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THE SIMPLICIAL MODEL OF UNIVALENT

FOUNDATIONS

CHRIS KAPULKIN, PETER LEFANU LUMSDAINE,
AND VLADIMIR VOEVODSKY

Abstract. In this paper, we construct and investigate a model of the
Univalent Foundations of Mathematics in the category of simplicial sets.

To this end, we first give a new technique for constructing models of
the type theory, using universes to obtain coherence. We then construct
a (weakly) universal Kan fibration, and use it to exhibit a model in
simplicial sets. Lastly, we introduce the Univalence Axiom, in several
equivalent formulations, and show that it holds in our model.

Contents

Introduction 2
1. Models from Universes 4
1.1. The type theory under consideration 4
1.2. Contextual categories 5
1.3. Contextual categories from universes 8
1.4. Logical structure on universes 9
2. The Simplicial Model 15
2.1. A universe of Kan complexes 15
2.2. Kan fibrancy of the universe 19
2.3. Modelling type theory in simplicial sets 21
3. Univalence 24
3.1. Type-theoretic univalence 25
3.2. Simplicial univalence 26
3.3. Equivalence of type-theoretic and simplicial univalence 29
3.4. Univalence of the simplicial universes 36
3.5. Univalence and pullback representations 37
Appendix A. Rules of Martin-Löf Type Theory 39
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Introduction

The Univalent Foundations programme is a new proposed approach to
foundations of mathematics, originally suggested by the third-named author
in [Voe06] (closely related to independent work of Awodey, Warren, and
collaborators [AW09]), building on the systems of dependent type theory
developed by Martin-Löf and others.

A major motivation for earlier work with such logical systems has been
their well-suitedness to computer implementation. One notable example is
the Coq proof assistant, based on the Calculus of Inductive Constructions
(a closely related dependent type theory), which has shown itself feasible for
large-scale formal verification of mathematics, with developments including
formal proofs of the Four-Colour Theorem [Gon08] and the Feit-Thompson
(Odd Order) Theorem [G+12].

One feature of dependent type theory which has previously remained com-
paratively unexploited, however, is its richer treatment of equality. In tra-
ditional foundations, equality carries no information beyond its truth-value:
if two things are equal, they are equal in at most one way. This is fine for
equality between elements of discrete sets; but it is unnatural for elements of
higher-dimensional categories, or of spaces. In particular, it is at odds with
the informal mathematical practice of treating isomorphic (and sometimes
more weakly equivalent) objects as equal; which is why this usage must be
so often disclaimed as an abuse of language, and kept rigorously away from
formal statements, even though it is so appealing.

In dependent type theory, equalities can carry information: two things
may be equal in multiple ways. So the basic objects—the types—may behave
not just like discrete sets, but more generally like higher groupoids (with
equalities being morphisms in the groupoid), or spaces (with equalities being
paths in the space). And, crucially, this is the only equality one can talk
about within the logical system: one cannot ask whether elements of a
type are “equal on the nose”, in the classical sense. The logical language
only allows one to talk about properties and constructions which respect its
equality.

The Univalence Axiom, introduced by the third-named author, strength-
ens this characteristic. In classical foundations one has sets of sets, or classes
of sets, and uses these to quantify over classes of structures. Similarly, in
type theory, types of types—universes—are a key feature of the language.
The Univalence Axiom states that equality between types, as elements of a
universe, is the same as equivalence between them, as types. It formalises
the practice of treating equivalent structures as completely interchangeable;
it ensures that one can only talk about properties of types, or more gen-
eral structures, that respect such equivalence. In sum, it helps solidify the
idea of types as some kind of spaces, in the homotopy-theoretic sense; and
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more practically—its original motivation—it provides for free many theo-
rems (transfer along equivalences, naturality with respect to these, and so
on) which must otherwise be re-proved by hand for each new construction.

The main import of this paper is to justify the intuition outlined above, of
types as spaces. Specifically, we focus on simplicial sets, a well-studied model
for spaces in homotopy theory; we construct a model of type theory in the
category sSets of simplicial sets, and show that it satisfies the Univalence
Axiom. (For comparison with other familiar notions: simplicial sets present
the same homotopy theory as topological spaces; and form the basis of one
of the most-studied models for higher groupoids.)

It also follows from this model that the Univalent Foundations are con-
sistent, provided that the classical foundations we use are (precisely, ZFC
together with the existence of two strongly inaccessible cardinals, or equiv-
alently two Grothendieck universes).

This paper therefore includes a mixture of logical and homotopy-theoretic
ingredients; however, we have aimed to separate the two wherever possible.
Good background references for the logical parts include [NPS90], a gen-
eral introduction to the type theory; [Hof97], for the categorical semantics;
and [ML84], the locus classicus for the logical rules. For the homotopy-
theoretic aspects, [GJ09] and [Hov99] are both excellent and sufficient refer-
ences. Finally, for the category-theoretic language used throughout, [ML98]
is canonical.

Organisation. In Section 1 we consider general techniques for constructing
models of type theory. After setting out (in Section 1.1) the specific type
theory that we will consider, we review (Section 1.2) some fundamental facts
about its semantics in contextual categories, following [Str91]. In Section 1.3,
we use universes to construct contextual categories, and hence models of
(the structural core of) type theory; and in Section 1.4, we use categorical
constructions on the universe to model the logical constructions of type
theory. Together, these present a new solution to the coherence problem for
modelling type theory (cf. [Hof95b]).

In Section 2, we turn towards constructing a model in the category of
simplicial sets. Sections 2.1 and 2.2 are dedicated to the construction and
investigation of a (weakly) universal Kan fibration (a “universe of Kan com-
plexes”); in Section 2.3 we use this universe to apply the techniques of
Section 1, giving a model of the full type theory in simplicial sets.

Section 3 is devoted to the Univalence Axiom. We formulate univalence
first in type theory (Section 3.1), then directly in homotopy-theoretic terms
(Section 3.2), and show that these definitions correspond under the simpli-
cial model (Section 3.3). In Section 3.4, we show that the universal Kan
fibration is univalent, and hence that the Univalence Axiom holds in the
simplicial model. Finally, in Section 3.5 we discuss an alternative formula-
tion of univalence, shedding further light on the universal property of the
universe.
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We should mention here that this paper is based in large part on the
ongoing unpublished manuscript [Voe12] of the third-named author.

Related work. While the present paper discusses just models of the Uni-
valent Foundations, the major motivation for this is the actual development
of mathematics within these foundations. The work on this so far exists
mainly in unpublished but publicly-accessible form: most substantially in
[Voe] (for an introduction to which, see [PW12]), but also in [AGMLV11],
[HoTa], and [HoTb].

Earlier work on homotopy-theoretic models of type theory can be found
in [HS98], [AW09], [War11]. Other current and recent work on such models
includes [GvdB11], [AK11], and [Shu12]. Other general coherence theorems,
for comparison with the results of Section 1, can be found in [Hof95b] and
[LW12]. Univalence in homotopy-theoretic settings is also considered in
[Moe11] and [GK12]. (These references are, of course, far from exhaustive.)

Acknowledgements. First and foremost we are grateful to Michael War-
ren, whose illuminating seminars and discussions heavily influenced our un-
derstanding and presentation of the material. We also thank Ieke Moerdijk,
Mike Shulman, and Karol Szumi lo, for helpful correspondence, conversa-
tions, and corrections to drafts; and Steve Awodey, without whose constant
support and encouragement in many ways this paper would not exist.

The first-named author was financially supported during this work by
the NSF, Grant DMS-1001191 (P.I. Steve Awodey), and by a grant from
the Benter Foundation (P.I. Thomas C. Hales); the second-named author,
by an AARMS postdoctoral fellowship at Dalhousie University, and grants
from NSERC (P.I.’s Peter Selinger, Robert Dawson, and Dorette Pronk).

1. Models from Universes

In this section, we set up the machinery which we will use, in later sections,
to model type theory in simplicial sets. The type theory we consider, and
some of the technical machinery we use, are standard; the main original
contribution is a new technique for solving the so-called coherence problem,
using universes.

1.1. The type theory under consideration. Formally, the type theory
we will work with is a slight variant of Martin-Löf’s Intensional Type Theory,
as presented in e.g. [ML84]. The rules of this theory are given in full in Ap-
pendix A; briefly, it is a dependent type theory, taking as basic constructors
Π-, Σ-, Id-, and W-types, 0, 1, +, and a universe à la Tarski.

A related theory of particular interest is the Calculus of Inductive Con-
structions, on which the Coq proof assistant is based ([Wer94]). CIC differs
from Martin-Löf type theory most notably in its very general scheme for in-
ductive definitions, and in its treatment of universes. We do not pursue the
question of how our model might be adapted to CIC, but for some discussion
and comparison of the two systems, see [PM96], [Bar12], and [Voe12, 6.2].
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One abuse of notation that we should mention: we will sometimes write
e.g. A(x) or t(x, y) to indicate free variables on which a term or type may de-
pend, so that we can later write A(g(z)) to denote the substitution [g(z)/x]A
more readably. Note however that the variables explicitly shown need not
actually appear; and there may also always be other free variables in the
term, not explicitly displayed.

1.2. Contextual categories. The syntax of type theory, while convenient
for working in, is rather difficult to directly construct models of: doing so
involves much bureaucracy. Instead, we construct models categorically, via
the notion of a contextual category :

Definition 1.2.1 (Cartmell [Car78, Sec. 2.2], Streicher [Str91, Def. 1.2]).
A contextual category C consists of the following data:

(1) a category C;
(2) a grading of objects as Ob C =

∐
n:N Obn C;

(3) an object 1 ∈ Ob0 C;
(4) maps ftn : Obn+1 C // Obn C (whose subscripts we usually suppress);
(5) for each X ∈ Obn+1 C, a map pX : X // ftX (the canonical projec-

tion from X);
(6) for each X ∈ Obn+1 C and f : Y // ft(X), an object f∗(X) and a

map q(f,X) : f∗(X) //X;

such that:

(1) 1 is the unique object in Ob0(C);
(2) 1 is a terminal object in C;
(3) for each X ∈ Ob C and f : Y // ft(X), we have ft(f∗X) = Y , and

the square

f∗X

pf∗X

��

q(f,X) // X

px
��

Y
f // ft(X)

is a pullback (the canonical pullback of X along f); and
(4) these canonical pullbacks are strictly functorial: that is, for X ∈

Obn+1 C, 1∗ftXX = X and q(1ftX ,X) = 1X ; and for X ∈ Obn+1 C,
f : Y // ftX and g : Z // Y , we have (fg)∗(X) = g∗(f∗(X)) and
q(fg, x) = q(f,X)q(g, f∗X).

Remark 1.2.2. Note that these may be seen as models of a multi-sorted
essentially algebraic theory ([AR94, 3.34]), with sorts indexed by N+N×N.

This definition is best understood in terms of its prototypical example:

Example 1.2.3. Let T be any type theory. Then there is a contextual
category C(T), described as follows:

• Obn C(T) consists of the contexts [x1:A1, . . . , xn:An] of length n,
up to definitional equality and renaming of free variables;
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• maps of C(T) are context morphisms, or substitutions, considered up
to definitional equality and renaming of free variables. That is, a
map

f : [x1:A1, . . . , xn:An] // [y1:B1, . . . , ym:Bm(y1, . . . , ym−1)]

is represented by a sequence of terms

x1:A1, . . . , xn:An ⊢ f1 : B1

...

x1:A1, . . . , xn:An ⊢ fm : Bm(f1, . . . , fm−1)

and two such maps [fi], [gi] are equal just if for each i,

x1:A1, . . . , xn:An ⊢ fi = gi : Bi;

• composition is given by substitution, and the identity Γ //Γ by the
variables of Γ, considered as terms;

• 1 is the empty context [ ];
• ft[x1:A1, . . . , xn+1:An+1] = [x1:A1, . . . , xn:An];
• for Γ = [x1:A1, . . . , xn+1:An+1], the map pΓ : Γ // ft Γ is the de-
pendent projection context morphism

(x1, . . . , xn) : [x1:A1, . . . , xn+1:An+1] // [x1:A1, . . . , xn:An],

simply forgetting the last variable of Γ;
• for contexts

Γ = [x1:A1, . . . , xn+1:An+1(x1, . . . , xn)],

Γ′ = [y1:B1, . . . , ym:Bm(y1, . . . , ym−1)],

and a map f = [fi(~y)]i≤n : Γ′ // ft Γ, the pullback f∗Γ is the context

[y1:B1, . . . , ym:Bm(y1, . . . , ym−1), ym+1:An+1(f1(~y), . . . , fn(~y))],

and q(Γ, f) : f∗Γ // Γ is the map

[f1, . . . , fn, yn+1].

Note that terms Γ ⊢ t : A of T may be recovered from C(T), up to
definitional equality, as sections of the projection p[Γ, x:A] : [Γ, x:A] // Γ.
For this reason, when working with contextual categories, we will often write
just “sections” to refer to sections of dependent projections.

We will also use several other notations deserving of particular comment.
For an object Γ, we will write e.g. (Γ, A) to denote an arbitrary object with
ft(Γ, A) = Γ, and will then write the dependent projection p(Γ,A) simply
as pA; similarly, (Γ, A,B), and so on. Similarly, we will write f∗ not only
for the canonical pullbacks of appropriate objects, but also the pullbacks of
maps between them.

The plain definition of a contextual category corresponds precisely to the
basic judgements and structural rules of dependent type theory. Similarly,
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each logical rule or type- or term-constructor corresponds to certain extra
structure on a contextual category. We make this correspondence precise in
Theorem 1.2.9 below, once we have set up the appropriate definitions.

Definition 1.2.4. A Π-type structure on a contextual category C consists
of the following data:

(1) for each (Γ, A,B) ∈ Obn+2 C, an object (Γ,Π(A,B)) ∈ Obn+1 C;
(2) for each section b : (Γ, A) // (Γ, A,B) of a dependent projection pA,

a morphism λ(b) : Γ // (Γ,Π(A,B));
(3) for each pair of sections k : Γ // (Γ,Π(A,B)) and a : Γ // (Γ, A),

a section app(k, a) : Γ // (Γ, A,B) such that the following diagram
commutes:

(Γ, A,B)

πB

��
(Γ, A)

πA

��
Γ

app(k,a)

??

a
;;✈✈✈✈✈✈✈✈✈

Γ

(4) such that for a : Γ // (Γ, A) and b : (Γ, A) // (Γ, A,B) we have
app(λ(b), a) = b · a;

(5) and moreover, all the above operations are stable under substitution:
for any morphism f : ∆ // Γ, we have

(∆, f∗Π(A,B)) = (∆,Π(f∗A, f∗B)),

λ(f∗b) = f∗λ(b), app(f∗k, f∗a) = f∗(app(k, a)).

Similarly, all the other logical rules of Appendix A may be routinely
translated into structure on a contextual category; see [Hof97, 3.3] for more
details and discussion.

Example 1.2.5. If T is a type theory with Π-types, then C(T) carries an
evident Π-type structure; similarly for Σ-types and the other constructors
of Sections A.2 and A.3.

Remark 1.2.6. Note that all of these structures, like the definition of con-
textual categories themselves, are essentially algebraic in nature.

Definition 1.2.7. A map F : C // D of contextual categories, or contex-
tual functor, consists of a functor C // D between underlying categories,
respecting the gradings, and preserving (on the nose) all the structure of a
contextual category.

Similarly, a map of contextual categories with Π-type structure, Σ-type
structure, etc., is a contextual functor preserving the additional structure.

Remark 1.2.8. These are exactly the maps given by considering contextual
categories as essentially algebraic structures.
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We are now equipped to state precisely the sense in which the structures
defined above correspond to the appropriate syntactic rules:

Theorem 1.2.9. Let T be the type theory given by just the structural rules
of Section A.1. Then C(T) is the initial contextual category.

Similarly, let T be the type theory given by the structural rules, plus any
combination of the logical rules of Sections A.2, A.3. Then C(T) is initial
among contextual categories with the appropriate extra structure.

Proof. This is essentially the Correctness Theorem, p.181 (Chapter 3) of
[Str91], with a different selection of logical constructors. �

This justifies the definition:

Definition 1.2.10. A model of dependent type theory with any selection
of the logical rules of Section A.2 is a contextual category equipped with the
structure corresponding to the chosen rules.

1.3. Contextual categories from universes. The major difficulty in con-
structing models of type theory is the so-called coherence problem: the re-
quirement for pullback to be strictly functorial, and for the logical structure
to commute strictly with it. In most natural categorical situations, opera-
tions on objects commute with pullback only up to isomorphism, or even
more weakly; and for constructors with weak universal properties, opera-
tions on maps (corresponging for example to the Id-elim rule) may also fail
to commute with pullback. Hofmann [Hof95b] gives a construction which
solves the issue for Π- and Σ-types, but Id-types in particular remain prob-
lematic with this method. Other methods exist for certain specific categories
([HS98], [War08]), but are not applicable to the present case.

In order to obtain coherence for our model, we thus give a new con-
struction based on universes (not necessarily the same as universes in the
type-theoretic sense, though the two may sometimes coincide).

Definition 1.3.1. Let C be a category. A universe in C is an object U
together with a morphism p : Ũ // U , and for all f : X // U a pullback
square

(X; f)
Q(f) //

P(X,f)

��

Ũ

p

��
X

f // U.

The intuition here is that the map p represents the generic family of types
over the universe U .

By abuse of notation, we often refer to the universe simply as U , with p
and the chosen pullbacks understood.

Given a map f : Y // X, we will often write pfq (or pY q, if f is un-
derstood) for a map X // U such that f ∼= P(X,pfq). Also, for a sequence
of maps f1 : X // U , f2 : (X; f1) // U , etc., we write (X; f1, . . . , fn) for
(. . . (X; f1); . . .); fn).
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Definition 1.3.2. Given a category C, together with a universe U and a
terminal object 1, we define a contextual category CU as follows:

• Obn CU := { (f1, . . . , fn) | f1 : 1 // U, fi+1 : (1; f1, . . . , fi) // U }
• CU ((f1, . . . , fn), (g1, . . . , gm)) := C((1; f1, . . . , fn), (1; g1, . . . , gn))
• 1CU := (), the empty sequence.
• ft(f1, . . . , fn+1) := (f1, . . . , fn);
• the projection p(f1,...,fn+1) is the map P(X,fn+1) provided by the uni-

verse structure on U ;
• given (f1, . . . , fn+1) and a map α : (g1, . . . , gm) //(f1, . . . , fn) in CU ,

the canonical pullback α∗(f1, . . . , fn+1) in CU is given by (g1, . . . , gm,
fn+1 · α), with projection induced by Q(fn+1 · α):

(1; g1, . . . , gm, fn+1 · α)

Q(fn+1·α)

,,//

��

(1; f1, . . . , fn+1)

��

Q(fn+1)
// Ũ

p

��
(1; g1, . . . , gm)

α // (1; f1, . . . , fn)
fn+1 // U

Proposition 1.3.3.

(1) These data define a contextual category CU .
(2) This contextual category is well-defined up to canonical isomorphism

given just C and p : Ũ //U , independently of the choice of pullbacks.

Proof. Routine computation. �

Justified by the second part of this proposition, we will not explicitly
consider the choices of pullbacks when we construct the universe in the
category sSets of simplicial sets.

As an aside, let us note that every small contextual category arises in this
way:

Proposition 1.3.4. Let C be a small contextual category. Consider the
universe U in the presheaf category [Cop,Sets] given by

U(X) = {Y | ftY = X}

Ũ(X) = {(Y, s) | ftY = X, s a section of pY },

with the evident projection map, and any choice of pullbacks.
Then [Cop,Sets]U is isomorphic, as a contextual category, to C.

Proof. Straightforward, with liberal use of the Yoneda lemma. �

1.4. Logical structure on universes. Given a universe U in a category C,
we want to know how to equip CU with various logical structure—Π-types,
Σ-types, and so on. For general C, this is rather fiddly; but when C is locally
cartesian closed (as in our case of interest), it is more straightforward, since
local cartesian closedness allows us to construct and manipulate “objects
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of U -contexts”, and hence to construct objects representing the premises of
each rule.

In working with locally cartesian closed structure, given a map f : A //B,
we will denote the pullback functor and its adjoints as:

C/A

Σf

&&

Πf

88

⊥

⊥
C/Bf∗oo

Also, the intended map A //B is often clearly determined by the object A,
as some sort of associated projection; in such a case, we will write ΣA, ΠA

for the functors arising from this map.
An alternative notation for locally cartesian closed categories is their in-

ternal logic, extensional dependent type theory [See84]. While this language
is convenient and powerful, we avoid it due to the difficulties of working
clearly with two logical languages in parallel.

Returning to the question at hand, first consider Π-types. We know
that dependent products exist in C; so informally, we need only to ensure
that U (considered as a universe of types) is closed under such products.
Specifically, given a type A in U (that is, a map pAq : X // U), and a
dependent family of types B over A, again from U (i.e. a map pBq : A :=
(X; pAq) //U), the product ΠAB of these families in the slice C/X should
again “live in U”; that is, there should be a map pΠ(A,B)q : X // U such
that (X; pΠ(A,B)q) ∼= ΠAB. Moreover, we need this construction to be
natural in X.

To obtain the naturality, we cannot simply provide this structure for each
X and A,B individually. Instead, there is an object UΠ-form representing
such pairs (A,B), and a generic such pair (Agen, Bgen) based on UΠ-form. It

is sufficient to define Π in this generic case X = UΠ-form; the construction
then extends to other X by precomposition, and as such, is automatically
natural in X.

Precisely:

Definition 1.4.1. Given a universe U in a lccc C, define

UΠ-form := ΣUΠŨ (U × Ũ).

Pulling back Ũ along the projection UΠ-form //U induces an object Agen

over U ; similarly, pulling back Ũ along the counit

Agen = Ũ ×U ΠŨ (U × Ũ) // U × Ũ // U

induces a second object Bgen.
Moreover, the universal properties of the LCCC structure ensures that

Bgen
//Agen

//UΠ-form are generic; that is, every other B //A //Γ with
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maps Γ //U , A //U exhibiting A and B as pullbacks of Ũ arises uniquely
by precomposition and pullback along a map p(A,B)q : Γ // UΠ-form.

(In the internal language of C as an LCCC, UΠ-form may be written as

[[A:U, B:[ŨA, U ]]], which can be seen as an internalisation of the premises of
Π-form.)

Definition 1.4.2. A Π-structure on a universe U in a lccc C consists of a
map

Π: UΠ-form // U.

whose realisation is a dependent product for the generic dependent family
of types; that is, such that the square

ΠAgenBgen
//

��

Ũ

��
UΠ-form Π // U

is a pullback.

The approach used here gives a template which we follow for all the other
constructors, with extra subtleties entering the picture just in the cases of
Id-types and (type-theoretic) universes, since these structures do not arise
from strict category-theoretic constructions.

Definition 1.4.3. A Σ-structure on a universe U in a lccc C consists of a
map

Σ: UΣ-form := ΣUΠŨ(U × Ũ) // U

whose realisation is a dependent sum for the generic dependent family of
types; that is, such that the square such that the square

ΣAgenBgen
//

��

Ũ

��
UΣ-form Σ // U

is a pullback.

Id-structure requires a few auxiliary definitions.

Definition 1.4.4.

• Given maps f, g in C, say f is (weakly) orthogonal to g if any com-
mutative square from f to g has some diagonal filler:

• //

f

��

•

g

��
• //

??

•
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• If f lies in some slice C/X, say moreover that f is stably orthogonal to
g over X if every pullback of f along a map α : X ′ //X is orthogonal
to g.

•
f //

��✺
✺✺

✺✺
✺ •

��✠✠
✠✠
✠✠

X ′ α // X

• //

α∗f

��

•

g

��
• //

??

•

As shown in [GG08], the rules for Id-types can be understood roughly as
follows. In a model where dependent types are interpreted as fibrations, the
identity type over a type A is a factorisation of the diagonal ∆A : A //A×A
as a stable trivial cofibration, followed by a fibration. Here, by a stable trivial
cofibration, we mean a map which is stably orthogonal to all fibrations, over
A×A.

In our case, the “fibrations” are just the pullbacks of p; so it is sufficient
to ask that the first map in the factorisation is stably orthogonal to p.
Moreover, it is sufficient to construct this factorisation for the generic type
1U : U // U .

Definition 1.4.5 (Warren). Id-structure on a universe consists of maps

Id : U Id-form = Ũ ×U Ũ // U, r : U // Id∗Ũ

such that the triangle

U
r //

∆
Ũ ��✽

✽✽
✽✽

✽✽
Id∗Ũ

Id∗p����
��
��
�

Ũ ×U Ũ

commutes, and r is stably orthogonal to p over Ũ ×U Ũ .

Definition 1.4.6. W-structure on a universe consists of a map

W: UW-form := ΣUΠŨ(U × Ũ) // U

such that W∗Ũ is an initial algebra for the polynomial endofunctor of C/U
specified by Agen

//Bgen, i.e. the endofunctor

C/UW-form
p∗Bgen

p∗Agen // C/Bgen

ΠBgen // C/Agen

ΣAgen // C/UW-form .

(For details on polynomial endofunctors and their algebras, see [MP00],
[GH04].)

Definition 1.4.7. 0-structure on U consists of a map 0 : 1 //U such that
0∗Ũ ∼= 0.

(By analogy with the preceding definitions, one might refer to 1 here as
U0-form, and similarly in the next two definitions. We choose not to do so
simply for the sake of readability.)
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Definition 1.4.8. 1-structure on U consists of a map 1 : 1 //U such that
1∗Ũ ∼= 1.

Definition 1.4.9. +-structure on U consists of a map +: U×U //U , such
that +∗Ũ ∼= π∗

1Ũ + π∗
2Ũ .

Finally, we consider the structure on U needed to give a universe (in the
type-theoretic sense) in CU . Here, for the first time, we need to consider
a nested pair of universes, since the internal universe of CU must be some
smaller universe U0 in C.

Definition 1.4.10. An internal universe (U0, i) in U consists of arrows

u0 : 1 // U i : U0 = u∗0Ũ // U.

Given these, i induces by pullback a universe structure (p0, Ũ0, . . .) on U0.
We say that U0 is closed under Π-types in U if U0 carries a Π-structure Π0,
commuting with i in the sense that the square

UΠ-form
0

iΠ-form//

Π0

��

UΠ-form

Π
��

U0
i // U

commutes (where the top map is induced by the evident functoriality of
UΠ-form in U).

Similarly, we say that U0 is closed under Σ-types (resp. Id-types, etc.) if
it carries Σ-structure Σ0 (resp. an Id-structure (Id0, r0), etc.) commuting
with i.

With these structures defined, we can now prove that they are fit for
purpose:

Theorem 1.4.11. Π-structure (resp. Σ-structure, etc.) structure on a uni-
verse U induces Π-type structure (resp. Σ-type structure, etc.) on CU .

An internal universe (U0, i) in U closed under any combination of Π-types,
Σ-types, etc., induces a universe à la Tarski in CU closed under the corre-
sponding constructors.

Proof. This proof is esentially a routine verification; we give the case of
Π-types in full, and leave the rest mostly to the reader.

In a nutshell, the constructor Π is induced by the map Π; and the con-
structors λ and app are induced by the corresponding lccc structure in C.

Precisely, we treat the rules of Π-types (corresponding to the components
of the desired Π-type structure) one at a time.

(Π-form): The premises

Γ ⊢ A type Γ, x:A ⊢ B type
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in CU correspond to data in C of the form

A //

��

Ũ

��
Γ

pAq // U

B //

��

Ũ

��
A

pBq // U

and hence to a map

(pAq, pBq) : Γ // UΠ-form.

Then the composite Π · (pAq, pBq) gives a type Γ //U which we take as
Π(A,B). By construction, this is stable under substitution along any map
f : ∆ // Γ, since substitution in CU is again just composition in C.

(Π-intro): Besides Γ, A, B as before, we have an additional premise

Γ, x:A ⊢ t : B(x).

This is by definition a map 1A //B in C/A, corresponding by adjunction
to a map t̂ : 1Γ //ΠAB in C/Γ. But

ΠAB ∼=(pAq, pBq)∗ΠAgenBgen

∼=(pAq, pBq)∗Π∗Ũ

∼=(Π · (pAq, pBq))∗Ũ

so t̂ corresponds to a section of Π(A,B) over Γ, which we take as λ(t).
Stability under substitution follows by the uniqueness in the universal

property of ΠAB.
We could alternatively have defined λ more analogously to Π, by rep-

resenting the premises as a single map (pAq, pBq, t) : Γ // UΠ-intro :=
ΣUΠ-formΠAgenBgen; then taking the transpose of the generic term tgen over

UΠ-intro; and then pulling this back along (pAq, pBq, t). In fact, thanks
to the uniqueness in the universal property of ΠAgenBgen, that would give
the same result as the present, more straightforward, definitition. However,
the alternative definition has the advantage that its stability under substi-
tution follows simply from properties of pullbacks; this becomes important
for Id-types, whose universal property lacks a uniqueness condition.

(Π-app): The premises now are

Γ ⊢ A type Γ, x:A ⊢ B type

Γ ⊢ f : Π(A,B) Γ ⊢ a : A

corresponding to Γ, A, B as before, plus sections

A

��

Π(A,B)

uu

∼= ΠAB

Γ
a

WW
f

88
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Together, these give a section over Γ of ΠAB ×Γ A; so composing this
with the evaluation map evA,B of ΠAB gives a map Γ //B lifting a, which
we take to be app(f, a).

(Π-comp): here, we have premises Γ, A,B, t as in Π-intro, and a as in
Π-app; and we have formed app(λ(t), a) as prescribed above. So, unwinding
the isomorphism Π(A,B) ∼= ΠAB used in each case,

app(λ(t), a) = evA,B ·(t̂, a)

= t · a

as desired, by the usual rules of LCCCs.
This completes the proof for Π-structures.
As indicated above, the remaining constructors are for the most part en-

tirely analogous. The only subtlety is in the case for the Id-elim rule. In
this case, there are two ways that one could define the appropriate structure:
one can either pull back to each specific context and then choose liftings, or
choose a lifting in the universal context and then pull it back (as discussed
following the Π-intro case above). The second of these is the correct choice:
the first is not generally stable under substitution. (For other constructors,
this distinction does not arise, since their strict categorical universal prop-
erties canonically determine the maps involved.) �

2. The Simplicial Model

In this section, we construct (for any inaccessible cardinal α) a Kan fi-

bration pα : Ũα
//Uα, weakly universal among Kan fibrations with α-small

fibers, and investigate the key properties of Uα and pα. In particular, we
show that Uα is a Kan complex, and carries the various logical structures
defined in Section 1.4. Together, these yield our first main goal: a model of
type theory in sSets, with an internal universe.

2.1. A universe of Kan complexes. In constructing a universe Uα in-
tended to represent α-small Kan fibrations, one might expect (by the Yoneda
lemma) to simply define (Uα)n as the set of α-small fibrations over ∆[n].
This definition has two problems: firstly, it gives not a set, but a proper
class; and secondly, it is not strictly functorial, since pullback is functorial
only up to isomorphism.

Some extra technical device is therefore needed to resolve these issues.
Several possible solutions exist; we take the approach of passing to isomor-
phism classes, having first added well-orderings to the mix so that fibrations
have no non-trivial automorphisms (without which the crucial Lemma 2.1.4
would fail). We should emphasise, however, that this is the sole reason for
introducing the well-orderings: they are of no intrinsic interest (and are
indeed occasionally something of an inconvenience).

Definition 2.1.1. Let X be a simplicial set. A well-ordered morphism
f : Y // X is a pair consisting of a morphism into X (also denoted by f)
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and a function assigning to each simplex x ∈ Xn a well-ordering on the fiber
Yx := f−1(x) ⊆ Yn.

If f : Y // X, f ′ : Y ′ // X are well-ordered morphisms into X, an iso-
morphism of well-ordered morphisms from f to f ′ is an isomorphism Y ∼= Y ′

over X preserving the well-orderings on the fibers.

Proposition 2.1.2. Given two well-ordered sets, there is at most one iso-
morphism between them. Given two well-ordered morphisms over a common
base, there is at most one isomorphism between them.

Proof. The first statement is classical, and immediate by induction; the
second follows from the first, applied in each fiber. �

Definition 2.1.3. Fix (for the remainder of this and the following section)
a regular cardinal α. Say a map of simplicial sets f : Y //X is α-small if
each of its fibers Yx has cardinality < α.

Given a simplicial set X, define Wα(X) to be the set of isomorphism
classes of α-small well-ordered morphisms Y //X; together with the pull-
back action Wα(f) := f∗ : Wα(X) //Wα(X ′), for f : X ′ //X, this gives
a contravariant functor Wα : sSetsop // Sets.

Lemma 2.1.4. Wα preserves all limits: Wα(colimiXi) ∼= limiWα(Xi).

Proof. Suppose F : I // sSets is some diagram, and X = colimI F is its
colimit, with injections νi : F (i) //X. We need to show that the canonical
map Wα(X) // limI Wα(F (i)) is an isomorphism.

To see that it is surjective, suppose we are given [fi : Yi
// F (i)] ∈

limI Wα(F (i)). For each x ∈ Xn, choose some i and x̄ ∈ F (i) with ν(x̄) = x,
and set Yx := (Yi)x̄. By Proposition 2.1.2, this is well-defined up to canonical
isomorphism, independent of the choices of representatives i, x̄, Yi, fi. The
total space of these fibers then defines a well-ordered morphism f : Y //X,
with fibers of size < α, and with pullbacks isomorphic to fi as required.

For injectivity, suppose f, f ′ are well-ordered morphisms over X, and
ν∗i f

∼= ν∗i f
′ for each i. By Proposition 2.1.2, these isomorphisms must agree

on each fiber, so together give an isomorphism f ∼= f ′. �

Define the simplicial set Wα by

Wα := Wα · yop : ∆op // Sets,

where y denotes the Yoneda embedding ∆ // sSets.

Lemma 2.1.5. The functor Wα is representable, represented by Wα.
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Proof. Given X ∈ sSets, we have isomorphisms, natural in X:

Wα(X) ∼= Wα(colim∫
X ∆[n])

∼= lim∫
X Wα(∆[n])

∼= lim∫
X(Wα)n

∼= lim∫
X sSets(∆[n],Wα)

∼= sSets(colim∫
X ∆[n],Wα)

∼= sSets(X,Wα).

(Here
∫
X denotes the category of elements of X.) �

Notation 2.1.6. Given an α-small well-ordered map f : Y //X ∈ Wα(X),
the corresponding map X // Wα will be denoted by pfq.

Applying the natural isomorphism above to the identity map Wα
//Wα

gives a universal α-small well-ordered simplicial set W̃α
// Wα. Explicitly,

n-simplices of W̃α are pairs

(f : Y // ∆[n], s ∈ f−1(1[n]))

i.e. the fiber of W̃α over an n-simplex pfq ∈ Wα is exactly (an isomorphic
copy of) the main fiber of f . So, by construction:

Proposition 2.1.7. The canonical projection W̃α
// Wα is universal for

α-small well-ordered morphisms.

Corollary 2.1.8. The canonical projection W̃α
// Wα is weakly universal

for α-small morphisms of simplicial sets; that is, any such morphism can be
given (not necessarily uniquely) as a pullback of the projection.

Proof. By the well-ordering principle and the axiom of choice, one can well-
order the fibers, and then use the universal property of Wα. �

Definition 2.1.9. Let Uα ⊆ Wα (respectively, Uα ⊆ Wα) be the subobject

consisting of α-small well-ordered fibrations1; and define pα : Ũα
// Uα as

the pullback:

Ũα
//

pα

��

W̃α

��
Uα

� � // Wα

Lemma 2.1.10. The map pα : Ũα
// Uα is a fibration.

1Here and throughout, by “fibration” we always mean “Kan fibration”.
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Proof. Consider a horn to be filled

Λk[n] //
� _

��

Ũα

pα

��
∆[n]

pxq // Uα

for some 0 ≤ k ≤ n. It factors through the pullback

Λk[n] //
� _

��

• //

x

��

Ũα

pα

��
∆[n] ∆[n]

pxq // Uα

where by the definition of Uα, x is a fibration. Thus the left square admits
a diagonal filler, and hence so does the outer rectangle. �

Lemma 2.1.11. An α-small well-ordered morphism f : Y //X ∈ Wα(X)
is a fibration if and only if pfq : X // Wα factors through Uα.

Proof. For ‘⇒’, assume that f : Y // X is a fibration. Then the pullback
of f to any representable is certainly a fibration:

• //

x∗f
��

Y

f
��

∆[n]
x // X.

so pfq(x) = x∗f ∈ Uα, and hence pfq factors through Uα.
Conversely, suppose pfq factors through Uα. Then we obtain:

Y //

f

��

Ũα
//

pα

��

W̃α

��
X // Uα

� � // Wα,

where the lower composite is pfq, and the outer rectangle and the right
square are by construction pullbacks. Hence so is the left square; so by
Lemma 2.1.10 f is a fibration. �

As an immediate consequence we obtain the following corollary.

Corollary 2.1.12. The functor Uα is representable, represented by Uα.

The map pα : Ũα
//Uα is universal for α-small well-ordered fibrations, and

weakly universal for α-small fibrations.
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2.2. Kan fibrancy of the universe. The previous section provides the
main ingredients needed to use Uα as a universe in the sense of Section 1, and
hence to give a model of the core type theory. However, to give additionally
a type-theoretic universe within that model, we need to show that each Uα

itself can be seen as an type of the model; in other words, that it is Kan.
The main goal of this section is therefore to prove the following theorem.

Theorem 2.2.1. The simplicial set Uα is a Kan complex.

Before proceeding with the proof we will gather four useful lemmas. The
first two concern minimal fibrations, which for the present purposes are a
technical device whose details, beyond these two lemmas, are unimportant.

Lemma 2.2.2 (Quillen’s Lemma, [Qui68]). Any fibration f : Y //X may
be factored as f = pg, where p is a minimal fibration and g is a trivial
fibration.

Lemma 2.2.3 ([BGM59, III.5.6]; see also [May67, Cor. 11.7]). Suppose X
is contractible, with x0 ∈ X, and p : Y //X is a minimal fibration with fiber
F := Yx0. Then there is an isomorphism over X:

Y
g //

p
��✾

✾✾
✾✾

✾✾
F ×X

π2}}⑤⑤
⑤⑤
⑤⑤
⑤⑤

X.

For Lemma 2.2.5, the proof we give is due to André Joyal; we include
details here since the original [Joy11] is not currently publicly available. For
this, and again for Theorem 3.4.1 below, we make crucial use of exponen-
tiation along cofibrations; so we pause first to establish some facts about
this.

Lemma 2.2.4 (Cf. [Joy11, Lemma 0.2]). For any map i : A //B,

1. Πi : sSets/A // sSets/B preserves trivial fibrations;

and if moreover i is a cofibration, then:

2. the counit i∗Πi
// 1sSets/A is an isomorphism;

3. if p : E //A is α-small, then so is Πip.

Proof.

1. By adjunction, since i∗ preserves cofibrations.
2. Since i is mono, i∗Σi

∼= 1sSets/A; so by adjointness, i∗Πi
∼= 1sSets/A.

3. For any n-simplex x : ∆[n] //B, we have (Πip)x ∼= HomsSets/B(x,Πip) ∼=
HomsSets/B(i∗x, p). As a subobject of ∆[n], i∗x has only finitely many
non-degenerate simplices, so (Πip)x injects into a finite product of fibers
of p and is thus of size < α. �

Lemma 2.2.5 ([Joy11, Lemma 0.2]). Trivial fibrations extend along cofi-
brations. That is, if t : Y // X is a trivial fibration and j : X // X ′ is a
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cofibration, then there exists a trivial fibration t′ : Y ′ // X ′ and a pullback
square of the form:

Y //

t
��

Y ′

t′

��
X � � j // X ′.

Moreover, if t is α-small, then t′ may be chosen to also be.

Proof. Take t′ := Πjt. By part 1 of Lemma 2.2.4, this is a trivial fibration;
by part 2, j∗Y ′ ∼= Y ; and by part 3, it is α-small. �

We are now ready to prove that Uα is a Kan complex.

Proof of Theorem 2.2.1. We need to show that we can extend any horn in
Uα to a simplex:

Λk[n] //
� _

��

Uα

∆[n]

<<

By Corollary 2.1.12, such a horn corresponds to an α-small well-ordered fi-
bration q : Y //Λk[n]. To extend pqq to a simplex, we just need to construct
an α-small fibration Y ′ over ∆[n] which restricts on the horn to Y :

Y //

q
��

Y ′

q′

��
Λk[n] �

� // ∆[n].

By the axiom of choice one can then extend the well-ordering of q to q′, so
the map pq′q : ∆[n] // Uα gives the desired simplex.

By Quillen’s Lemma, we can factor q as

Y
qt // Y0

qm // Λk[n],

where qt is a trivial fibration and qm is a minimal fibration. Both are still
α-small: each fiber of qt is a subset of a fiber of q, and since a trivial fibration
is onto, each fiber of qm is a quotient of a fiber of q.

By Lemma 2.2.3, we have an isomorphism Y0
∼= F × Λk[n], and hence a

pullback diagram:

Y0
� � //

��

F × ∆[n]

��
Λk[n] �

� // ∆[n]
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By Lemma 2.2.5, we can then complete the upper square in the following
diagram, with both right-hand vertical maps α-small fibrations:

Y

qt

��

// Y ′

��
Y0

� � //

qm
��

F × ∆[n]

��
Λk[n] �

� // ∆[n]

Since α is regular, the composite of the right-hand side is again α-small;
so we are done. �

2.3. Modelling type theory in simplicial sets. To prove that Uα carries
the structure to model type theory, we will need a couple of further lemmas;
firstly, that taking dependent products preserves fibrations:

Lemma 2.3.1. Suppose Z
q //Y

p //X are fibrations. Then the dependent
product Πpq is a fibration over X.

Proof. The pullback functor p∗ : sSets/X //sSets/Y preserves trivial cofi-
brations (since sSets is right proper and cofibrations are monomorphisms);
so its right adjoint Πp preserves fibrant objects. �

Secondly, to model Id-types, we will require well-behaved fibered path
objects. The construction below may be found in [War08, Thm. 2.25]; we
recall it in more elementary terms, which will be useful to us later.

Definition 2.3.2. Given a fibration p : E //B, define the fibered path object
PB(E) as the pullback

PB(E) //

��

E∆[1]

p∆[1]

��
B

c // B∆[1],

the object of paths in E that are constant in B.
The “constant path” map c : E // E∆[1] factors through PB(E); call

the resulting map rp : E //PB(E). There are also evident source and taget
maps sp, tp : PB(E) //E. (On all of these maps, we will omit the subscripts
when they are clear from context.)

Proposition 2.3.3. For any fibration p : E //B, the maps

E
r // PB(E)

(s,t) //E ×B E

give a factorisation of the diagonal map ∆p : E // E ×B E over B as a
(trivial cofibration, fibration); and this is stable over B in that the pullback
along any B′ //B is again such a factorisation.
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Proof. It is clear that these maps give a factorisation of ∆p over B. To see
that they are a trivial cofibration and a fibration respectively, consider the
pullback construction of PB(E) via two intermediate stages:

PB(E)

(s,t)

��

// E∆[1]

(s,p∆[1],t)

��
E ×B E

π1

��

// E ×B B∆[1] ×B E

(π1,π2)
��

E

�� ��

// E ×B B∆[1]

��
B

c // B∆[1]

Now (s, t) is certainly a fibration, since it is a pullback of the map

E∆[1] // E ×B B∆[1] ×B E ∼= E1+1 ×B1+1 B∆[1], which is a fibration by
the monoidal model category axioms [Hov99, Lemma 4.2.2(3)], applied to
the cofibration 1 + 1 // ∆[1] and the fibration p.

Similarly, the source map s : PB(E) //E is a trivial fibration, since it is

a pullback of E∆[1] // E1 ×B1 B∆[1], which is one by the monoidal model
category axioms. But s is a retraction of r, so r is a weak equivalence (by
2-out-of-3) and a monomorphism, so is a trivial cofibration as desired.

Finally, stability of these properties under pullback follows immediately
from the stability (up to isomorphism) of the construction itself: for any
f : B′ // B, there is a canonical isomorphism PB′(f∗E) ∼= f∗PB(E), com-
muting with the maps r, s, t. �

We are now fully equipped for the main result of the present section:

Theorem 2.3.4. Let α be an inaccessible cardinal. Then Uα carries Π-,
Σ-, Id-, W-, 1-, 0-, and +-structure.

Moreover, if β < α is also inaccessible, then Uβ gives an internal universe
in Uα closed under all these constructors.

Proof. (Π-structure): Given a pair of α-small fibrations Z
q //Y

p //X, the
dependent product Πpq in sSets/X is again a fibration, by Lemma 2.3.1; it
is also α-small, since α is regular.

Hence by Corollary 2.1.12, the universal dependent product over Uα
Π-form

is representable as the pullback of Ũα along some map Π: Uα
Π-form //Uα,

giving the desired Π-structure.

(Σ-structure): Similarly, given α-small fibrations Z
q // Y

p // X, the
composite p · q is again an α-small fibration. So the universal dependent
sum over Uα

Σ-form is representable by some map Σ: Uα
Σ-form // Uα.

(Id-structure): Given any α-small fibration p : Y //X, consider the fac-

torisation of the diagonal ∆p as Y
r //PX(Y )

(s,t) //Y ×X Y . The fibration
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(s, t) is easily seen to be α-small; and by Proposition 2.3.3, r is stably or-
thogonal to (s, t) over X.

Applying this construction to pα : Ũα
// Uα itself gives the desired Id-

structure on Uα.

(W-structure): Given α-small fibrations Z
q // Y

p //X, the initial alge-
bra Wq

//X for the induced polynomial endofunctor on sSets/X may be
obtained as a transfinite colimit of iterations of the endofunctor; it can be
shown from this description that it is again an α-small fibration [MvdB12].

(0-structure), (1-structure), (+-structure): these cases are straightfor-
ward.

(Internal universe.) Since β < α, Uβ is itself α-small; and by Theo-

rem 2.2.1, it is Kan. So Uβ is representable as the pullback of Ũα along
some uβ : 1 // Uα. Moreover, there is a natural inclusion i : Uβ

// Uα,

with Ũα[β] ∼= i∗Ũα by construction. Together these give the desired internal
universe (uβ, i).

Finally, to see that (uβ, i) is closed under the appropriate constructors in
i, note that for each of Π, Σ, and Id as constructed above, the image of the
composite with i lies again in Uβ, and hence factors through i; for instance,
in the case of Π,

Uβ
Π-form iΠ-form//

Π

��

Uα
Π-form

Π

��
Uβ

i // Uα

(Note that while we do already have Π-structure (and so on) on Uβ as
constructed in the first parts of this theorem, those choices of the structure
do not automatically commute with i.) �

Corollary 2.3.5. Let β < α be inaccessible cardinals. Then there is a
model of dependent type theory in sSetsUα with all the logical constructors
of Section A.2, and a universe (given by Uβ) closed under these constructors.

�

We can now interpret the syntax of type theory as an internal language in
sSets, writing [[J ]] for the interpretation of any judgement J . In doing so,
we will make several systematic abuses of notation. Firstly, referring in the
syntax to fibrations, we will write E rather than pEq, and so on, whenever
some choice of name pEq : B // Uα for the fibration is understood; and
conversely, referring to the interpretation of a type Γ ⊢ T type, we use [[T ]]

to refer to the fibration over [[Γ]] given by pulling back Ũα along the literal
interpretation [[Γ ⊢ T type]] : [[Γ]] // Uα.

As a first characteristic of the model, we note that both of the extra
principles on equality of functions hold.

Proposition 2.3.6. The η-rule and functional extensionality rules of Sec-
tion A.4 hold in the simplicial model.
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Proof. The η-rule follows immediately from our use of categorical exponen-
tials to interpret Π-types, by the uniqueness in the categorical universal
property.

For functional extensionality, Garner [Gar09] shows that it holds just if
each product of identity types,

f, g:Πx:AB(x) ⊢ Πx:AIdB(x)(app(f, x), app(g, x)) type

admits the structure given by the rules for the identity type on the corre-
sponding product types,

f, g:Πx:AB(x) ⊢ IdΠx:AB(x)(f, g) type.

So it is enough to show that for any pair of (α-small, well-ordered) fibra-

tions Z
q // Y

p //X, given by names

pY q : X // Uα, pZq : Y // Uα,

the interpretation of the product of identity types

[[Πx:Y IdZ(x)(app(f, x), app(g, x))]] ∼= Πp(PY Z),

gives a suitably stable path object for the interpretation of the product
types,

[[IdΠx:Y Z(x)(f, g)]] ∼= ΠpZ.

For this, it is clear that Πp(s, t) : Πp(PY Z) // Πp(Z ×Y Z) ∼= ΠpZ ×X

ΠpZ is a fibration, since Πp preserves fibrations (Lemma 2.3.1). Simi-
larly, Πprq : ΠpZ //Πp(PY Z) is a cofibration since Πp preserves monomor-
phisms; and it is a weak equivalence, since Πp preserves trivial fibrations
(Lemma 2.2.5), and so the retraction Πpsq : Πp(PY Z) // ΠpZ is again a
trivial fibration. Finally, the by the Beck-Chevalley condition in an LCCC,
the entire construction is stable under pullback in X, as required. �

It now remains only to show that the Univalence Axiom holds in this
model.

3. Univalence

In this section, we will introduce the Univalence Axiom, and show that it
holds in the simplicial model.

The proof of this involves both simplicial and type-theoretic components;
we keep these separate, as far as possible. First of all (Section 3.1), we de-
fine univalence type-theoretically and state the Univalence Axiom; next, we
define an analogous simplicial concept of univalence (Section 3.2); we then
show that via the simplicial model, the two notions coincide (Section 3.3).
Finally, in Section 3.4, we prove our main theorem: that Uα is univalent (us-
ing the simplicial sense), and hence that the Univalence Axiom holds in the
simplicial model of type theory. Lastly, in Section 3.5, we discuss an alterna-
tive formulation of simplicial univalence, and so obtain an up-to-homotopy
uniqueness statement for the weak universal property of Uα.
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3.1. Type-theoretic univalence. To state the univalence axiom, we first
need to define a few basic notions in the type theory.

Definition 3.1.1 (Joyal). Let f : A // B be a function in some context
Γ, i.e. Γ ⊢ f : [A,B] (where the function type [A,B] is defined using Π, as
described in Section A.2).

• A left homotopy inverse for f is a function g : B //A, together with
a homotopy g · f ≃ 1A. Formally, we define the type LInv(f) of left
homotopy inverses to f :

Γ ⊢ LInv(f) := Σg:[B,A]Πx:AIdA(g(f(x)), x) type

• Analogously, we define the type RInv(f) of right homotopy inverses:

Γ ⊢ RInv(f) := Σg:[B,A]Πy:B IdB(f(g(y)), y) type

• We say f : A // B is a homotopy isomorphism (or more briefly, an
h-isomorphism) if it is equipped with both a left and a right inverse:

Γ ⊢ isHIso(f) := LInv(f) × RInv(f) type

• For any types A and B, we thus have the type of h-isomorphisms
from A to B:

Γ ⊢ HIso(A,B) := Σf :[A,B]isHIso(f)

It may perhaps be surprising that we use homotopy isomorphisms rather
than the more familiar homotopy equivalences, with a single two-sided ho-
motopy inverse. The reason is that while a map carries either structure if
and only if it carries the other, the type, or object, of such structures on
a map is different. In particular, the analogue of Lemma 3.3.4 for homo-
topy equivalences does not hold; for further discussion of these issues, see
Appendix B.

Example 3.1.2. For any type B, the identity function on B is canonically
an h-isomorphism.

Suppose now that A is any type, and x : A ⊢ B(x) type a family of types
over A. By the identity elimination rule, we can derive

x, y:A, u:IdA(x, y) ⊢ wx,y,u : HIso(B(x), B(y)).

This can equivalently be seen as a map

x, y:A,⊢ wx,y : [IdA(x, y),HIso(B(x), B(y))].

Definition 3.1.3. We say the family B(x) is univalent if for each x, y, the
map wx,y is itself a homotopy isomorphism:

⊢ isUnivalent(x:A.B(x)) := Πx,y:AisHIso(wx,y).

Axiom 3.1.4. The Univalence Axiom, for a given type-theoretic universe
U , is the statement that the canonical family El of types over U is univalent.
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Informally, the Univalence Axiom says that just as elements of the uni-
verse correspond to types, so equalities in the universe correspond to equiv-
alences between types. In particular, since every statement or construction
must respect propositional equality, the Univalence Axiom stipulates that
the language can never distinguish between equivalent types.

3.2. Simplicial univalence. To define a simplicial notion of univalence,
we first need to construct the object of weak equivalences between fibrations
p1 : E1

// B and p2 : E2
// B over a common base. In other words, we

want an object representing the functor sending (X, f) ∈ sSets/B to the
set EqX(f∗E1, f

∗E2). As we did for Uα, we proceed in two steps, first
exhibiting it as a subfunctor of a functor more easily seen (or already known)
to be representable.

For the remainder of the section, fix fibrations E1, E2 as above over a base
B. Since sSets is locally Cartesian closed, we can construct the exponential
object between them:

Definition 3.2.1. Let HomB(E1, E2) //B denote the internal hom from
E1 to E2 in sSets/B.

Then for any X, a map X // HomB(E1, E2) corresponds to a map
f : X // B, together with a map u : f∗E1

// f∗E2 over X.
Together with the Yoneda lemma, this implies the explicit description:

an n-simplex of HomB(E1, E2) is a pair

(b : ∆[n] //B,u : b∗E1
// b∗E2).

Lemma 3.2.2. HomB(E1, E2) // B is a Kan fibration.

Proof. Follows immediately from Lemma 2.3.1, since the exponential is a
special case of dependent products. �

Within HomB(E1, E2), we now want to construct the subobject of weak
equivalences.

Lemma 3.2.3. Let f : E1
//E2 be a weak equivalence over B, and suppose

g : B′ // B. Then the induced map between pullbacks g∗E1
// g∗E2 is a

weak equivalence.

Proof. The pullback functor g∗ : sSets/B // sSets/B′ preserves trivial fi-
brations; so by Ken Brown’s Lemma [Hov99, Lemma 1.1.12], it preserves all
weak equivalences between fibrant objects. �

Thus, weak equivalences from E1 to E2 form a subfunctor of the functor
of maps from E1 to E2. To show that this is representable, we need just to
show:

Lemma 3.2.4. Let f : E1
//E2 be a morphism over B. If for each simplex

b : ∆[n] //B the induced map fb : b∗E1
// b∗E2 is a weak equivalence, then

f is a weak equivalence.
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Proof. Without loss of generality, B is connected; otherwise, apply the result
over each connected component separately. Take some vertex b : ∆[0] //B,
and set Fi := b∗Ei.

Now π0(f) factors as π0(E1) ∼= π0(F1)
π0(fb) // π0(F2) ∼= π0(E2), so is

an isomorphism, since by hypothesis π0(fb) is. Similarly, for any vertex
e : ∆[0] // F1, we have by the long exact sequence for a fibration:

πn+1(B, b) //

1
��

πn(F1, e) //

πn(fb)
��

πn(E1, e) //

πn(f)
��

πn(B, b) //

1
��

πn−1(F1, e)

πn−1(fb)
��

πn+1(B, b) // πn(F2, f(e)) // πn(E2, f(e)) // πn(B, b) // πn−1(F2, f(e))

Each πn(fb) is an isomorphism, so by the Five Lemma, so is each πn(f).
Thus f is a weak equivalence. �

Definition 3.2.5. Take EqB(E1, E2) to be the subobject of HomB(E1, E2)
consisting of all n-simplices

(b : ∆[n] //B,w : b∗E1
// b∗E2)

such that w is a weak equivalence. (By Lemma 3.2.3, this indeed defines a
simplicial subset.)

From Lemma 3.2.4, we immediately have:

Corollary 3.2.6. Let (f, u) : X //HomB(E1, E2). Then u is a weak equiv-
alence if and only if (f, u) factors through EqB(E1, E2).

Thus, maps X //EqB(E1, E2) correspond to pairs of maps

(f : X //B,w : f∗E1
// f∗E2),

where w is a weak equivalence. �

While Lemma 3.2.4 was stated just as required by representability, its
proof actually gives a slightly stronger statement:

Lemma 3.2.7. Let f : E1
//E2 be a morphism over B. If for some vertex

b : ∆[0] //B in each connected component the map of fibers fb : b∗E1
//b∗E2

is a weak equivalence, then f is a weak equivalence. �

Corollary 3.2.8. The map EqB(E1, E2) // B is a fibration.

Proof. Suppose we wish to fill a square:

Λk[n] //
� _

i
��

EqB(E1, E2)

��
∆[n]

88

b // B

By the universal property of EqB(E1, E2) this corresponds to showing that
we can extend a weak equivalence w : i∗b∗E1

// i∗b∗E2 over Λk[n] to a weak
equivalence w : b∗E1

// b∗E2 over ∆[n].
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By Lemma 3.2.2, we can certainly find some map w extending w. But then
since ∆[n] is connected, Lemma 3.2.7 implies that w is a weak equivalence.

�

While on the subject, we collect a proposition which is not required for
the definition of univalence, but which will be useful later:

Proposition 3.2.9. If E1, E
′
1, E2, E

′
2 are fibrations over a common base B,

and w1 : E′
1

// E1, w2 : E2
// E′

2 are weak equivalences over B, then the
induced map EqB(w1, w2) : EqB(E1, E2) //EqB(E′

1, E
′
2) is a weak equiva-

lence.

E′
1 E1 E2 E′

2

B

p′1 p1 p2 p′2

w1 w2

Proof. As weak equivalences between fibrations, w1 and w2 are fibered ho-
motopy equivalences over B. Choosing fibered homotopy inverses v1, v2
for w1 and w2 respectively gives a homotopy inverse HomB(v1, v2) for
HomB(w1, w2) : HomB(E1, E2) // HomB(E′

1, E
′
2). But by Lemma 3.2.7,

the image of a homotopy in Hom whose endpoints lie in Eq must lie en-
tirely in Eq; so the restriction EqB(v1, v2) gives a homotopy inverse for
EqB(w1, w2), as desired. �

We are now ready to define univalence.
Let p : E // B be a fibration. We then have two fibrations over B × B,

given by pulling back E along the projections. Call the object of weak equiv-
alences between these Eq(E) := EqB×B(π∗

1E, π∗
2E). Concretely, simplices

of Eq(E) are triples

(b1, b2 ∈ Bn, w : b∗1E // b∗2E).

By Corollary 3.2.6, a map f : X //Eq(E) corresponds to a pair of maps
f1, f2 : X // B together with a weak equivalence f∗

1E
// f∗

2E over X. In
particular, there is a “diagonal” map δE : B //Eq(E) corresponding to the
triple (1B , 1B , 1E), sending a simplex b ∈ Bn to the triple (b, b, 1Eb

).
There are also source and target maps s, t : Eq(E) // B, given by the

composites Eq(E) //B×B
πi //B, sending (b1, b2, w) to b1 and b2 respec-

tively. These are both retractions of δ; and by Corollary 3.2.8, if B is fibrant
then they are moreover fibrations.

Definition 3.2.10. A fibration p : E //B is univalent if the diagonal map
δE : B //Eq(E) is a weak equivalence.

Since δE is always a monomorphism (thanks to its retractions), this is
equivalent to saying that B // Eq(E) // B × B is a (trivial cofibration,
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fibration) factorisation of the diagonal ∆B : B //B×B, i.e. that Eq(E) is
a path object for B.

We conclude this section with a few examples, and non-examples, of uni-
valent fibrations.

Examples 3.2.11.

(1) The canonical map X // 1 is univalent if and only if the space of
homotopy auto-equivalences of X is contractible.

(2) The identity map X // X is univalent if and only if X is either
empty or contractible. In particular, the identity map 1+ 1 //1+ 1
is not univalent: it has two fibers which are equivalent, over points
that are not connected by any path.

(3) Any fibration weakly equivalent to a univalent fibration is itself uni-
valent (essentially, by Proposition 3.2.9).

3.3. Equivalence of type-theoretic and simplicial univalence. Hav-
ing defined the type-theoretic and simplicial notions of univalence, we now
wish to show that they coincide. As ever, we make essential use of repre-
sentability; in particular, we work with the interpretations of type-theoretic
notions entirely via their universal properties. With this in view, we need
to define what are represented by the interpretations of LInv, isHIso, etc.

Definition 3.3.1. Let p1 : E1
//B, p2 : E2

//B be fibrations over a com-
mon base (as in Definition 3.2.1).

Define HomLInvB(E1, E2) to be the set of maps with a left homotopy in-
verse from X to Y , i.e. triples (f, g,H), where f : E1

//E2 and g : E2
//E1

are maps over B, and H is a fibred homotopy from g ·f to 1E1 , defined using
the fibred path space PB(E1) (as used for the Id-structure in the proof of
Theorem 2.3.4).

Similarly, define HomRInvB(E1, E2) to consist of triples (f, g,H), where
f, g are as before, and H is now a fibred homotopy from f ·g to 1E2 , defined
using PB(E2).

Finally, these both come with evident projections to HomB(E1, E2); define
HIsoB(E1, E2) := HomLInvB(E1, E2) ×HomB(E1,E2) HomRInvB(E1, E2).

Lemma 3.3.2. Let B,E1, E2 be as above; additionally, suppose they are
given by names pBq : 1 // Uα, pEiq : B // Uα. Then for any f : X //B,
there are horizontal isomorphisms as in the diagram below, making the dia-
gram commute, and natural in (X, f).
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HomB(X, [[[E1, E2]]])

HomB(X, [[HomLInv(E1, E2)]])

HomB(X, [[HomRInv(E1, E2)]])

HomB(X, [[HIso(E1, E2)]])

HomX(f∗E1, f
∗E2)

HomLInvX(f∗E1, f
∗E2)

HomRInvX(f∗E1, f
∗E2)

HIsoX(f∗E1, f
∗E2)

∼=

∼=

∼=

∼=

Proof. This is essentially a routine verification; we prove just the first case,
that of [[[E1, E2]]]. For this, we need to produce a natural isomorphism
HomB(X, [[[E1, E2]]]) ∼= HomX(f∗E1, f

∗E2); in other words, to show that
[[[E1, E2]]] is the exponential between E1 and E2 in sSets/B.

Recall that by definition, [[[E1, E2]]] is constructed as the pullback of Ũα

along Π · p(E1, E2)q : B // Uα:

[[[E1, E2]]]

��

// ΠAgenBgen

��

// Ũα

��
B

p(E1,E2)q // Uα
Π-form Π // Uα

[[[E1, E2]]] is thus a pullback of the dependent product of the universal
pair of fibrations over Uα

Π-form, and so by the Beck-Chevalley condition is
a dependent product for the pullbacks of these fibrations along p(E1, E2)q.
But these pullbacks are isomorphic to E1, E1 ×B E2, by the two pullbacks

lemma and the construction of Agen, Bgen as pullbacks of Ũα
// Uα.

B

ΠE1(E∗
1E2)

E1

E∗
1E2

Uα
Π-form

ΠAgenBgen

Agen

Bgen

So [[[E1, E2]]] is the dependent product of E1×BE2
//E1 along E1

//B;
but this is exactly the usual construction of exponentials in slices from de-
pendent products [Joh02, A1.5.2]. �

We also note, from the proof of the preceding lemma:

Corollary 3.3.3. There is a natural isomorphism over B:

[[[E1, E2]]] ∼= HomB(E1, E2).

�
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Following this, we take HIsoB(E1, E2) := [[HIsoB(E1, E2)]], and define
HomLInv, HomRInv similarly.

Lemma 3.3.4. The map HIsoB(E1, E2) //HomB(E1, E2) factors through
EqB(E1, E2); and the resulting map HIsoB(E1, E2) // EqB(E1, E2) is a
trivial fibration.

Proof. The given map HIsoB(E1, E2) // [E1, E2] ∼= HomB(E1, E2) corre-
sponds, under the isomorphisms of Lemma 3.3.2, to the maps on hom-sets

HomB(X,HIsoB(E1, E2)) ∼= HIsoX(f∗E1, f
∗E2)

// HomX(f∗E1, f
∗E2)

∼= HomB(X,HomB(E1, E2))

(1)

where the middle map just forgets the chosen homotopy inverses of an h-
isomorphism. But since any map admitting both homotopy inverses is a
weak equivalence, the natural map

HIsoX(f∗E1, f
∗E2) // HomX(f∗E1, f

∗E2)

factors through EqX(f∗E1, f
∗E2); so by Yoneda, HIsoB(E1, E2) //[E1, E2]

∼= HomB(E1, E2) factors through EqB(E1, E2).
Thus, we obtain the desired map HIsoB(E1, E2) //EqB(E1, E2), corre-

sponding to the forgetful function HIsoX(f∗E1, f
∗E2) //EqX(f∗E1, f

∗E2).
Combining this with the left-hand pullback square in Lemma 3.3.2, we

can consider HIsoB(E1, E2) as the pullback:

HomB(E1, E2)

HomLInvB(E1, E2)
HomRInvB(E1, E2)

EqB(E1, E2)

EqLInvB(E1, E2)
EqRInvB(E1, E2)

HIsoB(E1, E2)

where EqLInv, EqRInv are defined by the pullbacks above, and represent
weak equivalences equipped with a left (resp. right) homotopy inverse. To
show that the map HIsoB(E1, E2) //EqB(E1, E2) is a trivial fibration, it
thus suffices to show that the maps

EqLInvB(E1, E2) // EqB(E1, E2)

EqRInvB(E1, E2) // EqB(E1, E2)

are each trivial fibrations.
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Lemma 3.3.5. For B, E1, E2 as above, the map

EqLInvB(E1, E2) // EqB(E1, E2)

is a trivial fibration. Equivalently, left homotopy inverses to equivalences
between fibrant objects extend along cofibrations.

Proof. For EqLInvB(E1, E2) // EqB(E1, E2), we need to find a filler for
any diagram of the form

Y //
� _

i
��

EqLInvB(E1, E2)

��
X //

55

EqB(E1, E2)

where i : Y −֒→ X is a cofibration.
Writing f for the induced map X // B and Fi for f∗Ei, this square

corresponds (by the universal properties of Eq and EqLInv) to a weak
equivalence w̄ : F1

// F2, and a fibered left homtopy inverse to w := i∗w̄;
that is, l : i∗F2

// i∗F1, and a homotopy H : l ·w ≃ 1i∗F1 , all fibered over Y :

Y

i∗F1

i∗F2

w

l

X

F1

F2

w

A filler then corresponds to a fibered left homotopy inverse (l̄, H̄) to w̄,
extending (l,H).

These data and desiderata may be summed up in a single commuting
diagram:

F1i∗F1

i∗F1 × ∆[1]i∗F1

i∗F2

ι1

ι0

w

i∗F1 F1

F1 × ∆[1]F1

F2

w̄
ι0

F1 X

1

H

l

ι1

π1

l̄

H
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Replacing the sub-diagrams on the left by their colimits, we see that we
seek precisely a diagonal filler for an associated square:

i∗F2 +i∗F1 (i∗F1 × ∆[1]) +i∗F1 F1
//

��

F1

��
F2 +F1 (F1 × ∆[1])

44

// X

So since F1
//X is a fibration, we just need to show that the left-hand map

of pushouts, induced by

F1i∗F1

i∗F1 × ∆[1]i∗F1

i∗F2

ι1

ι0

w

F1 × ∆[1]F1

F2

w̄

ι0

ι1

is a trivial cofibration. For convenience, call this map t.
To see that t is a weak equivalence, consider it in the square

(i∗F1 × ∆[1]) +i∗F1 F1
//

��

F1 × ∆[1]

��
i∗F2 +i∗F1 ((i∗F1 × ∆[1]) +i∗F1 F1)

t // F2 +F1 (F1 × ∆[1]).

The top map is a trivial cofibration by the pushout-product property; the
vertical maps are pushouts of w and w̄ along cofibrations, so are also weak
equivalences; and so by 2-out-of-3, t is a weak equivalence.

On that other hand, to see that t is a cofibration, consider it as induced
by maps t0, t1 as in:

i∗F1
//

��

F1

t1
��

i∗F2 +i∗F1 (i∗F1 × ∆[1])
t0 // F2 +F1 (F1 × ∆[1]).

Here t0 is isomorphic to the inclusion

i∗(F2 +F1 (F1 × ∆[1])) −֒→ F2 +F1 (F1 × ∆[1])

(since pulling back preserves products and pushouts), so is mono. Next, i0
and i1 have disjoint images, so t1 is also mono. Finally, the intersection of
the images of t0 and t1 is exactly the image of i∗F1; so t, as the induced
map from (i∗F2 +i∗F1 (i∗F1 × ∆[1])) +i∗F1 F1, is mono as desired.
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Thus t is a trivial cofibration, completing the proof of the lemma. �

Lemma 3.3.6. For B, E1, E2 as above, the map

EqRInvB(E1, E2) //EqB(E1, E2)

is a trivial fibration. Equivalently, right homotopy inverses to equivalences
between fibrant objects extend along cofibrations.

Proof. We must provide lifts against any cofibration i : Y −֒→ X:

Y //
� _

i

��

EqRInvB(E1, E2)

��
X //

55

EqB(E1, E2)

Analogously to the previous lemma, and again writing f : X //B, Fi :=
f∗E1, the square corresponds to a weak equivalence w̄ : F1

//F2 over X to-
gether with a fibered right homotopy inverse to w := i∗w̄, i.e. r : i∗F2

//i∗F1

and a homotopy H : w · r ≃ 1i∗F2 over Y ;

Y

i∗F1

i∗F2

w

r

X

F1

F2

w

and a filler corresponds to a fibered right homotopy inverse (r̄, H̄) for w̄,
extending (r,H).

Again, putting these conditions together, we see that they correspond to
filling another square:

i∗F2
(r,H) //

��

i∗F1 ×i∗F2 PY (i∗F2) // F1 ×F2 PXF2

ev1 ·π1

��
F2

1 //

(r̄,H̄)

22

F2

where the pullbacks are just the fibered mapping path spaces.

i∗F1 ×i∗F2 PY (i∗F2)

��

// PY (i∗F2)

ev0
��

i∗F1
w // i∗F2

F1 ×F2 PXF2

��

// PY F2

ev0
��

F1
w̄ // F2

Now i∗F2 −֒→ F2 is certainly a cofibration; so to provide the filler, it
suffices to show that the right-hand map is a trivial fibration. As the target
map from a mapping path space, it is certainly a fibration. To see that it is
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a weak equivalence, consider the triangle

F1
x 7→ (x,cw̄x) //

w̄
**❯❯❯

❯❯❯❯
❯❯❯

❯❯❯
❯❯❯

❯❯❯❯
❯❯❯

❯ F1 ×F2 PXF2

ev0
��

F2

The top map is the inclusion of a deformation retraction, so is a weak equiv-
alence; so by 2-out-of-3, the source map ev0 is a weak equivalence. But ev1

is homotopic to ev0, so is also a weak equivalence, as required. �

Putting these two lemmas together concludes the proof of Lemma 3.3.4:
HIso is trivially fibrant over Eq. �

Theorem 3.3.7. Let B be a Kan complex, p : E // B a fibration; choose
some names pBq : 1 //Uα, pEq : B //Uα for these. Then E is simplicially
univalent if and only if the type isUnivalent(E) is inhabited in the model.

Proof. By definition, p : E // B is type-theoretically univalent when there
exists a section of the type [[x1, x2:B ⊢ isHIso(wx1,x2) type]] over B×B (where
wx1,x2 is as in Definition 3.1.3). By Lemma 3.3.2 this is equivalent to the map
wE = [[x1, x2:B, IdB(x1, x2) ⊢ wx1,x2(p) : HIso(E(x1), E(x2))]] admitting the
structure of a homotopy isomorphism, or equivalently being a weak equiva-
lence.

[[x1, x2:B, p:IdB(x1, x2)]]
wE //

))❘❘❘
❘❘❘

❘❘❘
❘❘❘

❘❘
[[x1, x2:B, f :HIso(E(x1), E(x2))]]

tt❥❥❥❥
❥❥❥

❥❥❥
❥❥❥

❥❥❥
❥

B ×B

By Lemma 3.3.2, we may fit wE into the following diagram.

B
rB //

∆B

--

P(B)
wE //

((

HIsoB×B(π∗
1E, π∗

2E)

��
EqB×B(π∗

1E, π∗
2E)

��
HomB×B(π∗

1E, π∗
2E)

��
B ×B

Then by the Id-comp rule applied to the definition of wx1,x2 , the overall com-
posite map B //HomB×B(π∗

1E, π∗
2E) is the interpretation of the function

[[x:B ⊢ λy:E(x). y : [E(x), E(x)]]], corresponding under the universal prop-
erty of Hom to (∆B , 1E). So the composite B //EqB×B(π∗

1E, π∗
2E) is the

map δE of Definition 3.2.10: by definition, E is univalent precisely if δE
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is a weak equivalence. But by 2-out-of-3 and Lemma 3.3.4, δE is a weak
equivalence if and only if wE is; so we are done. �

3.4. Univalence of the simplicial universes.

Theorem 3.4.1. The fibration pα : Ũα
// Uα is univalent.

Proof. We will show that the target map t : Eq(Ũα) // U is a trivial fibra-
tion. Since t is a retraction of δŨα

, this implies by 2-out-of-3 that δŨα
is a

weak equivalence.
So, we need to fill a square

A //
� _

i

��

Eq(Ũα)

t

��
B //

;;

Uα

where i : A � � // B is a cofibration.
By the universal properties of Uα and Eq(Ũα), these data correspond to

a weak equivalence w : E1
// E2 between α-small well-ordered fibrations

over A, and an extension E2 of E2 to an α-small, well-ordered fibration over
B; and a filler corresponds to an extension E1 of E1, together with a weak
equivalence w extending w:

A

E1

E2

w

B

E1

E2

w

As usual, it is sufficient to construct this first without well-orderings on
E2; these can then always be chosen so as to extend those of E2.

Recalling Lemmas 2.2.4–2.2.5, we define E1 and w as the pullback

E1

w
��

// ΠiE1

Πiw

��
E2 η

// ΠiE2

in sSets/B, where η is the unit of i∗ ⊣ Πi at E2. To see that this construc-
tion works, it remains to show:

(a) i∗E1
∼= E1 in sSets/A, and under this, i∗w corrsponds to w;

(b) E1 is α-small over B;
(c) E1 is a fibration over B, and w is a weak equivalence.
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For (a), pull the defining diagram of E1 back to sSets/A; by Lemma 2.2.4
part 2, we get a pullback square

i∗E1

i∗w
��

// E1

w

��
E2

1E2 // E2

in sSets/A, giving the desired isomorphism.
For (b), Lemma 2.2.4 part 3 gives that ΠiE1 is α-small over B, so E1 is

a subobject of a pullback of α-small maps.
For (c), note first that by factoring w, we may reduce to the cases where

it is either a trivial fibration or a trivial cofibration.
In the former case, by Lemma 2.2.4 part 1 Πiw is also a trivial fibration,

and hence so is w; so E1 is fibrant over E2, hence over B.
In the latter case, E1 is then a deformation retract of E2 over A; we will

show that E1 is also a deformation retract of E2 over B. Let H : E2 ×
∆[1] // E2 be a deformation retraction of E2 onto E1. We want some
homotopy H : E2 × ∆[1] // E2 extending H on E2 × ∆[1], 1E1

× ∆[1] on

E1 × ∆[1], and 1E2
on E2 × {0}. Since these three maps agree on the

intersections of their domains, this is exactly an instance of the homotopy
lifting extension property, i.e. a square-filler

(E2 × ∆[1]) ∪ (E1 × ∆[1]) ∪ (E2 × {0})
� _

��

H∪1∪1 // E2

��
E2 × ∆[1] //

H

33

B

which exists since the left-hand map is a trivial cofibration.
For H to be a deformation retraction, we need to see that H{1} : E2

//E2

factors through E1. By the definition of E1, a map f : X // E2 over
b : X // B factors through E1 just if the pullback i∗f : i∗X // E2 fac-
tors through E1. In the case of H{1}, the pullback is by construction

i∗(H{1}) = (i∗H){1} = H{1} : E2
// E2, which factors through E1 since

H was a deformation retraction onto E1.
So w embeds E1 as a deformation retract of E2 over B; thus E1 is a

fibration over B and w a weak equivalence, as desired. �

Remark 3.4.2. One can prove, within the type theory, that the Univalence
Axiom together with the Π-η rule implies functional extensionality; see [Voe],
[BL10] [Gam11] for details. So we could have omitted functional extension-
ality from Proposition 2.3.6, and instead deduced it here as a corollary of
the Univalence Axiom.

3.5. Univalence and pullback representations. We are now ready to
give a uniqueness statement for the representation of an α-small fibration
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as a pullback of pα : Ũα
//Uα: we define the space of such representations,

and show that it is contractible.
In fact, we work a bit more generally. For any fibrations q, p, we define a

space Pq,p of representations of p as a pullback of q; and we show that p is
univalent exactly when for any q, Pq,p is either empty or contractible.

Let p : E // B and q : Y //X be fibrations. We define a functor

Pq,p : sSetsop // Sets,

setting Pq,p(S) to be the set of pairs of a map f : S ×X //B, and a weak
equivalence w : S × E // f∗E over S ×X; equivalently, the set of squares

S × Y
f ′

//

S×p
��

E

π
��

S ×X
f

// B

such that the induced map S×Y //f∗E is a weak equivalence. Lemma 3.2.3
ensures that this is functorial in S, by pullback.

Lemma 3.5.1. The functor Pq,p is representable, represented by the object

Pq,p := ΠXΣπ1EqX×B(π∗
1Y, π

∗
2E).

1

X B

Y EX ×B

π∗
1Y π∗

2E

q

π1 π2

p

Proof. For any S, we have:

Hom(S,ΠXΣπ1EqX×B(π∗
1Y, π

∗
2E))

∼= HomX(X × S,Σπ1EqX×B(π∗
1Y, π

∗
2E))

∼= {(f̂ , ŵ) | f̂ : X × S //X ×B over X,

ŵ : X × S //EqX×B(π∗
1Y, π

∗
2E) over X ×B}

∼= {(f,w) | f : X × S //B, w : Y × S // f∗E w.e. over X × S}

∼= Pq,p(S) �

Remark 3.5.2. By Yoneda, we see from this that (Pq,p)n ∼= Pq,p(∆[n]).

Theorem 3.5.3. Let p : E //B be a fibration. Then p is univalent if and
only if for every fibration q : Y //X, Pq,p is either empty or contractible.2

2Constructively-minded readers might prefer to phrase this as: if Pq,p is inhabited,
then it is contractible.
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Proof. First, suppose that p is univalent. Take any q such that Pq,p is non-
empty; then we have some map 1 // Pq,p, corresponding to a square

X B

Y f∗E E

f

q f∗p p

w

We claim that Pq,p
// 1 is a trivial fibration, and hence Pq,p is con-

tractible. Π -functors preserve trivial fibrations (since their left adjoints,
pullback, preserve cofibrations), so it is enough to show that

EqX×B(π∗
1Y, π

∗
2E) //X ×B

π1 //X

is a trivial fibration.
For this, first note that w, as a weak equivalence between fibrations, is a

homotopy equivalence over X, so induces a homotopy equivalence

(w · −) : EqX×B((π∗
1(f∗E), π∗

2E) //EqX×B(π∗
1Y, π

∗
2E).

So it is enough to show that EqX×B((π∗
1(f∗E), π∗

2E) // X × B
π1 // X

is a trivial fibration; but this follows since it is the pullback along f of the

source map Eq(E) = EqB×B(π∗
1E, π∗

2E) //B×B
π1 //B, which is a trivial

fibration since p is univalent.
Conversely, suppose that for every fibration q, Pq,p is either empty or

contractible; now, we wish to show p univalent. For this, it is enough to
show that the source map s : Eq(E) // B is a trivial fibration, which will
hold if each of its fibers is contractible.

So, take some f : 1 //B, and consider the fiber f∗Eq(E). By the universal
property of Eq(E), this is isomorphic to Pf∗p,p; and it is certainly non-
empty, containing the pair (f, 1f∗E); so by assumption, it is contractible, as
desired.

f∗Eq(E) //

��

Eq(E)

s

��
1

f // B

�

Corollary 3.5.4. For any α-small fibration q, the simplicial set Pq,pα of
representations of q as a pullback of pα is contractible.

Appendix A. Rules of Martin-Löf Type Theory

Our presentation of the structural rules is based largely on [Hof97], which
also includes a full construction of the syntax. Our selection of logical rules,
and in particular our treatment of the universe, follows [ML84].
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We take as basic the judgement forms

Γ ⊢ A type Γ ⊢ A = A′ type Γ ⊢ a : A Γ ⊢ a = a′ : A.

We treat contexts as a derived judgement, ⊢ Γ cxt.

A.1. Structural Rules. The structural rules of the type theory are (where
J may be any the conclusion of any of the judgement forms):

⊢ Γ, x:A, ∆ cxt

Γ, x:A, ∆ ⊢ x : A
Vble

Γ ⊢ a : A Γ, x:A, ∆ ⊢ J

Γ, ∆[a/x] ⊢ J [a/x]
Subst

Γ ⊢ A type Γ, ∆ ⊢ J

Γ, x:A, ∆ ⊢ J
Wkg

Definitional equality (also known as syntactic or judgemental equality):

Γ ⊢ A type

Γ ⊢ A = A type

Γ ⊢ A = B type

Γ ⊢ B = A type

Γ ⊢ A = B type Γ ⊢ B = C type

Γ ⊢ A = C type

Γ ⊢ a : A

Γ ⊢ a = a : A

Γ ⊢ a = b : A

Γ ⊢ b = a : A

Γ ⊢ a = b : A Γ ⊢ b = c : A

Γ ⊢ a = c : A

Γ ⊢ a : A Γ ⊢ A = B type

Γ ⊢ a : B

Γ ⊢ a = b : A Γ ⊢ A = B type

Γ ⊢ a = b : B

Additionally, in the logical rules below, we assume rules stating that each
constructor preserves definitional equality in each of its arguments; for in-
stance, along with the Π-intro rule, we assume the rule

Γ ⊢ A = A′ type

Γ, x:A ⊢ B(x) = B′(x) type Γ, x:A ⊢ b(x) = b′(x) : B(x)

Γ ⊢ λx:A.b(x) = λx:A′.b′(x) : Πx:AB(x)
Π-intro-eq

A.2. Logical Constructors.

Π-types. (Dependent products; dependent function types).

Γ, x:A ⊢ B(x) type

Γ ⊢ Πx:AB(x) type
Π-form

Γ, x:A ⊢ B(x) type Γ, x:A ⊢ b(x) : B(x)

Γ ⊢ λx:A.b(x) : Πx:AB(x)
Π-intro
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Γ ⊢ f :Πx:AB(x) Γ ⊢ a : A

Γ ⊢ app(f, a) : B(a)
Π-app

Γ, x:A ⊢ B(x) type Γ, x:A ⊢ b(x) : B(x) Γ ⊢ a : A

Γ ⊢ app(λx:A.b(x), a) = b(a) : B(a)
Π-comp

As a special case of this, when B does not depend on x, we obtain the
ordinary function type [A,B] := Πx:AB.

Σ-types. (Dependent sums; disjoint sums.)

Γ ⊢ A type Γ, x:A ⊢ B(x) type

Γ ⊢ Σx:AB(x) type
Σ-form

Γ ⊢ A type Γ, x:A ⊢ B(x) type

Γ, x:A, y:B(x) ⊢ pair(x, y) : Σx:AB(x)
Σ-intro

Γ, z:Σx:AB(x) ⊢ C(z) type

Γ, x:A, y:B(x) ⊢ d(x, y) : C(pair(x, y))

Γ, z:Σx:AB(x) ⊢ splitd(z) : C(z)
Σ-elim

Γ, z:Σx:AB(x) ⊢ C(z) type

Γ, x:A, y:B(x) ⊢ d(x, y) : C(pair(x, y))

Γ, x:A, y:B(x) ⊢ splitd(pair(x, y)) = d(x, y) : C(pair(x, y))
Σ-comp

Again, the special case where B does not depend on x is of particular
interest: this gives the cartesian product A×B := Σx:AB.

Id-types. (Identity types, equality types.)

Γ ⊢ A type

Γ, x, y:A ⊢ IdA(x, y) type
Id-form

Γ ⊢ A type

Γ, x:A ⊢ reflA(x) : IdA(x, x)
Id-intro

Γ, x, y:A, u:IdA(x, y) ⊢ C(x, y, u) type

Γ, z:A ⊢ d(z) : C(z, z, reflA(z))

Γ, x, y:A, u:IdA(x, y) ⊢ Jz.d(x, y, u) : C(x, y, u)
Id-elim

Γ, x, y:A, u:IdA(x, y) ⊢ C(x, y, u) type

Γ, z:A ⊢ d(z) : C(z, z, r(z))

Γ, x:A ⊢ Jz.d(x, x, reflA(x)) = d(x) : C(x, x, reflA(x))
Id-comp
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W-types. (Types of well-founded trees; free term algebras.)

Γ, x:A ⊢ B(x) type

Γ ⊢ Wx:AB(x) type
W-form

Γ, x:A ⊢ B(x) type

Γ, x:A, y:[B(x),Wu:AB(u)] ⊢ sup(x, y) : Wu:AB(u)
W-intro

Γ, w:Wx:AB(x) ⊢ C(w) type

Γ, x:A, y:[B(x),Wu:AB(u)], z:Πu:B(x)C(app(y, u))
⊢ d(x, y, z) : C(sup(x, y))

Γ, w:Wx:AB(x) ⊢ wrecd(w) : C(w)
W-elim

Γ, w:Wx:AB(x) ⊢ C(w) type

Γ, x:A, y:[B(x),Wu:AB(u)], z:Πu:B(x)C(app(y, u))
⊢ d(x, y, z) : C(sup(x, y))

Γ, x:A, y:[B(x),Wu:AB(u)] ⊢ wrecd(sup(x, y))
= d(x, y, λu:B(x).wrecd(app(y, u))) : C(sup(x, y))

W-comp

0. (Empty type.)

⊢ 0 type
0-form

(No introduction rules.)

Γ, x:0 ⊢ C(x) type

Γ, x:0 ⊢ case(x) : C(x)
0-elim

(No computation rules.)

1. (Unit type, singleton type.)

⊢ 1 type
1-form

⊢ ∗ : 1
1-intro

Γ, x:1 ⊢ C(x) type Γ ⊢ d : C(∗)

Γ, x:1 ⊢ recd(x) : C(x)
1-elim

Γ, x:1 ⊢ C(x) type Γ ⊢ d : C(∗)

Γ ⊢ recd(∗) = d : C(∗)
1-comp

+-types. (Binary disjoint sums.)

Γ ⊢ A type Γ ⊢ B type

Γ ⊢ A + B type
+-form

Γ ⊢ A type Γ ⊢ B type

Γ, x:A ⊢ inl(x) : A + B
+-intro 1.
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Γ ⊢ A type Γ ⊢ B type

Γ, y:B ⊢ inr(y) : A + B
+-intro 2.

Γ, z:A + B ⊢ C(z) type

Γ, x:A ⊢ d0(x) : C(inl(x)) Γ, y:B ⊢ d1(y) : C(inr(y))

Γ, z:A + B ⊢ cased0,d1(z) : C(z)
+-elim

Γ, z:A + B ⊢ C(z) type

Γ, x:A ⊢ d0(x) : C(inl(x)) Γ, y:B ⊢ d1(y) : C(inr(y))

Γ, x:A ⊢ cased0,d1(inl(x)) = d0(x) : C(inl(x))
+-comp 1.

Γ, z:A + B ⊢ C(z) type

Γ, x:A ⊢ d0(x) : C(inl(x)) Γ, y:B ⊢ d1(y) : C(inr(y))

Γ, y:B ⊢ cased0,d1(inr(y)) = d1(y) : C(inr(y))
+-comp 2.

A.3. Universes. A universe within the theory may be closed under some
or all of the logical constructors of the theory; we include below the rules
corresponding to all of the constructors given above.

⊢ U type Γ, x:U ⊢ El(x) type

Γ ⊢ a : U Γ, x:El(a) ⊢ b(x) : U

Γ ⊢ π(a, x.b(x)) : U

Γ ⊢ a : U Γ, x:El(a) ⊢ b(x) : U

Γ ⊢ El(π(a, x.b(x)) = Πx:El(a)El(b(x)) type

Γ ⊢ a : U Γ, x:El(a) ⊢ b(x) : U

Γ ⊢ σ(a, x.b(x)) : U

Γ ⊢ a : U Γ, x:El(a) ⊢ b(x) : U

Γ ⊢ El(σ(a, x.b(x)) = Σx:El(a)El(b(x)) type

Γ ⊢ a, b : U

Γ ⊢ a + b : U

Γ ⊢ a, b : U

Γ ⊢ El(a + b) = El(a) + El(b) type

Γ ⊢ a : U Γ ⊢ b, c : El(a)

Γ ⊢ idA(b, c) : U

Γ ⊢ a : U Γ ⊢ b, c : El(a)

Γ ⊢ El(ida(b, c)) = IdEl(a)(b, c) type

⊢ z : U ⊢ El(z) = 0 type ⊢ o : U ⊢ El(o) = 1 type
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Γ ⊢ a : U Γ, x:El(a) ⊢ b(x) : U

Γ ⊢ w(a, x.b(x)) : U

Γ ⊢ a : U Γ, x:El(a) ⊢ b(x) : U

Γ ⊢ El(w(a, x.b(x)) = Wx:El(a)El(b(x)) type

A.4. Further rules. The rules above are somewhat weak in their treat-
ment of the equality of functions. To this end, some further rules are often
adopted: the η-rule for Π-types, and the functional extensionality rule(s).
Our formulation of the latter is taken from [Gar09]; see also [Hof95a].

Γ ⊢ f : Πx:AB(x)

Γ ⊢ η(f) : f = λx:A.app(f, x) : Πx:AB(x)
Π-η

Γ ⊢ f, g : Πx:AB(x) Γ ⊢ h : Πx:AIdB(x)(app(f, x), app(g, x))

Γ ⊢ ext(f, g, h) : IdΠx:AB(x)(f, g)
Π-ext

Γ, x:A ⊢ b : B(x)

Γ ⊢ ext-comp(x.b) : IdΠx:AB(x)

(ext(λx:A.b, λx:A.b, λx:A.reflb), refl(λx:A.b))

Π-ext-comp-prop

Appendix B. Type-Theoretic Equivalences

In this appendix, we survey several possible definitions of equivalence
between types. We discuss four different notions, and show they are all
interderivable, while three of the four are moreover equivalent in the stronger
sense that the types of them are equivalent (in any of these four senses!). In
particular, this justifies the use of HIso in our formulation of univalence, as
compared to WEq as used elsewhere, and explains why we do not use the
perhaps more familiar HEq.

For brevity, we omit most proofs, and leave even a few definitions as
sketches; for full details, see [Voe, Generalities] or [HoTa, Equiv.v].

Throughout, we work informally within the type theory as presented in
Appendix A. In particular, we assume functional extensionality without
comment. We do not, however, assume the Univalence Axiom.

Definition B.0.1. A contraction on a type consists of an element x:X, and
a map c giving for each y:X a path c(y):Id(y, x). A type is contractible if
it equipped with a contraction. (It can be shown that if a contraction on
a type exists, it is unique3, justifying the treatment of contractibility as a
property rather than extra structure.)

isContr(X) := Σx:XΠy:X Id(x, y).

3Unique within the type theory is understood in terms of the identity types, so becomes
up-to-homotopy unique in the interpretation.
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Definition B.0.2. Given a function f : X // Y and a point y:Y , the
homotopy fiber hFib(f, y) is the type of points x:X together with a path
p:Id(f(x), y):

hFib(f, y) := Σx:X Id(f(x), y).

Definition B.0.3. A function f : X // Y is a weak equivalence if each of
its homotopy fibers is contractible; i.e.

isWEq(f) := Πy:Y isContr(hFib(f, y)) WEq(X,Y ) := Σf : [X,Y ]isWEq(f)

Definition B.0.4. A homotopy between two maps f, g : X // Y is a map
giving, for each x:X, a path h(x):Id(f(x), g(x)):

Homot(f, g) := Πx:X Id(f(x), g(x)).

Definition B.0.5. A (two-sided) homotopy inverse for f : X // Y is a
function g : Y //X, together with homotopies η : 1X //g ·f , ε : f ·g //1Y .

A homotopy equivalence (f, g, η, ε) : X // Y is a map together with a
homotopy inverse.

HEq(X,Y ) := Σf :[X,Y ]Σg:[Y,X](Πx:X Id(x, g(f(x)))) × (Πy:Y Id(f(g(y)), y)).

We also recall, from Definition 3.1.1, the definitions of left and right ho-
motopy inverses, and of homotopy-isomorphisms:

Proposition B.0.6. A left homotopy inverse for f : X // Y is a function
g : Y // X, together with a homotopy η : 1X ≃ g · f . Similarly, a right
homotopy inverse is a function g : Y //X together with a homotopy ε : f ·g ≃
1y.

A homotopy isomorphism (f, gl, η, gr, ε) : X // Y is a map together with
left and right homotopy inverses.

The type of these objects, we denote by LInv(f), RInv(f), and HIso(X,Y ).

The fourth notion of equivalence requires a few more auxiliary definitions
to fully state—specifically, various actions of maps on paths, compositions
of homotopies, and the like. We omit here the definitions of these; they are
straightforward, and may be found in the references given above.

Definition B.0.7. An adjoint homotopy inverse (g, η, ε, α) for a function
f : X // Y is a homotopy inverse, together with an additional homotopy α
witnessing one “triangle identity”, (fη) ◦ (εf) ≃ 1f . An adjoint homotopy
equivalence is a map together with an adjoint homotopy inverse.

We denote the types of adjoint inverses and adjoint equivalences from X
to Y by AdjInv(f), AdjEq(X,Y ) respectively.

Proposition B.0.8. For any types X,Y and function f : X // Y , each of
the following implies all of the others:

(1) f is a weak equivalence;
(2) f may be equipped with a (two-sided) homotopy inverse;
(3) f may be equipped with left and right homotopy inverses;
(4) f may be equipped with an adjoint homotopy inverse.
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Sketch proof. The implications (4) ⇒ (2) ⇒ (3) are trivial; and (1) ⇒ (4) is
also straightforward to show directly, by extracting the data of an adjoint
inverse from the contractions on the fibres.

The converses of these implications are a little less immediate, but still
not too difficult: for instance, (2) ⇒ (4) may be shown essentially by the
classical proof that any equivalence of categories may be improved to an
adjoint equivalence. �

Note that we did not say, as one might expect, “the following are equiv-
alent”, since we wish to emphasise the difference between mere interderiv-
ability and actual equivalence of types. The stronger condition, however,
does hold for three of the four notions:

Proposition B.0.9. For any types X,Y and function f : X // Y , the fol-
lowing types are equivalent

(1) isWEq(f);
(2) LInv(f) × RInv(f);
(3) AdjInv(f).

To prove this, it is convenient to introduce a general notion of being “just
a property”.

Definition B.0.10. X is a homotopy-proposition (briefly, an h-proposition)
if one can give, for any two elements of X, a path between them:

isHProp(X) := Πx,y:X Id(x, y).

Some easy observations:

Proposition B.0.11.

• The product of any pair or family of h-propositions is again an h-
proposition.

• For any type X, the type isContr(X) is an h-proposition.
• To show isHProp(X), it is sufficient to do so under the assumption
of an inhabitant of X.

• If two h-propositions are interderivable, then they are moreover equiv-
alent.

Proposition B.0.9 thus follows from B.0.8, together with:

Proposition B.0.12. For any X, Y , f , the types isWEq(f), LInv(f) ×
RInv(f), and AdjInv(f) are all h-propositions.

Partial proof. isWEq(f) is a product of h-propositions, so is one itself.
For LInv×RInv, we may assume an inhabitant of it, and hence of isWEq(f);

given this, it is straightforward to show that both LInv(f) and RInv(f) are
h-propositions, and hence their product is. (Note, however, that we do need
the assumption of an inhabitant: for general f , LInv(f) and RInv(f) may
fail to be h-props.)

The case of AdjInv(f) is less straightforward than the others, so we omit
it here. �
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This leaves the question of comparing HEq with the other notions. For
this, first note:

Proposition B.0.13. For any type X, two-sided homotopy inverses for 1X
are equivalent to homotopies from 1X to itself.

Sketch. If (g, η, ǫ) is a homotopy inverse for 1X , then η · ǫ−1 gives a homo-
topy from 1X to itself. One may show directly that this construction is an
equivalence. �

Beyond this, the theory is agnostic: it is consistent either that HInv is
always an h-proposition, or that it may fail to be one. In the standard
model in Sets, with trivial identity types, HInv is always an h-proposition,
and hence HEq is equivalent to the other notions. However, in various ho-
motopically non-trivial models, the circle (or some analogous object) gives
a type on which it is clear that there are non-trivial homotopies from the
identity map to itself, and hence HInv is not an h-proposition. This is most
easily verified in the groupoid model, using the object BZ, the free groupoid
on a single endo-arrow. With a little more work, the same counterexample
may be constructed in the simplicial sets model; or taking a different ap-
proach, one can also show that the Univalence Axiom implies that HInv of
the identity map on the free loop space of the universe is not an h-prop.
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[Joy11] André Joyal, A result on Kan fibrations, unpublished note, 2011.
[LW12] Peter LeFanu Lumsdaine and Michael A. Warren, The local universes model

of type theory, in preparation, 2012.
[May67] J. Peter May, Simplicial objects in algebraic topology, Mathematical Studies,

vol. 11, Van Nostrand, 1967.
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