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ABSTRACT
The authors of malware attempt to frustrate reverse engineering and
analysis by creating programs that crash or otherwise behave dif-
ferently when executed on an emulated platform than when exe-
cuted on real hardware. In order to defeat such techniques and
facilitate automatic and semi-automatic dynamic analysis of mal-
ware, we propose an automated technique to dynamically modify
the execution of a whole-system emulator to fool a malware sam-
ple’s anti-emulation checks. Our approach uses a scalable trace
matching algorithm to locate the point where emulated execution
diverges, and then compares the states of the reference system and
the emulator to create a dynamic state modification that repairs the
difference. We evaluate our technique by building an implementa-
tion into an emulator used for in-depth malware analysis. On case
studies that include real samples of malware collected in the wild
and an attack that has not yet been exploited, our tool automatically
ameliorates the malware sample’s anti-emulation checks to enable
analysis, and its modifications are robust to system changes.

Categories and Subject Descriptors
D.4.6 [OPERATING SYSTEMS]: Security and Protection—In-
vasive software

General Terms
Security

Keywords
Malware Analysis, Dynamic Analysis, Virtualization, Emulation

1. INTRODUCTION
Analyzing malicious software, such as viruses, worms, and bot-

net clients, whether fully automatically or with human assistance,
is a critical step in defending against the threat such malware poses.
For instance, knowledge of the possible behaviors of malware and
how it chooses among them is key to proactive defense and foren-
sic investigation. Automated analysis based on emulated execution
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is particularly important for tasks such as unpacking [6, 19, 23]
(obtaining de-obfuscated malware code), behavioral signature gen-
eration [3] (classifying a malware sample based on the malicious
actions it performs), and information flow tracing [14, 37] (for in-
stance, to understand spyware behavior).

However, malware authors are motivated to make analysis diffi-
cult: to slow the development of defenses that make their malware
obsolete, and also to protect proprietary information from reverse-
engineering by competing malware authors. For this reason, anti-
debugging and anti-emulation techniques are widespread in mod-
ern malware (more than 40% shown in one recent study [10]). A
malware sample that detects it is running in an analysis environ-
ment can simply terminate, refrain from its usual malicious activ-
ity, or take any other action to frustrate analysis. In this work, we
propose a new technique towards addressing the problem of how to
execute a malware sample in an environment based on software em-
ulation, when the malware incorporates anti-emulation techniques
as are now common.

We say that an emulator suffers a failure oftransparencyif there
is an aspect of its behavior that allows software running on the
emulator to distinguish it from real hardware. Emulators based
on binary translation avoid some classes of transparency failures,
since they can completely replace instructions, but they are com-
plex enough that making them completely transparent would be
impractical. Thus, our goal is to successfully emulate a malware
sample, even if an emulator suffers from transparency failures that
anti-emulation techniques would normally exploit.

To that end, we formulate the problem of emulating emulation-
resistant malware in terms of its environment observations, and
propose an approach ofcomparison-based state modificationthat
modifies the execution state of a malware sample to simulate a dif-
ferent environment and so thwart the sample’s anti-emulation tech-
niques. In particular, our approach diagnoses the source of anti-
emulation behavior by comparing an execution of a sample on an
emulation-based analysis tool to its execution on a more transpar-
ent reference system that would be impractical to use directly for
analysis. Based on the differences, our approach constructs a dy-
namic state modification (or DSM) that indicates how to modify an
execution occurring in an emulator to fool anti-emulation checks.
We apply the DSM to automatically ameliorate the transparency
failures in the emulation tool so that it can be used for automated
analysis or tool-supported reverse engineering. The reference sys-
tem can be any hardware or software platform that matches one
aspect of real hardware behavior very closely; our approach allows
a general-purpose emulator to enjoy the same fidelity.

We have implemented our technique in the form of enhance-
ments to the popular open-source whole-system emulation system
QEMU [29], which is the basis for many malware analysis plat-
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forms [2, 4, 23]. As a reference platform, we take an existing
virtual execution system based on Intel VT hardware virtualiza-
tion that achieves high transparency for CPU semantics by exe-
cuting each instruction directly on a real processor in single-step
mode [13]. This reference platform has a high performance over-
head, but more importantly it would not be a convenient platform
for building more sophisticated analysis tools, since it provides no
support for understanding or instrumenting instruction semantics.
Our technique allows the use of analyses built using the more flex-
ible QEMU (e.g., [23, 19, 37]) to have the transparency benefits of
the reference platform.

Our specific focus is on the emulation-resistance problem as it is
most acute for practicing malware analysts working with modern
malware. Thus it is important that the technique work in practice
and at scale. We evaluate our prototype using real malware samples
collected from the wild: complete malicious applications, several
of which use other obfuscations like packing or multiple resistance
techniques. We ensure that our tool introduces minimal runtime
overhead compared to the analysis tools already being used. We
also check that the tool’s changes are robust: they work not just
for a single malware execution but for a range of executions as are
often required in analysis.

Achieving transparent execution in a general way is very diffi-
cult; we do not claim that our approach is powerful enough to solve
the problem of emulation resistance for all time. Malware authors
will constantly be on the lookout for new emulation-resistance tech-
niques. Our approach works automatically against current instances
of broad classes of emulation-resistance techniques, and we can
be confident it will perform well against novel instances in those
classes. This is possible because the technique is not based on the
details of specific attacks: it is a general approach that discovers
the cause of a failure on its own.

It is harder to predict what further defense techniques may be
needed if malware authors shift to entirely new classes of anti-emu-
lation technique, perhaps specifically choosing attacks that would
be difficult for a technique like ours. (We suggest some possible
next steps attackers might take in Appendix A.) Even if our ap-
proach is unable to automatically ameliorate an attack, its diagnosis
would save a human analyst time by showing its location and cause.
Our approach to efficient diagnosis is also of potential independent
interest for other applications, such as diagnosing a misconfigura-
tion that interferes with a system’s correct operation.

Contributions. In summary, this paper makes the following con-
tributions:

• We give a specific formulation of the problem of how to ame-
liorate anti-emulation checks in a running program.

• We propose an amelioration approach based on diagnosing
differences between execution traces to construct a dynamic
state modification addressing the precise observations a mal-
ware sample makes.

• We build an implementation of our approach in an open-
source emulator widely used for malware analysis.

• We evaluate our technique against a set of real malware sam-
ples, analyzing the emulation-resistance techniques they use
and verifying that our DSMs are effective and robust against
environment changes.

2. PROBLEM FORMULATION
Figure 1 gives an example of a timing attack similar to one we

have encountered in the wild, but given in a C-like pseudo-code

1 functions[0] = &steal_passwords;

2 long t1 = cycle_count();

3 long t2 = cycle_count();

4 long diff = t2 - t1;

5 long copy = diff;

6 if (diff < 5)

7 abort();

8 (functions[diff/256])();

9 /* ... */

10 assert(diff == copy);

Figure 1: C-style pseudo-code for a timing attack (based on
a real sample in Figure 3). steal_passwords will be called
only if the time elapsed between the two calls tocycle_count
is between 5 and 255.

(for the real example this is based on, see Section 6). When run
on real hardware, the number of cycles between the two calls to
cycle_count will usually be between 5 and 255, so the code will
call steal_passwords. However, on an emulator, more time is
likely to elapse, since each instruction must be translated before
it can be first executed. So when run under an emulator, the time
difference will be larger, and the malware will execute a different
function or crash. This anti-emulation check is typical of the code
we would like to emulate automatically.

Problem Formulation. To formulate the problem of ameliorating
emulation resistance at a high level, we describe a program and its
observations of the environment as simple functions. The behavior
of a programP , including its explicit outputs and any other side-
effects, is a function of its explicit inputsI, as well as the environ-
mentE; we writeP (E, I). This environment covers all the aspects
of the system the program might query or discover, including the
other software installed, the characteristics of hardware, or the time
of day. Note thatP is a mathematical function, and so determinis-
tic and stateless: we model any non-determinism or persistent state
as aspects of the environment. IfP uses anti-emulation techniques,
then its behavior will be different under an emulated environment
Ee than under a real hardware environmentEr, even if those en-
vironments are otherwise similar and the program’s explicit inputs
are the same:P (Ee, I) 6= P (Er, I).

To understand such differences, we consider more of the pro-
gram’s structure. In general, a program with anti-emulation behav-
ior will first observe an aspect of its environment that differs, then
decide whether or not to take a later action based on this obser-
vation; we call this complete process ananti-emulation check. The
program’s observations of its environment can be divided into those
made in an anti-emulation check, and all other observations. We
decompose the programP into an anti-emulation checkf , other
environment observationsg, and a remaining portionP ′ (again all
modeled as functions), whereP (E, I) = P ′(f(E, I), g(E, I), I).
The functionf captures those checks that distinguish the emulated
from the real environment, sof(Ee, I) 6= f(Er, I). For instance,
the code shown in Figure 1 implements such anf . By contrast,
g contains all the remaining environment observations that are not
part of any anti-emulation techniques. For instance, the program in
which Figure 1 is embedded might check that it is running an OS no
older than Windows 2000. These other aspects of the environment
can be controlled independently of whether an emulator is in use
or not, so there are some emulated and real environmentsEe1

and
Er1

for which g(Ee1
, I) = g(Er1

, I). Note that in practice there
will be many incidental differences between the emulated and ref-
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erence environments; for instance, they might have different sized
displays. So in general,g(Ee, I) 6= g(Er, I) as well; but it is not
our goal to change any differences unrelated to an anti-emulation
check.

Thus, we formulate the problem of emulating the malware sam-
ple as constructing an emulator that behaves as the sample ex-
pects with respect to the anti-emulation check, but is otherwise
unchanged. In other words, this modificationE

e
′ of Ee satisfies

f(E
e
′ , I) = f(Er, I) (the anti-emulator check is fooled), even

thoughg(E
e
′ , I) = g(Ee, I) (the environment is otherwise the

same). For instance, an environment would fool the check shown
in Figure 1 if the two time values it returned differed by an amount
between 5 and 255.

Anti-emulation techniques addressed.We classify the anti-emu-
lation checksf performed by malware into three broad types:

Timing attacksmeasure the time that elapses during an operation,
on the assumption that an operation will take a different amount of
time under emulation than on real hardware. The code in Figure 1
is an example.

CPU semantics attackstarget CPU instructions whose behavior
in an emulated system differs from their behavior in real hardware.

Hardware characteristic attacksquery features or identifiers of
a computer’s hardware, looking for emulated hardware that is dif-
ferent from any real physical hardware.

The techniques we introduce are applicable against all three types
of attack, but the first two present more interesting technical chal-
lenges, appear to be more prevalent, and are better suited for our
reference platform, so we concentrate on them. Also, we exclude
from our scope anti-emulation checks that involve an external host;
many do not.

3. APPROACH
In an ideal world, the problem of anti-emulation techniques could

be eliminated with an emulator whose behavior was exactly like
that of real hardware (i.e., was completely transparent): ifEe =
Er, thenP (Ee, I) = P (Er, I) for any P andI. However, this
approach would not be practical: achieving complete transparency
would be an enormous engineering effort and would be incompat-
ible with other practical requirements for an emulation tool. For
instance, cycle-accurate timing simulation is impractically slow.

Intuition. Instead, we propose an approach to achieve emulation
of emulation-resistant malware samples under a practical emulator
by modifying only a few aspects of the emulator’s behavior. In
particular, the approach should automatically diagnose and ame-
liorate new attacks that malware authors might devise. To make
this approach work, we must answer two fundamental questions:
which aspects of the emulator’s behavior should we change, and
how should the changes be implemented?

For selecting aspects of the emulator’s behavior, our approach is
guided by the malware sample itself: we ameliorate those aspects
of the emulator that the malware sample uses to detect that it is run-
ning under an emulator. For modifying the emulator, our approach
is also based on the way the malware sample observes its environ-
ment: we modify the state of the emulator at the point the malware
sample makes an observation, to change the sample’s effective ob-
servation. Much as gaze-directed rendering in computer graphics
only has to draw a detailed image at the place a viewer is look-
ing [22], these observation-based approaches only have to present
an accurate model of those system aspects malware observes.

Reference platform. Of course, in order to recognize that mal-
ware is behaving differently in an emulated environment and to
properly change those observations, our system requires an envi-

ronment like the real one for comparison. Thus our approach uses
what we call areference platform: another execution platform that
more closely resembles the behavior of a real hardware system, but
allows that behavior to be recorded. The reference platform may
not be a good basis for analysis tools, and it may be expensive to
run, so it would not be practical to use it repeatedly for analysis,
but we presume that we can run it once to obtain a trace from a
correct execution. Examples of such accurate but expensive ref-
erence platforms include a cycle-accurate simulator for CPU tim-
ing attacks, a system with some specific hardware expected by a
hardware-characteristics attack, or a custom hardware tool for col-
lecting system runtime information [7, 9].

For our experiments, the reference platform we use is a whole-
system virtual machine that uses hardware virtualization in single-
step mode [13]. This platform provides very good transparency for
CPU semantics, at the expense of high runtime overhead. Hard-
ware virtualization is not naturally transparent for timing attacks,
but we have implemented some simple support in our platform for
simulating CPU time independently from real time. For instance,
our platform models the equivalent of thecycle_count CPU fea-
ture of Figure 1 as advancing 10 ticks for each simulated instruc-
tion, which is accurate enough for the practical attacks we describe
in Section 6.1. An approach that used the real hardware timer but
subtracted time spent in instrumentation could also be naturally im-
plemented in this sort of platform [13].

On the other hand, our reference platform uses most of the same
virtual hardware as our emulator, so it would not be useful against
hardware characteristic attacks. Such attacks could be addressed
with a reference platform that allowed real hardware to be accessed
directly. Of course, the most important limitation of this reference
platform that motivates our work is that it provides no support for
instruction rewriting, which make it impractical as a basis for writ-
ing detailed analysis tools directly.

Approach overview. Our approach is a two-step process. To deter-
mine whether the malware sample is detecting the presence of an
emulator, our approach looks to points where the behavior of the
malware sample differs between the reference and emulated plat-
forms, and determines what differences between the two platforms
were the cause of that behavior difference. Then, to modify the em-
ulated platform as observed by the malware sample, our approach
changes the malware sample’s observations of its environment to
match the observations it makes on the reference platform. How-
ever, we do not simply wish to modify the behavior of a single mal-
ware sample execution to match the reference platform. It is also
important that the modifications we obtain arerobust: that is, they
are still effective for other executions of the same malware sample,
with different inputs or environment modifications, since repeated
experiments are often needed in analysis.

The emulator modifications our technique computes are specific
to a particular malware sample: our goal is not to build a perfect
emulator once and for all. But for a given malware sample, the
technique determines the root cause of differing behavior and a
way to ameliorate it automatically, so it is not necessary for an an-
alyst to understand the malware sample’s emulator detection code,
which might use a previously unknown technique. The emulator
can then be used as normally for automated or human-assisted anal-
ysis, reverse-engineering, and defense against that sample.

System outline. We propose an approach ofcomparison-based
state modificationthat modifies the execution state of the emulator
so that the observations made by the anti-emulation check match
the observations made on areference platformwhere the malware
sample executes as it does on real hardware. The changes to the
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Figure 2: Diagram giving an architecture overview of our sys-
tem.

emulator’s execution state are represented as adynamic state mod-
ification (DSM for short) that gives new values to specified execu-
tion state components (e.g., registers, memory locations, or flags)
at specified points in execution. We call the DSM dynamic because
it is not a change to the code of the malware sample: it represents
a transient alteration to values during the execution of the sample.
Note we do not remove the anti-emulation check (which would be
difficult to do either statically or dynamically); instead the DSM
changes the check’s environmental observations to force its result.

For instance, for the example of Figure 1, a DSM might spec-
ify that the calls tocycle_count on lines 2 and 3 should return
3363487834 and 3363487917 respectively (our real DSMs would
use an instruction address). Our approach first constructs a DSM by
analyzing and comparing a trace of malware executing on a refer-
ence platform with one or more traces of its execution on the emu-
lated platform. Then, the DSM can be applied on any future execu-
tion of the emulated platform, replacing the value a location would
normally have under the emulator with the value specified in the
DSM. For instance, in executing the code in Figure 1, the emulator
will get to line 2 and realize that the DSM applies, so rather than
settingt1 to the real time (say, 4104148387), it will instead use
the DSM value of 3363487834; in the same way, it will substitute
3363487917 for 4104149461 at line 3. The code will then continue
its execution normally, but because the DSM has changed its en-
vironment observations, it will behave differently: it will compute
a difference of 83 cycles rather than 1074, and it will execute the
malicious code insteal_passwords instead offunctions[4].

Our tool constructs a DSM in two steps, shown in Figure 2. It
first compares execution traces from the emulated platform and the
reference platform to locate a point where emulated execution dif-
fered from the reference execution, then constructs a DSM to cor-
rect that difference. Adivergence pointis a point in execution such
that directly before that point, the emulator and the reference plat-
form executed the same instruction, but directly after that point,
they execute different instructions. Therefore we call these two
stepsdiagnosinga divergence point andbuilding a DSMfrom such
a divergence.

The purpose of these steps is to pinpoint the root cause of a
behavior difference. The diagnosis step locates acoverage diver-
gence pointby looking for a difference in code coverage (i.e., an

instruction that was executed by the emulator but not the reference
platform), and then aligning (matching) the portions of the execu-
tion traces before the divergence to isolate any earlier events that
may have differed. Then, the DSM-building step uses this diver-
gence point and alignment to trace backwards, linking each differ-
ing value either to a previous value, or to a differing environment
observation. The environment observations that caused the diver-
gence points are the ones that the DSM will modify. If the malware
sample uses multiple anti-emulation techniques, our tool will first
generate a DSM from the first divergence point, then re-run the em-
ulator with it, and then repeat these steps as many times as needed
to create a DSM that ameliorates them all.

For instance, in the example of Figure 1, suppose that on the un-
modified emulator, the timing differencediff is 1074 cycles. Our
diagnosis algorithm will recognize a divergence after the function
pointer call, when the code starts to executefunctions[4] rather
thansteal_passwords. To construct a DSM, our algorithm will
trace backwards from the control-flow divergence to its root cause,
which are the two calls tocycle_count, and create a DSM that re-
places the emulated counts with those from the reference platform.

Trace collection. Because we need traces for diagnosis, we add
support for instruction-level traces to our reference and emulated
platforms. For each instruction executed, the trace records its ad-
dress, disassembles it, and records its operands, their values, and
any results or side-effects. The trace also records hardware-level
exceptions, interrupts, and traps. Both platforms can collect a trace
of all instructions executed, both in the operating system and any
processes. But they also support collecting traces from a single
user-level process, and filtering to include only instructions from
the program image itself, excluding system libraries; we usually
use this more selective mode. In such a case system calls and li-
brary routines are treated as atomic actions.

Applying a DSM. We modify the emulated platform to apply a
DSM to the execution of a malware sample. The DSM consists
of a list of changes, each of which is identified by an instruction
address (potentially along with a calling context or other informa-
tion to disambiguate a particular execution). In a callback that ex-
ecutes at each instruction, our modified emulator checks whether
any changes in the DSM apply to the instruction: if so, it modifies
the appropriate part of the emulator state or calls a routine to trigger
an exception before the next instruction.

4. TECHNIQUES
In this section we discuss further details of the key components

of our technique. For the central steps of divergence diagnosis
(Section 4.1) and building a DSM (Section 4.2), we first outline
our requirements, and then discuss our technical approach. We also
give some further implementation details (Section 4.3).

4.1 Diagnosing a Divergence

4.1.1 Intuition and Requirements
Given two instruction traces, one from the reference platform

and one from the unmodified emulator, we wish to diagnose the
source of the difference between the two traces by locating the
control flow divergence point caused by the code’s use of an anti-
emulation technique. This divergence is a point in each trace such
that just before the point, the traces are executing the same code, but
just after, they are executing different code. A divergence can occur
for several reasons. A divergence point need not come directly af-
ter a branch: many anti-emulation attacks are based on exceptions
anywhere. This divergence point also may or may not be the root
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cause of the divergence: some root causes trigger a divergence right
away (for instance, with an exception), while others simply cause a
change in the machine state that the malware sample checks later.
For instance, in the example of Figure 1, the divergence occurs on
line 8, while its root causes are on lines 2 and 3.

The key challenge is to locate this divergence point quickly, but
to find only therelevantdivergence. Instruction traces can be large
(up to half a gigabyte in our experiments), so we must be able
to locate a divergence with a low computation cost. But traces
also contain irrelevant differences that do not result in divergence,
caused for instance by loops that process variable-length data, con-
text switches between threads, and system call behavior differences.
(Our emulators do not use true parallelism, so a multi-threaded pro-
gram yields a single interleaved trace. The malware samples we
evaluate are single-threaded.) An approach that had to consider
every minor difference between two traces would bog down.

Along with finding a divergence point, our diagnosis also aligns
the portions of the traces that come before the divergence point. An
alignmentbetween two sequences (of instructions, in our case), is
a maximal matching between occurrences of the same instruction
in each trace, such that the matched occurrences occur in the same
order in each trace. The alignment provides a definition of which
instruction execution in one trace corresponds to an execution of
the same instruction in the other trace, which our technique will
use later when searching for a root cause.

The classic approach to alignment, as performed by thediff

utility, is via a dynamic programming algorithm that computes the
longest common subsequence of two sequences (e.g., [26]). How-
ever, using such an algorithm directly on full traces would be too
slow in our context, since the traces are very large and the portion
after the divergence may be both long and contain few matches.

4.1.2 Our Approach
Instead of using alignment directly, our diagnosis approach has

two steps: it first locates a point of control-flow divergence using a
coverage-based heuristic, and then performs a more limited align-
ment on the portion of the trace prior to the divergence.

Finding a divergence point. To locate a control-flow divergence
point that is relevant to an anti-emulation attack, our approach uses
code coverage as a heuristic; to be specific, we call the result acov-
erage divergence point. Irrelevant differences generally cause the
program to run the same code, just at a different time. By contrast,
if the emulated code executes instructions the reference platform
never did, that likely indicates anti-emulation behavior. Also, our
tool’s default behavior is to look for a divergence point only in the
malware code itself, not the operating system or standard libraries,
since a difference that never causes the malware sample to change
its execution is usually not an anti-emulation check.

Thus we locate a coverage divergence point by comparing the
two traces, finding the first instruction that appears in the emulated
trace but not in the reference trace. Here and elsewhere, we say
that two instructions are the same if they had the same program
counter location (EIP, in x86 terminology) and the same instruction
bytes; we include the latter condition because malware sometimes
overwrites its own instructions. Our tool first constructs the sets of
instruction locations (PC values) seen in the reference trace. Then,
processing instructions from the emulated trace in order, it signals
a possible divergence point if the previous instruction occurred in
both traces, but the current instruction appeared only in the emu-
lated trace. (If the previous instruction occurred at multiple posi-
tions in the reference trace, we consider each occurrence, in order
of increasing trace position distance.) For instance, in the example
of Figure 1, the divergence point comes after line 8, since after that

the reference platform executes the first line ofsteal_passwords,
while the emulator executes a different function.

If our algorithm finds multiple divergence points, our tool pro-
cesses them in trace order. We have found empirically that the first
candidate is most often the real divergence point.

Finding an alignment. After locating a divergence point, our ap-
proach builds an alignment over the subset of each trace between
the beginning of execution and the divergence point, for use in iso-
lating the root cause. Because we expect that this region will have
relatively fewer differences, we use anO(nd) algorithm [26] which
performs well (close to linear in the number of instructionsn) when
the number of differencesd is small.

4.2 Building A Dynamic State Modification

4.2.1 Intuition and Requirements
In order to correct an emulation infidelity that allows a malware

sample to detect the presence of an emulator, we construct ady-
namic state modification: information that allows the emulator to
correct its behavior when executing the relevant malware code. A
DSM is a list of changes, and each change consists of two com-
ponents: the specification of a location in the malware execution
(the address of an instruction), and a set of new values for parts of
the emulated machine state, such as registers, processor flags, or
memory locations. There may be many DSMs that would correct
a divergence, but we have several reasons to prefer one DSM over
another. Our intent in creating a DSM is to give the malware sam-
ple the illusion that it is running in a different environment, so we
attempt to change the program’s state at the moment it makes an
environment observation such as a time measurement. Failing that,
we modify other program state, but we want the changes to be con-
sistent, so that the malware sample cannot detect that its state has
been selectively changed. To make a robust DSM that can be used
on many executions of the malware sample, we want to make only
those changes needed to prevent an anti-emulation check.

To understand the possibilities for DSMs, consider again the ex-
ample timing attack of Figure 1, which is typical of attacks that
extend over a period of execution. First, the malware measures the
amount of time some operation requires by asking for the time be-
fore and after performing the operation. Next, it computes the time
by subtracting those two time values, and finally it makes a control-
flow decision based on that difference. The divergence involves all
of the data flow from the initial time measurements, which are the
root cause of the difference, to the final control-flow check. Any
DSM that changed the values on all of these flows would correct
the final control-flow decision.

Consistent and minimal DSMs.Modifying the internal values of
a program in the middle of its execution has a potentially serious
disadvantage: it might leave the program in a state that it could not
reach for any environment and inputs. A malware sample might be
able to use such a situation to detect that it had been tampered with,
and in any case, it could be misleading for further analysis. For
instance, in the example of Figure 1, if a DSM corrected the value
of diff only right before it was used in on line 8, this value would
be different from the value saved incopy. (This could be fixed with
another iteration, but we would like to avoid the need to.)

Thus we create a consistent DSM by fixing differences in ma-
chine state at their origins; what refer to as aroot cause. An in-
struction (or library routine or system call) is a candidate root cause
for the difference between two traces if it was executed in both
traces, and all of its inputs were the same between the two traces,
but its outputs were different between the two traces. Among the
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outputs of an instruction, we include its explicit result (i.e., destina-
tion operand), but also any side-effects (such as to condition code
flags), and any hardware exceptions the instruction might raise. For
instance, an instruction can be a root cause if the semantics of the
instruction were incorrect in one trace (for instance, by raising an
exception in only one trace), or if the instruction takes an implicit
input from outside the normal machine state (for instance, query-
ing a timer). If we exclude the operating system kernel or libraries
from our traces, then a system call or library routine return value
may also be a root cause. However, not all sources of difference be-
tween two traces are related to an anti-emulation attack, so our tool
searches specifically for causes related to the observed divergence.

It is also important to make only minimal changes to the ma-
chine state in a DSM. We do not assume that all aspects of the
reference and emulated platforms can be made exactly equal; in ad-
dition to the differences that a particular malware sample detects,
many other pieces of observable machine state will differ, even be-
tween multiple runs of the same software on the same platform.
These include the exact time of day the execution occurs, miscel-
laneous details of the (simulated) hardware on each platform, the
timing of user input events that start the malware sample, and many
others. Controlling all of these sources of nondeterminism would
be a major engineering challenge, and we do not attempt it.

Modifying too many values would also hurt our goal of robust-
ness: if a DSM modifies a program input or an unrelated environ-
mental feature, then the DSM could not be used for analysis ex-
periment that changed that input. In the extreme case, requiring
that every value in the emulated trace be the same as the reference
platform would completely destroy robustness: it would allow the
analysis of that single trace, but any modified experiment would
require re-running the reference platform, which we want to avoid.
Instead, our approach is to modify only those parts of the state that
the malware appears to be using in an anti-emulation technique.

4.2.2 Our Approach
Given an alignment leading to a divergence, our tool next builds

a DSM to prevent the divergence. To avoid requiring multiple iter-
ations, our tool tries to create a consistent DSM by modifying the
state as close as possible to the root cause of the difference. It finds
this root cause by working backward through the dependencies be-
tween instructions, much like a backward dynamic slice [36]. But
because it performs this slice in parallel on two aligned traces, it
can use the similarities and differences between the traces as an
additional source of information. (These differences mean that the
approach has fewer problems with spurious dependencies than re-
lated techniques like taint analysis [33].)

Dependencies.The DSM construction algorithm traces backwards
across dependencies between instructions. The most common kind
of dependency is a directdata dependency, in which a value is writ-
ten by one instruction and read by a later one. But by using an
alignment between the traces, our algorithm can also discover cer-
taincontrol dependencies, situations in which a location takes a dif-
ferent value because different code executed earlier in the trace. For
instance, in the codeif (c) x = 1; else x = 2;, we say that
x has a control dependency onc. If the execution of a branch dif-
fers between the two traces, this will often show up in the structure
of the alignment: instructions will be aligned up until the differing
branch, but the two sides of the branch cannot be aligned. Thus in
this situation our algorithm treats the value modified on one execu-
tion but not the other as control-dependent on the branch condition,
so it will consider the branch condition as another possible step on
the way to the root cause.

Worklist algorithm. Our algorithm works by maintaining a work-
list, consisting of a set of corresponding pairs of values that were
different in the two traces. To start, the worklist contains the dif-
fering values that caused the divergence (e.g., the branch condition
values if the divergence point was a branch). For instance, in the
example of Figure 1, if we represent such a difference by a triple
consisting of an expression, its value in the reference trace, and its
value in the emulated trace, the initial element of the worklist is

(functions[diff/256], steal_passwords, functions[4])

Then, the algorithm repeatedly removes a differing value from the
worklist, and finds the instructions in the two traces that produced
it. Usually, these will be the same instruction, so the algorithm will
compare the corresponding inputs to see if any were different in
the two traces. If there were no differing inputs, this instruction
is a root cause: for instance, for the difference(cycle_count(),
3363487834, 4104148387), since thecycle_count has no inputs,
it must be a root cause. Otherwise, if there were differing inputs,
those inputs are added to the worklist: for instance, in Figure 1,
the difference(t2 - t1, 83, 1074) is caused by differences in the
inputst2 andt1, so they are both added to the worklist. If the
instructions differ, the algorithm will attempt to find control depen-
dencies that connect them to a common branch; failing that, it will
compute single-trace slices for each value separately. When the
worklist is empty, all the root causes have been identified, and the
tool builds a DSM which, for each root cause, replaces the differing
value with the value it had in the reference trace. For instance, the
root cause(cycle_count(), 3363487834, 4104148387) yields a
DSM specifying that on line 2, the return value ofcycle_count

should be set to 3363487834.

4.3 Implementation
Here we cover some remaining details of the implementation of

each step of our technique.

Collect execution traces.We have built our emulated platform as
a set of enhancements to the dynamic whole-system analysis envi-
ronment TEMU (part of our group’s BitBlaze infrastructure [34]),
which is in turn based on QEMU [29]. As a reference platform we
use Ether [13], based on Intel VT [17]. (In our case studies so far,
the malware samples usually ran as single processes, but emulating
an entire platform lets us simulate the behavior of the operating sys-
tem accurately, and our approach could also be extended to multi-
process or kernel-resident malware.) We added support to both to
collect execution traces, using the Intel XED library to disassemble
and obtain an operand list for each instruction, necessary for accu-
rate slicing. Ether’s single-step mode already traces the program
counter; we extend it to obtain the other information we use.

Diagnose a divergence.We implemented the coverage-based diag-
nosis algorithm andO(nd) alignment algorithm described in Sec-
tion 4.1 in C++.

Build a DSM. We implemented the comparison-based back slic-
ing algorithm explained in Section 4.2.2 as a tool in a combination
of OCaml and Python that takes two execution traces and align-
ment information as inputs, and produces an instruction slice. The
sources in this slice represent the root causes for which we con-
struct the dynamic state modification.

Apply a DSM. We modify QEMU to apply a DSM. Modifications
to registers and CPU flags are simple changes to the emulator’s
state. To modify a memory value, we translate the virtual address
to a physical address using the page table; if the page is not present,
we postpone the modification until after a page fault occurs. For
interrupts and other hardware exceptions, we set a flag that causes
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Sample # of Attack Root
Label Samples Category Cause

W32/Sdbot.worm 2 timing timestamp counter
Generic.dv 1 timing timestamp counter
multirep 1 CPU semantics malformed opcode

Downloader-AFH 1 CPU semantics FPU register
Proxy-Bypass 1 CPU semantics undoc. opcode

Table 1: Summary of malware samples. Labels are from the
McAfee scanner for examples from the wild; “multirep” is
our name for the example of Dinaburg et al. discussed in Sec-
tion 6.2.1.

QEMU to deliver the exception before the next instruction execu-
tion.

5. DISCUSSION, COUNTERMEASURES
We have found our technique to be very effective against mal-

ware currently in the wild. However, malware authors can poten-
tially take countermeasures against techniques we introduce. Due
to space limitations, we discuss each of the following topics in Ap-
pendix A: (1) the use of virtual execution for malware analysis, (2)
changing non-attack data, (3) attacks for which there is no refer-
ence platform, (4) too many divergence points, (5) obfuscation of
data flow, (6) interleaving detection with primary behavior, (7) cov-
ering failure code in the non-failure case, and (8) nondeterminism
and state.

6. EVALUATION
In this section, we describe the anti-emulation techniques of sev-

eral malware samples, and show the results obtained by applying
our implementation to them. We selected 5 real malware samples
and a proof of concept code sample given in [13]. As shown in
Table 1, the samples uses two kinds of attack techniques, based on
timing differences and differences in CPU semantics. The follow-
ing two subsections provide evaluation results organized according
to these categories.

The evaluation results include the details of the techniques em-
ployed by the samples and show the results of DSM generation and
the effectiveness of the DSMs applied to QEMU. To verify the ef-
fectiveness of the DSMs, we perform two experiments: first, we
take an execution trace from the ameliorated version of QEMU and
repeat the divergence diagnosis to see if the sample runs as in the
reference system. Second, we apply a QEMU-based analysis tool
to record the Windows API calls a sample makes, and compare the
calls that a malware sample makes before and after applying the
DSM. We verify that the DSM successfully fools the malware’s
anti-emulation check: the samples execute as they did on the ref-
erence platform, and display various malicious behaviors such as
changing the Windows registry. In the last two subsections, we
provide a summary of the performance evaluation and demonstrate
the robustness of the DSMs; that is, that they are still applicable if
the system environment changes.

Choice of samples.Our technique applies to many kinds of mal-
ware, but our evaluation focuses on common automatically prop-
agating malware such as viruses and drive-by downloads, since
they are common, can be easily obtained from honeypots, and il-
lustrate the need for fast response from malware analysis. We ob-
tained samples of emulation-resistant malware that were submitted
to BitBlaze Online [4], and from other researchers in industry and
academia.

0x0048a000: rdtsc
0x0048a002: mov %eax,%ebx
0x0048a004: rdtsc
0x0048a006: sub %ebx,%eax
0x0048a008: cmp $0x10,%eax
0x0048a00b: jl 0x0048a020
0x0048a00d: shr $0x8,%eax
0x0048a010: add %eax,(%esp)
0x0048a013: xchg %eax,%ecx
0x0048a014: mov %esp,%esi
0x0048a016: lods %ds:(%esi),%eax
0x0048a017: dec %cl
0x0048a019: xorb $0x10,(%eax,%ecx,1)
0x0048a01d: loop
0x0048a01f: ret

Figure 3: Timing check in W32/Sdbot.worm(1)

...
48a019: xorb $16,(%eax,%ecx)
48a01d: loop 0x48a019
48a019: xorb $16,(%eax,%ecx)
48a01d: loop 0x48a019
48a01f: ret
48a026: jmp 0x48a03b
48a03b: xchg %eax,%ecx
48a03c: pushf
...

...
48a019: xorb $16,(%eax,%ecx)
48a01d: loop 0x48a019
48a019: xorb $16,(%eax,%ecx)
48a01d: loop 0x48a019
48a01f: ret
48a072: fwait
[the sample crashes.]
7c90eaec: mov 0x4(%esp),%ecx
...

Intel VT QEMU

Figure 4: Divergence point in W32/Sdbot.worm(1)

6.1 Category I: Timing Attacks
A timing attack uses an operation that takes a different amount

of time on an emulator than a native environment (most commonly
the emulator is slower). Among our samples, three (two samples
of W32/Sdbot.worm, and Generic.dv) implement timing attacks by
comparing values of the timestamp counter during execution.

6.1.1 Comparing Timestamp Counters

Attack Description: W32/Sdbot.worm (in two samples) and our
sample of Generic.dv detect a timing difference by executing the
rdtsc instruction, which loads a 64-bit timestamp counter into
%edx and%eax. The code for W32/Sdbot.worm(1) is shown in Fig-
ure 3; this is the real example on which Figure 1 was based. First, it
calculates the difference between two consecutive timestamps. As-
suming the difference is at least 16, the code divides it by 256 with
a shift, then adds it to the return address on the top of the stack.
So if the timing difference was 256 or more, the return instruction
goes to a different location; usually this location does not hold valid
instructions and leads to a crash. The value of the timing difference
on real hardware varies with the processor, but was always less than
100 in our experiments, while the time difference under emulation
is much larger: 26740 for one QEMU run.

Divergence Point: By aligning the execution traces from Ether
and QEMU, our tool finds theret instruction at0x48a01f as the
only divergence point. After the return address is modified, the
execution of the malware sample in QEMU jumps to a position that
does not appear to be reasonable code, and on the next instruction
an exception is raised. The trace then shows that the execution path
in QEMU is directed to an exception handler.

Root Cause: The DSM generation algorithm automatically slices
the execution traces backward from the divergence point atret to
find the two root causes: therdtsc instructions at0x48a000 and
0x48a004. This confirms the manual analysis described above.
This sample also demonstrates the importance of making a change
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...
4013e3: push %eax
4013e4: pushl %fs:0x0
4013eb: mov %esp,%fs:0x0

[ 4013f2: rep ... rep nop ]
[ not present in the trace.]
[ an exception raised here.]
7c90eaec: mov 0x4(%esp),%ecx
7c90eaf0: mov (%esp),%ebx
7c90eaf3: push %ecx
...

...
4013e3: push %eax
4013e4: pushl %fs:0x0
4013eb: mov %esp,%fs:0x0
4013f2: rep ... rep nop
401402: mov %esp,%eax
401404: mov %eax,%fs:0x0
40140a: add $0x8,%esp
...

Intel VT QEMU

Figure 5: Divergence point in multirep

at the root cause: one could simply change theret instruction to
use the return address observed on the reference trace, but that
would not be effective. Besides affecting the return address, the
timing difference is also used to select the location and size of a
code region to decrypt by XORing each byte with 16. If this de-
cryption is not modified as well, the jump to the correct location
might find still-encrypted code and fail.

DSM and Verification: The DSMs our tool generates for all three
timing samples successfully correct all the divergences with the ref-
erence platform when applied in QEMU. We also verified that the
ameliorated samples displayed the expected malicious behaviors
by observing the Windows APIs and memory regions they execute.
After applying the DSMs, the sample tries to copy itself to a differ-
ent location in the file system and create a new process by executing
the copied executable image.

6.2 Category II: CPU Semantics Attacks
Because building a software implementation of an entire CPU

instruction set is a large task, emulators tend to contain bugs in
which a particular instruction is executed differently than it is by
real hardware. Malware samples can exploit such differences in a
CPU semantics attack. For our experiment we selected four sam-
ples demonstrating three different kinds of attack, and evaluate our
tool’s effectiveness against them.

6.2.1 Malformed Opcode

Attack Description: As an example of their system, the authors
of Ether [13] give a proof of concept code sample that uses a 16-
byte-long instruction to detect the presence of QEMU; we use the
source code provided in appendix A of their paper for our experi-
ment. An x86 instruction may be lengthened by redundant prefixes
(for instance, five uses of the repetition prefixrep are equivalent
to a single one), but the maximum legal length in 15 bytes. In the
execution on the real CPU, a violation of this rule should raise a
general protection fault exception (number 13), but QEMU fails
to enforce the limit. So, when the sample is executed in Ether, it
raises an exception; the exception handler prints a message “Not
QEMU!” and exits. Under QEMU, the non-exception execution
path which prints “QEMU Detected!” is taken.

Divergence Point: Our trace alignment tool finds the point after
the instruction at0x4013eb as the divergence point between the
traces. As Figure 5 shows, the reference platform executes an ex-
ception handler after this point, while QEMU proceeds with the
abnormally long instruction.

Root Cause: As described in Section 4.2, the DSM generation
algorithm treats the raising of an exception as if it were an output
of an instruction, and checks if it could be caused by an instruction
input difference. But there is no input difference in this case, so
the instruction that raises the interrupt itself must be the root cause.

...
77c50c93: pop %edx
77c50c94: ret

40920a: test %eax,%eax
40920c: je 0x409225
40920e: add $0x8,%esp
409211: call 0x409216
409216: pop %esi

...

...
77c50c93: pop %edx
77c50c94: ret

40920a: test %eax,%eax
40920c: je 0x409225
409225: lods (%esi),%eax
409226: dec %eax
409227: xor $0x1633523,%eax

...
Intel VT QEMU

Figure 6: Divergence point in Downloader-AFH

...
77c4cb2f: fnstcw (%esp)
77c4cb32: je 0x77c4cba1
77c4cb34: cmpw $0x27f,(%esp)
77c4cb3a: je 0x77c4cb41
77c4cb41: cmp $0x3ff00000,%eax
77c4cb46: jae 0x77c4cb73
77c4cb48: fld1
...

...
77c4cb2f: fnstcw (%esp)
77c4cb32: je 0x77c4cba1
77c4cb34: cmpw $0x27f,(%esp)
77c4cb3a: je 0x77c4cb41
77c4cb3c: call 0x77c50bd5
77c50bd5: mov 0x4(%esp),%edx
77c50bd9: and $0x300,%edx
...

Intel VT QEMU

Figure 7: Divergence point in msvcrt.dll (Downloader-AFH)

Based on the behavior of Ether, the DSM for this root cause is to
inject a general protection fault exception at0x4013f2.

DSM and Verification: Verifying the effectiveness of the gen-
erated DSM is straightforward for this sample, since we know its
intended behavior. When the we apply the DSM to QEMU, the
sample prints out “Not QEMU!” as expected.

6.2.2 FPU Register (Downloader-AFH)

Attack Description: Downloader-AFH differs from our other
samples in that it uses a Windows library function to detect an emu-
lated environment. After an unpacking step, it calls theasin (arc-
sine) function inmsvcrt.dll. The sample ignores the function
return value but instead checks the%eax register. The sample uses
the%eax value to calculate a memory location that it will modify
later in execution. For reasons we will discuss below underRoot
Cause, the value of%eax is0x27f under Ether, but0 under QEMU.

Divergence Point: As shown in Figure 6, the trace alignment
our tool produces in its default mode, which looks for a divergence
point in the malware sample’s code, finds a divergence at0x40920c

in Downloader-AFH. This is a conditional jump based on a test of
%eax after the return fromasin. If the value is non-zero, as under
Ether, it is later used in a local function; different code is executed
if the value is zero as under QEMU.

Root Cause: In its default mode, our DSM generation process
treats calls to standard libraries as atomic; the call itself can be a
root cause, but the algorithm will not look inside the called code
for a root cause instruction. This makes the analysis process more
efficient, and also makes the generated DSM more robust, since
system libraries can change between OS versions. In this mode,
the root cause search stops at the call toasin in this example: the
root cause is the value of%eax after the call.

We also repeated this experiment in a mode where our tool con-
sidered library routines to be in scope as possible divergence sites.
In this mode, the tool finds a divergence insidemsvcrt.dll and a
root cause at thefnstcw instruction at0x77c4cb2f, as shown in
Figure 7. The effect of thefnstcw instruction is to store a copy of
the FPU control word (a flags register) on the stack. Under Ether,
the value stored is0x27f, while under QEMU, it is0x23f; the
code later compares the value to0x27f. These values differ in just
a single bit,0x40, which is described as reserved in Intel’s doc-
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...
413a04: xor %edx,%edx
413a06: pushl %fs:(%edx)
413a09: mov %esp,%fs:(%edx)
413a0c: icebp

7c90eaec: mov 0x4(%esp),%ecx
7c90eaf0: mov (%esp),%ebx
7c90eaf3: push %ecx
...

...
413a04: xor %edx,%edx
413a06: pushl %fs:(%edx)
413a09: mov %esp,%fs:(%edx)
[the guest system halts.]

Intel VT QEMU

Figure 8: Divergence point in Proxy-Bypass

umentation; QEMU allows the bit to be zero, while on real hard-
ware it is always one. This behavior difference does not appear to
contradict the documentation, nor affect benign software, but this
anti-emulation check takes advantage of it.

DSM and Verification: Using our tool’s two modes, we generate
two DSMs, with and without libraries. Both DSMs prevent the
divergence, but the DSM generated for the malware binary only is
the one we recommend for most applications, because it is robust
to changes in library code. In fact, an upgrade to Windows XP
SP2, described in Section 6.4, prevents the in-library DSM from
applying but does not affect the default one.

When executed under an unmodified QEMU, the malware sam-
ple crashes shortly after callingasin. But when run with the DSM,
we used our QEMU-based analysis to observe a number of kinds
of suspicious behavior, including modifying the Windows registry,
and creating files and network connections.

6.2.3 Undocumented Opcode (Proxy-Bypass)

Attack Description: The Proxy-Bypass sample uses theicebp

(0xf1) instruction, an undocumented opcode in x86 CPUs. The
icebp instruction was once used together for hardware-level de-
bugging, but on modern CPUs it simply raises an interrupt with the
vector of0x1. An unmodified version of QEMU uses the instruc-
tion for purposes of debugging QEMU itself, such as providing a
point to attachgdb, but in production use the effect is to cause the
entire emulator to hang. These malware samples trap the interrupt
thrown by real hardware; code in the exception handler then trig-
gers another obfuscated control-flow transfer.

Divergence Point: Figure 8 shows the divergence point our tool
finds, which comes at the point where the QEMU trace is cut off by
the emulator hang. Under Ether, by contrast, execution continues
with an exception handler after theicebp instruction.

Root Cause: Similarly to the earlier malformed opcode example,
our DSM generation algorithm here finds an exception thrown in
the reference trace by an instruction that has no inputs, so the root
cause search terminates immediately.

DSM and Verification: The DSM generation procedure produces
a DSM that injects an interrupt with the vector of 0x1 at instruction
0x413a0c. However, this DSM is not sufficient. On two subse-
quent iterations, our tool finds two more occurrences oficebp at
other locations, which it ameliorates in the same way. On four
iterations, our tool finds another four divergence points involving
single-step exceptions (number 1) at four different instructions in a
single basic block. We have not been able to determine why these
exceptions are thrown, but our tool generates the proper DSMs.

After applying the final DSM based on all seven iterations, we
can observe several kinds of suspicious behavior from the malware
sample. It tries to copy itself to several locations under the Win-
dowssystem32 folder, and it modifies a Windows Registry key to
make itself automatically executed at every system start-up.

Original Changed
Environment Environment

Memory 512MB 256MB
File Path Desktop folder Windows/system32

OS Version Windows XP Windows XP SP2
User Privilege Administrator Limited User

Locale USA Russia

Table 3: Changes in the execution environment for robustness
evaluation (Section 6.4)

6.3 Performance
We also evaluate the efficiency of our techniques by measur-

ing the time taken to find divergence points and generate DSMs
from them. As shown in Table 2, both steps are quick for most of
the samples, though there is significant variation between samples.
Most of the cost of diagnosis is due to the alignment algorithm. The
most sophisticated sample, Proxy-Bypass, requires 7 iterations to
fix all its attacks, and some occur deep in execution making align-
ment and slicing more expensive. The shorter sizes of the QEMU
traces are caused by the samples crashing or terminating because of
anti-emulation checks. By contrast, malware authors often intend
their programs to run forever on a vulnerable host, so we terminated
the Ether traces after 500MB. Our QEMU implementation writes
traces at 6.75MB/sec, while Ether averages 2.72MB/sec.

6.4 Robustness
To evaluate the robustness of our DSMs, we created a different

execution environment in QEMU by changing configuration op-
tions and the OS version (see Table 3 for details). By comparing
these executions to the original ones, we check both whether the
DSM is still effective when the sample runs in a modified environ-
ment, and whether the malware sample itself runs differently when
the environment is different.

For each malware sample, we verified that it still behaved ma-
liciously in the changed environment, even though the DSM used
was the one generated using the original environment. This sat-
isfies our criterion for robustness: a DSM generated using a sin-
gle configuration can be reused in others. For 5 of the 6 samples,
the malware executed exactly the same code with the DSM in the
changed emulated environment as it did with the DSM in the orig-
inal emulated environment. Thus for these samples, the environ-
ment change did not affect either the malware sample or the DSM.
For the remaining sample, Proxy-Bypass, the environment change
caused the malware sample to behave differently, but the DSM was
still effective: it did not hang as it did on the original emulator. By
examining the sample’s Windows API calls, we confirm that it still
behaves maliciously (for instance, making similar accesses to the
file system and Registry), but some of the behavior is thwarted by
having fewer privileges. For instance, it fails in an attempt to copy
itself to a certain directory and then execute that copy.

7. RELATED WORK
Platforms providing isolation and instrumentation are key to mal-

ware analysis, and whole-system emulators are particularly use-
ful. Many analysis tools have been built using open-source emu-
lators including QEMU [29] ([3, 23, 37]) and Bochs [5] ([6, 11]).
Automatic support for ameliorating anti-emulation attacks would
be particularly valuable in fully automated online malware anal-
ysis services [12, 27], several of which are based on QEMU [2,
4], because a skilled analyst may not be available to disable anti-
emulation code manually.

On the other side, there has been significant research on weak-
nesses in virtual platforms that allow them to be detected. Emu-
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Sample Label Trace Size (file / instructions) Time Taken (sec)
Ether QEMU Divergence Diagnosis DSM Generation

W32/Sdbot.worm(1) 500MB/11923410 12KB/168 24.56 0.32
W32/Sdbot.worm(2) 500MB/11848928 24KB/344 30.89 0.33

Generic.dv 500MB/11945744 22KB/312 31.49 1.27
multirep 2.1MB/36179 1.5MB/26419 0.23 0.95

Downloader-AFH 500MB/8386352 206MB/3444232 32.82 3.12
Proxy-Bypass 335MB/6732837 3.4MB/58370 14.22 + 11.27 + 296 + 297 1.85 + 3.15 + 2.86 + 2.87

+ 293 + 309 + 21.23 + 3.11 + 16.82 + 69.83

Table 2: Performance results

lators are generally more difficult to detect than high-performance
VMs like VMWare [16], but Raffetseder et al. [30] propose a vari-
ety of attacks effective against emulators. Ormandy [28] discovers
a number of implementation flaws that make popular emulators and
virtual machines vulnerable to detection, denial of service, and in a
few cases even code injection. By using large scale automated test-
ing, the EmuFuzzer project [24] finds behavior differences between
QEMU and a Pentium 4 that affect over 400 instructions. Another
line of research looks at the even more difficult challenge of iden-
tifying a virtual environment on a remote machine [15, 20], which
is beyond our scope.

There has been comparatively less work on defense techniques
like ours. Chen et al. [10] measure that more than 40% of mal-
ware samples exhibit different behavior in the presence of a de-
bugger or virtual environment. They propose harnessing this by
making production systems mimic the presence of a debugger or
virtual machine, the opposite deception to what we investigate.
VMWatcher [18] explores the use of a virtual machine for malware
defense, but focuses more on detection (as in a production environ-
ment) than analysis, so VM-aware malware is a less acute prob-
lem. Sun et al. [35] disable some common anti-VMware checks
by syntactic instruction matching in a debugger. Ether [13] is a
novel analysis framework with transparency as its main goal, us-
ing hardware-based virtualization [17, 1] which is very effective
against CPU semantics attacks. Our research shows how to transfer
the state-of-the-art transparency of a specialized system like Ether
to a general-purpose emulator with more support for detailed anal-
ysis. Our approach also generalizes to other reference platforms
that could address other transparency issues, such as detailed tim-
ing attacks or queries of hardware characteristics [16].

Some research efforts have been made to automatically explore
multiple execution paths, in order to unveil malicious behaviors
that are only activated under certain conditions [25, 8]. These ap-
proaches mark certain inputs (such as system time, filesystem in-
puts and network inputs) as symbolic and perform symbolic execu-
tion to extract a path predicate for the current execution. With help
of a theorem prover, they can discover other feasible paths. The
difficulty of applying this technique to our problem is that there are
many values that could be changed. For the case of CPU semantics
attacks, it would not even be clear what values to mark as symbolic.

Similar issues of transparency occur, but with the roles of at-
tacker and defender reversed, in malware approaches that use a vir-
tual machine to produce an undetectable rootkit [21]. This use of
whole-system virtual machines should also not be confused with
more specialized virtual machines which are used by malware au-
thors for obfuscation [32].

8. CONCLUSION
Anti-emulation behavior in malware is a serious practical prob-

lem that frustrates the analysis needed for effective malware de-

fense. We have presented an automated approach to emulation in
the face of anti-emulation attacks, based on a dynamic state modi-
fication to the execution of a whole-system emulator that keeps an
attack from distinguishing it from a real system. The techniques
that make this approach possible are a scalable trace matching al-
gorithm that locates a control divergence, and a DSM-building al-
gorithm that finds the root cause of that divergence and a small state
change that corrects it. We have built a practical implementation of
this technique into an emulator used for automatic malware anal-
ysis, and applied it to 5 samples of malware collected in the wild
and 1 attack that has not yet been exploited. Our tool automatically
corrected all of the emulation failures, with robust DSMs, allowing
an automated analysis to reveal the malware’s malicious activities.
These results show that automated diagnosis and state modification
are powerful tools for understanding and controlling software; we
expect they will also see application in other contexts like software
engineering and troubleshooting system misconfigurations.
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APPENDIX

A. DISCUSSION, COUNTERMEASURES
In this section we discuss some further characteristics of our ap-

proach, including some potential countermeasures malware authors
might take against the techniques we introduce.

Virtual execution for malware analysis. Some kind of virtual
execution, such as a debugger, virtual machine, or emulator, is
indispensable for malware analysis, but approaches for observing
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malware execution differ in their performance overhead, the ease
of building analysis tools using them, and their transparency. In
this work we build on the approach emulation via of software-level
binary translation, since it already represents an attractive trade-
off. An emulation-based system resists most anti-debugging tech-
niques, as well as anti-VM techniques based on incomplete virtu-
alization [31]. Systems that perform binary translation also make
it relatively easy to build sophisticated dynamic execution analy-
sis tools, since they support code rewriting and have a model of
instruction semantics.

Changing non-attack data. Our system attempts to only change
those aspects of the program’s environment that are used in an anti-
emulation attack, but if there are other environmental differences
that lead to code coverage differences, our approach may “amelio-
rate” them unnecessarily, leading to a less robust DSM. We have
not observed this to be a problem in practice, but if it became one,
several approaches could help.

First, if an analyst anticipates wanting to modify an environment
aspect on later emulation runs, the analyst can set that aspect equal
to the value it has on the reference platform when generating the
DSM. Second, we could extend our DSM creation approach with a
new post-processing step that, given a DSM that prevents attacks,
simplifies it by removing changes whose removal does not affect
its attack-prevention ability.

Attacks for which there is no reference platform. Our technique
depends on the existence of suitable reference platform on which
the malware behaves correctly. If an attack exists for which no pos-
sible reference platform shows the correct behavior, our technique
would not be applicable. We are not aware of any such attacks, but
there are attacks for which the reference platform our implementa-
tion currently uses is unsuitable.

For instance, one such attack involves the string store instruction
rep stos, which happens to be executed incorrectly (stopping too
soon) by both QEMU and our reference platform when it is used to
overwrite its own instruction bytes. But our technique would apply
to the attack if given a trace from an accurate reference platform
(such as an emulator without this bug, like Bochs [5]).

Too many divergence points. Though our approach uses itera-
tion to correct multiple anti-emulation attacks in a single execution,
each iteration is relatively expensive. Therefore, a malware author
could frustrate the use of our tool by introducing a very large num-
ber of divergence points. To make this countermeasure more diffi-
cult, our tool could attempt to correct all the attacks of a particular
kind in a single iteration.

Obfuscating data flow. Malware authors could interfere with our
diagnosis and slicing algorithms by obscuring the data flow be-
tween root causes and branches. Some potential techniques include
mixing environment observations with with other inputs (e.g., with
XOR), or using code constructs that are difficult for a slicer to ana-
lyze. In particular, if our technique cannot locate the root cause of
a difference, its changes to intermediate states become more vul-
nerable to consistency checks.

Interleaving detection with primary behavior. Our approach is
most valuable if one DSM, based on a single reference platform ex-
ecution, is sufficient for all malware executions an analyst performs
under differing environmental conditions to test different malware
behavior. A malware author could make the DSMs produced by
our tool less robust by adding more emulation-detection code that
ran interleaved and interdependent with other input dependent ma-
licious behavior, so that a DSM could not be reused on other exe-
cutions that performed different malicious behavior.

Cover failure code in the non-failure case.Our approach for find-
ing the point of control-flow divergence is based on the heuristic as-
sumption that the code that executes after an emulation failure has
been discovered is code that does not execute when the malware
runs on the reference platform. Malware could interfere with this
heuristic by executing the same failure-case code before the detec-
tion point (with some other state difference so that it does not affect
behavior). This would allow the malware to postpone the detection
point as late as the final termination of the program in the emulation
case, which would make backwards slicing more difficult.

Nondeterminism and state. Our approach depends on the as-
sumption that the environment of a malware sample can be com-
pletely controlled, so that it behaves the same way on each execu-
tion. If a malware sample had access to a source of randomness
or a way to store information outside our tool’s control, it could
behave differently on each execution such that a DSM generated
from one run could never apply to another. Our whole-system em-
ulator provides almost complete control for software running on a
single computer, since it can rewrite any instruction and virtualizes
all hardware. But achieving such control could be more difficult in
other situations, such as when a reference platform uses real hard-
ware, or if a malware sample communicates over the Internet to a
server outside our control.
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