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ABSTRACT is particularly important for tasks such as unpacking [6, 19, 23]

The authors of malware attempt to frustrate reverse engineering and(Obtf"“n'ng del-obf_us_cated me:lware code)l, bkt)ahav(ljoral srllgnature_gen
analysis by creating programs that crash or otherwise behave dif-€ration [ ] (classifying a malware sample based on the malicious
ferently when executed on an emulated platform than when exe- actions it performs), and information f_Iow tracing [14, 37] (for in-

cuted on real hardware. In order to defeat such techniques angStance, to undelrstand sp)rqware behav_lor). d K vsis diffi

facilitate automatic and semi-automatic dynamic analysis of mal-  HOWever, malware authors are motivated to make analysis diffi-
ware, we propose an automated technique to dynamically modify cult: to slow the development of defenses that make their malware
the execution of a whole-system emulator to fool a malware sam- obsolete, and also to protect proprietary information from reverse-

ple’s anti-emulation checks. Our approach uses a scalable traceengineering by competing malware authors. For this reason, anti-

matching algorithm to locate the point where emulated execution debuggllng and antl-(;mulatl;)n tﬁchnlques are Wldesprzad in mod-
diverges, and then compares the states of the reference system anﬁmI malware (Torit ?jn 40% shown in one recent sltu ly [10]). A
the emulator to create a dynamic state modification that repairs themaiware sample t at_ etects it IS Tunning in an analysis environ-
difference. We evaluate our technique by building an implementa- ment can simply tefm'”?‘e' refrain from its usgal mallplous activ-
tion into an emulator used for in-depth malware analysis. On case ity, or take any other_actlon to frustrate anf'aly3|s. In this work, we
studies that include real samples of malware collected in the wild propose a ne\llv technlquel tqwards addressmg;he p()jroblemﬁof how to
and an attack that has not yet been exploited, our tool automatically €X€Cute @ malware sample in an environment based on software em-
ameliorates the malware sample's anti-emulation checks to enableUlation, when the malware incorporates anti-emulation techniques

analysis, and its modifications are robust to system changes. as are now common. _ .
y y g We say that an emulator suffers a failureminsparencyf there

is an aspect of its behavior that allows software running on the

Categories and Subject Descriptors emulator to distinguish it from real hardware. Emulators based

D.4.6 [OPERATING SYSTEMS]: Security and Protectionda- on binary translation avoid some classes of transparency failures,
vasive software since they can completely replace instructions, but they are com-
plex enough that making them completely transparent would be
General Terms impractical. Thus, our goal is to successfully emulate a malware
sample, even if an emulator suffers from transparency failures that
Security anti-emulation techniques would normally exploit.
To that end, we formulate the problem of emulating emulation-
Keywords resistant malware in terms of its environment observations, and

propose an approach obmparison-based state modificatitivat
modifies the execution state of a malware sample to simulate a dif-
ferent environment and so thwart the sample’s anti-emulation tech-
1. INTRODUCTION niques. In particular, our approach diagnoses the source of anti-
Analyzing malicious software, such as viruses, worms, and bot- €mulation behavior by comparing an execution of a sample on an
net clients, whether fully automatically or with human assistance, €mulation-based analysis tool to its execution on a more transpar-
is a critical step in defending against the threat such malware poses €Nt reference system that would be impractical to use directly for
For instance, knowledge of the possible behaviors of malware andanalysis. Based on the differences, our approach constructs a dy-
how it chooses among them is key to proactive defense and foren-namic state modification (or DSM) that indicates how to modify an

sic investigation. Automated analysis based on emulated execution€xecution occurring in an emulator to fool anti-emulation checks.
We apply the DSM to automatically ameliorate the transparency

failures in the emulation tool so that it can be used for automated
analysis or tool-supported reverse engineering. The reference sys
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forms [2, 4, 23]. As a reference platform, we take an existing! functions[0] = &steal_passwords;
virtual execution system based on Intel VT hardware virtualiza-2 1088 t1 = cycle_count();
tion that achieves high transparency for CPU semantics by exé-10n8 2 = cycle_count();
cuting each instruction directly on a real processor in single-step 1ong diff = t2 - t1;
mode [13]. This reference platform has a high performance overz 10ng copy = diff;
head, but more importantly it would not be a convenient platform® if (diff < 5)
for building more sophisticated analysis tools, since it provides nd ab?rt() -
support for understanding or instrumenting instruction semantics, (functions[dif£/2561) O);
Our technique allows the use of analyses built using the more flex /% .. */
ible QEMU (e.g., [23, 19, 37]) to have the transparency benefits gf assert(diff == copy);
the reference platform.
Our specific focus is on the emulation-resistance problem as it is
most acute for practicing malware analysts working with modern a real sample in Figure 3). steal_passwords will be called

malware. Thus it is important that the tecf_mlque work in practice only if the time elapsed between the two calls taycle_count
and at scale. We evaluate our prototype using real malware samples

. . s Is between 5 and 255.
collected from the wild: complete malicious applications, several
of which use other obfuscations like packing or multiple resistance
techniques. We ensure that our tool introduces minimal runtime

overhead compared to the analysis tools already being used. We(for the real example this is based on, see Section 6). When run
also check that the tool's changes are robust: they work not just on real hardware, the number of cycles between the two calls to
for a single malware execution but for a range of executions as are cycle_count will usually be between 5 and 255, so the code will
often required in analysis. call steal_passwords. However, on an emulator, more time is

Achieving transparent execution in a general way is very diffi- |ikely to elapse, since each instruction must be translated before
cult; we do not claim that our approach is powerful enough to solve t can be first executed. So when run under an emulator, the time
the problem of emulation resistance for all time. Malware authors difference will be larger, and the malware will execute a different
will constantly be on the lookout for new emulation-resistance tech- function or crash. This anti-emulation check is typical of the code
niques. Our approach works automatically against currentinstancesye would like to emulate automatically.
of broad classes of emulation-resistance techniques, and we ca
be confident it will perform well against novel instances in those
classes. This is possible because the technique is not based on th
details of specific attacks: it is a general approach that discovers
the cause of a failure on its own.

It is harder to predict what further defense techniques may be
needed if malware authors shift to entirely new classes of anti-emu-
lation technique, perhaps specifically choosing attacks that would
be difficult for a technique like ours. (We suggest some possible
next steps attackers might take in Appendix A.) Even if our ap-
proach is unable to automatically ameliorate an attack, its diagnosis
would save a human analyst time by showing its location and cause.
Our approach to efficient diagnosis is also of potential independent
interest for other applications, such as diagnosing a misconfigura-
tion that interferes with a system’s correct operation.

Figure 1. C-style pseudo-code for a timing attack (based on

'broblem Formulation. To formulate the problem of ameliorating
emulation resistance at a high level, we describe a program and its
Sbservations of the environment as simple functions. The behavior
of a programP, including its explicit outputs and any other side-
effects, is a function of its explicit inputg as well as the environ-
mentE; we write P(E, I). This environment covers all the aspects
of the system the program might query or discover, including the
other software installed, the characteristics of hardware, or the time
of day. Note thatP is a mathematical function, and so determinis-
tic and stateless: we model any non-determinism or persistent state
as aspects of the environment Afuses anti-emulation techniques,
then its behavior will be different under an emulated environment
E. than under a real hardware environmént even if those en-
vironments are otherwise similar and the program’s explicit inputs
are the sameP(E.,I) # P(E.,I).
Contributions. In summary, this paper makes the following con-  To understand such differences, we consider more of the pro-
tributions: gram’s structure. In general, a program with anti-emulation behav-
ior will first observe an aspect of its environment that differs, then
decide whether or not to take a later action based on this obser-
vation; we call this complete process amti-emulation checkThe
e We propose an amelioration approach based on diagnosingProgram’s observations of its environment can be divided into those
differences between execution traces to construct a dynamic made in an anti-emulation check, and all other observations. We
state modification addressing the precise observations a mal-decompose the progra into an anti-emulation check, other
ware sample makes. environment observationg and a remaining portio#’ (again all
modeled as functions), whef £, I) = P'(f(E,I),g(E, I),I).
e We build an implementation of our approach in an open- The functionf captures those checks that distinguish the emulated
source emulator WIde'y used for malware analysis. from the real environment, sﬁ(Ee7 I) 7£ f(ET’ ]) For instance,
the code shown in Figure 1 implements suchfanBy contrast,
g contains all the remaining environment observations that are not
part of any anti-emulation techniques. For instance, the program in
which Figure 1 is embedded might check that it is running an OS no
older than Windows 2000. These other aspects of the environment
can be controlled independently of whether an emulator is in use
2. PROBLEM FORMULATION or not, so there are some emulated and real environntentand
Figure 1 gives an example of a timing attack similar to one we FE,, for which g(E.,,I) = g(E.,,I). Note that in practice there
have encountered in the wild, but given in a C-like pseudo-code will be many incidental differences between the emulated and ref-

e We give a specific formulation of the problem of how to ame-
liorate anti-emulation checks in a running program.

e \We evaluate our technigue against a set of real malware sam-
ples, analyzing the emulation-resistance techniques they use
and verifying that our DSMs are effective and robust against
environment changes.



erence environments; for instance, they might have different sized
displays. Soin generay(E.,I) # g(E,, I) as well; but it is not
our goal to change any differences unrelated to an anti-emulation
check.

Thus, we formulate the problem of emulating the malware sam-

ronment like the real one for comparison. Thus our approach uses
what we call aeference platformanother execution platform that
more closely resembles the behavior of a real hardware system, but
allows that behavior to be recorded. The reference platform may
not be a good basis for analysis tools, and it may be expensive to

ple as constructing an emulator that behaves as the sample extun, so it would not be practical to use it repeatedly for analysis,

pects with respect to the anti-emulation check, but is otherwise
unchanged. In other words, this modificatiéh, of E. satisfies
f(Ee,I) = f(Ey,I) (the anti-emulator check is fooled), even
thoughg(E.,I) = g(Ee,I) (the environment is otherwise the
same). For instance, an environment would fool the check shown
in Figure 1 if the two time values it returned differed by an amount
between 5 and 255.

Anti-emulation techniques addressedWe classify the anti-emu-
lation checksf performed by malware into three broad types:

Timing attacksneasure the time that elapses during an operation,
on the assumption that an operation will take a different amount of
time under emulation than on real hardware. The code in Figure 1
is an example.

CPU semantics attackarget CPU instructions whose behavior
in an emulated system differs from their behavior in real hardware.
Hardware characteristic attackguery features or identifiers of
a computer’s hardware, looking for emulated hardware that is dif-

ferent from any real physical hardware.

The techniques we introduce are applicable against all three type
of attack, but the first two present more interesting technical chal-
lenges, appear to be more prevalent, and are better suited for ou
reference platform, so we concentrate on them. Also, we exclude
from our scope anti-emulation checks that involve an external host;
many do not.

3. APPROACH

In an ideal world, the problem of anti-emulation techniques could
be eliminated with an emulator whose behavior was exactly like
that of real hardware (i.e., was completely transparentf.if=
E., thenP(E.,I) = P(E,,I) for any P andI. However, this
approach would not be practical: achieving complete transparency
would be an enormous engineering effort and would be incompat-
ible with other practical requirements for an emulation tool. For
instance, cycle-accurate timing simulation is impractically slow.

Intuition. Instead, we propose an approach to achieve emulation

but we presume that we can run it once to obtain a trace from a
correct execution. Examples of such accurate but expensive ref-
erence platforms include a cycle-accurate simulator for CPU tim-
ing attacks, a system with some specific hardware expected by a
hardware-characteristics attack, or a custom hardware tool for col-
lecting system runtime information [7, 9].

For our experiments, the reference platform we use is a whole-
system virtual machine that uses hardware virtualization in single-
step mode [13]. This platform provides very good transparency for
CPU semantics, at the expense of high runtime overhead. Hard-
ware virtualization is not naturally transparent for timing attacks,
but we have implemented some simple support in our platform for
simulating CPU time independently from real time. For instance,
our platform models the equivalent of thgcle_count CPU fea-
ture of Figure 1 as advancing 10 ticks for each simulated instruc-
tion, which is accurate enough for the practical attacks we describe
in Section 6.1. An approach that used the real hardware timer but
subtracted time spent in instrumentation could also be naturally im-

Jlemented in this sort of platform [13].

On the other hand, our reference platform uses most of the same

rx/irtual hardware as our emulator, so it would not be useful against

hardware characteristic attacks. Such attacks could be addressed
with a reference platform that allowed real hardware to be accessed
directly. Of course, the most important limitation of this reference
platform that motivates our work is that it provides no support for
instruction rewriting, which make it impractical as a basis for writ-
ing detailed analysis tools directly.

Approach overview. Our approach is a two-step process. To deter-

mine whether the malware sample is detecting the presence of an
emulator, our approach looks to points where the behavior of the
malware sample differs between the reference and emulated plat-
forms, and determines what differences between the two platforms
were the cause of that behavior difference. Then, to modify the em-
ulated platform as observed by the malware sample, our approach
changes the malware sample’s observations of its environment to
match the observations it makes on the reference platform. How-

of emulation-resistant malware samples under a practical emulatoreyer, we do not simply wish to modify the behavior of a single mal-

by modifying only a few aspects of the emulator’s behavior. In

particular, the approach should automatically diagnose and ame-

liorate new attacks that malware authors might devise. To make
this approach work, we must answer two fundamental questions:
which aspects of the emulator’'s behavior should we change, and
how should the changes be implemented?

For selecting aspects of the emulator’s behavior, our approach is

ware sample execution to match the reference platform. It is also
important that the modifications we obtain aobust that is, they
are still effective for other executions of the same malware sample,
with different inputs or environment modifications, since repeated
experiments are often needed in analysis.

The emulator modifications our technique computes are specific
to a particular malware sample: our goal is not to build a perfect

guided by the malware sample itself: we ameliorate those aspectsemulator once and for all. But for a given malware sample, the

of the emulator that the malware sample uses to detect that it is run-

ning under an emulator. For modifying the emulator, our approach

technique determines the root cause of differing behavior and a
way to ameliorate it automatically, so it is not necessary for an an-

is also based on the way the malware sample observes its environglyst to understand the malware sample’s emulator detection code,

ment: we modify the state of the emulator at the point the malware

which might use a previously unknown technique. The emulator

sample makes an observation, to change the sample’s effective obran then be used as normally for automated or human-assisted anal-

servation. Much as gaze-directed rendering in computer graphics
only has to draw a detailed image at the place a viewer is look-

ing [22], these observation-based approaches only have to presen

an accurate model of those system aspects malware observes.

Reference platform. Of course, in order to recognize that mal-
ware is behaving differently in an emulated environment and to

ysis, reverse-engineering, and defense against that sample.

§ystem outline. We propose an approach obmparison-based
state modificatiothat modifies the execution state of the emulator
so that the observations made by the anti-emulation check match
the observations made onreference platfornwhere the malware
sample executes as it does on real hardware. The changes to the

properly change those observations, our system requires an envi-



Malware

Sample instruction that was executed by the emulator but not the reference
platform), and then aligning (matching) the portions of the execu-
tion traces before the divergence to isolate any earlier events that

—— may have differed. Then, the DSM-building step uses this diver-
Aorly Do gence point and alignment to trace backwards, linking each differ-
Reference Emuiaton | wanware ing value either to a previous value, or to a differing environment
('f'naje?;?) TISEJUT Analysis observation. The environment observations that caused the diver-
[Fams ] [Facino] gence points are the ones that the DSM will modify. If the malware
sample uses multiple anti-emulation techniques, our tool will first
\T;V generate a DSM from the first divergence point, then re-run the em-
Dynamic ulator with it, and then repeat these steps as many times as needed
Diagnose Vaditcation  anatyas to create a DSM that ameliorates them alll.
Divergence Results For instance, in the example of Figure 1, suppose that on the un-
Alignment modified emulator, the timing differenee £ £ is 1074 cycles. Our
A 4 diagnosis algorithm will recognize a divergence after the function
s Dyamic pointer call, when the code starts to exectitections [4] rather
thansteal_passwords. To construct a DSM, our algorithm will

trace backwards from the control-flow divergence to its root cause,
which are the two calls toycle_count, and create a DSM that re-
Figure 2: Diagram giving an architecture overview of our sys- places the emulated counts with those from the reference platform.

tem. Trace collection. Because we need traces for diagnosis, we add

support for instruction-level traces to our reference and emulated

platforms. For each instruction executed, the trace records its ad-
emulator’s execution state are representeddymamic state mod- ~ dress, disassembles it, and records its operands, their values, and
ification (DSM for short) that gives new values to specified execu- any results or side-effects. The trace also records hardware-level
tion state components (e.g., registers, memory locations, or flags)exceptions, interrupts, and traps. Both platforms can collect a trace
at specified points in execution. We call the DSM dynamic because Of all instructions executed, both in the operating system and any
it is not a change to the code of the malware sample: it representsprocesses. But they also support collecting traces from a single
a transient alteration to values during the execution of the sample. user-level process, and filtering to include only instructions from
Note we do not remove the anti-emulation check (which would be the program image itself, excluding system libraries; we usually
difficult to do either statically or dynamically); instead the DSM  use this more selective mode. In such a case system calls and li-
changes the check’s environmental observations to force its result. brary routines are treated as atomic actions.

For instance, for the example of Figure 1, a DSM mlght spec- App|y|ng a DSM. We m0d|fy the emulated p|atform to app|y a
ify that the calls tocycle_count on lines 2 and 3 should return  psM to the execution of a malware sample. The DSM consists
3363487834 and 3363487917 respectively (our real DSMs would of 3 list of changes, each of which is identified by an instruction
use an instruction address). Our approach first constructs a DSM byaddress (potentially along with a calling context or other informa-
analyzing and comparing a trace of malware executing on a refer- tion to disambiguate a particular execution). In a callback that ex-
ence platform with one or more traces of its execution on the emu- ecytes at each instruction, our modified emulator checks whether
lated platform. Then, the DSM can be applied on any future execu- any changes in the DSM apply to the instruction: if so, it modifies

tion of the emulated platform, replacing the value a location would  the appropriate part of the emulator state or calls a routine to trigger
normally have under the emulator with the value specified in the an exception before the next instruction.

DSM. For instance, in executing the code in Figure 1, the emulator
will get to line 2 and realize that the DSM applies, so rather than
settingt1 to the real time (say, 4104148387), it will instead use 4. TECHNIQUES
the DSM value of 3363487834; in the same way, it will substitute  In this section we discuss further details of the key components
3363487917 for 4104149461 at line 3. The code will then continue Of our technique. For the central steps of divergence diagnosis
its execution normally, but because the DSM has changed its en-(Section 4.1) and building a DSM (Section 4.2), we first outline
vironment observations, it will behave differently: it will compute our requirements, and then discuss our technical approach. We also
a difference of 83 cycles rather than 1074, and it will execute the give some further implementation details (Section 4.3).
malicious code irsteal_passwords instead offunctions[4]. . . .

Our tool constructs a DSM in two steps, shown in Figure 2. It 4.1 Diagnosing a Divergence
first compares execution traces from the emulated platform and the .. .
reference platform to locate a point where emulated execution dif- 4-1.1  Intuition and Requirements
fered from the reference execution, then constructs a DSM to cor-  Given two instruction traces, one from the reference platform
rect that difference. Alivergence poinis a point in execution such  and one from the unmodified emulator, we wish to diagnose the
that directly before that point, the emulator and the reference plat- source of the difference between the two traces by locating the
form executed the same instruction, but directly after that point, control flow divergence point caused by the code’s use of an anti-
they execute different instructions. Therefore we call these two emulation technique. This divergence is a point in each trace such

stepsdiagnosinga divergence point anlilding a DSMfrom such that just before the point, the traces are executing the same code, but

a divergence. just after, they are executing different code. A divergence canrocc
The purpose of these steps is to pinpoint the root cause of afor several reasons. A divergence point need not come directly af

behavior difference. The diagnosis step locateswerage diver- ter a branch: many anti-emulation attacks are based on exceptions

gence poinby looking for a difference in code coverage (i.e., an anywhere. This divergence point also may or may not be the root



cause of the divergence: some root causes trigger a divergghte r  the reference platform executes the first lineoéal_passwords,
away (for instance, with an exception), while others simply cause a while the emulator executes a different function.

change in the machine state that the malware sample checks later. If our algorithm finds multiple divergence points, our tool pro-
For instance, in the example of Figure 1, the divergence occurs oncesses them in trace order. We have found empirically that the first
line 8, while its root causes are on lines 2 and 3. candidate is most often the real divergence point.

The key challenge is to locate this divergence point quickly, but Finding an alignment. After locating a divergence point, our ap-

to find only therglevantd'ivergence. Instruction traces can be large proach builds an alignment over the subset of each trace between
(up to half a gigabyte in our experiments), so we must be able ¢ peginning of execution and the divergence point, for use in iso-
to locate a divergence with a low computation cost. But traces |a4ing the root cause. Because we expect that this region will have
also contain irrelevant differences that do not result in divergence, relatively fewer differences, we use @xnd) algorithm [26] which
caused for instance by loops that process variable-length data, CONperforms well (close to linear in the number of instructiahsvhen
text switches between threads, and system call behavior differencesyne number of differencesis small.
(Our emulators do not use true parallelism, so a multi-threaded pro-
gram yields a single interleaved trace. The malware samples we A ; e ;
evaluate are single-threaded.) An approach that had to consider4'2 BU|Id|ng A Dynamlc State Modification
every minor difference between two traces would bog down. . .
Along with finding a divergence point, our diagnosis also aligns 4.2.1  Intuition and Requirements
the portions of the traces that come before the divergence point. An  |n order to correct an emulation infidelity that allows a malware
alignmentbetween two sequences (of instructions, in our case), is sample to detect the presence of an emulator, we constrigt a
a maximal matching between occurrences of the same instructionnamic state modificationinformation that allows the emulator to
in each trace, such that the matched occurrences occur in the sameorrect its behavior when executing the relevant malware code. A
order in each trace. The alignment provides a definition of which DSM is a list of changes, and each change consists of two com-
instruction execution in one trace corresponds to an execution of ponents: the specification of a location in the malware execution
the same instruction in the other trace, which our technique will (the address of an instruction), and a set of new values for parts of
use later when searching for a root cause. the emulated machine state, such as registers, processor flags, or
The classic approach to alignment, as performed bydtifes memory locations. There may be many DSMs that would correct
utility, is via a dynamic programming algorithm that computes the 3 divergence, but we have several reasons to prefer one DSM ove
longest common subsequence of two sequences (e.g., [26]): How another. Our intent in creating a DSM is to give the malware sam-
ever, using such an algorithm directly on full traces would be too ple the illusion that it is running in a different environment, so we
slow in our context, since the traces are very large and the portion attempt to change the program’s state at the moment it makes an
after the divergence may be both long and contain few matches.  environment observation such as a time measurement. Failing that,
we modify other program state, but we want the changes to be con-
4.1.2 Our Approach sistent, so that the malware sample cannot detect that its state has
Instead of using alignment directly, our diagnosis approach has been selectively changed. To make a robust DSM that can be used
two steps: it first locates a point of control-flow divergence using a on many executions of the malware sample, we want to make only
coverage-based heuristic, and then performs a more limited align-those changes needed to prevent an anti-emulation check.
ment on the portion of the trace prior to the divergence. To understand the possibilities for DSMs, consider again the ex-
ample timing attack of Figure 1, which is typical of attacks that
extend over a period of execution. First, the malware measures the
amount of time some operation requires by asking for the time be-
fore and after performing the operation. Next, it computes the time
t, by subtracting those two time values, and finally it makes a control-
flow decision based on that difference. The divergence involves all
of the data flow from the initial time measurements, which are the
root cause of the difference, to the final control-flow check. Any
DSM that changed the values on all of these flows would correct
e final control-flow decision.

Finding a divergence point. To locate a control-flow divergence
point that is relevant to an anti-emulation attack, our approach uses
code coverage as a heuristic; to be specific, we call the resait-a
erage divergence pointirrelevant differences generally cause the
program to run the same code, just at a different time. By contras
if the emulated code executes instructions the reference platform
never did, that likely indicates anti-emulation behavior. Also, our
tool's default behavior is to look for a divergence point only in the
malware code itself, not the operating system or standard libraries,
since a difference that never causes the malware sample to chang
its execution is usually not an anti-emulation check. Consistent and minimal DSMs.Modifying the internal values of
Thus we locate a coverage divergence point by comparing the a program in the middle of its execution has a potentially serious
two traces, finding the first instruction that appears in the emulated disadvantage: it might leave the program in a state that it could not
trace but not in the reference trace. Here and elsewhere, we sayreach for any environment and inputs. A malware sample might be
that two instructions are the same if they had the same programable to use such a situation to detect that it had been tampered with,
counter location (EIP, in x86 terminology) and the same instruction and in any case, it could be misleading for further analysis. For
bytes; we include the latter condition because malware sometimesinstance, in the example of Figure 1, if a DSM corrected the value
overwrites its own instructions. Our tool first constructs the sets of of diff only right before it was used in on line 8, this value would
instruction locations (PC values) seen in the reference trace. Then,be different from the value saveddepy. (This could be fixed with
processing instructions from the emulated trace in order, it signals another iteration, but we would like to avoid the need to.)
a possible divergence point if the previous instruction occurred in  Thus we create a consistent DSM by fixing differences in ma-
both traces, but the current instruction appeared only in the emu- chine state at their origins; what refer to asoat cause An in-
lated trace. (If the previous instruction occurred at multiple posi- struction (or library routine or system call) is a candidate root cause
tions in the reference trace, we consider each occurrence, in orderfor the difference between two traces if it was executed in both
of increasing trace position distance.) For instance, in the exampletraces, and all of its inputs were the same between the two traces,
of Figure 1, the divergence point comes after line 8, since after that but its outputs were different between the two traces. Among the



outputs of an instruction, we include its explicit result (i.e., destina- Worklist algorithm. Our algorithm works by maintaining a work-
tion operand), but also any side-effects (such as to condition codelist, consisting of a set of corresponding pairs of values that were
flags), and any hardware exceptions the instruction might raise. Fordifferent in the two traces. To start, the worklist contains the dif-
instance, an instruction can be a root cause if the semantics of thefering values that caused the divergence (e.g., the branch condition
instruction were incorrect in one trace (for instance, by raising an values if the divergence point was a branch). For instance, in the
exception in only one trace), or if the instruction takes an implicit example of Figure 1, if we represent such a difference by a triple
input from outside the normal machine state (for instance, query- consisting of an expression, its value in the reference trace, and its
ing a timer). If we exclude the operating system kernel or libraries value in the emulated trace, the initial element of the worklist is
from our traces, then a system call or library routine return value
may also be a root cause. However, not all sources of differezce b
tween two traces are related to an anti-emulation attack, so our toolThen, the algorithm repeatedly removes a differing value from the
searches specifically for causes related to the observed divergenceworklist, and finds the instructions in the two traces that produced
It is also important to make only minimal changes to the ma- jt. Usually, these will be the same instruction, so the algorithm will
chine state in a DSM. We do not assume that all aspects of the compare the corresponding inputs to see if any were different in
reference and emulated platforms can be made exactly equal; in adthe two traces. If there were no differing inputs, this instruction
dition to the differences that a particular malware sample detects, is a root cause: for instance, for the differerfegcle_count (),
many other pieces of observable machine state will differ, even be- 3363487834, 4104148387), since thecycle_count has no inputs,
tween multiple runs of the same software on the same platform. it must be a root cause. Otherwise, if there were differing inputs,
These include the exact time of day the execution occurs, miscel-those inputs are added to the worklist: for instance, in Figure 1,
laneous details of the (simulated) hardware on each platform, thethe differencgt2 - t1,83,1074) is caused by differences in the
timing of user input events that start the malware sample, and manyinputs t2 andt1, so they are both added to the worklist. If the
others. Controlling all of these sources of nondeterminism would instructions differ, the algorithm will attempt to find control depen-
be a major engineering challenge, and we do not attempt it. dencies that connect them to a common branch; failing that, it will
Modifying too many values would also hurt our goal of robust- compute single-trace slices for each value separately. When the
ness: if a DSM modifies a program input or an unrelated environ- worklist is empty, all the root causes have been identified, and the
mental feature, then the DSM could not be used for analysis ex- tool builds a DSM which, for each root cause, replaces the differing
periment that changed that input. In the extreme case, requiringvalue with the value it had in the reference trace. For instance, the
that every value in the emulated trace be the same as the referenceoot causgcycle_count (), 3363487834, 4104148387) yields a
platform would completely destroy robustness: it would allow the DSM specifying that on line 2, the return value @fcle_count
analysis of that single trace, but any modified experiment would should be set to 3363487834.
require re-running the reference platform, which we want to avoid. )
Instead, our approach is to modify only those parts of the state that4.3  Implementation
the malware appears to be using in an anti-emulation technique. Here we cover some remaining details of the implementation of
each step of our technique.

(functions[diff/256], steal_passwords, functions[4])

4.2.2 Our Approach Collect execution traces.We have bUI.|t our emulated platform as
) ) ) ) ) a set of enhancements to the dynamic whole-system analysis envi-
Given an alignment leading to a divergence, our tool next builds oy ment TEMU (part of our group’s BitBlaze infrastructure [34]),
a DSM to prevent the divergence. To avoid requiring multiple iter- \yhich is in turn based on QEMU [29]. As a reference platform we
ations, our tool tries tq create a consistent DSM by modifying the use Ether [13], based on Intel VT [17]. (In our case studies so far,
state as close as possﬂ:_ﬂe to the root cause of the dlfference._lt findshe malware samples usually ran as single processes, but emulating
this root cause by working backward through the dependencies be-5p, anjre platform lets us simulate the behavior of the operating sys-
tween instructions, much like a backward dynamic slice [36]. But em accurately, and our approach could also be extended to multi-
because it performs this slice in parallel on two aligned traces, it yrocess or kernel-resident malware.) We added support to both to
can use the similarities and differences between the traces as argq|ject execution traces, using the Intel XED library to disassemble
additional source of |nformat|0n._(These_ differences mean that the 3nd obtain an operand list for each instruction, necessary for accu-
approach has fewer problems with spurious dependencies than regate slicing. Ether’s single-step mode already traces the program
lated techniques like taint analysis [33].) counter; we extend it to obtain the other information we use.

Dependenues]’he.DSM constrgctlon a]gorlthm traces backwardg Diagnose a divergenceWe implemented the coverage-based diag-
across dependencies between instructions. The most common klnqwsis algorithm and(nd) alignment algorithm described in Sec-
of dependency is a diredata dependengyn which a value is writ- tion 4.1 in C++.

ten by one instruction and read by a later one. But by using an
alignment between the traces, our algorithm can also discover cer-
tain control dependencigsituations in which a location takes a dif-
ferent value because different code executed earlier in the trace. Fo
instance, inthe codef (c) x = 1; else x = 2;, we say that

x has a control dependency en If the execution of a branch dif-
fers between the two traces, this will often show up in the structure
of the alignment: instructions will be aligned up until the differing Apply a DSM. We modify QEMU to apply a DSM. Modifications
branch, but the two sides of the branch cannot be aligned. Thus into registers and CPU flags are simple changes to the emulator's
this situation our algorithm treats the value modified on one execu- state. To modify a memory value, we translate the virtual address
tion but not the other as control-dependent on the branch condition, to a physical address using the page table; if the page is not present,
so it will consider the branch condition as another possible step on we postpone the modification until after a page fault occurs. For
the way to the root cause. interrupts and other hardware exceptions, we set a flag that causes

Build a DSM. We implemented the comparison-based back slic-
ing algorithm explained in Section 4.2.2 as a tool in a combination
of OCaml and Python that takes two execution traces and align-
ment information as inputs, and produces an instruction slice. The
sources in this slice represent the root causes for which we con-
struct the dynamic state modification.



Sample # of Attack Root 0x0048a000: rdtsc
Label Samples| Category Cause 0x0048a002: mov  Jeax,l%ebx

W32/Sdbot.worm 2 timing timestamp counte 0x0048a004: rdtsc
Generic.dv 1 timing timestamp counte 0x00482006: sub  kebx,%eax
multirep 1 CPU semantic§ malformed opcode 0x0048a008: cmp  $0x10,%eax
Downloader-AFH 1 CPU semantic§ _ FPU register 0x0048a00b: j1 0x00482020
Proxy-Bypass 1 CPU semantic§ _undoc. opcode 0x0048200d: shr  $0x8,J%eax

0x0048a010: add %heax, (iesp)
0x0048a013: xchg  %eax,’%ecx
Table 1: Summary of malware samples. Labels are from the 0x0048a014: mov  Jesp,kesi
McAfee scanner for examples from the wild; “multirep” is 0x00482016: lods  %ds: (hesi),l%eax

. : ; 0x0048a017: dec %hel
our name for the example of Dinaburg et al. discussed in Sec- | 00,c- 0707 Lo $0x10, (%eax,%ecx, 1)

tion 6.2.1. 0x0048a01d: loop
0x0048a01f: ret

QEMU to deliver the exception before the next instruction execu-

tion. Figure 3: Timing check in W32/Sdbot.worm(1)
5. DlSCUSSlON, COUNTERMEASURES 21&;;1019: xorb $16, (%eax,%kecx) 42.35019: xorb $16, (Yeax,%ecx)
. . . 48a01d: loop 0x48a019 48a01d: loop 0x48a019

We have found our technique to be very effective against mal-  48a019: xorb $16, (Jeax,%ecx) | 48a019: xorb $16, (Yeax,%ecx)
ware currently in the wild. However, malware authors can poten- 48a01d: loop 0x48a019 48a01d: loop 0x48a019
tially take countermeasures against techniques we introduce. Due 48201f: ret 48201f: ret

S . . . . 48a026: jmp 0x48a03b 48a072: fwait

to space limitations, we discuss each of the following topics in Ap-  48.03b: kchg Yeax, %ecx [the sample crashes.]
pendix A: (1) the use of virtual execution for malware analysis, (2)  48a03c: pushf 7c90eaec: mov Ox4(%esp) ,%ecx
changing non-attack data, (3) attacks for which there is no refer- --- Intel VT QEMU
ence platform, (4) too many divergence points, (5) obfuscation of
data flow, (6) interleaving detection with primary behavior, (7) cov- Figure 4: Divergence point in W32/Sdbot.worm(1)
ering failure code in the non-failure case, and (8) nondeterminism
and state.

6.1 Category I: Timing Attacks

6. EVALUATION A timing attack uses an operat_lon tha_t takes a different amount
. . . . ) . of time on an emulator than a native environment (most commonly

In this section, we describe the anti-emulation techniques of Sev- {ne emulator is slower). Among our samples, three (two samples
eral malware samples, and show the results obtained by applyingf \v32/Sdbot.worm, and Generic.dv) implement timing attacks by

our implementation to them. We selected 5 real malware samples .omparing values of the timestamp counter during execution.
and a proof of concept code sample given in [13]. As shown in

Table 1, the samples uses two kinds of attack techniques, based on6.1.1 Comparing Timestamp Counters
timing differences and differences in CPU semantics. The follow-
ing two subsections provide evaluation results organized according
to these categories.

Attack Description: W32/Sdbot.worm (in two samples) and our
sample of Generic.dv detect a timing difference by executing the

The evaluation results include the details of the techniques em- Tdtsc instruction, which loads a 64-bit timestamp counter into
ployed by the samples and show the results of DSM generation and/»¢dx andseax. The code for W32/Sdbot.worm(1) is shown in Fig-
the effectiveness of the DSMs applied to QEMU. To verify the ef- U'® 3; this is the real example on which Figure 1 was based. First, it
fectiveness of the DSMs, we perform two experiments: first, we calculates the difference between two consecutive timestamps. As-
take an execution trace from the ameliorated version of QEMU and SUMINg the difference is at least 16, the code divides it by 256 with
repeat the divergence diagnosis to see if the sample runs as in thé SNift, then adds it to the return address on the top of the stack.
reference system. Second, we apply a QEMU-based analysis toolS0 if the timing difference was 256 or more, the return instruction
to record the Windows API calls a sample makes, and compare the9°€S to a different location; usually this location does not hold valid

calls that a malware sample makes before and after applying theinstructions and leads to a crash. The value of the timing difference
DSM. We verify that the DSM successfully fools the malware’s " real hardware varies with the processor, but was always less than

anti-emulation check: the samples execute as they did on the ref-100 in our experiments, while the time difference under emulation

erence platform, and display various malicious behaviors such as!S Mmuch larger: 26740 for one QEMU run.

changing the Windows registry. In the last two subsections, we Divergence Point: By aligning the execution traces from Ether
provide a summary of the performance evaluation and demonstrateand QEMU, our tool finds theet instruction at0x48a01f as the

the robustness of the DSMs; that is, that they are still applicable if only divergence point. After the return address is modified, the
the system environment changes. execution of the malware sample in QEMU jumps to a position that
does not appear to be reasonable code, and on the next instruction
an exception is raised. The trace then shows that the execution path

in QEMU is directed to an exception handler.

Choice of samples.Our technique applies to many kinds of mal-
ware, but our evaluation focuses on common automatically prop-
agating malware such as viruses and drive-by downloads, since
they are common, can be easily obtained from honeypots, and il- Root Cause: The DSM generation algorithm automatically slices
lustrate the need for fast response from malware analysis. We ob-the execution traces backward from the divergence poin¢ato
tained samples of emulation-resistant malware that were submittedfind the two root causes: theitsc instructions abx48a000 and

to BitBlaze Online [4], and from other researchers in industry and 0x48a004. This confirms the manual analysis described above.
academia. This sample also demonstrates the importance of making a change



4013e3: push %eax 4013e3: push %eax 77c50c93: pop %edx 77c50c93: pop hedx
4013e4: pushl %fs:0x0 4013e4: pushl %fs:0x0 77c50c94: ret 77c50c94: ret
4013eb: mov Y%esp,%fs:0x0 4013eb: mov %esp,%fs:0x0 40920a: test %eax,%eax 40920a: test %eax,jeax
[ 4013f2: rep ... rep nop 1 4013f2: rep ... rep nop 40920c: je 0x409225 40920c: je 0x409225
[ not present in the trace.] 401402: mov %esp,%eax 40920e: add $0x8,%esp 409225: lods (%esi),l%eax
[ an exception raised here.] 401404: mov %eax,’%fs:0x0 409211: call 0x409216 409226: dec %eax
7c90eaec: mov 0x4(%esp),%ecx 40140a: add $0x8,%esp 409216: pop %esi 409227: xor $0x1633523,%eax
7c90eaf0: mov (%esp),%ebx R .. ..
7c90eaf3: push jecx Intel VT QEMU
Intel VT QEMU Figure 6: Divergence point in Downloader-AFH
Figure 5: Divergence point in multirep
77c4cb2f: fnstcw (%esp) 77c4cb2f: fnstcw (%esp)
7T7c4cb32: je 0x77cé4cbal T7c4cb32: je 0x77c4cbal
at the root cause: one could simply changexhe instruction to 77c4cb34: cmpw $0x27f, (esp) | 77cdcb34: cmpw $0x27f, (fesp)
the return address observed on the reference trace, but thaf,cico3a: Je 0x77cdcbal T7edcb3a: je Ox77cicbal
use r ¢ | ' 3l7cacbal: cmp $0x3££00000,%eax | 77cdcb3c: call 0x77c50bd5
would not be effective. Besides affecting the return address, the 77cacbas: jae 0x77cacb73 77¢50bd5: mov 0x4(Y%esp) ,%edx
timing difference is also used to select the location and size of a 77c4cb48: fldi 77c50bd9: and $0x300,%edx
code region to decrypt by XORing each byte with 16. If this de- - Intel VT QEMU
cryption is not modified as well, the jump to the correct location
might find still-encrypted code and fail. Figure 7: Divergence point in msvcrt.dll (Downloader-AFH)

DSM and Verification: The DSMs our tool generates for all three

timing samples successfully correct all the divergences with the ref-

erence platform when applied in QEMU. We also verified that the Based on the behavior of Ether, the DSM for this root cause is to
ameliorated samples displayed the expected malicious behaviorsniect a general protection fault exceptionoat013£2.

by observing the Windows APIs and memory regions they execute. DSM and Verification:  Verifying the effectiveness of the gen-
After applying the DSMs, the sample tries to copy itself to a differ- erated DSM is straightforward for this sample, since we know its
ent location in the file system and create a new process by executingintended behavior. When the we apply the DSM to QEMU, the
the copied executable image. sample prints out “Not QEMU!” as expected.

6.2 Category Il: CPU Semantics Attacks 6.2.2 FPU Register (Downloader-AFH)

Because building a software implementation of an entire CPU
instruction set is a large task, emulators tend to contain bugs in
which a particular instruction is executed differently than it is by
real hardware. Malware samples can exploit such differences in a
CPU semantics attack. For our experiment we selected four sam-
ples demonstrating three different kinds of attack, and evaluate our
tool's effectiveness against them.

Attack Description:  Downloader-AFH differs from our other
samples in that it uses a Windows library function to detect an emu-
lated environment. After an unpacking step, it callsdbén (arc-
sine) function inmsvert.d11. The sample ignores the function
return value but instead checks theax register. The sample uses
the %,eax value to calculate a memory location that it will modify
later in execution. For reasons we will discuss below uriizot
6.2.1 Malformed Opcode Cause the value of,eax is 0x27f under Ether, but under QEMU.

N , Divergence Point: As shown in Figure 6, the trace alignment
Attack Description:  As an example of their system, the authors o+ 1o0] produces in its default mode, which looks for a divergence
of Ether [13] give a proof of concept code sample that uses a 16- 4int in the malware sample’s code, finds a divergenoe40920c

byte-long instruction to detect the presence of QEMU; we use the i, pownloader-AFH. This is a conditional jump based on a test of
source code p_rowded_ in appendix A of their paper for our EXperl- « . ax after the return fronasin. If the value is non-zero, as under
ment. An x86 instruction may be lengthened by redundant prefixes giner it is later used in a local function; different code is executed

(for instance, five uses of the repetition prefip are equivalent if the value is zero as under QEMU.
to a single one), but the maximum legal length in 15 bytes. In the . . )
execution on the real CPU, a violation of this rule should raise a ROOt Cause: In its default mode, our DSM generation process

general protection fault exception (number 13), but QEMU fails treats calls to standard Ii.braries. as atomic;. thg call itself can be a
to enforce the limit. So, when the sample is executed in Ether, it root cause, but the algorithm will not look inside the called code
raises an exception; the exception handler prints a message «NoffOr @ root cause instruction. This makes the analysis process more

QEMU!" and exits. Under QEMU, the non-exception execution efficient, and also makes the generated DSM more robust, since
path which prints “QEMU Detected!” is taken. system libraries can change between OS versions. In this mode,

the root cause search stops at the calidon in this example: the
root cause is the value #eax after the call.

We also repeated this experiment in a mode where our tool con-
“sidered library routines to be in scope as possible divergence sites.
In this mode, the tool finds a divergence insidercrt.d11 and a
root cause at thénstcw instruction at0x77c4cb2f, as shown in
Root Cause: As described in Section 4.2, the DSM generation Figure 7. The effect of thénstcw instruction is to store a copy of
algorithm treats the raising of an exception as if it were an output the FPU control word (a flags register) on the stack. Under Ether,
of an instruction, and checks if it could be caused by an instruction the value stored i9x27f, while under QEMU, it is0x23f; the
input difference. But there is no input difference in this case, so code later compares the valuedte27£. These values differ in just
the instruction that raises the interrupt itself must be the root cause.a single bit,0x40, which is described as reserved in Intel's doc-

Divergence Point: Our trace alignment tool finds the point after
the instruction abx4013eb as the divergence point between the
traces. As Figure 5 shows, the reference platform executes an ex
ception handler after this point, while QEMU proceeds with the
abnormally long instruction.



- - Original Changed
413a04: xor %edx,%edx 413a04: xor Y%edx,’%edx Environment Environment

413a06: pushl %fs: (%edx) 413a06: pushl %fs: (Jiedx) Memory 512MB 256MB
413a09: mov %esp,%fs: (fedx) | 413a09: mov Y%esp,%fs: (Yedx) File Path Desktop folder | Windows/system32)]
413a0c: icebp [the guest system halts.] OS Version | Windows XP_ | Windows XP SP2
7c90eaec: mov Ox4(%esp) ,%ecx User Privilege | Administrator Limited User
7c90eaf0: mov (%esp),%ebx Locale USA RuUsSIa
7c90eaf3: push %ecx
Intel VT QEMU Table 3: Changes in the execution environment for robustness

. . . evaluation (Section 6.4)
Figure 8: Divergence point in Proxy-Bypass

6.3 Performance

umentation; QEMU allows the bit to be zero, while on real hard-  We also evaluate the efficiency of our techniques by measur-
ware it is always one. This behavior difference does not appear toing the time taken to find divergence points and generate DSMs
contradict the documentation, nor affect benign software, but this from them. As shown in Table 2, both steps are quick for most of
anti-emulation check takes advantage of it. the samples, though there is significant variation between samples.
Most of the cost of diagnosis is due to the alignment algorithm. The
most sophisticated sample, Proxy-Bypass, requires 7 iterations to
fix all its attacks, and some occur deep in execution making align-
ment and slicing more expensive. The shorter sizes of the QEMU
traces are caused by the samples crashing or terminating because of
anti-emulation checks. By contrast, malware authors often intend
their programs to run forever on a vulnerable host, so we terminated
the Ether traces after 500MB. Our QEMU implementation writes
traces at 6.75MB/sec, while Ether averages 2.72MB/sec.

DSM and Verification: Using our tool's two modes, we generate
two DSMs, with and without libraries. Both DSMs prevent the
divergence, but the DSM generated for the malware binary only is
the one we recommend for most applications, because it is robust
to changes in library code. In fact, an upgrade to Windows XP
SP2, described in Section 6.4, prevents the in-library DSM from
applying but does not affect the default one.

When executed under an unmodified QEMU, the malware sam-
ple crashes shortly after callirgin. But when run with the DSM,
we used our QEMU-based analysis to observe a number of kinds§ 4 Robustness
of suspicious behavior, including modifying the Windows registry,

. . : To evaluate the robustness of our DSMs, we created a different
and creating files and network connections.

execution environment in QEMU by changing configuration op-

tions and the OS version (see Table 3 for details). By comparing
6.2.3 Undocumented Opcode (Proxy-Bypass) these executions to the original ones, we check both whether the

Attack Description: The Proxy-Bypass sample uses thebp DSM s still effective when the sample runs in a modified environ-
(0x£1) instruction, an undocumented opcode in x86 CPUs. The ment, and whether the malware sample itself runs differently when
icebp instruction was once used together for hardware-level de- the environment is different. o o

bugging, but on modern CPUs it simply raises an interrupt with the  For each malware sample, we verified that it still behaved ma-
vector ofox1. An unmodified version of QEMU uses the instruc-  liciously in the changed environment, even though the DSM used
tion for purposes of debugging QEMU itself, such as providing a Was the one generated using the original environment. This sat-
point to attachgdb, but in production use the effect is to cause the iSfies our criterion for robustness: a DSM generated using a sin-
entire emulator to hang. These malware samples trap the interruptd!€ configuration can be reused in others. For 5 of the 6 samples,
thrown by real hardware; code in the exception handler then trig- the malware executed exactly the same code with the DSM in the
gers another obfuscated control-flow transfer. changed emulated environment as it did with the DSM in the orig-
inal emulated environment. Thus for these samples, the environ-
ment change did not affect either the malware sample or the DSM.
For the remaining sample, Proxy-Bypass, the environment change
caused the malware sample to behave differently, but the DSM was
still effective: it did not hang as it did on the original emulator. By
Root Cause: Similarly to the earlier malformed opcode example, examining the sample’s Windows AP calls, we confirm that it still
our DSM generation algorithm here finds an exception thrown in behaves maliciously (for instance, making similar accesses to the
the reference trace by an instruction that has no inputs, so the rooffile system and Registry), but some of the behavior is thwarted by
cause search terminates immediately. having fewer privileges. For instance, it fails in an attempt to copy

DSM and Verification: The DSM generation procedure produces  tSelf to a certain directory and then execute that copy.
a DSM that injects an interrupt with the vector of Ox1 at instruction
0x413a0c. However, this DSM is not sufficient. On two subse- 7. RELATED WORK

quent iterations, our tool finds two more occurrences@fop at Platforms providing isolation and instrumentation are key to mal-
other locations, which it ameliorates in the same way. On four ware analysis, and whole-system emulators are particularly use-
iterations, our tool finds another four divergence points involving ful. Many analysis tools have been built using open-source emu-
single-step exceptions (number 1) at four different instructions in a |ators including QEMU [29] ([3, 23, 37]) and Bochs [5] ([6, 11]).
single basic block. We have not been able to determine why theseAutomatic support for ameliorating anti-emulation attacks would
exceptions are thrown, but our tool generates the proper DSMs.  be particularly valuable in fully automated online malware anal-
After applying the final DSM based on all seven iterations, we ysis services [12, 27], several of which are based on QEMU [2,
can observe several kinds of suspicious behavior from the malware4], because a skilled analyst may not be available to disable anti-
sample. It tries to copy itself to several locations under the Win- emulation code manually.
dowssystem32 folder, and it modifies a Windows Registry key to On the other side, there has been significant research on weak-
make itself automatically executed at every system start-up. nesses in virtual platforms that allow them to be detected. Emu-

Divergence Point: Figure 8 shows the divergence point our tool
finds, which comes at the point where the QEMU trace is cut off by
the emulator hang. Under Ether, by contrast, execution continues
with an exception handler after theebp instruction.



Sample Label Trace Size (file / instructions) Time Taken (sec)
Ether QEMU Divergence Diagnosis DSM Generation

W32/Sdbot.worm(1)] 500MB/11923410 12KB/168 24.56 0.32

W32/Sdbot.worm(2)] 500MB/11848928 24KB/344 30.89 0.33

Generic.dv 500MB/11945744 22KB/312 31.49 1.27

multirep 2.1MB/36179 1.5MB/26419 0.23 0.95

Downloader-AFH | 500MB/8386352 | 206MB/3444232 32.82 3.12
Proxy-Bypass 335MB/6732837 | 3.4MB/58370 | 14.22 +11.27 +296 + 297 1.85+ 3.15 + 2.86 + 2.87

+293 +309 +21.23 +3.11 + 16.82 + 69.83

Table 2: Performance results

lators are generally more difficult to detect than high-performance fense. We have presented an automated approach to emulation in
VMs like VMWare [16], but Raffetseder et al. [30] propose a vari- the face of anti-emulation attacks, based on a dynamic state modi-
ety of attacks effective against emulators. Ormandy [28] discovers fication to the execution of a whole-system emulator that keeps an
a number of implementation flaws that make popular emulators and attack from distinguishing it from a real system. The techniques
virtual machines vulnerable to detection, denial of service, and in a that make this approach possible are a scalable trace matching al-
few cases even code injection. By using large scale automated testgorithm that locates a control divergence, and a DSM-building al-
ing, the EmuFuzzer project [24] finds behavior differences between gorithm that finds the root cause of that divergence and a small state
QEMU and a Pentium 4 that affect over 400 instructions. Another change that corrects it. We have built a practical implementation of
line of research looks at the even more difficult challenge of iden- this technique into an emulator used for automatic malware anal-
tifying a virtual environment on a remote machine [15, 20], which ysis, and applied it to 5 samples of malware collected in the wild
is beyond our scope. and 1 attack that has not yet been exploited. Our tool automatically
There has been comparatively less work on defense techniquescorrected all of the emulation failures, with robust DSMs, allowing
like ours. Chen et al. [10] measure that more than 40% of mal- an automated analysis to reveal the malware’s malicious activities.
ware samples exhibit different behavior in the presence of a de- These results show that automated diagnosis and state modification
bugger or virtual environment. They propose harnessing this by are powerful tools for understanding and controlling software; we
making production systems mimic the presence of a debugger orexpect they will also see application in other contexts like software
virtual machine, the opposite deception to what we investigate. engineering and troubleshooting system misconfigurations.
VMWatcher [18] explores the use of a virtual machine for malware
defense, but focuses more on detection (as in a production environ-g  ACKNOWLEDGMENTS
ment) than analysis, so VM-aware malware is a less acute prob-
lem. Sun et al. [35] disable some common anti-VMware checks
by syntactic instruction matching in a debugger. Ether [13] is a
novel analysis framework with transparency as its main goal, us-
ing hardware-based virtualization [17, 1] which is very effective
against CPU semantics attacks. Our research shows how to transfe
the state-of-the-art transparency of a specialized system like Ether
to a general-purpose emulator with more support for detailed anal-
ysis. Our approach also generalizes to other reference platforms

that could address other transparency issues, such as detailed tim .
ing attacks or queries of hardware characteristics [16]. grant DAAD19-02-1-0389 from the Army Research Office. Any
opinions, findings, and conclusions or recommendations expressed
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APPENDIX
A. DISCUSSION, COUNTERMEASURES

In this section we discuss some further characteristics of our ap-
proach, including some potential countermeasures malware authors
might take against the techniques we introduce.

Virtual execution for malware analysis. Some kind of virtual
execution, such as a debugger, virtual machine, or emulator, is
indispensable for malware analysis, but approaches for observing



malware execution differ in their performance overhead, the ease Cover failure code in the non-failure case Our approach for find-

of building analysis tools using them, and their transparency. In ing the point of control-flow divergence is based on the heuristic as-
this work we build on the approach emulation via of software-level sumption that the code that executes after an emulation failure has
binary translation, since it already represents an attractive trade-been discovered is code that does not execute when the malware
off. An emulation-based system resists most anti-debugging tech-runs on the reference platform. Malware could interfere with this
nigues, as well as anti-VM techniques based on incomplete virtu- heuristic by executing the same failure-case code before the detec-
alization [31]. Systems that perform binary translation also make tion point (with some other state difference so that it does not affect
it relatively easy to build sophisticated dynamic execution analy- behavior). This would allow the malware to postpone the detection
sis tools, since they support code rewriting and have a model of point as late as the final termination of the program in the emulation
instruction semantics. case, which would make backwards slicing more difficult.

Changing non-attack data. Our system attempts to only change Nondeterminism and state. Our approach depends on the as-
those aspects of the program’s environment that are used in an antisumption that the environment of a malware sample can be com-
emulation attack, but if there are other environmental differences pletely controlled, so that it behaves the same way on each execu-
that lead to code coverage differences, our approach may “amelio-tion. If a malware sample had access to a source of randomness
rate” them unnecessarily, leading to a less robust DSM. We have or a way to store information outside our tool’s control, it could
not observed this to be a problem in practice, but if it became one, behave differently on each execution such that a DSM generated
several approaches could help. from one run could never apply to another. Our whole-system em-
First, if an analyst anticipates wanting to modify an environment ulator provides almost complete control for software running on a
aspect on later emulation runs, the analyst can set that aspect equalingle computer, since it can rewrite any instruction and virtualizes
to the value it has on the reference platform when generating the all hardware. But achieving such control could be more difficult in
DSM. Second, we could extend our DSM creation approach with a other situations, such as when a reference platform uses real hard-
new post-processing step that, given a DSM that prevents attacksware, or if a malware sample communicates over the Internet to a
simplifies it by removing changes whose removal does not affect server outside our control.
its attack-prevention ability.

Attacks for which there is no reference platform. Our technique
depends on the existence of suitable reference platform on which
the malware behaves correctly. If an attack exists for which no pos-
sible reference platform shows the correct behavior, our technique
would not be applicable. We are not aware of any such attacks, but
there are attacks for which the reference platform our implementa-
tion currently uses is unsuitable.

For instance, one such attack involves the string store instruction
rep stos, which happens to be executed incorrectly (stopping too
soon) by both QEMU and our reference platform when it is used to
overwrite its own instruction bytes. But our technique would apply
to the attack if given a trace from an accurate reference platform
(such as an emulator without this bug, like Bochs [5]).

Too many divergence points. Though our approach uses itera-
tion to correct multiple anti-emulation attacks in a single execution,
each iteration is relatively expensive. Therefore, a malware author
could frustrate the use of our tool by introducing a very large num-
ber of divergence points. To make this countermeasure more diffi-
cult, our tool could attempt to correct all the attacks of a particular
kind in a single iteration.

Obfuscating data flow. Malware authors could interfere with our
diagnosis and slicing algorithms by obscuring the data flow be-
tween root causes and branches. Some potential techniques include
mixing environment observations with with other inputs (e.g., with
XOR), or using code constructs that are difficult for a slicer to ana-
lyze. In particular, if our technique cannot locate the root cause of
a difference, its changes to intermediate states become more vul-
nerable to consistency checks.

Interleaving detection with primary behavior. Our approach is
most valuable if one DSM, based on a single reference platform ex-
ecution, is sufficient for all malware executions an analyst performs
under differing environmental conditions to test different malware
behavior. A malware author could make the DSMs produced by
our tool less robust by adding more emulation-detection code that
ran interleaved and interdependent with other input dependent ma-
licious behavior, so that a DSM could not be reused on other exe-
cutions that performed different malicious behavior.
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