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UNIVALENCE IN SIMPLICIAL SETS

CHRIS KAPULKIN, PETER LEFANU LUMSDAINE,
AND VLADIMIR VOEVODSKY

Abstract. We present an accessible account of Voevodsky’s construc-
tion of a univalent universe of Kan fibrations.

Our goal in this note is to give a concise, self-contained account of the
results of [Voe11, Section 5]: the construction of a homotopically universal

small Kan fibration π : Ũα
//Uα; the proof that Uα is a Kan complex; and

the proof that π is univalent.
We assume some background knowledge of the homotopy theory of simpli-

cial sets, and category theory in general; [Hov99] and [ML98] are canonical
and sufficient references. Other good sources include [May67], [GJ09], and
[Joy09].

In Section 1, we construct π : Ũα
// Uα, and prove that it is a weakly

universal α-small Kan fibration. In Section 2, we prove further that the base
Uα is a Kan complex.

Section 3 is dedicated to constructing the fibration of weak equivalences
between two fibrations over a common base. In Section 4 we define univa-
lence for a general fibration, and prove our main theorem: that π is univa-
lent. Finally, in Section 5, we derive from this a statement of “homotopical
uniqueness” for the universal property of Uα.

Overall, we largely follow Voevodsky’s original presentation, with some
departures: some proofs in Sections 2 and 4 are simplified based on a result
of André Joyal ([Joy11, Lemma 0.2], cf. our Lemmas 17, 18); and Section 3
also is somewhat modified and reorganised.

A recurring theme throughout is that when a map is defined by a “right-
handed” universal property, showing that it is a fibration (resp. trivial fi-
bration) corresponds to showing that the objects it represents extend along
trivial (resp. all) cofibrations.

An alternative construction of π : Ũα
// Uα can be found in [Str11], and

an alternative proof of univalence in [Moe11].
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1. Representability of fibrations

Definition 1. Let X be a simplicial set. A well-ordered morphism f : Y //X
is a pair consisting of a morphism into X (also denoted by f) and a func-
tion assigning to each simplex x ∈ Xn a well-ordering on the fiber Yx :=
f−1(x) ⊆ Yn.

If f : Y // X, f ′ : Y ′ // X are well-ordered morphisms into X, an iso-
morphism of well-ordered morphisms from f to f ′ is an isomorphism Y ∼= Y ′

over X preserving the well-orderings on the fibers.

Remark 2. Since we require no compatibility conditions, there are infinitely
many (specifically, 2ω) well-orderings even on the map 1 ∐ 1 // 1. The
well-orderings are haphazard beasts, and not of intrinsic interest; they are
essentially just a technical device to obtain Lemma 5.

Proposition 3. Given two well-ordered sets, there is at most one isomor-
phism between them. Given two well-ordered morphisms over a common
base, there is at most one isomorphism between them.

Proof. The first statement is classical, and immediate by induction; the
second follows from the first, applied in each fiber. �

Definition 4. Fix (once and for all) a regular cardinal α. Say a map
f : Y //X is α-small if each of its fibers Yx has cardinality < α.

Given a simplicial set X we define Wα(X) to be the set of isomorphism
classes of α-small well-ordered morphisms f : Y // X. Given a morphism
t : X ′ // X we define Wα(t) : Wα(X) // Wα(X ′) by Wα(t) = t∗ (the
pullback functor). This gives a contravariant functor Wα : sSetsop //Sets.

Lemma 5. Wα preserves all limits.

Proof. Suppose F : I // sSets is some diagram, and X = colimI F is its
colimit, with injections νi : F (i) //X. We need to show that the canonical
map Wα(X) // limI Wα(F (i)) is an isomorphism.

To see that it is surjective, suppose we are given [fi : Yi
// F (i)] ∈

limI Wα(F (i)). For each x ∈ Xn, choose some i and x̄ ∈ F (i) with ν(x̄) = x,
and set Yx := (Yi)x̄. By Proposition 3, this is well-defined up to canonical
isomorphism, independent of the choices of representatives i, x̄, Yi, fi. The
total space of these fibers then defines a well-ordered morphism f : Y //X,
with fibers smaller than α, and with pullbacks isomorphic to fi as required.

For injectivity, suppose f, f ′ are well-ordered morphisms over X, and
ν∗i f

∼= ν∗i f
′ for each i. By Proposition 3, these isomorphisms agree on each

fiber, so together give an isomorphism f ∼= f ′. �
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Define the simplicial set Wα by

Wα := Wα ◦ yop : ∆op // Sets,

where y denotes the Yoneda embedding ∆ // sSets.

Lemma 6. The functor Wα is representable, represented by Wα.

Proof. Given X ∈ sSets, we have isomorphisms, natural in X:

Wα(X) ∼= Wα(colim∫
X ∆[n])

∼= lim∫
X Wα(∆[n])

∼= lim∫
X(Wα)n

∼= lim∫
X sSets(∆[n],Wα)

∼= sSets(colim∫
X ∆[n],Wα)

∼= sSets(X,Wα). �

Notation 7. Given an α-small well-ordered map f : Y //X ∈ Wα(X), the
corresponding map X // Wα will be denoted by pfq.

Applying the natural isomorphism above to the identity map Wα
//Wα

gives a universal α-small well-ordered simplicial set W̃α
// Wα. Explicitly,

n-simplices of W̃α are pairs

(f : Y // ∆[n], s ∈ f−1(1[n]))

i.e. the fiber of W̃α over an n-simplex pfq ∈ Wα is exactly (an isomorphic
copy of) the main fiber of f . So, by construction:

Proposition 8. The canonical projection W̃α
// Wα is universal for α-

small well-ordered morphisms.

Corollary 9. The canonical projection W̃α
// Wα is weakly universal for

α-small morphisms of simplicial sets; that is, any such morphism can be
given (not necessarily uniquely) as a pullback of the projection.

Proof. By the well-ordering principle and the axiom of choice, one can well-
order the fibers, and then use the universal property of Wα. �

Definition 10. Let Uα ⊆ Wα (respectively, Uα ⊆ Wα) be the subobject

consisting of α-small well-ordered fibrations1; and define π : Ũα
// Uα as

the pullback:

Ũα
//

π

��

W̃α

��
Uα

� � // Wα

Lemma 11. The map π : Ũα
// Uα is a fibration.

1Here and throughout, by “fibration” we always mean “Kan fibration”.
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Proof. Consider a horn to be filled

Λk[n] //
� _

��

Ũα

π

��
∆[n]

pxq
// Uα

for some 0 ≤ k ≤ n. It factors through the pullback

Λk[n] //
� _

��

• //

x

��

Ũα

π

��
∆[n] ∆[n]

pxq
// Uα

where by the definition of Uα, x is a fibration. Thus the left square admits
a diagonal filler, and hence so does the outer rectangle. �

Lemma 12. An α-small well-ordered morphism f : Y //X ∈ Wα(X) is a
fibration if and only if pfq : X // Wα factors through Uα.

Proof. For ‘⇒’, assume that f : Y // X is a fibration. Then the pullback
of f to any representable is certainly a fibration:

• //

x∗f
��

Y

f
��

∆[n] x
// X.

so pfq(x) = x∗f ∈ Uα, and hence pfq factors through Uα.
Conversely, suppose pfq factors through Uα. Then we obtain:

Y //

f

��

Ũα
//

π

��

W̃α

��
X // Uα

� � // Wα,

where the lower composite is pfq, and the outer rectangle and the right
square are pullbacks. Hence so is the left square, so by Lemma 11 f is a
fibration. �

As an immediate consequence we obtain the following corollary.

Corollary 13. The functor Uα is representable, represented by Uα. The

map π : Ũα
//Uα is universal for α-small well-ordered fibrations, and weakly

universal for α-small fibrations.
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2. Fibrancy of Uα

Our next goal is to prove the following theorem.

Theorem 14. The simplicial set Uα is a Kan complex.

Before proceeding with the proof we will gather four useful lemmas. The
first two, on the theory of minimal fibrations, come originally from [Qui68]
and [BGM59]. Since these two lemmas contain all that we need to know
about minimal fibrations, we treat the notion as a black box, and refer the
interested reader to [May67] for more.

Lemma 15 (Quillen’s Lemma, [Qui68]). Any fibration f : Y //X may be
factored as f = pg, where p is a minimal fibration and g is a trivial fibration.

Lemma 16 ([BGM59, III.5.6]; see also [May67, Cor. 11.7]). Suppose X is
contractible, with x0 ∈ X, and p : Y // X is a minimal fibration with fiber
F := Yx0

. Then there is an isomorphism

Y
g

//

p
��✽

✽✽
✽✽

✽✽
F ×X

π2
~~⑥⑥
⑥⑥
⑥⑥
⑥⑥

X

over X.

For the last outstanding lemma, the proof we give is due to André Joyal,
somewhat simpler than Voevodsky’s original proof. We include details here
since the original [Joy11] is not currently publicly available. For this, and
again for Theorem 28 below, we make crucial use of exponentiation along
cofibrations; so we pause first to establish some facts about this.

Lemma 17 (Cf. [Joy11, Lemma 0.2]). Suppose i : A //B is a cofibration.
Let i∗ and i! denote respectively the right and the left adjoint to the pullback
functor i∗ : sSets/B // sSets/A. Then:

1. i∗ : sSets/A // sSets/B preserves trivial fibrations;
2. the counit i∗i∗ // 1sSets/A is an isomorphism;
3. if p : E //A is α-small, then so is i∗p.

Proof.

1. By adjunction, since i∗ preserves cofibrations.
2. Since i is mono, i∗i! ∼= 1sSets/A; so by adjointness, i∗i∗ ∼= 1sSets/A.
3. For any n-simplex x : ∆[n] //B, we have (i∗p)x ∼= HomsSets/B(i∗x, p). As

a subobject of ∆[n], i∗x has only finitely many non-degenerate simplices,
so (i∗p)x injects into a finite product of fibers of p and is thus of size
< α. �

Lemma 18 ([Joy11, Lemma 0.2]). If t : Y // X is a trivial fibration and
j : X //X ′ is a cofibration, then there exists a trivial fibration t′ : Y ′ //X ′
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and a pullback square of the form:

Y //

t
��

Y ′

t′

��
X � �

j
// X ′.

If t is α-small, then t′ may be chosen to also be.

Proof. Take (Y ′, t′) := j∗(Y, t). By part 1 of Lemma 17, this is a trivial
fibration; by part 2, j∗Y ′ ∼= Y ; and by part 3, it is small. �

We are now ready to prove that Uα is a Kan complex.

Proof of Theorem 14. We need to show that we can extend any horn in Uα

to a simplex:

Λk[n] //
� _

��

Uα

∆[n]

<<

By Corollary 13, such a horn corresponds to an α-small well-ordered fibra-
tion q : Y // Λk[n]. To extend pqq to a simplex, we just need to construct
an α-small fibration Y ′ over ∆[n] which restricts on the horn to Y :

Y //

q
��

Y ′

q′

��
Λk[n] �

�
// ∆[n].

By the axiom of choice one can then extend the well-ordering of q to q′, so
the map pq′q : ∆[n] // Uα gives the desired simplex.

By Quillen’s Lemma, we can factor q as

Y
qt

// Y0
qm

// Λk[n],

where qt is a trivial fibration and qm is a minimal fibration. Both are still
α-small: each fiber of qt is a subset of a fiber of q, and since a trivial fibration
is onto, each fiber of qm is a quotient of a fiber of q.

By Lemma 16, we have an isomorphism Y0
∼= F × Λk[n], and hence a

pullback diagram:

Y0
� � //

��

F × ∆[n]

��
Λk[n] �

�
// ∆[n]
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By Lemma 18, we can then complete the upper square in the following
diagram, with both right-hand vertical maps α-small fibrations:

Y

qt

��

// Y ′

��
Y0

� � //

qm
��

F × ∆[n]

��
Λk[n] �

�
// ∆[n]

.

Since α is regular, the composite of the right-hand side is again α-small;
so we are done. �

3. Representability of weak equivalences

To define univalence, we first need to construct the object of weak equiv-
alences between fibrations p1 : E1

// B and p2 : E2
// B over a common

base. In other words, we want an object representing the functor sending
(X, f) ∈ sSets/B to the set EqX(f∗E1, f

∗E2). As we did for Uα, we pro-
ceed in two steps, first exhibiting it as a subfunctor of a functor more easily
seen (or already known) to be representable.

For the remainder of the section, fix fibrations E1, E2 as above over a base
B. Since sSets is locally Cartesian closed, we can construct the exponential
object between them:

Definition 19. Let HomB(E1, E2) //B denote the internal hom from E1

to E2 in sSets/B.
Then for any X, a map X // HomB(E1, E2) corresponds to a map

f : X // B, together with a map u : f∗E1
// f∗E2 over X.

Together with the Yoneda lemma, this implies the explicit description:
an n-simplex of HomB(E1, E2) is a pair

(b : ∆[n] //B,u : b∗E1
// b∗E2).

Lemma 20. HomB(E1, E2) //B is a Kan fibration.

Proof. The functor (−) ×B E1 : sSets/B // sSets/B preserves trivial cofi-
brations (since sSets is right proper); so its right adjoint HomB(E1,−)
preserves fibrant objects. �

Within HomB(E1, E2), we now want to construct the subobject of weak
equivalences.

Lemma 21. Let f : E1
// E2 be a weak equivalence over B, and suppose

g : B′ // B. Then the induced map between pullbacks g∗E1
// g∗E2 is a

weak equivalence.

Proof. The pullback functor g∗ : sSets/B // sSets/B′ preserves trivial fi-
brations; so by Ken Brown’s Lemma [Hov99, Lemma 1.1.12], it preserves all
weak equivalences between fibrant objects. �
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Thus, weak equivalences from E1 to E2 form a subfunctor of the functor
of maps from E1 to E2. To show that this is representable, we need just to
show:

Lemma 22. Let f : E1
// E2 be a morphism over B. If for each simplex

b : ∆[n] //B the induced map fb : b∗E1
// b∗E2 is a weak equivalence, then

f is a weak equivalence.

Proof. Without loss of generality, B is connected; otherwise, apply the result
over each connected component separately. Take some vertex b : ∆[0] //B,
and set Fi := b∗Ei.

Now π0(f) factors as π0(E1) ∼= π0(F1)
π0(fb) // π0(F2) ∼= π0(E2), so is

an isomorphism, since by hypothesis π0(fb) is. Similarly, for any vertex
e : ∆[0] // F1, we have by the long exact sequence for a fibration:

πn+1(B, b) //

1
��

πn(F1, e) //

πn(fb)
��

πn(E1, e) //

πn(f)
��

πn(B, b) //

1
��

πn−1(F1, e)

πn−1(fb)
��

πn+1(B, b) // πn(F2, f(e)) // πn(E2, f(e)) // πn(B, b) // πn−1(F2, f(e))

Each πn(fb) is an isomorphism, so by the Five Lemma, so is each πn(f).
Thus f is a weak equivalence. �

Definition 23. Let EqB(E1, E2) be the simplicial subset of HomB(E1, E2)
consisting of the n-simplices of the form:

(b : ∆[n] //B,w : b∗E1
// b∗E2)

such that w is a weak equivalence. (By Lemma 21, this indeed defines a
simplicial subset.)

From Lemma 22, we immediately have:

Corollary 24. Let (f, u) : X // HomB(E1, E2). Then u is a weak equiva-
lence if and only if (f, u) factors through EqB(E1, E2).

Thus, maps X // EqB(E1, E2) correspond to pairs of maps

(f : X //B,w : f∗E1
// f∗E2),

where w is a weak equivalence. �

While Lemma 22 was stated just as required by representability, its proof
actually gives a slightly stronger statement:

Lemma 25. Let f : E1
// E2 be a morphism over B. If for some vertex

b : ∆[0] //B in each connected component the map of fibers fb : b∗E1
//b∗E2

is a weak equivalence, then f is a weak equivalence. �

Corollary 26. The map EqB(E1, E2) //B is a fibration.
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Proof. Suppose we wish to fill a square:

Λk[n] //
� _

i
��

EqB(E1, E2)

��
∆[n]

88

b // B

By the universal property of EqB(E1, E2) this corresponds to showing that
we can extend a weak equivalence w : i∗b∗E1

// i∗b∗E2 over Λk[n] to a weak
equivalence w : b∗E1

// b∗E2 over ∆[n].
By Lemma 20, we can certainly find some map w extending w. But then

since ∆[n] is connected, Lemma 25 implies that w is a weak equivalence. �

4. Univalence

Let p : E // B be a fibration. We then have two fibrations over B × B,
given by pulling back E along the projections. Call the object of weak equiv-
alences between these Eq(E) := EqB×B(π∗

1E, π∗
2E). Concretely, simplices

of Eq(E) are triples

(b1, b2 ∈ Bn, w : b∗1E // b∗2E).

By Corollary 24, a map f : X // Eq(E) corresponds to a pair of maps
f1, f2 : X // B together with a weak equivalence f∗

1E
// f∗

2E over X. In
particular, there is a diagonal map δ : B // Eq(E), corresponding to the
triple (1B , 1B , 1E), and sending a simplex b ∈ Bn to the triple (b, b, 1Eb

).
There are also source and target maps s, t : Eq(E) // B, given by the

composites Eq(E) //B×B
πi //B, sending (b1, b2, w) to b1 and b2 respec-

tively. These are both retractions of δ; and by Corollary 26, if B is fibrant
then they are moreover fibrations.

Definition 27. A fibration p : E //B is called univalent if δ : B //Eq(E)
is a weak equivalence.

Since δ is always a monomorphism (thanks to its retractions), this is
equivalent to saying that B // Eq(E) // B × B is a (trivial cofibration,
fibration) factorisation of the diagonal ∆: B //B×B, i.e. that Eq(E) is a
path object for B.

Theorem 28. The fibration π : Ũα
// Uα is univalent.

Proof. We will show that t is a trivial fibration. Since it is a retraction of δ,
this implies by 2-out-of-3 that δ is a weak equivalence.

So, we need to fill a square

A //
� _

i

��

Eq(Ũα)

t

��
B //

<<

Uα
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where i : A � � // B is a cofibration.
By the universal properties of Uα and Eq(Ũα), these data correspond to a

weak equivalence w : E1
//E2 between small well-ordered fibrations over A,

and an extension E2 of E2 to a small, well-ordered fibration over B; and a
filler corresponds to an extension E1 of E1, together with a weak equivalence
w extending w:

A

E1

E2

w

B

E1

E2

w

As usual, it is sufficient to construct this first without well-orderings on
E2; these can then always be chosen so as to extend those of E2.

Recalling Lemmas 17–18, we define E1 and w as the pullback

E1

w
��

// i∗E1

i∗w

��
E2 η

// i∗E2

in sSets/B, where η is the unit of i∗ ⊣ i∗ at E2. To see that this construction
works, it remains to show:

(a) i∗E1
∼= E1 in sSets/A, and under this, i∗w corrsponds to w;

(b) E1 is small over B;
(c) E1 is a fibration over B, and w is a weak equivalence.

For (a), pull the defining diagram of E1 back to sSets/A; by Lemma 17
part 2, we get a pullback square

i∗E1

i∗w
��

// E1

w

��
E2

1E2 // E2

in sSets/A, giving the desired isomorphism.
For (b), Lemma 17 part 3 gives that i∗E1 is α-small over B, so E1 is a

subobject of a pullback of α-small maps.
For (c), note first that by factoring w, we may reduce to the cases where

it is either a trivial fibration or a trivial cofibration.
In the former case, by Lemma 17 part 1 i∗w is also a trivial fibration, and

hence so is w; so E1 is fibrant over E2, hence over B.
In the latter case, E1 is then a deformation retract of E2 over A; we will

show that E1 is also a deformation retract of E2 over B. Let H : E2 ×
∆[1] // E2 be a deformation retraction of E2 onto E1. We want some
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homotopy H : E2 × ∆[1] // E2 extending H on E2 × ∆[1], 1E1
× ∆[1] on

E1 × ∆[1], and 1E2
on E2 × {0}. Since these three maps agree on the

intersections of their domains, this is exactly an instance of the homotopy
lifting extension property, i.e. a square-filler

(E2 × ∆[1]) ∪ (E1 × ∆[1]) ∪ (E2 × {0})
� _

��

H∪1∪1 // E2

��
E2 × ∆[1] //

H

33

B

which exists since the left-hand map is a trivial cofibration.
For H to be a deformation retraction, we need to see that H{1} : E2

//E2

factors through E1. By the definition of E1, a map f : X // E2 over
b : X // B factors through E1 just if the pullback i∗f : i∗X // E2 fac-
tors through E1. In the case of H{1}, the pullback is by construction

i∗(H{1}) = (i∗H){1} = H{1} : E2
// E2, which factors through E1 since

H was a deformation retraction onto E1.
So w embeds E1 as a deformation retract of E2 over B; thus E1 is a

fibration over B and w a weak equivalence, as desired. �

5. Uniqueness in the universal property of Uα

Finally, as promised, we will give a uniqueness statement for the repre-

sentation of a small fibration as a pullback of π : Ũα
// Uα: we show that

the space of such representations is contractible.
Let p : E // B be any fibration. We define a functor

Pp : sSetsop // Sets

taking Pp(X) to be the set of pairs of a map f : X ×B // Uα, and a weak

equivalence w : X ×E // f∗Ũα over X ×B; equivalently, the set of squares

X × E
f ′

//

X×p

��

Ũα

π

��
X ×B

f
// Uα

such that the induced map X×E //f∗Ũα is a weak equivalence. Lemma 21
ensures that this is functorial in X, by pullback.

Lemma 29. The functor Pp is representable, represented by the simplicial
set (Pp)n := Pp(∆[n]).

Proof. Let Qp(X) be the set of all commutative squares (f, f ′) from p to

Ũα
// Uα; we know that Qp is represented by Qp := EŨα ×EUα BUα .

Now, Pp is a subfunctor of Qp. By Lemma 22, an element (f, f ′) ∈ Qp(X)
lies in Pp(X) if and only if for each x : ∆[n] //X, the pullback x∗(f, f ′) lies
in Pp(X); that is, if its representing map X // Qp factors through Pp. �
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Proposition 30. Let p be an α-small fibration. Then Pp is contractible.

Proof. By Corollary 13, take some map ppq : B //Uα such that E ∼= ppq∗Ũα.
Now, for any X, maps X //Pp correspond by definition to pairs of maps

f : X × B // Uα, w : X × E // f∗Ũα. But X × E ∼= (ppq · π2)
∗Ũα over

X; so such pairs also correspond to maps f̄ : X × B // Eq(Ũα) such that
s · f̄ = ppq · π2 : X ×B // Uα.

From this, we conclude that Pp
// 1 is a trivial fibration: filling a square

Y //

��

Pp

��
X //

>>

1

corresponds to filling the square

Y ×B //

��

Eq(Ũα)

s

��
X ×B

ppq·π2 //

99

Uα

but if Y //X is a cofibration, then so is Y ×B //X×B; and by univalence,
s is a trivial fibration; so a filler exists. �
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