Fact-based question
decomposition in DeepQA

Factoid questions often contain more than one fact or assertion
about their answers. Question-answering (QA) systems, however,
typically do not use such fine-grained distinctions because of the
need for deep understanding of the question in order to identify and
separate the facts. We argue that decomposing complex factoid
questions is beneficial to QA systems, because the more facts that
support an answer candidate, the more likely it is to be the correct
answer. We broadly categorize decomposable questions into two
types: parallel and nested. Parallel decomposable questions contain
subquestions that can be evaluated independent of each other. Nested
questions require decompositions to be processed in sequence,

with the answer to an “inner” subquestion plugged into an

“outer” subquestion. In this paper, we present a novel question
decomposition framework capable of handling both decomposition
types, built on top of the base IBM Watson™ QA system for
Jeopardy!™. The framework contains a suite of decomposition rules
that use predominantly lexico-syntactic features to identify facts
within complex questions. It also contains a question-rewriting
component and a candidate re-ranker, which uses machine learning
and heuristic selection strategies to generate a final ranked answer
list, taking into account answer confidences from the base QA
system. We apply our decomposition framework to the particularly
challenging domain of Final Jeopardy! questions, which are found

A. Kalyanpur
S. Patwardhan
B. K. Boguraev

A. Lally

J. Chu-Carroll

to be difficult even for qualified Jeopardy! players, and we show
a statistically significant improvement in the performance of our

baseline QA system.

Introduction

A “single-shot” approach to answering questions assumes that
the information given in a question can be found in close
proximity to the correct answer in some document. This

is typically true of Text REtrieval Conference (TREC)
questions, which tend to exploit a single fact about the
answer, e.g., “What is the capital of France?” and “How did
Bob Marley die?” Because most question-answering (QA)
systems are evaluated on TREC-QA' data, they tend to reflect
this assumption and thus conform to the single-shot tactic.

'TREC-QA task: available at http:/trec.nist.gov/data/qa.html.

Digital Object Identifier: 10.1147/JRD.2012.2188934

Our Jeopardy!** data set, on the other hand, contains many
questions in which multiple facts related to the correct answer
are given, as shown in the following example:

(1) This company with origins dating back to 1876
became the first U.S. company to have 1 million
stockholders in 1951.

The above question contains two facts, i.e., “a company
with origins dating back to 1876 and “a company that became
the first U.S. company to have 1 million stockholders in
1951”. Although the single-shot approach can apply to such
multifact questions, we believe that it is more effective to use
the individual facts because each may be justified and
answered by a different source of evidence. Our hypothesis is
that the more independent facts support an answer candidate,
the more likely it is to be the correct answer.

©Copyright 2012 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of royalty provided that (1) each reproduction is done without
alteration and (2) the Journal reference and IBM copyright notice are included on the first page. The title and abstract, but no other portions, of this paper may be copied by any means or distributed
royalty free without further permission by computer-based and other information-service systems. Permission to republish any other portion of this paper must be obtained from the Editor.

0018-8646/12/$5.00 © 2012 IBM

IBM J. RES. & DEV. VOL. 56 NO. 3/4 PAPER 13 MAY/JULY 2012

A.KALYANPUR ET AL. 13:1

References to “fact” above appeal to any entity-relationship
expression, where the relation is an n-ary predicate. Note
that this generalizes the definition of tertiary expressions [1],
which can encode triples (e.g., “He served as governor”)
but not facts with relations involving more than two
arguments (e.g., “For most of World War II, he served as
governor of the Bahamas™).

On the basis of this notion of fact, we focus on two types
of decomposable questions:

e Parallel decomposable questions contain mutually
independent facts about the correct answer. Example (1)
is parallel decomposable because its subquestions
corresponding to the two facts identified above can be
evaluated independently of each other; example (2)
below also belongs to this category.

e Nested decomposable questions contain an independent
fact about an entity related to the correct answer and
a separate fact that links that entity to the correct answer.
Solving these questions involves decompositions to be
processed in sequence, with the answer to an “inner”
subquestion plugged into the “outer,” such as in
example (3), where the inner fact “A controversial 1979
war film” can be solved first and its answer (“Apocalypse
Now?”) substituted in the outer.

(2) FOOD & DRINK HISTORY: Its original name
meant “bitter water” and it was made palatable to
Europeans after the Spaniards added sugar.

(3) WAR MOVIES: A controversial 1979 war film
was based on a 1902 work by this author.

As a source of decomposable questions, we look at Final
Jeopardy! questions. They are more complex than regular
Jeopardy! questions and consequently more difficult to
answer. Even qualified Jeopardy! players find Final Jeopardy!
difficult: Analysis of historical (human) performance data
shows that their accuracy over Final Jeopardy! questions is
less than 50%. The complexity of these questions can be
ascribed to a common characteristic they share; namely, the
set of facts collectively describing the answer is such that a
search query constructed from all of them, taken together
without logical decomposition, is likely to get “flooded” by
noise and not find meaningful answer-bearing passages. This
is because Final Jeopardy! questions often describe widely
diverse aspects of the answer, tending to require a solution
strategy that must address these separately, as opposed to the
more traditional “single-shot” approach. In many cases, this
separation and subsequent composition of recursively derived
subanswers is what we intend to solve by question
decomposition. Given the complexity of Final Jeopardy!
questions, demonstrating impact on the Final Jeopardy!
question set is a challenge.

13:2 A KALYANPUR ET AL.

Complex factoid questions are not specific to Jeopardy!
and can be found in other application domains such as
medical, legal, and so forth. For instance, examples (4) and
(5) illustrate parallel and nested decomposable questions
outside of the Jeopardy! domain.

(4) Which 2011 tax form do I fill if I need to do
itemized deductions and I have an IRA rollover

from 2010?

(5) Which surgical procedure is required to deal with an
aortic condition associated with bicuspid aortic valves?

In the remainder of this paper, we discuss strategies for
solving these types of “complex” questions and present
a novel decomposition approach developed for DeepQA.
We demonstrate how it enhances the IBM Watson* system
for answering Final Jeopardy! questions.

Question decomposition and synthesis
framework
Regardless of whether parallel or nested, decomposable
questions require orchestrated solving of subquestions
identified therein, followed by appropriate use of multiple
candidate answer lists to derive the correct answer, with
increased confidence, as all evidence has been taken into
consideration. Each question subpart (aligned with a fact)
constitutes a new question that the system must answer
before answering the original question. Consequently, we
adopt a “meta” framework for answering decomposable
questions, one in which an existing QA system is invoked
to answer the subparts of the original question, as shown
in Figure 1.

The key components of the framework are as follows:

a) Decomposition recognizers, which analyze the input
question and identify decomposable parts using a
set of predominantly lexico-syntactic cues.

b) Question rewriters, which rewrite the subquestions
(facts) found by the recognizer, inserting key contextual
information.

¢) Underlying QA system (configured without
decomposition), which, given a factoid question,
generates a ranked list of answer candidates, each with
a confidence corresponding to the probability of the
answer being correct. In our work, we use the Watson
system, although in general, any QA system can be
plugged into our meta-framework, as long as it satisfies
two basic properties: 1) ability to solve factoid questions
by providing answers with confidences that reflect
correctness probability; and 2) separation of context (or
theme or topic) information of the question from its main
content by weighing the former less than the latter.

In the Jeopardy! data, such information is contained in
explicit question categories.

IBM J. RES. & DEV. VOL. 56 NO. 3/4 PAPER 13 MAY/JULY 2012

Question

Parallel
decomposition
_ recognizer)

Nested
decomposition
__recognizer)

~

\
Parallel

decomposition
rewriter

Nested
decomposition
rewriter

N

v

DeepQA system configured
without decomposition

v

NN

v

Ranked
candidates

Ranked
candidates

Ranked
candidates

y

I

Candidate Re-ranker

J

Final
answer list

DeepQA system configured for question decomposition. (Used, with permission, from A. Kalyanpur, S. Patwardhan, B. Boguraev, A. Lally, and
J. Chu-Carroll, “Fact-based question decomposition for candidate answer re-ranking,” in the 20th ACM Conference on Information and Knowledge
Management (CIKM) 2011 [poster], October 24-28, 2011, Glasgow, Scotland, UK. © 2011 ACM.)

d) Candidate re-rankers, which combine answers to the
original question considered as a whole with those
produced through decomposing the question to generate
a final ranked answer list. Our combination strategies
make use of candidate answer confidences and use
either a machine learning-based approach for parallel
decomposition or a heuristic selection strategy for nested
decomposition to do the final ranking.

The parallel decomposition components produce multiple
subquestions that are posed to the underlying QA system,
whereas the nested decomposition components generate
pairs of inner/outer questions that are submitted to the QA
system in sequence. Note the feedback loop in the nested
decomposition pipeline since the answer to the inner question
needs to be substituted in the outer.

Solving parallel decomposable questions

In this section, we describe our algorithm to solve parallel
decomposable questions. The algorithm has three main parts:
1) recognize the presence of independent subquestions using

IBM J. RES. & DEV. VOL. 56 NO. 3/4 PAPER 13 MAY/JULY 2012

syntax-based patterns; 2) rewrite subquestions to insert
context; and 3) synthesize answers from independent facts.

Recognizing independent subquestions

Identifying segments of a question that portray

independent facts about the correct answer is not trivial.
Independent facts about the correct answer can be “woven”
into a single complex question in a variety of ways. For
example, a modifier of the focus of the question’® may
describe a fact about the answer, or a fact may be embedded
within a subordinate clause in the question or even in an
attached prepositional phrase. On the basis of an analysis
of complex decomposable questions, we have identified
some syntactic cues that are reliable indicators for
decomposition. We then developed a set of patterns for
question decomposition that require fine-grained
lexico-syntactic information and are expressed over the

full predicate-argument structure (PAS) derived from a
syntactic parse of the question [2]. We identify three major

The focus is the text span in the question that acts as a placeholder for the answer, e.g., in the
question “This Asian country got its independence in 1898, the focus is “This Asian country”.

A.KALYANPUR ET AL. 13:3

types of patterns, targeting parallel configurations as
described below.

1. Independent subtrees—One strategy for identifying

potentially independent subquestions within a question is
to look for clauses that are likely to capture a separate
piece of information about the answer from the rest of
the question. Relative or subordinate clauses are examples
of such potentially independent subtrees and are typically
indicative of parallel decomposition, as shown in the
example below:

(6) FICTIONAL ANIMALS: The name of this
character, introduced in 1894, comes from the Hindi
for “bear”.

We use syntactic cues that indicate such clauses within
the PAS of the question to identify these parallel
decomposable questions. Labels of edges in the PAS that
connect such subtrees to the focus are generally good
indicators of a subquestion and are used to identify the
subtree as a decomposable fact. In example (6), the
patterns identify “this character, first introduced in 1894”
as a decomposed subquestion. Another syntactic cue
involves patterns using conjunctions as decomposition
points, as shown in example (2) mentioned earlier.

. Composable units—An alternate strategy for identifying
subquestions is to “compose” the fact by combining
elements from the question. In contrast to the previous
type of patterns where we try to find a portion of

the PAS that can be “broken off” as an independent
subquestion, the “composable units” patterns take
different parts of the PAS and combine them to form

a subquestion. For example, from question (7),

(7) THE CABINET: James Wilson of Iowa, who
headed this Department for 16 years, served longer
than any other cabinet officer,

we derive a subquestion “James Wilson of Towa headed
this Department” by composing the elements in subject,
verb, and object positions of the PAS, respectively.

. Segments with qualifiers—We employ a separate group
of patterns for cases where the modifier of the focus

is a relative qualifier, such as the first, only, and the
westernmost. In such cases, information from another
clause is usually required to “complete” the relative
qualifier. Without it, the statement or fact has incomplete
information (e.g., “the third man”) and needs a supporting
clause (e.g., “the third man ... to climb Mt. Everest”)
for the decomposition to make sense as a fact about the
correct answer. Because it occurs often enough in the
Jeopardy! data set, we have a separate category for such
patterns. To deal with these cases, we created patterns

13:4 A KALYANPUR ET AL.

Table 1 Parallel decomposition rule coverage.

Decomposition pattern Questions fired
category (total: 1,269)
Independent subtrees 724
Composable units 415
Segments with qualifiers 33

Total questions found parallel 598

that combine the characteristics of composable unit
patterns with the independent subtree patterns. We
“compose” the relative qualifier, the focus (along with
its modifiers), and the attached supporting clause subtree
to instantiate this type of pattern.

We defined rules to capture each of the patterns and applied
our parallel decomposition rules to a blind set of 1,269 Final
Jeopardy! questions to get an estimate of how often these
patterns occur in the data. Results are shown in Table 1. The
table also shows the total distinct questions found parallel
decomposable as multiple rules can fire on the same question.

We did not evaluate the precision and recall for the
parallel decomposition rules for three reasons:

e Manually creating a standard of parallel decomposable
questions with their subparts is laborious, particularly
because it requires judging whether facts are mutually
independent or not.

e Even with such a standard, it is difficult to measure
our rules by meaningfully comparing or aligning their
output with the decompositions in the standard.

e We use a machine learning model (described later) to
suitably combine and weigh the decomposition rules on
the basis of their performance on the training set, thus
implicitly taking into account their precision and recall
(e.g., precise rules get a higher weight in the model).

Rewriting subquestions

Decomposition rules described in the previous subsection are
applied in sequence to a given question to determine whether
it can be decomposed. For example, given the question:

(8) HISTORIC PEOPLE: The life story of this
man who died in 1801 was chronicled in an A&E
Biography DVD titled “Triumph and Treason”.

The system decomposes the question into two
subquestions:

Q1: This man who died in 1801.
Q2: The life story of this man was chronicled

IBM J. RES. & DEV. VOL. 56 NO. 3/4 PAPER 13 MAY/JULY 2012

in an A&E Biography DVD titled “Triumph and
Treason”.

Since this is a case of parallel decomposition, the goal is
to solve the original question Q by solving for subquestions Q1
and Q2 independently and combining evidence for the same
answer from the subquestions as reinforcement. In the case of
nested decomposition, we would first solve the inner
subquestion and substitute its answer into the outer subquestion
to arrive at the final answer to the original question.

After identifying the subquestions, the naive approach
would be to submit them as they are to the QA system.
However, we note that there are several problems with
this approach. The subquestions are often much shorter
than the original question and, in many cases, no longer
have a unique answer. Moreover, the complement of the
subquestion in the original question may be a relevant
contextual cue for identifying the correct answer. In
the example above, Q1 suffers from this problem; it
no longer has a unique answer, and in this case, the
system does not produce the correct answer in the candidate
answer list for Q1 because of the lack of contextual
information.

To resolve this issue, we insert contextual information into
the subquestions. We do this in two steps. First, given a
subquestion Q;, we obtain the set of all temporal expressions
(times and dates) and named entities (identified by our named
entity recognizer) in the original question text that are
not present in Q;. We then insert these keywords into the
category or topic of the original question and use this
modified category for the subquestion Q; when querying
the QA system.

The rationale for this approach is the following: When
our QA system receives a category or question pair, it
treats information in the category differently than that in
the question. The category provides the theme (or context)
for the question, with keywords in the category
sometimes becoming query terms when searching the
corpus. In addition, when evaluating supporting evidence
for a candidate answer, several answer scorers produce
separate match scores for the category and the question.

As a result, the machine learning model used to determine
the rank and confidence of candidate answers in the base
system weighs information in the category differently
(typically less) than that in the question. Our rewriting
approach takes advantage of this differential weighting

of information to ensure that the larger context of

the original question is still taken into account when
evaluating a subquestion, although with less weight.

As a result, the following two contextualized subquestions
are generated for our example:

Q1: HISTORY PEOPLE (A&E Biography DVD
“Triumph and Treason”): This man who died in 1801.

IBM J. RES. & DEV. VOL. 56 NO. 3/4 PAPER 13 MAY/JULY 2012

Q2: HISTORY PEOPLE (1801): The life story of
this man was chronicled in an A&E Biography DVD
titled “Triumph and Treason”.

Note that when inserting context keywords into the
category, we add them in parentheses at the end. This is
to ensure a clear separation between the original category
and the bag-of-words context added to it, as most parsers
typically treat parenthesized phrases as separate clauses.
This also ensures that analytics, which may rely on
information in the category—such as answer type
detection—are not affected by this modification.

Synthesizing answers from multiple subquestions
In the case of parallel decomposition, once the system has
decomposed a question into multiple subquestions, the
underlying (base) QA system is deployed to produce a
ranked answer list for each subquestion. These answer lists
must be combined and ranked to come up with a final
ranking to the original question.

One simple way to produce a final score for each candidate
answer is to apply the independence assumption and
take the product of the scores returned by the base QA
system for each subquestion. A key shortcoming to
this approach is that our subquestions are not truly
independent because of the contextualization procedure
adopted by our question rewriters. Furthermore, the
subquestions are generated by decomposition rules that
have varying precision and recall and, therefore, should
not be equally weighed. Finally, since our decomposition
rules tend to overgenerate, in some cases, the answer
to the original question considered as a whole is our preferred
answer. For these reasons, we use a machine learning
model to combine information across original and
subquestion answer scores using features to capture the
above information.

The model is trained over the following features:

e A binary feature signaling whether the candidate was a
top answer to the nondecomposed (original) question.

e Confidence for the candidate answer to the
nondecomposed question.

e Number of subquestions that have the candidate answer
in the top 10.

e Features corresponding to the patterns used in parallel
decomposition, with each feature taking a numeric
value equal to the confidence of the base QA system
on a fact identified by the corresponding pattern.

In case the candidate answer is not returned in the answer
list of the original question or any of the decomposed
subquestions, the corresponding feature value is set to
missing. In addition, if a particular rule produces more than
one subquestion, we set the corresponding rule feature value

A.KALYANPUR ET AL. 13:5

Table 2 Evaluating parallel decomposition.

0A system No. of correct answers Accuracy on decomposable
(end-to-end accuracy) questions
Baseline 635 (50.05%) 339 (56.68%)
Parallel decomposition without 634 (49.96%) 338 (56.52%)
question rewriting (using ML)
Parallel decomposition with 638 (50.27%) 342 (57.19%)

question rewriting (using
heuristic re-ranking)
Parallel decomposition with

question rewriting (using ML
re-ranking)

643 (50.66%)

347 (58.02%)

for the candidate answer to the sum of the confidences
obtained for that answer across all the subquestions. For the
machine learning algorithm, we use the Weka [3]
implementation of logistic regression with instance
weighting.

Evaluating parallel decomposition

Evaluation data

Our data set is a collection of Final Jeopardy!
question—answer pairs obtained from the J! Archive
website (http://www.j-archive.com/). This gives us ground
truth for both training a system and evaluating its
performance. We split our set of roughly 3,000 Final
Jeopardy! questions into a training set of 1,138 questions, a
development set of 517 questions, and a blind test set of
1,269 questions.

Experiments

The decomposition rules were defined and tuned during the
development. The final re-ranking model was trained on the
training set using the features described in the previous
subsection. The model was trained using logistic regression
with instance weighting, where positive instances are
weighed four times that of negative instances to address

the significant imbalance of instances in the two classes. The
results of applying the parallel decomposition rules followed
by the re-ranking model to the 1,269 blind test questions
are shown in the last row of Table 2. The baseline is the
performance of the underlying QA (Watson) system used in
our meta-framework without the decomposition components
or analysis.

We further evaluate the importance of the
contextualization aspect of our question rewriting
technique. For this purpose, we altered our algorithm to
issue the subquestion text as is, using the original category,
and retrained and evaluated the resultant model again on
our test set. Results are in the second row of Table 2.

13:6 A KALYANPUR ET AL.

Finally, we also wanted to compare our machine
learning-based re-ranking model with a simple heuristic
strategy that re-ranks answers based on a new final score
computed as the sum of the confidences for the answer
across all subquestions, including the original answer
confidence for the entire question. Results are in the third
row of Table 2.

Discussion of results

Table 2 shows the end-to-end accuracy of the baseline system
against different configurations of the parallel decomposition
answering extension over two sets of questions, i.e., the
entire blind test set (1,269 questions) and a subset of this
identified as parallel decomposable by our patterns (598 out
of 1,269 questions, i.e., 47%). Interestingly, the performance
of the baseline QA system on the parallel decomposable
subset was 56.6%, 6% higher than the performance on all
test questions. This is because questions in the parallel
decomposable class typically contain more than one fact or
constraint that the answer must satisfy, and even without
decomposition, the system can exploit this redundancy in
some cases such as when one fact is strongly associated with
the correct answer and there is evidence supporting this in
the sources.

Our results also show that without rewriting the
questions to include contextual information in the category
for subquestions, the system performance did not improve
much over the baseline. On the other hand, using rewriting
to insert context, the parallel decomposition algorithm
using a simple heuristic re-ranking approach started to
show some gains over the baseline. Finally, the best result
was obtained using a machine learning-based re-ranker with
question rewriting, where the system gained 1.4% in
accuracy (with 10 gains and 2 losses) on the decomposable
question set, which translated to an end-to-end gain of 0.6%.
This gain was statistically significant, with significance
assessed for p < .05 using McNemar’s test [4] with Yates’
correction for continuity.

IBM J. RES. & DEV. VOL. 56 NO. 3/4 PAPER 13 MAY/JULY 2012

Solving nested decomposable questions
Currently, we use a single general-purpose detection rule to
identify inner and outer subquestions. We solve the inner
subquestion first to find a “missing link” answer and insert it
into the outer question (based on its confidence) to obtain a
new answer, which is compared with the original answer

to determine the final ranking.

Detecting nested subquestions

Our rule for detecting inner subquestions looks for noun
phrases with leading determiners in the parse of the question.
For example, in the question below, noun phrases with
leading determiners have been underlined.

(9) TELEVISION: In a 1983 movie about a
kidnapping, Daniel J. Travanti played the man who
would later host this series.

Our motivation for this heuristic is that, typically, noun
phrases of this type refer to some named entity, knowing
which may help us find the answer to the entire question. In
the above case, the phrase “1983 movie” refers to the movie
“Adam”, whereas the “the man” refers to John Walsh. We
refer to such entities as “missing links”, i.e., unseen entities
strongly associated with both the correct answer and entities
in the question. In [5], a technique is described to identify
missing links on the basis of their semantic association with
concepts in the question. In this paper, we adopt a different
strategy for bridging across missing links on the basis of
question decomposition.

Note that the rule described above to detect inner facts
does not cover all types of nested questions. For example,
it does not detect the nested fact (underlined) in the following
question:

(10) SCIENTISTS: When Einstein won the Nobel
Prize in Physics, he was a naturalized citizen of this
country.

Nevertheless, the current heuristic has fairly good
coverage: In the 1,269 Final Jeopardy! questions that
we tested, it fired on 727 questions with precision close
to 90% (based on a manual evaluation of a random
sample; unlike the parallel decomposition case, measuring
precision of this rule is simpler by virtue of the algorithm,
which seeks simple noun phrases with a specific shape).
We are currently working on adding general-purpose
nested decomposition patterns/rules (along the same lines as
described for parallel decomposition) to capture inner facts
such as in question (10).

Rewriting inner subquestions

Having found missing link noun phrases, the next step in our
algorithm is to rewrite the original question, making each

IBM J. RES. & DEV. VOL. 56 NO. 3/4 PAPER 13 MAY/JULY 2012

such noun phrase the new focus. For example, considering
the noun phrase “a 1983 movie”, we would rewrite the
original question (9) as follows:

Rewritten clue: In this 1983 movie about a
kidnapping, Daniel J. Travanti played the man
who would later host a series.

We follow this simple rewriting approach for all the nested
subquestions and create a set of new questions, each of
which explicitly asks about a missing link. The notion is
to issue these questions to the entire QA system (treated as
a black box) in order to find the missing links. This rewriting
approach is different from that followed for parallel
decomposition where the subquestions (facts) need to be
independently verified. In the nested case, there exists strong
dependence between the inner and outer subquestions (and
issuing the missing link noun phrase by itself is not a
meaningful inner question).

One key property of our underlying QA system that we
exploit here is its ability to return reliable confidences for its
answers. This allows us to be more flexible and recall
oriented in our strategy that searches for phrases implying
missing links by considering any noun phrase with a leading
determiner, since if the phrase does not actually refer to some
named entity, it is very unlikely that our QA system will
come back with an answer with high confidence for the
rewritten question.

Considering example (9) above and the problematic phrase
“a kidnapping”, which does not actually refer to a named
entity, rewriting the question along the lines mentioned
produces the following:

Rewritten Clue: In a 1983 movie about this
kidnapping, Daniel J. Travanti played the man who
would later host a series.

When our QA system is asked this question, it returns
“children” as its top answer with a confidence of 0.1, which
makes sense given that the answer type “kidnapping” is not
a meaningful one, and most of the type coercion answer
scores [6] fail to recognize any candidate answer being of
this type. Thus, we use the confidence of the system in its
answer for the rewritten question to determine whether it has
found a meaningful missing link or not.

Performance optimization

As example (9) illustrates, we may detect several nested facts
from a single question, which translates to a set of new
questions to ask the QA system. This may be an issue when
playing Jeopardy! because of the extremely tight time
constraints. To deal with this, we need some way to rank the
new questions and issue only the top N questions in the time
permitted.

A.KALYANPUR ET AL. 13:7

Table 3 Evaluating nested decomposition.

QA system No. of correct answers Accuracy on
(end-to-end accuracy) decomposable questions
Baseline 635 (50.05%) 345 (47.45%)

Nested decomposition with
heuristic re-ranker

645 (50.82%)

355 (48.83%)

Note that when we detect a missing link noun phrase and
transform the question to make this phrase the new focus,
the lexical answer type (LAT) for this rewritten question is
the headword of the noun phrase. In the example above,
the LATs for each of the new questions are “movie”, “man”,
and “kidnapping”, respectively. Prior frequency information
for LATs along with type instance coverage can be used to
rank the new questions: LATs that are more frequently asked
about (based on a history of prior questions) such as “movie”
or “man” are probably more likely to refer to a missing link
named entity than a LAT such as “kidnapping”. Similarly,
LATs such as “movie” and “man” appear more frequently as
types (or classes) in ontologies and structured data sources
such as DBpedia (http://dbpedia.org) than a LAT such as
“kidnapping” and are thus more likely to form meaningful
questions. Using this type-likelihood information, we are
able to rank the missing link-detection questions and can
issue as many questions as time permits.

Plugging nested-fact answers in the outer question
Having issued a nested subquestion to the QA system and
obtained a missing link candidate answer, the next step is
to substitute the missing link into the original question and
query again for the correct answer. Inserting the missing link
candidate in place of the noun phrase that implied it is
relatively straightforward and is done using the parse of
the sentence so that the new question is still well formed.

In the earlier example, since our QA system correctly
returns the missing link “Adam” for the 1983 movie about
kidnapping, the final question with the missing link inserted
becomes

Final Outer Clue (with inner-answer added): In Adam,
Daniel J. Travanti played the man who would later
host this series.

Posing this question to our QA system returns the correct
answer “America’s Most Wanted” in the top position with a
confidence of 0.96 (quite high, as we have a 0—1 scale).

Heuristic re-ranking strategy

In general, we need a selection strategy to decide between
the answer obtained through nested missing link analysis and

13:8 A KALYANPUR ET AL.

the original answer obtained for the entire question. The
factors we take into account when making this decision are
system confidence for the missing link candidate (for the inner
question), confidence of the new answer obtained after
inserting a potential missing link into the original question,
and confidence of the original top answer for the entire question.
We make this decision using a simple and intuitive
heuristic selection strategy: We compute the final score for a
candidate answer as the product of the confidence for the
answer to the inner question and that for the answer to the
outer question. The rationale is based on the notion of
conditional probability, as the probability of producing the
correct answer by inserting the missing link is dependent on
the probability of the missing link itself being correct.
Comparing this score against the original top answer
confidence or score allows for selecting the answer with the
higher score as the final answer. In cases where we detect
multiple nested facts in the original question (as shown in
the earlier example) and generate multiple missing link
candidates, we follow the above approach for all the inner
facts and select the final answer with the highest overall score.

Evaluating nested decomposition

Experiment

We ran a similar evaluation for nested decomposable
questions, as done for parallel decomposition, using the same
evaluation data of 1,269 Final Jeopardy! questions (as a blind
test set) and compared the baseline (Watson) QA to the
heuristic re-ranking approach described above. The single
decomposition pattern (noun phrase with a leading
determiner) fired on more than half of the entire blind test
set (727 out of 1,269 questions, i.e., 57%). Results of the
experiment are presented in Table 3, which shows
end-to-end accuracy of the baseline over the test set and
over the nested decomposable—according to our nested
decomposable detection algorithm—subset of that. The table
further compares the baseline with the nested decomposition
answering extension described above.

Discussion of results

Here, the performance of the baseline QA system over the
nested decomposable subset was slightly worse than the

IBM J. RES. & DEV. VOL. 56 NO. 3/4 PAPER 13 MAY/JULY 2012

overall performance (and much lower than the parallel
decomposable cases). The likely explanation is that nested
questions require solving for an inner fact first, the answer
to which often provides necessary missing information to
find the correct answer; this dependence on sequencing
makes nested questions more difficult to solve than parallel
decomposable questions, which contain multiple independent
facts, and is in line with our hypothesis linking system
performance with the ability to find answers to subquestions
separately.

Our nested decomposition algorithm using the heuristic
re-ranking approach was able to achieve a gain of 1.4%
(with 13 gains and 3 losses, i.e., net of 10 gains) over the
baseline on the decomposable question set, which translated
to an end-to-end gain close to 0.8%. As in the case of
parallel decomposition, these gains are statistically
significant, with significance assessed for p < .05 using
McNemar’s test.

Joint impact of parallel and nested
decomposition

The overall impact of using both parallel and nested
decomposition was a 1.4% gain (23 gains and 5 losses)

on end-to-end system accuracy, which was also

statistically significant by McNemar’s test (with a two-tailed
p of .0013).

A key point to keep in mind when evaluating these results
is that our baseline Watson system represents the state of
the art in solving Jeopardy! questions. Furthermore, our
experiment data consists of Final Jeopardy! questions, which
are known to be more difficult than regular Jeopardy!
questions. On the basis of player performance statistics
obtained from J! Archive, we estimate qualified Jeopardy!
players’ accuracy to be 48% on Final Jeopardy!, whereas
the baseline Watson has an accuracy value close to 51% on
blind data. Hence, a gain of nearly 1.5% end to end on such
questions can be considered a strong improvement.

Related work

In work on decomposition to date, a question is typically
considered “complex”—and therefore decomposable—if it
requires nonfactoid answers, e.g., multiple sentences or
summaries of answers [7], connected paragraphs [8],
explanations and/or justification of an answer [1], lists [9]
or lists of sets [10], and so forth. The decomposition
approaches typically defer to discourse and/or semantic
properties of the question, additionally deploying complex
processes such as lexical adjustment [7], question refocusing
[1, 9], or deep temporal/spatial analysis [9, 11]. Largely,
decomposition work has been driven by the needs of
answering “beyond factoid” questions. In contrast, we
focus here on decomposition applied to improving the
quality of QA of a broad, i.e., open range, set of factoid
questions.

IBM J. RES. & DEV. VOL. 56 NO. 3/4 PAPER 13 MAY/JULY 2012

In the literature, we find descriptions of strategies such
as local decomposition and meronymy decomposition [9],
semantic decomposition using knowledge templates [1],
and fextual entailment [7] to connect, through semantics
and discourse, the original question with its numerous
decompositions. Without implementation details, we have
to assume that such notions of decomposition require
access to fairly well circumscribed domain models, not
an assumption we can make for an open-domain QA
application. Indeed, this is why we constrain our
decomposition algorithms to use only materials explicitly
present in the question.

Some of the decomposition work to date does also look
at factoid questions. The syntactic decomposition described
in [1] is motivated by the observation that for any given
question, there may be more than one “fact” (ternary
expression or relational triple) pertaining to the answer;
decomposition is particularly essential to the QA process
when facts from the same question are associated with
different knowledge resources so that different triples can
be routed to appropriate resources. Direct comparison of
syntactic decomposition rule sets is not possible, but it is
likely that there are both overlaps and divergences between
the rules deployed in [1] and the ones outlined in this paper;
it is worth noting, however, that [1] makes no distinction
between parallel and nested decomposition. The major
difference in the two approaches is our use of a machine
learning model to guide the final combination and ranking
of candidate answers returned to possibly multiple
decompositions into subquestions.

Another common trend in factoid question decomposition
is, in particular, temporal decomposition [9—11], where the
question is rephrased by plugging the value of a temporal
expression in place of the expression itself. For us, this
is a special case of nested decomposition. In any case,
such systems do not provide a general solution for
decomposition.

The closest similarity our fact-based decomposition has
with an established approach is with the notion of asking
additional questions in order to derive constraints on
candidate answers, developed by [12]. However, additional
questions are generated through knowledge of the domain.
As we emphasized earlier, since we cannot appeal to a
domain, we use the question context alone in generating
queryable constraints.

In the Jeopardy! data, there are questions other than
Final Jeopardy! that require and benefit from some kinds of
decomposition. Most prominently, these are categorized as
Definition questions and some kinds of Puzzle questions [13].
Decomposition in such kinds of special questions is more
predictable than in regular factoids and thus is more
systematically recognizable. At the same time, the special
nature of the questions suggests that solution strategies
need not follow the general approach we describe in

A.KALYANPUR ET AL. 13:9

this paper. Such specialized decomposition strategies are
described in [14].

Conclusion

In this paper, we have described a general-purpose question
decomposition framework that identifies both independent
and nested facts within complex questions. The framework
can extend any QA system that provides answers with
confidences for factoid questions and that considers the
context or topic of the question separate from its main content.
We demonstrated the effectiveness of this decomposition
framework by using our state-of-the-art factoid QA system,
Watson, and improving its end-to-end accuracy by nearly
1.5% on a blind test set of Final Jeopardy! questions and
found the gains to be statistically significant. We expect this
analysis to help in several real-world QA applications.

*Trademark, service mark, or registered trademark of International
Business Machines Corporation in the United States, other countries, or
both.

**Trademark, service mark, or registered trademark of Jeopardy
Productions, Inc., in the United States, other countries, or both.

References

1. B. Katz, G. Borchardt, and S. Felshin, “Syntactic and semantic
decomposition strategies for question answering from multiple
sources,” in Proc. AAAI Workshop on Inference in Textual
Question Answering, 2005, pp. 35-41.

2. M. C. McCord, J. W. Murdock, and B. K. Boguraev, “Deep
parsing in Watson,” IBM J. Res. & Dev., vol. 56, no. 3/4, Paper 3,
pp. 3:1-3:15, May/Jul. 2012.

3. L. Witten and E. Frank, Data Mining—Practical Machine
Learning Tools and Techniques with Java Implementations.

San Francisco, CA: Morgan Kaufmann, 2000.

4. Q. McNemar, “Note on the sampling error of the difference
between correlated proportions or percentages,” Psychometrika,
vol. 12, no. 2, pp. 153157, Jun. 1947.

5. J. Chu-Carroll, E. W. Brown, A. Lally, and J. W. Murdock,
“Identifying implicit relationships,” IBM J. Res. & Dev., vol. 56,
no. 3/4, Paper 12, pp. 12:1-12:10, May/Jul. 2012.

6. J. W. Murdock, A. Kalyanpur, C. Welty, J. Fan, D. A. Ferrucci,
D. C. Gondek, L. Zhang, and H. Kanayama, “Typing candidate
answers using type coercion,” /BM J. Res. & Dev., vol. 56, no. 3/4,
Paper 7, pp. 7:1-7:13, May/Jul. 2012.

7. F. Lacatusu, A. Hickl, and S. Harabagiu, “The impact of question
decomposition on the quality of answer summaries,” in Proc.
5th LREC, Genoa, Italy, 2006. [Online]. Available: http://www.
languagecomputer.com/papers/lacatusuEtA12006lrec.pdf

8. R. Soricut and E. Brill, “Automatic question answering: Beyond
the factoid,” in Main Proc. HLT-NAACL, 2004, pp. 57-64.
[Online]. Available: http://acl.ldc.upenn.edu/hlt-naacl2004/main/
pdf/104_Paper.pdf

9. S. Hartrumpf, “Semantic decomposition for question answering,”
in Proc. 18th ECAI, G. Malik, C. D. Spyropoulos, N. Fakotakis,
and N. Avouris, Eds., 2008, pp. 313-317.

10. C.J. Lin and R. R. Liu, “An analysis of multi-focus
questions,” in Proc. SIGIR Workshop Focused Retrieval, 2008,
pp. 30-36.

11. E. Saquete, P. Martinez Barco, R. Munoz, and J. Vicedo, “Splitting
complex temporal questions for question answering systems,” in
42nd Annu. Meeting ACL, 2004, p. 566.

12. J. Prager, J. Chu-Carroll, and K. Czuba, “Question answering
by constraint satisfaction: QA-by-dossier with constraints,” in
Proc. ACL, 2004, pp. 574-581.

13:10 A KALYANPUR ET AL.

13. A. Lally, J. M. Prager, M. C. McCord, B. K. Boguraev,
S. Patwardhan, J. Fan, P. Fodor, and J. Chu-Carroll, “Question
analysis: How Watson reads a clue,” IBM J. Res. & Dev., vol. 56,
no. 3/4, Paper 2, pp. 2:1-2:14, May/Jul. 2012.

14. J. M. Prager, E. W. Brown, and J. Chu-Carroll, “Special questions
and techniques,” IBM J. Res. & Dev., vol. 56, no. 3/4, Paper 11,
pp. 11:1-11:13, May/Jul. 2012.

Received July 18, 2011; accepted for publication
December 15, 2011

Aditya Kalyanpur [BM Research Division, Thomas J. Watson
Research Center, Yorktown Heights, NY 10598 USA (adityakal@us.
ibm.com). Dr. Kalyanpur is a Research Staff Member at the IBM T. J.
Watson Research Center. He received his Ph.D. degree in computer
science from the University of Maryland in 2006. His research interests
include knowledge representation and reasoning, natural-language
processing, statistical data mining, and machine learning. He joined
IBM in 2006 and worked on the Scalable Highly Expressive Reasoner
(SHER) project that scales ontology reasoning to very large and
expressive knowledge bases. Subsequently, he joined the algorithms
team on the DeepQA project and helped design the Watson
question-answering system. Dr. Kalyanpur has over 25 publications
in leading artificial intelligence journals and conferences and several
patents related to SHER and DeepQA. He has also chaired international
workshops and served on W3C Working Groups.

Siddharth Patwardhan IBM Research Division,

Thomas J. Watson Research Center, Yorktown Heights, NY 10598 USA
(siddharth@us.ibm.com). Dr. Patwardhan is a Post-Doctoral Researcher
in the Knowledge Structures Group at the T. J. Watson Research
Center. He received a B.E. degree in computer engineering from

the University of Pune in 2001, an M.S. degree in computer science
from the University of Minnesota in 2003, and a Ph.D. degree in
computer science from the University of Utah in 2010. He has been
working at the IBM T. J. Watson Research Center since 2009,
exploring research projects in natural-language processing and artificial
intelligence. He is a member of the Algorithms Team working on

the IBM Jeopardy! challenge and is an author or coauthor of more than
25 technical publications covering his work on information extraction,
opinion/sentiment analysis, computational lexical semantics, and
question answering. Dr. Patwardhan is a member of the Association
for Computational Linguistics and a member of the Association for the
Advancement of Artificial Intelligence.

Branimir K. Boguraev [BM Research Division, Thomas J.
Watson Research Center, Yorktown Heights, NY 10598 USA
(bran@us.ibm.com). Dr. Boguraev is a Research Staff Member in

the Semantic Analysis and Integration Department at the Thomas J.
Watson Research Center. He received an engineering degree in
electronics from the Higher Institute for Mechanical and Electrical
Engineering in Sofia, Bulgaria (1974) and a diploma and Ph.D. degrees
in computer science (1976) and computational linguistics (1980),
respectively, from the University of Cambridge, England. He worked
on a number of U.K./E.U. research projects on infrastructural support
for natural-language processing applications, before joining IBM
Research in 1988 to work on resource-rich text analysis. From 1993 to
1997, he managed the natural-language program at Apple’s Advanced
Technologies Group, returning to IBM in 1998 to work on language
engineering for large-scale, business content analysis. Most recently,
he has worked, together with the Jeopardy! Challenge Algorithms
Team, on developing technologies for advanced question answering.
Dr. Boguraev is author or coauthor of more than 120 technical papers
and 15 patents. Until recently, he was the Executive Editor of the
Cambridge University Press book series Studies in Natural Language
Processing. He has also been a member of the editorial boards of
Computational Linguistics and the Journal of Semantics, and he
continues to serve as one of the founding editors of Journal of Natural
Language Engineering. He is a member of the Association for
Computational Linguistics.

IBM J. RES. & DEV. VOL. 56 NO. 3/4 PAPER 13 MAY/JULY 2012

Adam Lally IBM Research Division, Thomas J. Watson Research
Center, Yorktown Heights, NY 10598 USA (alally@us.ibm.com).

Mr. Lally is a Senior Technical Staff Member at the IBM T. J. Watson
Research Center. He received a B.S. degree in computer science

from Rensselaer Polytechnic Institute in 1998 and an M.S. degree in
computer science from Columbia University in 2006. As a member of
the IBM DeepQA Algorithms Team, he helped develop the Watson
system architecture that gave the machine its speed. He also worked
on the natural-language processing algorithms that enable Watson to
understand questions and categories and gather and assess evidence in
natural language. Before working on Watson, he was the lead software
engineer for the Unstructured Information Management Architecture
project, an open-source platform for creating, integrating, and
deploying unstructured information management solutions.

Jennifer Chu-Carroll IBM Research Division, Thomas J.
Watson Research Center, Yorktown Heights, NY 10598 USA
(jencc@us.ibm.com). Dr. Chu-Carroll is a Research Staff Member in
the Semantic Analysis and Integration Department at the T. J. Watson
Research Center. She received a Ph.D. degree in computer science from
the University of Delaware in 1996. Prior to joining IBM in 2001,
she spent 5 years as a Member of Technical Staff at Lucent
Technologies Bell Laboratories. Dr. Chu-Carroll’s research interests
are in the area of natural-language processing, more specifically in
question-answering and dialogue systems. Dr. Chu-Carroll serves

on numerous technical committees, including as program committee
co-chair of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies (NAACL
HLT) 2006 and as general chair of NAACL HLT 2012.

IBM J. RES. & DEV. VOL. 56 NO. 3/4 PAPER 13 MAY/JULY 2012

A. KALYANPUR ET AL. 13:11

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

