweeping through the chains selected fromthe workpool
i f (thread==0) chai n = nuniThr eads;
#pragma onp barrier
int myChain = thread
whi | e (myChai n < nunthai ns) {
for (int sweep=0; sweep<numbweepsPer Swap; sweep++) {
runMet ropol i s(chai ns[nmyChain]); }
/'l Get the next chain without colliding with other threads
#pragma onp critical
{myChai n = chai n++;}
}
#pragma onp barrier
doSwap(chai ns, t hread, nunThreads); // Swappi ng
/1 Do any neaurenents, gather statistics, etc. here
} while (!shoul dTerm nate());

Figure 5. Keeping threads active; sweeping loojh wibrkpool.

AQUA@home is the first BOINC project to support CRidlti-threading. With BOINC,
the user can determine how many cores are to bd, e BOINC provides the
application with the number of threads that shduddcreated. BOINC usually runs an
application at a below-normal priority to make stine computer remains responsive.
However, this priority level is not respected fawly created OpenMP threads. AQUA
explicitly sets the priority of all the newly creat OpenMP threads to the same value as
determined by BOINC. As a result, even though AQkhES a high CPU utilization rate
(about 94% on 8-core computers), we have obserad the above method of
parallelizing the PTMC algorithm allows volunteg¢oscontinue to use and interact with
their machines.

5. Parallelization on GPGPUs

GPU programming involves more overhead than CPdrpraming because of the need
to transfer data to and from the graphics card.eChe data are in place on the card,
many threads can be started with little overhedk @ode that is invoked on the GPU
and runs in many threads is called the kernelhatdnd of the computation, the results
should be copied back to the main memory of thepeden.

A GPU contains a number of Multi-Processors (MRjcliEof these in turn has a certain
number of processing elements, so parallelism &P is both at the MP and at the
processing element level. These two levels of feisth are reflected in adapting the
PTMC method to run on a GPU. The first level inedvmapping the chains to the MPs.
This is similar to the multi-threading case, wheeeh chain is swept by a thread. Each
MP thus plays a role similar to a CPU core. Theosddevel of parallelism is using the
streaming processors in each MP to parallelizestveep of individual chains.

Significant factors in obtaining good speedup withiGPU include reducing the data
transfer overhead, reducing the required GPU ressuper thread so that more threads
can be started, and keeping all of the MPs busy.

A Monte Carlo sweep usually involves changing ttegesof the chain, and the implied
write operations need synchronization if performegarallel. However, chains in our
simulations have regions that can be updated imdbgpely, since they are laid out such
that a change in one region does not directly af@other. In our case, one group of
many independent regions (64 in results below) owalf of the chain, and a second
group covers the other half. The first group can dweept in parallel without
synchronization. After that the threads are synuizexl before continuing with the
second group of regions.

Each thread block sweeps different parts of theesamain, and some data common to the
chain are placed in the shared memory in ordeetadzessed faster than if they were in
the device’s global memory. An added benefit t@ stheme is that more registers are
freed to be used for other purposes. However, mcase managing the shared memory
block was difficult, because each chain has mota tlzan could fit into the shared
memory.

To keep all the streaming processors busy, we rassigtiple chains to each MP, a
method we call chain packing. This is similar te BBPU case where multiple chains
were assigned to the same core by OpenMP. The Imatmg factors in the GPU case
are the number of registers available per MP aednmbximum number of threads per
MP. Each MP in current NVIDIA GPUs can take up tb25threads, giving us a
maximum of 8 chains per MP (assuming 64 threadscpam). All threads in an MP
share a pool of registers, so the maximum numbeisedl registers must not exceed this
maximum. On older cards with 8,192 registers, amgeccan run 4 chains per MP, while
with cards with 16,384, we can run the maximum fdss3 chains per block (these
numbers may change for future GPUs). For exampth,30 MPs we can run 120 or 240
chains in parallel, or more if fewer threads pesichare used. This high number explains
the attractiveness of GPU parallelization, becanspite of streaming processors being
slower than a typical CPU, their sheer number eanlt in an overall speedup.

On the other hand, with a small number of chaiaskmg the MPs to the maximum may
result in some idle MPs. For this reason, we stgkimg chains in the MPs as soon as we
see that some MPs are not being utilized.

Under BOINC, it became apparent that volunteerseeix@s little CPU activity as
possible from a GPU application. One reason isrtieaty volunteers use their computers
to run CPU-heavy BOINC applications at the samestam running GPU applications.
However, loading the GPU with long-running kerneiskes the system sluggish and
eventually freezes the computer’'s user interfacaking it unusable for the volunteer.
The responsiveness of the computer can be adjbstedhanging the ratio of the time
spent executing code on the GPU vs. on the CPU.cgse for swapping to be done on
the CPU, which allows us to change the GPU vs. @Riding time ratio by changing the

number of sweeps between each swap operation. gpilieation thus alternates between
using the GPU to sweep the chains and then usen@RU to swap them.

Data need to be transferred to the GPU before smgeand must be moved back to the
host computer before swapping. As we mentionedrbefmpying data to and from the
GPU is a concern. We increase the number of swiedpstween swap phases to absorb
the cost of the data copying, but not so much asake the computer unresponsive.

The issue of the required floating point precisioh the application must also be
addressed. Recent graphics cards support douldesipre floating point operations, but
they may run slower than single-precision operati¢gh5]. In our application, the

sweeping phase performs a mix of integer and figgpoint operations. Real-valued
data that are processed on the GPU are represaststhgle-precision floating-point

numbers. The corresponding code in the CPU-onlyiee also uses single-precision. In
both versions, the results are accumulated on #d {© double-precision numbers in
order to minimize building up round-off error.

Figure 6 shows the code for running the same Igoip &igure 4 in parallel with a GPU.
cuda_runMet r opol i s(nunBweepsPer Swap) performs the specified number of
sweeps on the GPU before returning control to the).C

cuda_al l oc_nmen(chains); // Allocate nenory on the graphics card

whil e (!shouldTerminate()) {
cuda_copy_chains_to_device(chains); // Copy data to the graphics card
cuda_runMetropol i s(nunSweepsPer Swap) ;
cuda_copy_chai ns_to_host (chai ns) ; /'l Copy data back to main nenory
doSwap(chai ns);
/1 Do any neaurenents, gather statistics, etc. here

cuda_free_nem); /1l Free menory on the graphics card

Figure 6. Main loop of a GPU Parallel Temperingoaitpm.

Figure 7 shows how the code to run on the GPUapared. First, the number of chains
assigned to each MP is calculated. The kerneleis thvoked and a test is performed to
see whether the kernel was successfully startezhgte configuration. If a failure due to
a lack of resources is detected, the code redudeesiumber of packed chains, thus
creating more blocks, and reducing the needed resssuch as the number of registers.
The kernel is then tried again. In this way, thdecocan adapt itself to the capabilities of
the GPU on which it is running.

/'l cuda_MP_count contains the nunber of MPs on the device

static int block_size; // Nunmber of threads in each bl ock

static int packed_chains; // nunber of chains in each M

static int numblocks; // nunber of blocks in each MP

static int numnodes; // nunbr of nodes assigned to each thread
static int last_numchains = 0; // the previous nunber of chains

voi d cuda_singl eSiteMetropolis(/* argunents */) {
cudaError err;

| ast_num chai ns = num PT_chains; bl ock_size = 32; packed_chains = 1;
num bl ocks = num PT_chai ns / packed_chai ns +
((num_PT_chai ns % packed_chains) == 0? 0 : 1);

/'l pack the chains but stop when MPs start going unused
whi | e (packed_chains * block_size < MAX CUDA BLOCK THREADS &&
num bl ocks > cuda_MP_count) {
packed_chai ns *= 2;
num bl ocks = num PT_chai ns / packed_chains +
((num_PT_chai ns % packed_chains) == 0? 0 : 1);
}
int kernel _success = 0;
whi | e(kernel _success == 0)
kernel success = 1; // was the kernel started successfully?
di m8 gridDi m{num bl ocks); dinB bl ockDi m(bl ock_si ze, packed_chai ns);
cuda_runMetropolis <<<gridDim blockD me>> (/* argunents */);
/I kernel cal
cudaThr eadSynchroni ze(); //nmake sure all threads are finished
err = cudaGetLastError(); // did anything go wong?
if(err !'= cudaSuccess) {
if(err == 7 && packed_chai ns>1) {//not enough resources (registers)
packed _chains /= 2;
num bl ocks = num PT_chai ns / packed_chai ns +
((num_PT_chai ns % packed_chains) == 0? 0 : 1);
kernel _success = 0; }
else { /* Error starting the kernel. Exit the program*/ }

}
}
}

Figure 7. Choosing the number of threads per MPtl@ciumber of blocks.

In the above code, each MP will hawam threads per_block x packed chains threads.
There will benum_blocks number of such groups of threads. If this numbdess than
the number of MPs, they will all run in paralleloWever, if num_blocks exceeds the

number of MPs, then the MPs will take turns swegpie chains.

6. Performance and Scaling Experiments

In this section, we investigate the performance sealing of our CPU-only and CUDA
applications. It is difficult to make a fair compam between an application that runs
only on a CPU and the same app that uses a GPdHus®the comparison results will
change if the employed CPU or GPU are changedttt®reason we will not perform

any direct comparisons between the two implemeontati

We used 6 different problems for our experimerdgagmg from 8 to 96 qubits, as listed
in Table 1. In order to approximate the quantumildgjium properties of a quantum
system, we connect together many copies (128 snctise) of the corresponding classical
system [14]. This larger classical system is thenukted in each chain. The total
number of variables in the simulation is the pradfdhe number of qubits, the number
of copies in each chain, and the number of ch&osexample, to simulate an 128 copies
of an 8-qubit quantum system with 27 chains we HeX& x 8 x 27 = 27,648 classical
variables to manage. The rapid increase in the pumibvariables required to simulate a
guantum system necessitates good simulation pesftren

Qubits | Chains | Total number
of variables

8 27 27,648
16 34 69,632
32 37 151,552
48 57 350,208
72 71 654,336
96 111 1,363,968

Table 1. The size of problems used in the experisnen

To measure the effectiveness of our multi-threa@®lJ code, we ran the AQUA

application on 32-qubit and 96-qubit Ising mode] Boblems with 1, 2, 4, 6, and 8
threads, on a Mac Pro computer with two 2.8 GHellQuad Core Xeon processors
(total of 8 cores) and 2 GB of 800 MHz DDR2 memamnning Mac OS 10.5. We

performed 200,000 sweeps per run. Each run wastege 0 times to obtain reliable
average running times. The amount of time needegetéorm the parallel tempering,

which involves no I/O, is noted in Table 2. For qoeteness, we also note the total
running time of the application, which involves soi#O operations. The GPU was not
used in this case.

Qubits| Threads | PT Time | Std. Dev. | Total Time | Std. Dev.
1 2,517.01 0.25 2,625.08 0.26
2 1,300.82 14.36 1,355.10 14.44
32 4 691.93 0.15 719.34 0.16
6 480.83 0.16 499.20 0.16
8 380.43 0.18 394.32 0.18
1 9,190.18 1.62 9,598.28 1.63
2 4,695.24 10.02 4,901.03 10.06
96 4 2,398.06 1.46 2,501.24 1.47
6 1,653.01 0.18 1,722.86 0.18
8 1,273.01 0.12 1,324.95 0.13

Table 2. Multi-threading performance for 32- andcbit problems.

Figure 8 shows the speedup obtained using diffeventber of cores. Also shown is the
theoretical limit of linear speedup. We see a gecaling of the running time with the
number of threads, which improves with larger peablkizes, since larger problems have
more chains, with each chain needing the sweepingase variables. There are thus
more independent tasks that can be run in patst®een barriers.

6 //.7
5
< —e— 32-qubit
B4 —m— 96-qubit
’ / —limit

3

0 2 4 6 8
Number of cores

Figure 8. Speedup vs. number of cores for the rtuléiaded application.

Our GPU experiments were performed on a mid-rany¢DM GeForce GTX 260
graphics card in a dual-core PC running Windows KRhis case we packed the card to
the maximum possible, and solved problems tha¢wditf in size, to observe performance
of the GPU as a function of the problem size. TBe é&d 96-qubit problems are the
same as in the multi-threaded case. We again peefibr200,000 sweeps per run. The
results come in Table 3. Only one CPU thread wad@yad.

Qubits | PT Time | Std. Dev. | Total Time | Std. Dev.
8 274.79 0.41 276.39 0.42
16 575.67 0.56 579.63 0.56
32 1,138.33 0.49 1,146.72 0.49
48 2,621.03 3.51 2,641.30 3.51
72 4,849.05 2.84 4,892.47 2.84
96 10,107.71 2.47 10,213.52 2.47

Table 3. Running time for problems of differentesfar the GPU application in seconds

Here again, we see an improvement in performandeeaproblem size increases. One
reason is that with bigger problems, proportionatigre time is spent sweeping the
chains than copying data over to the host competeswapping. Figure 9 shows this
relative performance increase in terms of the nurobbeariables per unit time spent in
the parallel tempering part of the code. In thig-lioear plot, the number of variables in

the problem is displayed next to the correspondiatp point. The data points are
obtained by dividing the total number of variablsthe parallel tempering time. The
observed gain in performance saturates by 654,a86@bles (72 qubits), which is where
the maximum number of the GPU streaming processersitilized.

140
350,208 1,363,968
135 A
654,336
130 A 151,552
©
c
o
® 125
%]
g
= 120 4 69,632
[}
2]
%]
3
© 1154
o
[%]
2
E 110
S
>
105 A
100 27,648
95 . :
10,000 100,000 1,000,000 10,000,000
Number of variables

Figure 9. GPU performance in relation to problere si

The main reason for the relatively low performanté¢he GPU version compared to the
CPU version is that high GPU utilization has a daimeffect on the responsiveness of
the computer. We consciously refrained from puttmgximum load on the GPU, to

allow the volunteers to be able to use their comysutvhile our application is running.

There are also algorithmic issues that rob perfageasweeping each chain involves
randomly deciding whether or not to flip each Idn a GPU MP, even if only one

streaming processor decides to flip a bit, all ddseon that MP must wait an amount of
time equal to executing that flip, since they shameinstruction pointer. The resulting

performance is as if most chains always flip a bi

The main cost of data transfer to the GPU is thentzy time required to start a transfer,
while the data transfer itself is relatively fagfe observed improvements in execution
speed by coalescing data structures into arraydoso the data can be transferred in
fewer operations.

7. Concluding Remar ks
We introduced two methods to parallelize a Pardleshpering Monte Carlo algorithm
on multi-core CPUs and on GPGPUs. The methodsareeptually simple, because they

assign independent data processing to CPU thr&éadd chains) or GPU threads (parts
of PTMC chains). The resulting software is meantrtim on volunteer computers
belonging to members of the general public. It &l&pelf to the available hardware, and
employs the computing resources in a manner thatekthe computer on which it runs
usable.

We presented experimental data showing that thallpbhalgorithms are scalable within
the ranges of the currently available computatigraburcesThe constraint of leaving
the computer with an appropriate level of usabititgkes our code slower than if it could
use all of the available computing resources, @aerly for the GPU application.
However, it has the advantage of being able tooruthousands of volunteer computers,
making up for lowered efficiency. The resulting bgpgtion, AQUA, successfully solves
problems that require vast computing resources.

Acknowledgement

We would like to thank Geordie Rose for his helphvihis project. We are grateful to the
developers of BOINC, at the University of Califarat Berkeley, for their help with the
AQUA@home project. We thank all of the volunteef AQUA@home, without whom
this project would not be successful.

References

[1] Anderson, A.G., Goddard, W.A., Schroder, P.a@um Monte Carlo on Graphical
Processing UnitsComputer Physics Communications, Volume 177, Issue 3, 2007.

[2] Anderson, D.P., BOINC: A System for Public-Resme Computing and Storagihe
fifth IEEE/ACM International Workshop on Grid Computing, pp. 365-372, Pittsburgh,
PA, USA, 2004.

[3] Anderson, J.B.Quantum Monte Carlo: Origins, Development, Applications, Oxford
University Press US, 2007

[4] Berg, B.A., MarkovChain Monte Carlo Smulations and Their Statistical Analysis,
World Scientific, 2004

[5] Chapman, B., Jost, G. and van der PasiUBng OpenMP: Portable Shared Memory
Parallel Programming, The MIT Press, 2007

[6] Fischer, K. H. and Hertz, J. Apin Glasses, Canbridge University Press, 1993.

[7] Hamze, F., Dickson, N., Karimi, K., Robust PRaeter Selection for Parallel
Tempering)nternational Journal of Modern Physics C, accepted.

[8] Hukushima, K. and Nemoto, KExchange Monte Carlo Method and Application to
Spin Glass Simulationslournal of the Physical Society of Japan 65, 1996, pp. 1604-
1608.

[9] Matsumoto, M. and Nishimura, T., Mersenne TetistA 623-Dimensionally
Equidistributed Uniform Pseudo-Random Number GedonerséACM Transactions on
Modeling and Computer Smulation, Vol. 8, No. 1, January 1998, pp 3--30.

[10] Neven, H., Denchev, V.S., Rose, G., MacredtlyG., Training a Binary Classifier
with the Quantum Adiabatic AlgorithnNeural Information Processing Systems (NIPS)
wor kshop on Optimization for Machine Learning, 2008.

[11] Robert C.P., and Casella, Glonte Carlo Statistical Methods , Springer, 2005.

[12] Rubinstein, R. Y.; Kroese, D. PSmulation and the Monte Carlo Method (2nd ed.),
John Wiley & Sons, 2007.

[13]Wu, J.,Distributed System Design, CRC Press, 1999.

[14] Young, A.P., Knysh, S. , Smelyanskiy, V. Niz& dependence of the minimum
excitation gap in the Quantum Adiabatic Algorithfhysical Review Letters 101,
170503, 2008

[15] Kirk, D. and Hwu, W.,Programming Massively Parallel Processors. A Hands-on
Approach, Morgan Kaufmann, 2010.

[16] AQUA’s home page at http://aqua.dwavesys.com

