
Real-Time Detection of Malicious Network Activity Using

Stochastic Models

by

Jaeyeon Jung
Submitted to the Department of Electrical Engineering and Computer

Science
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Computer Science and Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2006

c©Massachusetts Institute of Technology 2006. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

May 22, 2006

Certified by .
Hari Balakrishnan

Professor of Computer Science and Engineering
Thesis Supervisor

Accepted by. .
Arthur C. Smith

Chairman, Department Committee on Graduate Students

To my princess Leia

5

Real-Time Detection of Malicious Network Activity Using Stochastic Models
by

Jaeyeon Jung

Submitted to the Department of Electrical Engineering and Computer Science
on May 22, 2006, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy in Computer Science and Engineering

Abstract

This dissertation develops approaches to rapidly detect malicious network traffic including
packets sent by portscanners and network worms. The main hypothesis is that stochastic
models capturing a host’s particular connection-level behavior provide a good foundation
for identifying malicious network activity in real-time. Using the models, the dissertation
shows that a detection problem can be formulated as one of observing a particular “trajec-
tory” of arriving packets and inferring from it the most likely classification for the given
host’s behavior. This stochastic approach enables us not only to estimate an algorithm’s
performance based on the measurable statistics of a host’s traffic but also to balance the
goals of promptness and accuracy in detecting malicious network activity.

This dissertation presents three detection algorithms based on Wald’s mathematical
framework of sequential analysis. First, Threshold Random Walk (TRW) rapidly detects re-
mote hosts performing a portscan to a target network. TRW is motivated by the empirically
observed disparity between the frequency with which connections to newly visited local
addresses are successful for benign hosts vs. for portscanners. Second, it presents a hybrid
approach that accurately detects scanning worm infections quickly after the infected local
host begins to engage in worm propagation. Finally, it presents a targeting worm detec-
tion algorithm, Rate-Based Sequential Hypothesis Testing (RBS), that promptly identifies
high-fan-out behavior by hosts (e.g., targeting worms) based on the rate at which the hosts
initiate connections to new destinations. RBS is built on an empirically-driven probability
model that captures benign network characteristics. It then presents RBS+TRW, a unified
framework for detecting fast-propagating worms independently of their target discovery
strategy.

All these schemes have been implemented and evaluated using real packet traces col-
lected from multiple network vantage points.

Thesis Supervisor: Hari Balakrishnan
Title: Professor of Computer Science and Engineering

7

Acknowledgments

I am indebted to Hari Balakrishnan for giving me invaluable advice on countless occasions
not only on research but also on various issues of life. Hari is living evidence that even a
man of genius can be warm, kind and always encouraging.

The summer of 2003 at the ICSI Center for Internet Research (ICIR) was one of the
most productive periods in my six years of Ph.D study. I am deeply grateful to Vern Paxson
for his brilliant insights on data analysis, thoughtful discussions, and detailed comments on
my dissertation. I would also like to thank Frans Kaashoek and Robert Morris for their
advice on the dissertation.

This dissertation would not have been possible without many collaborative efforts with
Arthur Berger, Rodolfo Milito, Vern Paxson, Stuart Schechter, and Hari Balakrishhan.
They demonstrated hard work, clear thinking, and remarkable writing skills that I learned
through collaboration with them. I am also grateful to Emre Koksal for answering my
tedious questions on stochastic processes.

Kilnam Chon, my advisor at the Korea Advanced Institute of Science and Technology
(KAIST) taught me never to be afraid of a challenge and always to tackle a hard problem.
During my internship at the Cooperative Association of Internet Data Analysis (CAIDA),
K Claffy showed an incredible passion for research. Evi Nemeth was always enthusiastic
about teaching and caring for students. I would like to thank all of them for being great
mentors.

It has been a pleasure to get to know and to work with so many wonderful colleagues
at the Networks and Mobile Systems (NMS) group. Thanks to Magdalena Balazinska
for her sense of humor and friendship; Michel Goraczko for his help on any computer
and program related problems; Nick Feamster for collaboration and numerous discussions;
Dave Andersen for his encyclopedic knowledge and sharing cute random Web pages; Allen
Miu and Godfrey Tan for fun lunch chats. There are also many people on the G9 that
helped me go through many long days. Thanks to Athicha Muthitacharoen, Jinyang Li,
Emil Sit, Michael Walfish, and Mythili Vutukuru. Special thanks to Sheila Marian for her
tremendous help in dealing with administrative work, for throwing NMS parties and for
squeezing me into always-overbooked Hari’s schedule.

I have been delighted to have many Korean friends at MIT. In particular, I would like
to thank some of them who came to my defense talk to show their support: Youngsu Lee,
Alice Oh, Daihyun Lim, and Jaewook Lee. I am eternally grateful to Yunsung Kim for
being my best friend in high school, in college and at MIT.

I cannot thank my parents, Joonghee Jung and Hanjae Lee, enough for their endless
love, support, and encouragement. I am a proud daughter of such awesome parents and
hope that my daughter, Leia, will feel the same way when she grows up. I would also
like to thank my brother Jaewoong and parents-in-law, Judy & Lowell Schechter for their
support. Finally, I am especially grateful to my husband, Stuart, who is also my scuba
buddy, crew mate, and research collaborator.

Contents

1 Introduction 15
1.1 Malicious Network Activity . 16
1.2 Challenges to Real-Time Detection . 17
1.3 Detection Schemes . 20
1.4 Contributions . 21

2 Background 25
2.1 Hypothesis Testing . 25
2.2 Sequential Hypothesis Testing . 26

3 Related Work 29
3.1 Portscan . 29
3.2 Network Virus and Worm Propagation . 32

4 Portscan Detection 39
4.1 Data Analysis . 41
4.2 Threshold Random Walk: An Online Detection Algorithm 47
4.3 Evaluation . 54
4.4 Discussion . 60
4.5 Summary . 62

5 Detection of Scanning Worm Infections 65
5.1 Reverse Sequential Hypothesis Testing . 68
5.2 Credit-Based Connection Rate Limiting 75
5.3 Experimental Setup . 77
5.4 Results . 79
5.5 Limitations . 82
5.6 Summary . 83

6 Detection of Targeting Worm Propagations 85
6.1 Data Analysis . 87
6.2 Rate-Based Sequential Hypothesis Testing 91
6.3 Evaluation . 95
6.4 RBS + TRW: A Combined Approach . 97
6.5 Discussion . 105

9

10 CONTENTS

6.6 Summary . 105

7 Conclusion and Future Directions 107

A Implementation of TRW in Bro policy 111

List of Figures

1-1 The nmap report for tennis.lcs.mit.edu 16
1-2 Snort rule 103 for the SubSeven trojan horse 20

2-1 Sequential Likelihood Ratio Test . 27

3-1 Virus and worm propagation . 33

4-1 Network intrusion detection system . 39
4-2 CDF of the number of inactive local servers accessed by each remote host . 43
4-3 CDF of the percentage of inactive local servers accessed by a remote host . 45
4-4 CDF of the number of distinct IP addresses accessed per remote host 46
4-5 Detections based on fixed-size windows: F represents a failure event and S

a success event. 48
4-6 Achieved performance as a function of a target performance 51
4-7 Simulation results . 63
4-8 Detection speed vs. other parameters . 64

5-1 Worm detection system . 66
5-2 Λ(Y) as each observation arrives . 69
5-3 Λ(Y) including events before and after the host was infected 70
5-4 Reverse sequential hypothesis testing . 70
5-5 First-contact connection requests and their responses 71
5-6 The structure of entries in the First-Contact Connection (FCC) queue 74

6-1 Worm propagation inside a site . 86
6-2 Fan-out distribution of an internal host’s outbound network traffic 89
6-3 Distribution of first-contact interarrival time 90
6-4 An exponential fit along with the empirical distribution 90
6-5 TH1

and TH0
vs. an event sequence . 93

6-6 ln(x) < x− 1 when 0 < x < 1 . 95
6-7 CDF of fan-out rates of non-scanner hosts using a window size of 15, 10, 7

and 5 (from left to right). 97
6-8 Classification of hosts present in the evaluation datasets 100
6-9 Simulation results of RBS + TRW for the LBL-II dataset 103
6-10 Simulation results of RBS + TRW for the ISP dataset 104

11

List of Tables

1.1 Vulnerabilities listed in the US-CERT database as of July 26, 2005 17

2.1 Four possible outcomes of a decision-making process 26

3.1 Notable computer viruses and worms . 37

4.1 Summary of datasets . 41
4.2 Remote host characteristics . 47
4.3 Simulation results . 56
4.4 Break-down of “suspects” flagged as H1 58
4.5 Performance in terms of efficiency and effectiveness 58
4.6 Comparison of the number of H1 across three categories for LBL dataset . 59
4.7 Comparison of the number of H1 across three categories for ICSI dataset . 59
4.8 Comparison of the efficiency and effectiveness across TRW, Bro, and Snort 60

5.1 Credit-based connection rate limiting . 76
5.2 Summary of network traces . 78
5.3 Alarms reported by scan detection algorithm 79
5.4 Alarms reported by virus throttling [76] 80
5.5 Composite results for both traces . 81
5.6 Comparison of rate limiting by CBCRL vs. virus throttling 81
5.7 Permitted first-contact connections until detection 82

6.1 LBL dataset summary . 88
6.2 Scanners detected from the LBL dataset 89
6.3 Trace-driven simulation results of RBS varying λ1 96
6.4 Evaluation datasets: scanning hosts include vulnerability scanners, worm

infectees and hosts that we use proxies for targeting worms because of their
anomalous high-fan-out rate. 101

6.5 Evaluation of RBS + TRW vs. RBS and TRW 102

13

Chapter 1

Introduction

A network worm automatically spreads from computer to computer by exploiting a soft-
ware vulnerability that allows an arbitrary program to be executed without proper autho-
rization. One experimental study reports that the Sasser worm located a PC running a
vulnerable operating system and successfully compromised the machine in less than four
minutes from when the machine was connected to the Internet [78]. Another example that
is frequently cited is the Slammer worm, which broke into the majority of vulnerable hosts
on the Internet in less than ten minutes, congested many networks and left at least 75,000
hosts infected [44].

Once compromised, a host can be used for such nefarious activities as launching Denial-of-
Service (DoS) attacks, relaying spam email, and initiating the propagation of new worms.
For instance, the Bagle worm downloads a program that turns an infected machine into a
zombie that an attacker can control remotely [15]. As a result, a large number of exploitable
machines are readily available to an attacker, thus facilitating distributed and large-scale
automated attacks. Furthermore, because attackers tend to exploit a vulnerability soon
after it becomes known1 it is extremely difficult for system administrators to patch every
vulnerability on their machines before a new malicious code is released.

The speed and prevalence of automated attacks render ineffective any legacy defenses that
rely on the manual inspection of each case. It is necessary to deploy an automated defense
system that continuously monitors network traffic, determines whether the traffic from a
particular source reveals a certain malicious activity, and then triggers an alarm when it
finds such traffic. In this dissertation, we investigate the problem of designing efficient
detection mechanisms for malicious network activity that are suitable for practical deploy-
ment in a real-time automated network defense system.

Our thesis is that stochastic models that capture a host’s particular connection-level activity
are a good basis for the detection algorithms that we seek. A host generates packets (or
connections) in order to communicate with certain applications running on a remote host.
The host’s network activity can be observed by a traffic monitor that is placed on a network

1Symantec reports that it took 5.8 days on average between the public disclosure of a vulnerability and
the release of an associated exploit during the first six months of 2004 [70].

15

16 Chapter 1. Introduction

pathway where those packets pass by. Using such a monitor, we can characterize the host’s
patterns of network access based on the metrics such as a connection initiating rate and a
connection failure ratio. In principle, these patterns reflect a host’s activity (i.e., benign Web
browsing vs. scanning), and we construct models of what constitutes malicious (or benign)
traffic and develop online detection problems that promptly identify malicious network
activity with high accuracy.

The rest of this chapter gives an overview of various malicious network activities intended
to break into a host or to disrupt the service of a variety of network systems; examines the
challenges to detecting such attacks in real-time; reviews previous detection schemes; and
discusses some of the key contributions of this dissertation.

1.1 Malicious Network Activity

Many Internet attacks involve various network activities that enable remote attackers to
locate a vulnerable server, to gain unauthorized access to a target host, or to disrupt the
service of a target system. In this section, we survey three common malicious activities:
vulnerability scanning, host break-in attack, and DoS attack. These three malicious activ-
ities are only a subset of many Internet attacks occurring lately, but their prevalence has
drawn much attention from the research community.

1.1.1 Vulnerability Scanning

There are many tools that allow network administrators to scan a range of the IP address
space in order to find active hosts and to profile the programs running on each host to
identify vulnerabilities [2,3,4]. These scanning tools, when used by an attacker, can reveal
security holes at a site that can then be exploited by subsequent intrusion attacks. One such
tool is “nmap”: Figure 1-1 shows that nmap correctly identifies two open ports and the
operating system that tennis.lcs.mit.edu is running.

Starting nmap 3.70 (http://www.insecure.org/nmap/)
Interesting ports on tennis.lcs.mit.edu (18.31.0.86):
PORT STATE SERVICE
22/tcp open ssh
80/tcp open http
Device type: general purpose
Running: Linux 2.4.X|2.5.X

Figure 1-1: The nmap report for tennis.lcs.mit.edu

1.1.2 Host Break-in Attack

When a target machine is located, an attacker attempts to break in to the system in order to
gain unauthorized use of or access to it. The most common method of intrusion is to exploit

1.1. Malicious Network Activity 17

a vulnerability of one of the servers that the target machine is running. According to the US-
CERT vulnerability notes database [77], there have been more than 1,300 vulnerabilities
found since 2001, among which over 7% are considered serious and announced as US-
CERT technical alerts.2 Table 1.1 shows annual vulnerability statistics compiled from the
US-CERT database [77].

Table 1.1: Vulnerabilities listed in the US-CERT database as of July 26, 2005
Year Vulnerabilities Found Vulnerabilities with a Severity Metric > 40
2005 151 4
2004 345 13
2003 225 22
2002 303 27
2001 327 32
2000 90 4

< 2000 52 9

An attacker sometimes directly aims at an authentication system. Despite its known weak-
nesses [47,49], password-based authentication is still popular among Web sites and SSH [92]
servers. When presented with a correct pair of a username and a password, a system grants
access to anyone — to break-in, an attacker must guess a matching pair of a username and
a password, which are each usually composed of several alphanumeric characters. There
are cracking tools [50,64] available that reduce the time required to guess passwords using
pre-built word-lists.

Network worms and viruses automate host break-in attacks and propagate to other hosts
on the Internet. Section 3.2 provides an in-depth discussion of network virus and worm
propagation.

1.1.3 Denial-of-Service Attack

A Denial-of-Service (DoS) attack is an attack in which an attacker floods a target system
with malicious traffic in order to prevent legitimate access. DoS attacks can both overload
the victim host or its Internet link and causes a partial or complete service disruption [43,
74].

The impact is more severe when an attacker launches coordinated DoS attacks by thousands
of machines, termed distributed DoS, or DDoS attacks [18]. Anecdotal evidence suggests
that a botnet, a group of compromised machines controlled over an IRC channel or some
other mechanism, is frequently used for DDoS attacks [51]. For more discussion of DoS
attacks and defense mechanisms, one can refer to the book by Mirkovic et al. [43].

2US-CERT assigns a severity metric to each vulnerability, ranging from 0 to 180. Vulnerabilities with a
metric greater than 40 are candidates for US-CERT alerts.

18 Chapter 1. Introduction

1.2 Challenges to Real-Time Detection

To cope with the increasing threat of various Internet attacks, many networks employ sen-
sors that monitor traffic and detect suspicious network activity that precedes or accompa-
nies an attack. For a network of hundreds (or thousands) of machines, having such sensors
is indispensable because it is a daunting task to ensure that every machine is safe from
known vulnerabilities, especially when machines are running different operating systems
or network applications.

In this section, we discuss the technical challenges in developing practical and deployable
algorithms that detect malicious network activity in real-time. Each challenge sets up a
goal that we intend to meet when designing a detection algorithm. We briefly describe our
general approach to meeting each goal, leaving the detailed discussions for the remaining
chapters.

1.2.1 Detection Speed and Accuracy

Many Internet attacks are composed of multiple instances of malicious payload transmis-
sions. For instance, scanning activity generates a sequence of probe packets to a set of
destinations, and a host infected by a computer worm or virus spreads an exploit to many
other vulnerable hosts. Typically, gathering more data improves accuracy as individual
pieces of evidence collectively give greater confidence in deciding a host’s intent. A host
that attempted to access only one non-existent host may have done so because of miscon-
figuration rather than scanning activity. In contrast, a host that continued to send packets
to dozens of different non-existent hosts may well be engaged in scanning activity. An
important question that we aim to answer in this dissertation is the following: how much
data is enough to determine a host’s behavior with a high level of confidence?

Fast detection is one of the most important requirements of a real-time detection system
along with high accuracy. The early detection of a port scanner gives network adminis-
trators a better chance to block the scanner before it launches an attack: if a scanner has
probed 25 distinct machines and found 1 vulnerable host that it can exploit, then it may
send out an attack payload immediately. If a scan detection algorithm had been based
on the connection count with a threshold of 20, it could have blocked this attack, but if
the algorithm had a threshold of 30, it could not have. In principle, as more observations
are needed to make a decision, more malicious traffic will be allowed to pass through the
system.

The trade-off between accuracy and detection speed complicates the design of a real-time
detection algorithm, and we seek to provide a quantitative framework that allows us to
gauge an algorithm’s performance. To this end, we design detection algorithms using the
sequential hypothesis testing technique [80], which provides a mathematical model for
reducing the number of required observations while meeting the desired accuracy criteria.
Chapters 4, 5, and 6 present the algorithms developed based on this framework and show
that those detection algorithms significantly speed up the decision process.

1.2. Challenges to Real-Time Detection 19

1.2.2 Evasion

Attackers can craft packets and adjust their behavior in order to evade a detection algorithm
once the algorithm is known. This never-ending arms race between attackers and defense
systems requires that a detection algorithm be resilient to evasion to the possible extent.
One way to achieve a high resiliency is to define strict rules for permissible activity such
that only well-defined network traffic goes through the system. Even so, an attacker may
find a way to alter its traffic pattern to appear benign. But, such modification often comes
at the cost of a significant drop in attack efficiency.

In any case, it is important to precisely define a model for malice and take into consideration
possible variants and exceptional cases that the model may not cover. One possibility is to
build a stronger defense system by layering multiple independent detection algorithms.
For each algorithm that we develop, we discuss the algorithm’s limitations in detail and
describe what should supplement the algorithm in order to raise the bar.

1.2.3 False Alarms

There are three main reasons for false alarms. First, the model of malicious activity based
on which a detection algorithm operates may include uncommon benign activities. Because
of the high variation in traffic patterns generated by each application, it is difficult to factor
in all the possible cases leading to a false alarm. Hence, it is important to test a detection
algorithm over real network trace data that include different types of traffic, and to refine
the model such that it eliminates identified false alarms.

Second, the same activity can be regarded as permissible or prohibited depending on a site’s
security policy. For example, many peer-to-peer client applications scan other neighboring
hosts to find the best peer from which to download a file. This scanning activity can exhibit
a similar traffic pattern to that of a local host engaged in scanning worm propagation.
Depending on a site’s policy on allowing peer-to-peer traffic, flagging a peer-to-peer client
as a scanner can be a legitimate detection or a false alarm. We consider this policy issue
in evaluating the performance of our detection algorithm, separating obvious false alarms
from policy-dependent ones.

Third, an attacker can spoof an originating IP address so that a detection system erroneously
flags an otherwise innocent host. This framing attack can cause a “crying wolf” problem:
a real attack would not be taken seriously should an immediate response take place. While
our detection algorithm operates based on the assumption that each source IP address is
genuine, a simple additional component can prevent framing attacks (see Sections 4.4 and
5.5 for details).

1.2.4 Scaling Issues

The amount of network traffic determines the amount of input data that a detection system
needs to analyze in real-time. A detection system employed at a busy network faces the
challenge of processing data at high rates. First, the high volume of input data requires a
high degree of accuracy. If a detector is designed such that its false alarm rate is 0.001,

20 Chapter 1. Introduction

the actual number of false alarms is that rate multiplied by the number of events generated
by input traffic, which increases proportionally with the amount of traffic arriving at the
network monitor.

Second, many operational issues need to be addressed for running a real-time detection
system in high-volume networks. As discussed by Dreger et al. [19], factors that impact
the system’s CPU load and memory usage include the type of analysis (e.g., transport-layer
analysis vs. application-layer analysis), the rate of packet arrivals to the detection system,
and the amount of connection state to be maintained in memory. Hence, it is crucial to
have efficient resource management schemes in place in order to keep the detection system
operational as traffic volume rises.

Third, real-time detection algorithms must be efficient enough to not overload the system
when the state it maintains grows with respect to traffic. Moreover, an attacker can also
target the detection system itself if he knows how to slow it down by consuming too many
resources [52, 54]. The detection system should be aware of how fast the state can grow
with respect to the traffic volume and should provide guards that limit its resource usage.

1.3 Detection Schemes

There is a large body of literature that presents, evaluates, and surveys detection approaches
of network intrusion attacks. These approaches differ depending on their goal of detection
and set of rules required for operation, but, we can roughly categorize them based on the
underlying detection principle. In this section, we discuss three major detection principles
with emphasis on their strength and weakness.

1.3.1 Misuse Detection

Misuse detection (or signature-based detection) tries to detect known attacks when they oc-
cur [34,39,41,56]. It uses predefined attack signatures and compares a current event against
these signatures. Figure 1-2 shows a Snort’s rule for detecting a remote host attempting to
install the SubSeven trojan horse program [32] on a local host.

alert tcp $EXTERNAL_NET 27374 -> $HOME_NET any
(msg:"BACKDOOR subseven 22"; flow:to_server,established;
content:"|0D 0A|[RPL]002|0D 0A|"; reference:arachnids,485;
reference:url,www.hackfix.org/subseven/;
classtype:misc-activity; sid:103; rev:7;)

Figure 1-2: Snort rule 103 for the SubSeven trojan horse: This rule triggers an alarm if
Snort sees an incoming connection from port 27374 and the connection’s payload contains
the pattern specified in the “content:” field.

Because each detection results from a known attack, it is straightforward to diagnose the
alarms generated by misuse detection systems. But, misuse detection is ineffective against
novel attacks or slightly modified attacks whose signature is not available.

1.4. Contributions 21

1.3.2 Anomaly Detection

Anomaly detection is designed to identify a source exhibiting a behavior deviating from
that normally observed in a system [7, 31, 42]. The construction of such a detector begins
with developing a model for “normal behavior”. A detection system can learn the normal
behavior by training data sets collected over a certain time period with no intrusions. It
can also use for detection a set of rules describing acceptable behavior that an operator
manually programmed in.

Anomaly detection is capable of detecting previously unknown attacks so long as those
attacks form a poor match against a norm. But, it often suffers from a high degree of false
alarms generated by legitimate but previously unseen behavior.

1.3.3 Specification-based Detection

Specification-based detection watches for a source that violates the pre-built program spec-
ifications [38, 58]. In particular, programs that run with a high privilege (e.g., SUID root
programs [30]) need a careful watch since an attacker often targets such programs in order
to execute an arbitrary code.

Like anomaly detection, specification-based detection can detect novel attacks, but the de-
velopment of detailed specifications requires thorough understanding of many security-
critical programs in a system, which can be a time-consuming process.

1.4 Contributions

This dissertation explores the conjecture that many Internet attacks entail network behavior
that manifests quite differently from that of a legitimate host. Accordingly, we hypothesize
that stochastic models that capture a host’s network behavior provide a good foundation for
identifying malicious network activity in real-time.

The overall structure of the dissertation is as follows:

• We investigate three malicious network activities: portscan, scanning worm infec-
tion, and targeting worm propagation. For each case, we examine real network trace
data that contain both large samples of benign traffic and some instances of malicious
traffic of interest if available.

• We develop detection algorithms based on the mathematical framework of sequential
analysis founded by Wald in his seminal work [80]. Using a connection between the
real-time detection of malicious network activity and a theory of sequential analysis
(or sequential hypothesis testing), we show that one can often model a host’s network
activity as one of two stochastic processes, corresponding respectively to the access
patterns of benign hosts and malicious ones.
The detection problem then becomes one of observing a particular trajectory and
inferring from it the most likely classification for the given host’s behavior. This

22 Chapter 1. Introduction

approach enables us to estimate an algorithm’s performance based on the measurable
statistics of a host’s traffic. More importantly, it provides an analytic framework, with
which one can balance the goals of promptness and accuracy in detecting malicious
network activity.

• We evaluate each algorithm’s performance in terms of accuracy and detection speed
using network trace data collected from multiple vantage points. While our algo-
rithms require only connection-level information (source and destination IP address-
es/ports, timestamp, and connection status), we assess the correctness of flagged
cases using various methods such as payload inspection, hostname, and site-specific
information.

Our contributions in this dissertation are:

1. Portscan Detection: We present an algorithm that rapidly detects remote hosts per-
forming a portscan to a target network. Our algorithm, Threshold Random Walk
(TRW), is motivated by the empirically observed disparity between the frequency
with which connections to newly visited local addresses are successful for benign
hosts vs. for portscanners. To our knowledge, TRW is the first algorithm that pro-
vides a quantitative framework explaining the detection speed and the accuracy of
port scan detection. Using trace-driven simulations, we show that TRW is more ac-
curate and requires a much smaller number of events (4 or 5 in practice) to detect
malicious activity compared to previous schemes. We published TRW and the per-
formance results in [36].

2. Detection of Scanning Worm Infections: We present a hybrid approach that accu-
rately detects scanning worm infection promptly after the infected local host begins
to engage in worm propagation. Our approach integrates significant improvements
that we have made to two existing techniques: sequential hypothesis testing and
connection rate limiting. We show that these two extensions are vital for the fast
containment of scanning worms:

• Reverse Sequential Hypothesis Testing: To address a problem when an ob-
served host can change its behavior, from benign to malicious, we evaluate the
likelihood ratio of a given host being malicious in reverse chronological order
of the observations. We prove that the reverse sequential hypothesis testing is
equivalent to the forward sequential hypothesis testing with modifications in
the likelihood ratio computation. This modified forward sequential hypothesis
test significantly simplifies algorithmic implementation. Moreover, it has been
shown to be optimal for change point detection [48].
• Credit-based Rate Limiting: To ensure that worms cannot propagate rapidly

between the moment scanning begins and the time at which a sufficient num-
ber of connection failures has been observed by the detector, we develop an
adaptive scheme that limits the rate at which a host issues new connections that
are indicative of scanning activity. Our trace-driven simulation results show

1.4. Contributions 23

that the credit-based rate limiting causes much fewer unnecessary rate limitings
than the previous scheme, which relies on a fixed 1 new connection per second
threshold.

We published the scanning worm detection approach and the results in [57].

3. Detection of Targeting Worm Propagations: We present an algorithm that promptly
detects local hosts engaged in targeting worm propagation. Our algorithm, Rate-
Based Sequential Hypothesis Testing (RBS), is built on the rate at which a host
initiates a connection to a new destination. RBS promptly detects hosts that ex-
hibit abnormal levels of fan-out rate, which distinguishes them from benign hosts
as they are working through a list of potential victims. Derived from the theory of
sequential hypothesis testing, RBS dynamically adapts its window size and thresh-
old, based on which it computes a rate and updates its decision in real-time. We
then present RBS+TRW, a unified framework for detecting fast-propagating worms
independently of their target discovery strategy. This work is under submission.

Like misuse detection and specification-based detection, we need to build a priori models,
but, unlike these two, we model not only malicious behavior but also benign behavior. In
a broader sense, our approach is a form of statistical anomaly detection. However, while
a typical anomaly detector raises an alarm as soon as the observation deviates what is
modeled as normalcy, we continue observing traffic until it concludes one way or the other.
In addition, to the degree we evaluated our algorithms, they work well without requiring
training specific to the environment in which they are used.

We begin with a review of statistical hypothesis testing, which forms a basis of our detection
algorithms. Then, we present a discussion of related work in Chapter 3, followed by three
chapters presenting the algorithms and the results described above. Chapter 7 concludes
the dissertation with implications for further efforts and directions for future research.

Chapter 2

Background

This dissertation concerns the problems of detecting a malicious host using statistical prop-
erties of the traffic that the host generates. In this chapter, we review hypothesis testing,
a statistical inference theory for making rational decisions based on probabilistic informa-
tion. We then discuss sequential hypothesis testing, which is the theory of solving hypoth-
esis testing problems when the sample size is not fixed a priori and a decision should be
made as the data arrive [8].

2.1 Hypothesis Testing
For simplicity, we consider a binary hypothesis testing problem, where there are two hy-
potheses, H0 (benign) and H1 (malicious). For each observation, the decision process must
choose either hypothesis that best describes the observation.

Given two hypotheses, there are four possible outcomes when a decision is made. The
decision is called a detection when the algorithm selects H1 when H1 is in fact true. On the
other hand, if the algorithm chooses H0 instead, it is called false negative. Likewise, when
H0 is in fact true, picking H1 constitutes a false positive. Finally, picking H0 when H0 is
in fact true is termed nominal.

The outcomes and corresponding probability notations are listed in Table 2.1. We use the
detection probability, PD, and the false positive probability, PF , to specify performance
conditions of the detection algorithm. In particular, for user-selected values α and β, we
desire that:

PF ≤ α and PD ≥ β, (2.1)

where typical values might be α = 0.01 and β = 0.99.

Next, we need to derive a decision rule that optimizes a criterion by which we can assess
the quality of the decision process. There are three well-established criteria: minimizing
the average cost of an incorrect decision (Bayes’ decision criterion); maximizing the prob-
ability of a correct decision; and maximizing the detection power constrained by the false
positive probability (Neyman-Pearson criterion). A remarkable result is that all these three
different criteria lead to the same method called the likelihood ratio test [35].

25

26 Chapter 2. Background

Table 2.1: Four possible outcomes of a decision-making process

Outcome Probability notation Description
Detection PD Pr[choose H1 |H1 is true]

False negative 1− PD Pr[choose H0 |H1 is true]
False positive PF Pr[choose H1 |H0 is true]

Nominal 1− PF Pr[choose H0 |H0 is true]

For a given observation, Y = (Y1, . . . , Yn), we can compute the probability distribution
function (or probability density function) conditional on two hypotheses. The likelihood
ratio, Λ(Y) is defined as:

Λ(Y) ≡ Pr[Y|H1]

Pr[Y|H0]
(2.2)

Then, the likelihood ratio test compares Λ(Y) against a threshold, η, and selects H1 if
Λ(Y) > η, H0 if Λ(Y) < η, and either hypothesis if Λ(Y) = η. The threshold value, η,
depends on the problem and what criterion is used, but we can always find a solution [35].

2.2 Sequential Hypothesis Testing
In the previous section, we implicitly assume that the data collection is executed before
the analysis and therefore the number of samples collected is fixed at the beginning of the
decision-making process. However, in practice, we may want to make decisions as the data
become available if waiting for additional observations incurs a cost. For example, for a
real-time detection system, if data collection can be terminated after fewer cases, decisions
taken earlier can block more attack traffic.

Wald formulated the theory of sequential hypothesis testing (or sequential analysis) in his
seminal book [80], where he defined the sequential likelihood ratio test as follows: the
likelihood ratio is compared to an upper threshold, η1, and a lower threshold, η0. If Λ(Y) ≤
η0 then we accept hypothesis H0. If Λ(Y) ≥ η1 then we accept hypothesis H1. If η0 <
Λ(Y) < η1 then we wait for the next observation and update Λ(Y) (see Figure 2-1).

The thresholds η1 and η0 should be chosen such that the false alarm and detection prob-
ability conditions, (2.1) are satisfied. It is not a priori clear how one would pick these
thresholds, but a key and desirable attribute of sequential hypothesis testing is that, for all
practical cases, the thresholds can be set equal to simple expressions of α and β.

Wald showed that η1 (η0) can be upper (lower) bounded by simple expressions of PF and
PD. He also showed that these expressions can be used as practical approximations for the
thresholds, where the PF and PD are replaced with the user chosen α and β. Consider a
sample path of observations Y1, . . . , Yn, where on the nth observation the upper threshold
η1 is hit and hypothesis H1 is selected. Thus:

Pr[Y1, . . . Yn|H1]

Pr[Y1, . . . Yn|H0]
≥ η1

2.2. Sequential Hypothesis Testing 27

Event Yn

Λ(Y) ≥ η1

Y = (Y1, . . . , Yn) and Λ(Y)

Update

Λ(Y) ≤ η0

Continue with more observations

Output

H0 (benign)

Output

H1 (malicious)

Yes

Yes

No

No

Figure 2-1: Sequential Likelihood Ratio Test

For any such sample path, the probability Pr[Y1, . . . Yn|H1] is at least η1 times as big as
Pr[Y1, . . . Yn|H0], and this is true for all sample paths where the test terminated with se-
lection of H1, regardless of when the test terminated (i.e., regardless of n). Thus, the
probability measure of all sample paths where H1 is selected when H1 is true is at least η1

times the probability measure of all sample paths where H1 is selected when H0 is true.
The first of these probability measure (H1 selected when H1 true) is the detection proba-
bility, PD, and the second, H1 selected when H0 true, is the false positive probability, PF .
Thus, we have an upper bound on threshold η1:

η1 ≤
PD

PF

(2.3)

Analogous reasoning yields a lower bound for η0:

1− PD

1− PF

≤ η0 (2.4)

Now suppose the thresholds are chosen to be equal to these bounds, where the PF and PD

are replaced respectively with the user-chosen α and β.

η1 ←
β

α
η0 ←

1− β

1− α
(2.5)

Since we derived the bounds (2.3) and (2.4) for arbitrary values of the thresholds, these
bounds of course apply for this particular choice. Thus:

β

α
≤ PD

PF

1− PD

1− PF

≤ 1− β

1− α
(2.6)

Taking the reciprocal in the first inequality in (2.6) and noting that since PD is between

28 Chapter 2. Background

zero and one, PF < PF /PD, yields the more interpretively convenient expression:

PF <
α

β
≡ 1

η1

(2.7)

Likewise, for the second inequality in (2.6), noting that 1 − PD < (1 − PD)/(1 − PF)
yields:

1− PD <
1− β

1− α
≡ η0 (2.8)

Inequality (2.7) says that with the chosen thresholds (2.5), the actual false alarm probability,
PF , may be more than the chosen upper bound on false alarm probability, α, but not by
much for cases of interest where the chosen lower bound on detection probability β is, say,
0.95 or 0.99. For example, if α is 0.01 and β is 0.99, then the actual false alarm probability
will be no greater than 0.0101. Likewise, Inequality (2.8) says that one minus the actual
detection probability (the miss probability) may be more than the chosen bound on miss
probability, but again not by much, given that the chosen α is small, say 0.05 or 0.01.
Finally, cross-multiplying in the two inequalities in (2.6) and adding yields:

1− PD + PF ≤ 1− β + α. (2.9)

Inequality (2.9) suggests that although the actual false alarm or the actual miss probability
may be greater than the desired bounds, they cannot both be, since their sum 1− PD + PF

is less than or equal to the sum of these bounds.

The above has taken the viewpoint that the user a priori chooses desired bounds on the
false alarm and detection probabilities, α and β, and then uses the approximation (2.5) to
determine the thresholds η0 and η1, with resulting inequalities (2.7) - (2.9). An alternative
viewpoint is that the user directly chooses the thresholds, η0 and η1, with knowledge of the
inequalities (2.7) and (2.8). In summary, setting the thresholds to the approximate values
of (2.5) is simple, convenient, and within the realistic accuracy of the model.

Chapter 3

Related Work

The detection algorithms developed in this dissertation are concerned with two major mali-
cious network activities: portscan activity and network virus and worm propagation. In this
chapter, we first examine the traffic characteristics of these two malicious network activi-
ties. We show in later chapters that understanding the traffic patterns generated from these
activities plays a key role in designing an effective detection algorithm. We then discuss
previous defense methods and detection algorithms related to our work.

3.1 Portscan

Attackers routinely scan a target network to find local servers to compromise. Some net-
work worms also scan a number of IP addresses in order to locate vulnerable servers to
infect [44, 69]. Although portscanning itself may not be harmful, identifying a scanning
source can facilitate several defense possibilities, such as halting potentially malicious traf-
fic, redirecting it to other monitoring systems, or tracing the attackers.

There are two types of portscanning.1 The first is vertical scanning where a portscanner
probes a set of ports on the same machine to find out which services are running on the
machine. The second is horizontal scanning where a portscanner probes multiple local
addresses for the same port with the intention of profiling active hosts. In this study, we
focus on detecting horizontal portscans, not vertical scans as the latter are easier to detect
than the former, and require monitoring only a single host (herein, a portscan refers to a
horizontal scan unless otherwise stated).

A single scan generates a short TCP connection or a short UDP flow. For TCP SYN scan-
ning, a scanning host sends a TCP SYN (connection initiation) packet to a target host on
a target port. If the target responds with a SYN ACK packet, the target is active and the
corresponding port is open. If the target responds with RST, the target is up, but the port
is closed. If there is no response received until timeout, the target host is unreachable or
access to that service is blocked. For UDP scanning, a UDP response packet indicates that

1They can of course be combined and an attacker can probe a set of hosts using both vertical and horizontal
scans.

29

30 Chapter 3. Related Work

the target port is open. When the target port is closed, a UDP scan packet elicits an ICMP
unreachable message.

There are several other ways of scanning than TCP SYN scanning or UDP scanning. One
example is a NULL scan [4] where a scanner sends out TCP packets with no flag bits set. If
a target follows RFC 793 [53], it will respond with a RST packet only if the probe packet is
sent to a closed port. Vivo et al. review TCP port scanners in detail including other stealthy
scanning methods and coordinate scanning where multiple scanning sources are involved
for probing [17]. This type of stealthy scanning can complicate implementing a portscan
detector, but given that most stealthy scanning methods exploit unusual packet types or
violate flow semantics, a detector that carefully watches for these corner cases can identify
such a stealthy scanner.

When scanning a large network or all the possible open ports on a host (216 possibilities),
a scanning host that performs SYN scans or UDP scans generates a large number of short
connections (or flows) destined to different IP addresses or ports. Additionally, to speed up
a scanning process, those connections are separated by a small time interval, resulting in a
high connection rate. In principle, these short connections to many different destinations
(or ports) distinguish scanning traffic from legitimate remote access, and many detection
systems use this pattern for identifying remote scanners [33, 56].

Another characteristic of scan traffic is that it tends to exhibit a greater number of failed
connection attempts. Unlike benign users who usually access a remote host with a presum-
ably legitimate IP address returned from a DNS server, scanners are opportunistic; failed
access occurs when a chosen IP address is not associated with any active host, the host
is not running a service of interest, or a firewall blocks incoming requests to the port that
is being probed. This characteristic can be useful to detect scanners regardless of their
scanning rate including a slow scanner that can evade a simple rate-based portscan detector
such as Snort [56].

In Chapter 4, we examine these properties of scans using real trace data and develop a
fast portscan detection algorithm that quickly identifies a remote port scanner generating
disproportionally large number of failed connection attempts to many different local hosts.

3.1.1 Related Work on Scan Detection

Most scan detection is in the simple form of detecting N events within a time interval
of T seconds. The first such algorithm in the literature was that used by the Network
Security Monitor (NSM) [33], which had rules to detect any source IP address connecting
to more than 15 distinct destination IP addresses within a given time window. Snort [56]
implements similar methods. Version 2.0.2 uses two preprocessors. The first is packet-
oriented, focusing on detecting malformed packets used for “stealth scanning” by tools
such as nmap [4]. The second is connection-oriented. It checks whether a given source
IP address touched more than X number of ports or Y number of IP addresses within Z
seconds. Snort’s parameters are tunable, but both fail in detecting conservative scanners
whose scanning rate is sightly below than what both algorithms define as scanning.

3.1. Portscan 31

Other work has built upon the observation that failed connection attempts are better indi-
cators for identifying scans. Since scanners have little knowledge of network topology and
system configuration, they are likely to often choose an IP address or port that is not active.
The algorithm provided by Bro [52] treats connections differently depending on their ser-
vice (application protocol). For connections using a service specified in a configurable list,
Bro only performs bookkeeping if the connection attempt failed (was either unanswered, or
elicited a TCP RST response). For others, it considers all connections, whether or not they
failed. It then tallies the number of distinct destination addresses to which such connections
(attempts) were made. If the number reaches a configurable parameter N , then Bro flags
the source address as a scanner. Note that Bro’s algorithm does not have any definite time
window and the counts accumulate from when Bro started running.

By default, Bro sets N = 100 addresses and the set of services for which only failures
are considered to HTTP, SSH, SMTP, IDENT, FTP data transfer (port 20), and Gopher
(port 70). However, the sites from which our traces came used N = 20 instead.

Robertson et al. also focused on failed connection attempts, using a similar threshold
method [55]. In general, choosing a good threshold is important: too low, and it can gen-
erate excessive false positives, while too high, and it will miss less aggressive scanners.
Indeed, Robertson et al. showed that performance varies greatly based on parameter val-
ues.

To address problems with these simple counting methods, Leckie et al. proposed a proba-
bilistic model to detect likely scan sources [40]. The model derives an access probability
distribution for each local IP address, computed across all remote source IP addresses that
access that destination. Thus, the model aims to estimate the degree to which access to a
given local IP address is unusual. The model also considers the number of distinct local
IP addresses that a given remote source has accessed so far. Then, the probability is com-
pared with that of scanners, which are modeled as accessing each destination address with
equal probability. If the probability of the source being an attacker is higher than that of
the source being normal, then the source is reported as a scanner.2

A major flaw of this algorithm is its susceptibility to generating many false positives if the
access probability distribution to the local IP addresses is highly skewed to a small set of
popular servers. For example, a legitimate user who attempts to access a local personal
machine (which is otherwise rarely accessed) could easily be flagged as scanner, since
the probability that the local machine is accessed can be well below that derived from the
uniform distribution used to model scanners.

In addition, the model lacks two important components. The first of these are confidence
levels to assess whether the difference of the two probability estimates is large enough to
safely choose one model over the other. Second, it is not clear how to soundly assign an
a priori probability to destination addresses that have never been accessed. This can be
particularly problematic for a sparsely populated network, where only small number of
active hosts are accessed by benign hosts.

2In their scheme, no threshold is used for comparison. As long as the probability of a source being an
attacker is greater than that of being normal, the source is flagged as a scanner.

32 Chapter 3. Related Work

The final work on scan detection of which we are aware is that of Staniford et al. on
SPICE [66]. SPICE aims to detect stealthy scans—in particular, scans executed at very
low rates and possibly spread across multiple source addresses. SPICE assigns anomaly
scores to packets based on conditional probabilities derived from the source and destination
addresses and ports. It collects packets over potentially long intervals (days or weeks) and
then clusters them using simulated annealing to find correlations that are then reported as
anomalous events. As such, SPICE requires significant run-time processing and is much
more complex than our algorithm.

3.2 Network Virus and Worm Propagation
Fred Cohen first defined a computer “virus” as a program that can infect other programs by
modifying them to include a possibly evolved copy of itself [16]. In 1983, Cohen demon-
strated viral attacks with the modified vd, which he introduced to users via the system
bulletin board. When a user executes the infected program, the infection process uses the
user’s permission to propagate to other parts of the Vax computer system. Surprisingly, the
virus managed to grab all the system rights in under 30 minutes on average.

A network worm is a self-containing malware that automates an attack process by ex-
ploiting a common software vulnerability and propagates to other hosts without human
intervention [63]. As a result, a carefully crafted network worm can spread over many
vulnerable hosts at a high speed. However, some malicious programs use multiple propa-
gation schemes combining the virus-like feature (relying on a user to trigger the infection)
and the worm-like feature (self-replicating through vulnerable servers), thus blurring the
line between virus and worm.

Factors that affect the propagation speed include break-in method, target discovery scheme,
and payload propagation rate, as shown in Figure 3-1. In many cases, a worm spreads much
faster than a virus as the former is capable of compromising a host almost immediately so
long as the host is running a vulnerable program. However, locating such a vulnerable
host requires an efficient searching method that will eventually lead a worm to reach most
vulnerable servers on the Internet.

Table 3.1 lists notable computer viruses and worms that had widespread impact on the
Internet in the past 20 years [21,71,87]. Many of them have variants that subsequently ap-
peared shortly one after another, but for the sake of brevity, we discuss the most noteworthy
ones.

As the first Internet-wide disruptive malware, the Morris worm affected about 5%-10%
of the machines connected to the Internet back in 1988. Attacking various flaws in the
common utilities of the UNIX system as well as easy-to-guess user passwords, the Morris
worm effectively spread the infection to Sun 3 systems and VAX computers [20, 63]. The
worm collects information on possible target hosts by reading public configuration files
such as /etc/hosts.equiv and _rhosts and running a system utility that lists remote
hosts that are connected to the current machine [63]

Melissa and Loveletter are both mass-mailing viruses. They propagate via an email at-
tachment to the addresses found in an infected computer’s address book. When a recipient

3.2. Network Virus and Worm Propagation 33

1. Break−in

2. Target discovery

3. Propagation

Figure 3-1: Virus and worm propagation

opens a viral attachment, the virus gets activated and compromises the user’s machine.
In addition to mass-mailing, the Loveletter virus overwrites local files with a copy of it-
self [23].

The Code Red worm infected more than 359,000 computers located all over the world on
July 19, 2001 [45], exploiting a known buffer overflow vulnerability in Microsoft Internet
Information Services (IIS) Web servers. Upon a successful infection, the worm picks a
next victim at random from the IPv4 address space and attempts to send a malicious HTTP
request that will trigger the buffer overflow bug. Because of its random target selection
behavior, researchers were able to estimate the infected population by monitoring a large
chunk of unused IP address space [45]. The worm is also programmed to launch a Denial-
of-Service attack against the White House Web server.

Nimda uses multiple propagation vectors [27,72,12]. The first is that Nimda sends a crafted
HTML email to the addresses harvested from local files. The malicious HTML email can
be automatically executed if a user uses a vulnerable Microsoft Internet Explorer (IE) Web
browser to view email. The second is that Nimda searches a vulnerable IIS Web server
using random scanning and attempts to upload itself and to modify the server so that the
server instructs a visitor to download the malicious executable. For 50% of the time, it
picks a host in the same class B network and for the rest 50% of the time, it selects a
host in the same class A network or a random host with the equal probability. This local
preference scanning can increase a chance of finding an active server residing within the
same administrative domain. The third is that Nimda embeds itself both to local and remote
files, exchanging which will then spread the infection. Nimda is a hybrid malware that
utilizes both the worm-like feature (i.e., actively spreading over other vulnerable hosts) and
the virus-like feature (i.e., piggybacking on otherwise legitimate files to propagate).

In January 2003, the Slammer worm caused significant global slowdowns of the Internet
with the massive amount of traffic from infected servers. The infinite loop in the worm code
generates a random IP address and sends itself on UDP port 1434 to attack Microsoft SQL

34 Chapter 3. Related Work

server. The worm has a small payload (376 bytes) and its simple yet aggressive propagation
method quickly infected most of the 75,000 victims in 10 minutes [44].

Several months later, the Blaster worm was unleashed attacking Microsoft Windows XP
and 2000 operating systems that used an unpatched DCOM RPC service. The worm uses a
sequential scanning with random starting points in order to search for vulnerable hosts. It
is also programmed to launch a SYN flooding attack to the hard-coded URL, windowsup-
date.com. However, the damage was not dramatic because Microsoft shifted the Web site
to windowsupdate.microsoft.com [24].

After first being observed on January 26, 2004, the Mydoom virus quickly propagated
over email and peer-to-peer file sharing network. Interesting features of this virus include
a backdoor component and a scheduled Denial-of-Service attack on www.sco.com. The
virus creates a backdoor on the infected machine and listens on the first available TCP
port between 3127 and 3198. The backdoor enables a remote attacker to use the infected
machine as a TCP proxy (e.g., spam relay) and to upload and execute arbitrary binaries [26,
85].

The Witty worm has the shortest vulnerability-to-exploit time window to date: the worm
was unleashed within one day after the vulnerability was announced. It targets a machine
running a vulnerable Internet Security Systems software. Witty carries a destructive pay-
load that randomly erases disk blocks of an infected system [59].

In August 2005, the Zotob worm affected machines running a vulnerable Microsoft Win-
dows Plug and Play service, which included many computers at popular media companies
such as ABC, CNN and the New York Times. Zotob has a “bot” component that attempts
to connect to Internet Relay Chat (IRC) channel at a pre-defined address, through which an
attacker can remotely manipulate the infected machine. It also disables access to several
Web sites of computer security companies that provide anti-virus programs [28, 88].

In summary, a network worm or virus exhibits a different network traffic behavior depend-
ing on the employed propagation method: Code Red and Slammer use a single TCP con-
nection or a UDP packet to transmit an infection payload but generate a lot of scan traffic
for target discovery. Nimda, Blaster and Zotob invoke multiple connections over different
applications to spread the infection. However, this propagating behavior of a malware can
have several conspicuous traffic patterns when compared to the network traffic generated
from a typical benign application as the propagation is relatively rare in “normal” applica-
tion use. We look into both target discovery methods and propagation schemes and develop
suitable stochastic models capturing malicious network activity, which will be used as a ba-
sis of detecting malware propagation.

3.2.1 Related Work on Worm Detection

Moore et al. [46], model attempts at containing worms using quarantining. They per-
form various simulations, many of which use parameters principally from the Code Red
II [13,69] outbreak. They argue that it is impossible to prevent systems from being vulner-
able to worms and that treatment cannot be performed fast enough to prevent worms from

3.2. Network Virus and Worm Propagation 35

spreading, leaving containment (quarantining) as the most viable way to prevent worm
outbreaks from becoming epidemics.

Early work on containment includes Staniford et al.’s work on the GrIDS Intrusion De-
tection System [68], which advocates the detection of worms and viruses by tracing their
paths through the departments of an organization. More recently, Staniford [65] has worked
to generalize these concepts by extending models for the spread of infinite-speed, random
scanning worms through homogeneous networks divided up into “cells”. Simulating net-
works with 217 hosts (two class B networks), Staniford limits the number of first-contact
connections that a local host initiates to a given destination port to a threshold, T . While
he claims that for most ports, a threshold of T = 10 is achievable in practice, HTTP and
KaZaA are exceptions. In comparison, our reverse sequential hypothesis testing described
in Chapter 5 reliably identifies HTTP scanning in as few as 10 observations.

Williamson first proposed limiting the rate of outgoing packets to new destinations [89] and
implemented a virus throttle that confines a host to sending packets to no more than one
new host a second [76]. While this slows traffic that could result from worm propagation
below a certain rate, it remains open how to set the rate such that it permits benign traffic
without impairing detection capability. For example, Web servers that employ content dis-
tribution services cause legitimate Web browsing to generate many concurrent connections
to different destinations, which a limit of one new destination per second would signifi-
cantly hinder. If the characteristics of benign traffic cannot be consistently recognized, a
rate-based defense system will be either ignored or disabled by its users.

Numerous efforts have since aimed to improve the simple virus throttle by taking into
account other metrics such as increasing numbers of ICMP host-unreachable packets or
TCP RST packets [14], and the absence of preceding DNS lookups [84]. The TRAFEN [9,
10] system exploits failed connections for the purpose of identifying worms. The system
is able to observe larger networks, without access to end-points, by inferring connection
failures from ICMP messages. One problem with acting on information at this level is that
an attacker could spoof source IP addresses to cause other hosts to be quarantined.

An approach quite similar to our own scanning worm detection algorithms has been si-
multaneously developed by Weaver, Staniford, and Paxson [83]. Their approach combines
the rate limiting and approximated sequential hypothesis test with the assumption that con-
nections fail until they are proved to succeed. While our modified forward sequential hy-
pothesis testing is proved to be optimal [48], their scheme could cause a slight increase
in detection delay, as the successes of connections sent before an infection event may be
processed after the connections that are initiated after the infection event. In the context
of their work, in which the high-performance required to monitor large networks is a key
goal, the performance benefits are likely to outweigh the slight cost in detection speed.

There have been recent developments of worm detection using “content sifting” (finding
common substrings in packets that are being sent in a many-to-many pattern) and auto-
matic signature generation [37, 62]. Although constructing a right signature can be hard, it
reduces chances of false alarms once a crisp signature is available. However, a signature-
based detection has a limited ability to encrypted traffic when employed at a firewall. These

36 Chapter 3. Related Work

approaches are orthogonal to our approach based on traffic behavior in that the former re-
quire payload inspection, for which computationally intensive operations are often needed.
However, our approach can supplement a signature-based detection by flagging a suspi-
cious subset of traffic.

3.2. Network Virus and Worm Propagation 37

Table 3.1: Notable computer viruses and worms: V stands for virus and W stands for worm

Year Name Type Exploits Propagation Scheme
1988 Morris W Vulnerabilities in

UNIX Sendmail,
Finger, rsh/rexec;
weak passwords

The worm harvests hostnames from local
files and sends object files to a target ma-
chine. The target then opens a connec-
tion back to the originator, which creates
a duplicate process in the target machine.

1999 Melissa V MS Word macro The virus sends an email with a mali-
cious attachment to the first 50 addresses
found in the address book.

2000 LoveLetter V MS Visual Basic
script

The virus sends an email with a mali-
cious attachment to everyone in the ad-
dress book.

2001 Code Red W MS IIS vulnera-
bility

The worm sends a malicious HTTP pay-
load to a randomly generated IP address
on the TCP port 80.

Nimda W/V MS IE and IIS
vulnerabilities

Nimda sends itself by email or copies in-
fected files to the open network shares
and to vulnerable MS IIS Web servers
via TFTP on the UDP port 69.

2003 Slammer W Buffer overflow
bugs in MS SQL
server and MSDE

The worm sends a malicious UDP packet
to a randomly generated IP address on
the port 1434.

Blaster W RPC/DCOM vul-
nerability in Win-
dows

The worm attempts to connect to a ran-
domly generated IP address on the TCP
port 135. Successful attack starts a shell
on port 4444 through which the orig-
inator instructs the target. The target
downloads the worm using the origina-
tor’s TFTP server on the port 69

2004 Mydoom V Executable email
attachment; peer-
to-peer file shar-
ing

The virus sends itself to harvested email
addresses or copies itself to a KaZaA file
sharing folder.

Witty W Internet Security
Systems software
vulnerability

The worm sends a malicious UDP packet
from the source port 40000 to randomly
generated IP addresses.

2005 Zotob W MS Windows
Plug & Play ser-
vice vulnerability

The worm attempts to connect to a ran-
domly generated IP address on the TCP
port 445. Successful attack starts a shell
on port 8888 through which the orig-
inator instructs the target. The target
downloads the worm using the origina-
tor’s FTP server on the port 33333.

Chapter 4

Portscan Detection

Many networks employ a network intrusion detection system (NIDS), which is usually
placed where it can monitor all the incoming and outgoing traffic of the networks.1 One
of the basic functionalities that an NIDS provides is detecting a remote port scanner who
tries to locate vulnerable hosts within the network. Figure 4-1 shows a typical scenario of
portscan detection: a portscanner attempts to probe a /16 network whose IP network prefix
is 18.31.0.0. A network intrusion detection system (NIDS) watches incoming and outgoing
packets of the scanner and alerts the portscanning traffic at the N th scan.

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������

�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������

	�	�	�	�	�	�	
	�	�	�	�	�	�	
	�	�	�	�	�	�	
	�	�	�	�	�	�	
	�	�	�	�	�	�	
	�	�	�	�	�	�	
	�	�	�	�	�	�	
	�	�	�	�	�	�	

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

18.31.0.82

18.31.0.91

18.31.0.44

1

2

N

?

port scanner

18.31/16

NIDS

����

����

Figure 4-1: Network intrusion detection system

A number of difficulties arise, however, when we attempt to formulate an effective algo-
rithm for detecting portscanning. The first is that there is no clear definition of the activity.

1Here we assume that these networks have well-defined and monitorable perimeters for installing an
NIDS.

39

40 Chapter 4. Portscan Detection

How to perform a portscan is entirely up to each scanner: a scanner can easily adjust the
number of IP addresses to scan per second (scanning rate) and the number of IP addresses
to scan per scanning host (scanning coverage). If we define portscanning as an activity of
accessing more than 5 servers per second, we will miss any portscanners with a rate slower
than 5 Hz.

There are also spatial and temporal considerations: do we want to aggregate activities
originated from multiple IP addresses in order to detect “coordinated” scanning? Over
how much time do we track activity? As time increases, a related spatial problem also
arises: due to the use of DHCP, NAT, and proxies, a single address might correspond
to multiple actual hosts, or, conversely, a single host’s activity might be associated with
multiple addresses over time.

Another issue is that of intent. Not all scans are necessarily hostile. For example, some
search engines use not only “spidering” (following embedded links) but also portscanning
in order to find Web servers to index. In addition, some applications (e.g., SSH, some peer-
to-peer and Windows applications) have modes in which they scan in a benign attempt to
gather information or locate servers. Ideally, we would like to separate such benign use
from overtly malicious use. We note, however, that the question of whether scanning by
search engines is benign will ultimately be a policy decision that will reflect a site’s level
of the desirability to have information about its servers publicly accessible.

The state of the art in detecting scanners is surprisingly limited. Existing schemes have dif-
ficulties catching all but high-rate scanners and often suffer from significant levels of false
positives. In this work, we focus on the problem of prompt detection: how quickly after
the initial onset of activity can we determine with high probability that a series of connec-
tions reflects hostile activity? Note that “quickly” here refers to the amount of subsequent
activity by the scanner: the activity itself can occur at a very slow rate, but we still want to
detect it before it has advanced very far, and ideally, do so with few false positives.

We begin with a formal definition of portscan activity based on the novel observation that
the access pattern of portscanners often includes non-existent hosts or hosts that do not
have the requested service running. Unlike the scanning rate or scanning coverage, this
pattern of frequently accessing inactive servers is hard to alter since a portscanner has little
knowledge of the configuration of a target network. On the other hand, this pattern rarely
results from legitimate activity as a legitimate client would not send a packet to a destination
unless there is reason to believe that the destination server accepts a request.

Regarding the spatial and temporal issues discussed above, for simplicity we confine our
notion of “identity” to single remote IP addresses over a 24 hour period. The development
of this chapter is as follows. In Section 4.1, we present the connection log data that motivate
the general form of our detection algorithm. In Section 4.2, we develop the algorithm and
present a mathematical analysis of how to parameterize its model in terms of expected false
positives and false negatives, and how these trade off with the detection speed (number
of connection attempts observed). We then evaluate the performance of the algorithm in
Section 4.3, comparing it to that of other algorithms. We discuss directions for further work
in Section 4.4 and summarize in Section 4.5.

4.1. Data Analysis 41

Table 4.1: Summary of datasets
LBL ICSI

1 Data Oct. 22, 2003 Oct. 16, 2003
2 Total inbound connections 15,614,500 161,122
3 Size of local address space 131,836 512
4 Active hosts 5,906 217
5 Total unique remote hosts 190,928 29,528
6 Scanners detected by Bro 122 7
7 HTTP worms 37 69
8 other bad 74,383 15
9 remainder 116,386 29,437

4.1 Data Analysis
We grounded our exploration of the problem space, and subsequently the development of
our detection algorithm, using a set of traces gathered from two sites, LBL (Lawrence
Berkeley National Laboratory) and ICSI (International Computer Science Institute). Both
are research laboratories with high-speed Internet connections and minimal firewalling (just
a few incoming ports blocked). LBL has about 6,000 hosts and an address space of 217 +
29 + 28 addresses. As such, its host density is fairly sparse. ICSI has about 200 hosts and
an address space of 29, so its host density is dense.

Both sites run the Bro NIDS. We were able to obtain a number of datasets of anonymized
TCP connection summary logs generated by Bro. Each log entry lists a timestamp corre-
sponding to when a connection (either inbound or outbound) was initiated, the duration of
the connection, its ultimate state (which, for our purposes, was one of “successful,” “re-
jected,” or “unanswered”), the application protocol, the volume of data transferred in each
direction, and the (anonymized) local and remote hosts participating in the connection. As
the need arose, we were also able to ask the sites to examine their additional logs (and
the identities of the anonymized hosts) in order to ascertain whether particular traffic did
indeed reflect a scanner or a benign host.

Each dataset we analyzed covered a 24-hour period. We analyzed six datasets to develop
our algorithm and then evaluated it on two additional datasets. Table 4.1 summarizes these
last two; the other six had similar characteristics. About 4.4% and 42% of the address
space is populated at LBL and ICSI respectively. Note that the number of active hosts is
estimated from the connection status seen in the logs, rather than an absolute count reported
by the site: we regard a local IP address as active if it ever generated a response (either a
successful or rejected connection).

Among the 190,928 and 29,528 remote hosts that sent at least one packet to the correspond-
ing site, the Bro system at the site flagged 122 (LBL) and 7 (ICSI) as scanners, using the
algorithm described in the previous section with N = 20. Row 7 in Table 4.1 lists the
number of remote hosts that were identified as attempting to spread either the “Code Red”
or “Nimda” HTTP worm. Those remote hosts that happened to find a local Web server

42 Chapter 4. Portscan Detection

and sent it the infection payload were caught by Bro based on the known signatures for the
worms. However, it is important to note that the datasets may contain many more remote
HTTP worms that were undiagnosed by Bro because in the course of their random scanning
they did not happen to find a local HTTP server to try to infect.

The other bad row in Table 4.1 corresponds to remote hosts that sent any packet to
one of the following ports: 135/tcp, 139/tcp, 445/tcp, or 1433/tcp. These correspond to
Windows RPC, NetBIOS, SMB, and SQL-Snake attacks (primarily worms, though Bro
lacks detectors for non-HTTP worms), and they are blocked by the (very limited) firewalls
at each site. It is important to note that the Bro monitor at LBL was located outside the
firewall, and so would see this traffic; while that at ICSI monitored inside the firewall, so it
did not see the traffic, other than a trickle that came from other nearby sites that were also
within the firewall.

We will refer to the collection of the scanners, HTTP worms, and other bad collectively
as known bad.

4.1.1 Separating Possible Scanners

The available datasets give us a limited form of “ground truth,” in that the remote hosts
tagged as scanners very likely do reflect hostile scanners, and many (but surely not all)
of the remote hosts tagged as benign are in fact benign. However, to soundly explore the
data we need to have as strong a notion of ground truth as possible. In particular, we need
some sort of determination as to which of the large number of remainder entries (row 9 of
Table 4.1) are indeed undetected scanners that we then need to separate out from the set of
otherwise-presumed-benign hosts before evaluating the effectiveness of any algorithm we
develop.

This is a difficult but crucial problem. We need to find a way to bootstrap our assessment
of which of the remainder are likely, but undetected (due to their lower level of activity),
scanners. Ideally, the means by which we do so would be wholly separate from our subse-
quently developed detection algorithm, but we were unable to achieve this. Consequently,
our argument is nearly circular: we show that there are properties we can plausibly use to
distinguish likely scanners from non-scanners in the remainder hosts, and we then incorpo-
rate those as part of a (clearly imperfect) ground truth against which we test an algorithm
we develop that detects the same distinguishing properties. The soundness of doing so rests
in part in showing that the likely scanners do indeed have characteristics in common
with known malicious hosts.

We first attempt to detect likely scanners by looking for remote hosts that make failed
connection attempts to a disproportionate number of local addresses, comparing the distri-
bution of the number of distinct inactive local servers accessed by known bad hosts vs.
those accessed by the as-yet undifferentiated remainder. Ideally, the distribution for re-
mainder would exhibit a sharp modality for which one mode resembles known bad hosts
and the other is quite different. We could then use the mode as the data for distinguishing
undiagnosed scanners from benign hosts, constructing a more accurate ground truth.

4.1. Data Analysis 43

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

0 10 100 1000 10000

C
D

F
 (

of

 r
em

ot
e

ho
st

s)

of inactive local servers

remainder
known_bad

(a) LBL

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

0 10 100 1000 10000

C
D

F
 (

of

 r
em

ot
e

ho
st

s)

of inactive local servers

remainder
known_bad

(b) ICSI

Figure 4-2: Cumulative distribution of the number of remote hosts over the number of
distinct local addresses to which a remote host unsuccessfully attempted to connect (# of
inactive local servers). The vertical dotted line at x = 20 corresponds to the threshold used
by the Bro NIDS at the sites.

44 Chapter 4. Portscan Detection

Figure 4-2 plots this comparison. Unfortunately, we do not see the desired modality for
remainder. Furthermore, the distribution of known bad is such that in order to detect
most of them solely on the data of their failed access attempts, we would need to use a
threshold significantly lower than 20; and doing so will also flag a non-negligible portion2

of remainder without us knowing whether this judgment is correct. Finally, we note that
a basic reason for the large spread in the distributions in Figure 4-2 (note that the X-axis
is log-scaled) is due to the very large spread we observe for the rate at which different
scanners scan.

However, we do find a strong modality if we instead examine the ratio of hosts to which
failed connections are made vs. those to which successful connections are made. For a
given remote host, define φf as the percentage of the local hosts that the remote host has
accessed for which the connection attempt failed (was rejected or unanswered).

φf (%) = 100× # of distinct local hosts where failed connection attempts are made
of distinct local hosts where all connection attempts are made

Figure 4-3 shows the distribution of φf for each dataset. Figure 4-3(a) shows that about
99.5% of LBL’s known bad remotes hit nothing but inactive servers (expected, due to
the firewall for most of the ports such hosts attempt to access). For ICSI, the proportion
is spread between 60%–100%, but this still shows a clear tendency that known bad hosts
are likely to hit many non-existent hosts or hosts that do not support the requested service.

On the other hand, we see that in both cases, the remainder are sharply divided into two
extreme sets—either 0% φf , or 100% φf—which then gives us plausible grounds to use
this dichotomy to consider the latter remotes as likely to be scanners.

Based on this observation, we formulate the rule that remainder hosts with < 80% φf are
potentially benign,3 while hosts with higher values of φf will be treated as possible scan-
ners. We term these latter as suspect. Table 4.2 summarizes the resulting classifications,
and also the proportion due to remote hosts accessing HTTP, since those dominate the
remainder.

Interestingly, this simple criterion also allows us to catch the remote hosts that accessed
many number of distinct local IP addresses. Figure 4-4 compares the distribution of the
number of accessed IP addresses between benign and suspect. Note that there are
few benign hosts that accessed more than 4 IP addresses. We conjecture them as web
crawlers or proxies that often visits many web servers to collect link information or to
provide a faster service to a large number of customers. Not to much our surprise, over
14% of suspect made connections more than 4 distinct IP addresses and some of them
covered over 100 IP addresses in monitored networks.

2Recall that there are 10’s of thousands of remainder, so even a small absolute portion of them can reflect
a large number of hosts.

3Clearly, 80% is a somewhat arbitrary choice, but, given the sharp modality, any value greater than 50%
has little effect on our subsequent results.

4.1. Data Analysis 45

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100
 0

 0.2

 0.4

 0.6

 0.8

 1

C
D

f (

of
 r

em
ot

e
ho

st
s)

φf (%)

remainder
known_bad

(a) LBL

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100
 0

 0.2

 0.4

 0.6

 0.8

 1

C
D

f (

of
 r

em
ot

e
ho

st
s)

φf (%)

remainder
known_bad

(b) ICSI

Figure 4-3: Cumulative distribution of the number of remote hosts over the percentage of
the local hosts that a given remote host has accessed for which the connection attempt
failed (φf)

46 Chapter 4. Portscan Detection

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 10 100 1000 10000 100000

C
um

ul
at

iv
e

fr
ac

tio
n

of
 #

 o
f r

em
ot

es

of local IP addresses accessed

benign
suspect

(a) LBL

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 10 100 1000

C
um

ul
at

iv
e

fr
ac

tio
n

of
 #

 o
f r

em
ot

es

of local IP addresses accessed

benign
suspect

(b) ICSI

Figure 4-4: Cumulative distribution of the number of distinct IP addresses accessed per
remote host: A vertical line corresponding x = 4 shows that very few benign hosts made
connections to more than 4 distinct IP addresses.

4.2. Threshold Random Walk: An Online Detection Algorithm 47

Table 4.2: Remote host characteristics: < 80% φf is used to separate benign hosts from
possible scanners. Here “scanners” are the remote hosts flagged by Bro as such.

LBL ICSI
Total unique remote hosts 190,928 29,528
known bad 74,542 91

scanners 122 7
HTTP worms 37 69
other bad 74,383 15

remainder 116,386 29,437
benign 61,465 17,974

HTTP 47,343 6,026
suspect 54,921 11,463

HTTP 40,413 11,143

4.2 Threshold Random Walk: An Online Detection Algo-
rithm

In the previous section, we showed that one of the main characteristics of scanners is that
they are more likely than legitimate remote hosts to choose hosts that do not exist or do not
have the requested service activated, since they lack precise knowledge of which hosts and
ports on the target network are currently active. Based on this observation, we formulate a
detection problem that provides the basis for an on-line algorithm whose goal is to reduce
the number of observed connection attempts (compared to previous approaches) to flag
malicious activity, while bounding the probabilities of missed detection and false detection.

4.2.1 Limitations of Simple Fixed-Size Windows

One simple way to detect a remote host exhibiting a high failure ratio is to gather N out-
comes generated by the remote, to compute a failure ratio, and then to compare the ratio
against a detection threshold. This fixed-size window approach, however, often results in
suboptimal solutions: too small a window size may lead the algorithm to being suscepti-
ble to inaccurate decisions and too large a window size may unnecessarily slow down the
detection.

Let us assume that we use 50% φf (defined in Section 4.1.1) as a threshold beyond which
we trigger an alarm. Figure 4-5 illustrates two sample event sequences showing the first 10
outcomes in the order of their arrivals.

In the case of Figure 4-5(a), if we use a window size 5, then the first 5 outcomes will lead
us to raise an alarm. But, if we have waited for 5 more outcomes, we would have reached
a different decision. In general, decisions based on small number of observations are prone
to errors especially when there are mixed signals observed within the window.

On the other hand, as shown in Figure 4-5(b), a large window can slow down the detection.
In this example, we could have raised an alarm at the 5th outcome if we used a window size

48 Chapter 4. Portscan Detection

F S F S F S S S S S
60%

(a) Window size: 5

F F SF FFFFF S
80%

(b) Window size: 10

Figure 4-5: Detections based on fixed-size windows: F represents a failure event and S a
success event.

5. Basically, when the evidence observed so far strongly favors one model over the other,
waiting to see more data does not increase a confidence level much and it is often better to
terminate the observation now for faster detection.

Following sections show that our detection approach, which is built on the framework of the
sequential hypothesis testing (see Chapter 2.2 for the review) overcomes the limitations of
the simple fixed-size windows and dynamically adjusts a window size based on the strength
of evidence observed.

4.2.2 Model

Let an event be generated when a remote source r makes a connection attempt to a local
destination l. We classify the outcome of the attempt as either a “success” or a “failure”,
where the latter corresponds to a connection attempt to an inactive host or to an inactive
service on an otherwise active host.

For a given r, let Yi be a random (indicator) variable that represents the outcome of the first
connection attempt by r to the ith distinct local host, where

Yi =

{

0 if the connection attempt is a success
1 if the connection attempt is a failure

As outcomes Y1, Y2, . . . , are observed, we wish to determine whether r is a scanner. Intu-
itively, we would like to make this detection as quickly as possible, but with a high proba-
bility of being correct. Since we want to make our decision in real-time as we observe the
outcomes, and since we have the opportunity to make a declaration after each outcome, the
detection problem is well suited for the method of sequential hypothesis testing developed
by Wald in his seminal work [80].

We consider two hypotheses, H0 and H1, where H0 is the hypothesis that the given remote
source r is benign and H1 is the hypothesis that r is a scanner. Let us now assume that,
conditional on the hypothesis Hj , the random variables Yi|Hj i = 1, 2, . . . are independent
and identically distributed (i.i.d.). Then we can express the distribution of the Bernoulli

4.2. Threshold Random Walk: An Online Detection Algorithm 49

random variable Yi as:

Pr[Yi = 0|H0] = θ0, Pr[Yi = 1|H0] = 1− θ0

Pr[Yi = 0|H1] = θ1, Pr[Yi = 1|H1] = 1− θ1 (4.1)

The observation that a connection attempt is more likely to be a success from a benign
source than a malicious one implies the condition:

θ0 > θ1.

The goal of the real-time detection algorithm is to make an early decision as an event stream
arrives to the system while satisfying the performance conditions (2.1). As discussed in
Chapter 2.2, upon each event’s arrival, we calculate the likelihood ratio:

Λ(Y) ≡ Pr[Y|H1]

Pr[Y|H0]
= Πn

i=1

Pr[Yi|H1]

Pr[Yi|H0]
(4.2)

, where Y is the vector of events observed so far and Pr[Y|Hi] represents the conditional
probability mass function of the event stream Y given that model Hi is true; and where the
second equality in (4.2) follows from the i.i.d. assumption. The decision-making process
is illustrated in Figure 2-1.

Essentially, we are modeling a random walk for which the excursion probabilities come
from one of two possible sets of probabilities, and we seek to identify which set is most
likely responsible for an observed walk. We call our algorithm TRW, Threshold Random
Walk, since our decision-making process corresponds to a random walk with two thresh-
olds.4

As we will show in Section 4.2.4, while the Bernoulli distributions conditioned on hypothe-
ses H0 and H1 play no role in the selection of the thresholds η1 and η0, they do (along with
the thresholds) strongly affect N , the number of observations until the test terminates, i.e.,
until one of the hypotheses is selected.

4.2.3 Numerical Analysis

In order to assess the impact of approximate solutions for η0 and η1 (2.5) on the algorithm
performance, we conducted numerical analysis varying parameters, α, β, θ0, and θ1. At the
end of the simulation, we calculated achieved PF and PD and compared them with α and
β to see whether the approximate solution for η0 and η1 allowed the algorithm to meet the
performance criteria.

At each iteration, i, a random number, Ri, is generated from a uniform distribution U(0, 1).
Given α and β, two thresholds, η0 and η1 are calculated using Equation (2.5). Ri is used
to determine whether this sample observation represents a failed event or successful event.
If the simulation is to evaluate the detecting probability of scanners (benign users), Ri is

4To be more precise, it is a random walk in the logarithm of the likelihood ratio space.

50 Chapter 4. Portscan Detection

compared to Pr[Yi = 0|H1] = θ1 (Pr[Yi = 0|H0] = θ0) and we regard the event as a
success if Ri is less than a priori probability, θ1 (θ0).

Starting from 1, the likelihood ratio, Λ is updated as an event is generated. The decision is
made at the point where Λ is greater than η1 or less than η0. This process is repeated until
it accomplishes M decisions.

Figure 4-6 shows that regardless of a priori probabilities, θ0 and θ1, the performance goal
is achieved when Equation (2.5) is used to set η0 and η1. It also shows that as θ1 gets
closer to θ0, the performance goes down, but not lower than a target performance. This
simulation result suggests the choice of a priori probabilities, θ1 and θ0 has little affect on
the performance and the result still maintains the performance criteria. However, as we
will show in the next section, a priori probabilities do affect the number of observations
required to reach a decision and in practice, this can affect the performance since we can
not always expect that such a large number of events are available for decision.

Figures 4-7(a) and 4-7(b) show the selected 100 steps during the simulations for detecting
scanners or benign users. In both cases, β = 0.99, α = 0.01, θ0 = 0.9, and θ1 = 0.2

For scanners, it requires at least three observations to reach a decision and the average
number of observations is 4.110 when the simulation was done for 10,000 scanners. Out
of 10,000 scanners, only 33 were detected as benign users, thus the resulting detection
probability is 0.9967. Figure 4-7(a) shows the case for a false negative at around the 1760th

step where 4 consecutive successes happened for this particular scanner. The probability
for this rare event is 0.24 = 0.0016.

For benign users, it requires at least four observations to reach a decision and the average
number of observations is 5.011 when the simulation was done for 10,000 benign cases.
Out of 10,000 cases, 48 were decided as scanners, thus the resulting false positive proba-
bility is 0.0048. Figure 4-7(b) shows the case for a false positive at around the 860th step
where 3 failures within 4 trials happened for this particular benign user. The probability
for this event is 0.13 × 0.9 = 0.009.

4.2.4 Number of Observations to Select Hypothesis

Given the performance criteria, (2.1), and the associated thresholds, (2.5), the remaining
quantity of interest is the number of observation N until the test terminates, i.e., until one
of the hypotheses is selected. Following Wald [80], we present approximate expressions
for the expected value of N and the tail probability of N .

For the analysis of N , it is convenient to consider the log of the likelihood ratio, (4.2), and
view the resulting expression as a random walk:

SN ≡ ln(Λ(Y)) =
N
∑

i=1

Xi, where Xi ≡ ln

(

Pr[Yi|H1]

Pr[Yi|H0]

)

, and N is the observation number at which SN first hits or crosses either the upper thresh-
old, ln η1, or lower threshold, ln η0. (Note that S0 = 0.)

4.2. Threshold Random Walk: An Online Detection Algorithm 51

 0.9

 0.91

 0.92

 0.93

 0.94

 0.95

 0.96

 0.97

 0.98

 0.99

 1

 0.9 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99 1
 0.9

 0.91

 0.92

 0.93

 0.94

 0.95

 0.96

 0.97

 0.98

 0.99

 1

P
D

β

θ1=0.2
θ1=0.5
θ1=0.8

y=x

(a) Actual detection rate (PD) vs. target detection rate (β) : The target
false positive rate (α) is set to 0.01 and θ0 to 0.9.

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0 0.02 0.04 0.06 0.08 0.1
 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

P
F

α

θ1=0.2
θ1=0.5
θ1=0.8

y=x

(b) Actual false positive rate (PF) vs. target false positive rate (α) : The
target detection rate (β) is set to 0.99 and θ0 to 0.9.

Figure 4-6: Achieved performance as a function of a target performance: Each dot in the
plots is a simulation result (PD or PF) as we vary a target performance (β or α). The
simulation result is obtained after M = 100, 000 random numbers are generated. y = x is
a reference line indicating that a resulting performance is equal to a target performance.

52 Chapter 4. Portscan Detection

From Wald’s equality, E[N] = E[SN]/E[Xi], and we can obtain expressions for E[SN] and
E[Xi], conditioned on the hypotheses H0 and H1. Then, using the central limit theorem, we
provide the tail probability of N , which can be useful to estimate the worst case scenarios
when this algorithm is used.

For Xi,

Xi|H0 =

{

ln 1−θ1

1−θ0

with prob. 1− θ0

ln θ1

θ0

with prob. θ0

Xi|H1 =

{

ln 1−θ1

1−θ0

with prob. 1− θ1

ln θ1

θ0

with prob. θ1

E[Xi|H0] = (1− θ0) ln
1− θ1

1− θ0

+ θ0 ln
θ1

θ0

(4.3)

E[Xi|H1] = (1− θ1) ln
1− θ1

1− θ0

+ θ1 ln
θ1

θ0

If we assume the sequential test ends with SN hitting, equaling, either ln η0 or ln η1, i.e., if
we ignore any overshoot, then

SN |H0 =

{

ln η1 with prob. α
ln η0 with prob. 1− α

SN |H1 =

{

ln η1 with prob. β
ln η0 with prob. 1− β

E[SN |H0] = α ln η1 + (1− α) ln η0 (4.4)
E[SN |H1] = β ln η1 + (1− β) ln η0

Combining (2.5), (4.3), and (4.4), we obtain the approximate result in Equation (4.5).

E[N |H0] =
α ln β

α
+ (1− α) ln 1−β

1−α

θ0 ln θ1

θ0

+ (1− θ0) ln 1−θ1

1−θ0

(4.5)

E[N |H1] =
β ln β

α
+ (1− β) ln 1−β

1−α

θ1 ln θ1

θ0

+ (1− θ1) ln 1−θ1

1−θ0

For the tail probability of N , we apply the central limit theorem to
∑

i=1 Xi. Note that if
the random walk,

∑no

i=1 Xi is greater than or equal to upper threshold ln η1 at observation
no, then the sequential hypothesis test must have terminated by then, i.e., N ≤ no. Condi-
tioning on the hypothesis for which hitting the upper threshold is more likely, H1, we have:

4.2. Threshold Random Walk: An Online Detection Algorithm 53

Pr[
no
∑

i=1

Xi ≥ ln η1|H1] ≤ Pr[N ≤ no|H1] (4.6)

Normalizing the left hand side of (4.6) to mean zero variance one, yields:

Pr

[∑no

i=1 Xi − noE[Xi|H1]√
no · σ(Xi|H1)

≥ ln η1 − noE[Xi|H1]√
no · σ(Xi|H1)

|H1

]

(4.7)

, where σ(Xi|Hj) denotes the standard deviation of Xi given hypothesis Hj , j = 0, 1.

σ(Xi|H0) =
√

θ0(1− θ0) · ln
(

1− θ1

1− θ0

θ0

θ1

)

σ(Xi|H1) =
√

θ1(1− θ1) · ln
(

1− θ1

1− θ0

θ0

θ1

)

Applying the central limit theorem to (4.7) yields an approximate lower bound for the dis-
tribution of N |H1, which can be used as an approximation for the distribution itself, where
the error tends to be on the conservative side (i.e., tends to under estimate the likelihood
N ≤ no). Thus,

Pr[N ≤ no|H1] ≈ 1 − Φ

(

ln η1 − noE[Xi|H1]√
no · σ(Xi|H1)

)

(4.8)

, where Φ(x) equals the probability of a normally distributed random variable with mean
zero and variance one being less than or equal to x.

Analogous reasoning for the lower threshold and conditioning on H0 yields

Pr[N ≤ no|H0] ≈ Φ

(

ln η0 − noE[Xi|H0]√
no · σ(Xi|H0)

)

(4.9)

4.2.5 Discussions on E[N |H1] vs. θ0 and θ1

As shown in Equation (4.5), E[N |H0] and E[N |H1] are a function of the four parameters,
α, β, θ0, and θ1, the false positive and detection probabilities, and the degree to which
scanners differ from benign hosts in terms of modeling their probability of making failed
connections. With those values set, we can estimate the average number of distinct destina-
tion IP addresses that a given port scanner can probe before being caught by the algorithm.

Assuming a scanner picks IP addresses at random, θ1—the probability that it chooses an
IP address with the requested service on—depends on the density of these servers in a
monitored network. Figure 4-8(a) shows how E[N |H1] changes as θ1 increases. With
α = 0.01, β = 0.99, and θ0 = 0.8, E[N |H1] is 5.4 when θ1 = 0.2, and goes up to
11.8 when θ1 = 0.4 (we used θ1 = 0.2 based on the observations from data analysis in
Section 4.1.) In general, it takes longer to tell one model from the other the closer the two

54 Chapter 4. Portscan Detection

models are to each other. Figure 4-8(a) also shows that E[N |H1] goes up as α gets lower,
which illustrates the trade off between low false positive probability and fast detection.
We can detect faster in situations where θ0 is higher. Legitimate users often make a connec-
tion request with a host name. Unless the DNS provides outdated information, they rarely
access inactive servers, and therefore θ0—the probability that those users hit an active IP
address—can be fairly high. However, the presence of benign Web crawlers and prox-
ies that sometimes access inactive servers through broken links, or a few infected clients
putting requests through a proxy that serves mostly benign users, can require a lower θ0 for
modeling.
In those circumstances where such problematic hosts can be controlled, however, then we
can configure the detection algorithm to use a higher θ0, and thus enable it to make a faster
decision. Figure 4-8(b) shows E[N |H1] when θ0 is set to 0.9. The decrease in detection
time is significant.
In practice, one can tune θ1 based on the density of the most popular service within an
address space and then set θ0 to a value reasonably higher than θ1. However, for some
networks where most addresses are allocated and running the same kind of service all the
time, the little difference between θ1 and θ0 will render TRW less effective.

4.2.6 Limitations

We develop TRW based on the assumption that conditional on the hypothesis (that a re-
mote host is benign or a scanner), any two distinct connection attempts will have the same
likelihood of succeeding and their chances of success are unrelated to each other.
The bounds for upper and lower thresholds, Equations (2.3) and (2.4), are valid, given that
the sequential hypothesis test will eventually terminate with probability one, which holds
given independence of outcomes, and also for some cases of dependence [80]. Unfortu-
nately, this will not hold for all cases of dependence. For instance, if a scanner probes
N inactive servers exactly alternating with N active servers, our random walk will oscil-
late between one step up and one step down and it will never hit either threshold when
θ1 + θ0 = 1. An informed attacker can evade TRW exploiting this dependence if he inter-
leaves scan traffic with the traffic to N active hosts.
On the other hand, dependence that leads to positive correlation in outcomes (i.e., successes
are more likely to be followed by another success or likewise for failures) will tend to
shorten the time to hit a threshold. This form of dependence seems more likely to occur in
practice.
Dependence, however, invalidates the second equality in Equation (4.2). Instead, the like-
lihood ratio should be calculated using a joint probability distribution, which complicates
the computation.

4.3 Evaluation
This section evaluates the performance of the TRW algorithm in terms of its accuracy
and the detection speed using trace-driven simulations. We explicate cases flagged as H0

4.3. Evaluation 55

(benign) or H1 (malicious) by TRW. Then, we compare the performance of TRW with that
of Bro and Snort.

4.3.1 Trace-driven Simulation

We use the datasets described in Section 4.1 for evaluation. Each line in a dataset represents
a connection seen by the Bro NIDS, sorted by the timestamp of the first packet belonging
to the connection. Connection information includes a source IP, s, a destination IP, d, and
the connection status. In reality, the connection status is not immediately available when
the first packet arrives. For our analysis, we assume that the detector can consult an oracle
that can tell upon seeing an incoming TCP SYN whether it will result in an established,
rejected, or unanswered connection. (We might approximate such an oracle by giving the
detector access to a database of which ports are open on which addresses, though “churn”
at a site might make maintaining the database problematic.) Alternatively, the detector
can wait a short period of time to see whether the SYN elicits a SYN ACK, a RST, or no
response, corresponding to the three cases above.

For each s, TRW maintains 3 variables. Ds is the set of distinct IP addresses to which s has
previously made connections. Ss reflects the decision state, one of: PENDING; H0; or H1.
Ls is the likelihood ratio. For each line in the dataset, the simulation executes the following
steps:

1) Skip the line if Ss is not PENDING (a decision has already made for the remote host
s).

2) Determine whether the connection is successful or not. A connection is considered
successful if it elicited a SYN ACK.5

3) Check whether d already belongs to Ds. If so, skip the next steps and proceed to
the next connection. Update Ds with d, and update the likelihood ratio, Ls using
Equation (4.2).

5) If Ls equals or exceeds η1, set Ss to H1. If Ls is lower than or equal to η0, set Ss to
H0.

Table 4.3 shows the simulation results for LBL and ICSI datasets. The results depend on
the parameter values; we present here results based on typical settings, where the detection
probability (α) should be at least 0.99 and the false alarm rate (β) no larger than 0.01. We
chose θ1 = 0.2 and θ0 = 0.8 based on the discussion in Section 4.1. Although we found

5Due to ambiguities in Bro’s log format, for connections terminated by the remote originator with a
RST we sometimes cannot determine whether the local host actually responded. Bro generates the same
connection status for the case in which the connection was first established via the local host responding with
a SYN ACK and the case where the remote host sent a SYN and then later, without receiving any reply, sent
a RST. Accordingly, we treat such connections as failures if the logs indicate the local host did not send any
data to the remote host.

56 Chapter 4. Portscan Detection

Table 4.3: Simulation results when β = 0.99, α = 0.01, θ1 = 0.2, and θ0 = 0.8

LBL ICSI
Type Count PD N Max N Count PD N Max N
scan Total 122 - - - 7 - - -

H1 122 1.000 4.0 6 7 1.000 4.3 6
worm Total 32 - - - 51 - - -

H1 27 0.844 4.5 6 45 0.882 5.1 6
PENDING 5 - - 5 6 - - 5

other bad Total 13,257 - - - 0 - - -
H1 13,059 0.985 4.0 10 0 - - -
H0 15 - 5.1 10 0 - - -

PENDING 183 - - 11 0 - - -
benign Total 2,811 - - - 96 - - -

H1 33 - 8.1 24 0 - - -
H0 2,343 - 4.1 16 72 - 4.0 4

PENDING 435 - - 14 24 - - 9
suspect Total 692 - - - 236 - - -

H1 659 0.952 4.1 16 234 0.992 4.0 8
PENDING 33 - - 7 2 - - 7

that almost all benign users never hit an inactive server, we chose θ0 conservatively, to
reduce the chances of flagging Web crawlers and proxies as scanners.

We excluded remote hosts that accessed less than 4 distinct local hosts from this table
because with α = 0.99, β = 0.01, θ1 = 0.2, and θ0 = 0.8, TRW requires at least 4
observations to make a decision. As a result, most of the remote hosts seen in the datasets
(174,014 out of 190,928 for LBL and 29,138 out of 29,528 for ICSI) are not included in
the table. These low profile remote hosts may contain very slow scanners that probe less
than or equal to 3 IP addresses per day, and we note that a payload-based scheme may have
a chance to detect these slow scanners if there is a signature available. However, many of
those excluded remote hosts (114,313 out of 174,014 for LBL and 11,236 out of 29,138
for ICSI) failed to establish a single connection thus no payload information is available.

First, we group remote hosts into the categories defined in Section 4.1 and calculate PD

within each category. For both LBL and ICSI datasets, TRW caught all of the scanners
flagged by Bro’s algorithm. However, TRW missed a few HTTP worms that Bro identified
(using known signatures), because of the slow scanning rate of those worms. Note that
the maximum number of IP addresses scanned by those worms was 6 including at least 1
successful payload transmission for both the LBL and ICSI dataset.

TRW detected almost all the remote hosts that made connections to “forbidden” ports (see
the corresponding rows for other bad) and also the remote hosts classified as suspect.
There were 15 other bad flagged as H0 for the LBL dataset. Among those 15 hosts, we
observe that 11 remote hosts were machines that some local host had accessed at least once

4.3. Evaluation 57

before we flagged those remote hosts as H0. These hosts are Microsoft Windows machines
that sent NetBIOS packets back to a local host that initiated connections to them, which
is a benign operation, and therefore it is correct to flag them as H0. The other 3 were
flagged as H0 due to successful LDAP, IMAP4, or SMTP connections followed by a few
NetBIOS packets. Although it hard to tell for sure whether these accesses reflect benign
use or sophisticated multi-protocol probing, it is likely to be the former because the earlier
connections succeeded.

This leaves just one more possible malicious remote host that missed being detected. Un-
fortunately, this one is difficult to distinguish because there were only 6 connections from
that remote host recorded in the trace: 5 of them were very short, but successful, HTTP
connections to 5 different servers, and there was only one unsuccessful connection attempt
to port 135, which is generally perceived as hostile, but sometimes subject to “misfire”.
Many versions of Microsoft operating systems use port 135 for remote procedure calls.
But, one of the vulnerabilities associated with this mechanism was exploited by the Blaster
worm, which also propagates via port 135.

Surprisingly, there are no false positives for the ICSI dataset even though α = 0.01. This
is a rather encouraging result, demonstrating that TRW can outperform the performance
specification in some cases. We selected a random subset of hosts belonging to benign
and looked into their connections to confirm the result.

There are 33 false positives in the LBL dataset. On examination, we found that 3 of them
sent out IDENT requests to a number of local machines in response to outbound SMTP
or SSH connections. This is a common sequence of benign behavior. Since the IDENT
requests were rejected by the local machines, the remote host was erroneously flagged as a
scanner. This, however, can again be fixed if we keep track of remote hosts to which local
hosts successfully established connections before the remote host makes failed connection
attempts in response to those connections. We call these friendly hosts, and suggest using
this additional context as a way to reduce false positives without changing any parameters
of the general detection algorithm.

One host was an SMTP client that tried 4 different valid hosts in the monitored network,
but terminated each connection with a RST packet 11 seconds after the initial SYN packet.
From its hostname, it appears most likely a legitimate client, perhaps one working through
a stale mailing list.

All of the remaining 29 false positives turned out to be Web crawlers and proxies. Dealing
with these is problematic: crawlers are, after all, indeed scanning the site; and the proxies
generally channel a mixture of legitimate and possibly malicious traffic. These might then
call for a different reactive response from the NIDS upon detecting them: for example,
using more stringent thresholds to require a larger proportion of scanning activity before
they are shunned; or automatically releasing a block of the remote address after a period of
time, in order to allow legitimate proxy traffic to again connect to the site.

Table 4.4 lists the types of suspect remote hosts that were flagged as H1 by TRW. As
discussed above, hosts flagged as H1 due to responding IDENT connections instead are
considered H0. With the simple method suggested above of allowing remote hosts to make

58 Chapter 4. Portscan Detection

Table 4.4: Break-down of “suspects” flagged as H1

Type LBL ICSI
IDENT 18 (2.7%) 0 (0%)

≥ 2 protocols 87 (13.2%) 8 (3.4%)
only HTTP 541 (82.1%) 226 (96.6%)
remainder 13 (2.0%) 0 (0%)

failed connections if they’ve previously received outbound connections from the site, we
were able to confirm that all of the 18 suspect remote hosts were flagged due to re-
sponding IDENT connection for the LBL dataset. Over 80% made nothing but failed
HTTP connections, and we therefore suspect them as undetected worms.

Table 4.3 also shows the average (N) and maximum number of distinct local IP addresses
that each detected remote host accessed upon being flagged. In theory, when α = 0.01,
β = 0.99, θ0 = 0.8, and θ1 = 0.2, the approximate solution for E[N |H1] is 5.4 as shown
in Section 4.2.5, and our trace-driven simulations are consistent with this figure. This
suggests that the parameters chosen for θ0 and θ1 adequately model the actual behaviors of
scanners and benign users. Note that with everything else fixed, N would have been much
higher than 5 if θ1 was greater than 0.3, as shown in Figure 4-8(a). It is also noteworthy
that even in the worst case, a decision was made before a scanner probed more than 16
machines—strictly better than the best case provided by Bro’s algorithm.

Table 4.5: Performance in terms of efficiency and effectiveness: Post-filtering eliminates
remotes to which a local host previously connected. Pre-filtering is calculated based on
Table 4.3.

Trues H1 True positives Efficiency Effectiveness
LBL Pre-filtering 14,103 13,900 13,867 0.998 0.983

Post-filtering 14,068 13,878 13,848 0.998 0.984
ICSI Pre-filtering 294 286 286 1.000 0.973

Post-filtering 294 286 286 1.000 0.973

Finally, to quantify the effectiveness of TRW, we use the two measures proposed by Stani-
ford et al. [66]:

• Efficiency: the ratio of the number of detected scanners (true positives) to all cases
flagged as H1.

• Effectiveness: the ratio of the number of true positives to all scanners (trues). This is
the same as PD, detection rate.

Efficiency conveys a similar meaning to false positive rate, but is more useful when the total
number of true positives is significantly smaller than the total number of samples. Table 4.5

4.3. Evaluation 59

Table 4.6: Comparison of the number of H1 across three categories for LBL dataset

TRW Bro Snort
Type Total H1 N Max N H1 N Max N H1 N Max N
scan 121 121 4.0 6 121 21.4 28 63 16.8 369

benign 2811 30 - - 0 - - 57 - -
suspect 692 659 4.1 16 0 - - 28 7.9 33

Table 4.7: Comparison of the number of H1 across three categories for ICSI dataset

TRW Bro Snort
Type Total H1 N Max N H1 N Max N H1 N Max N
scan 7 7 4.3 6 7 35.9 119 5 6.0 6

benign 96 0 - - 0 - - 0 - -
suspect 236 234 4.0 8 0 - - 2 6.0 6

shows these values for the two sites. For ICSI, because of 8 misses (6 HTTP worms and 2
suspect), TRW results in a lower effectiveness (0.973) than expected (β = 0.99). But,
the overall performance is excellent. We compare TRW’s performance with that of Bro and
Snort in the next section.

4.3.2 Comparison with Bro and Snort

For simplicity, we exclude the worm and other bad category because as configured at
LBL and ICSI, Bro does not perform scan-detection analysis for these. As throughout the
chapter, we configure Bro’s algorithm with N = 20 distinct hosts.

For Snort, we consider its portscan2 scan-detection preprocessor, which takes into ac-
count distinct connections rather than distinct TCP SYN packets—the latter can generate
many false positives if a single host sends multiple SYNs in the same failed connection
attempt. We use Snort’s default settings, for which it flags a source IP address that has
sent connections to 5 different IP addresses within 60 seconds. (We ignore Snort’s rule for
20-different-ports-within-60-seconds because our emphasis here is on detecting scans of
multiple hosts rather than vertical scans of a single host.) We note that Snort’s algorithm
can erroneously flag Web crawlers or any automated process to fetch Web documents if
there are more than 5 active Web servers in a monitored network. It can also be easily
evaded by a scanner who probes a network no faster than 5 addresses/minute. Tables 4.6
and 4.7 show the number of (non-local) hosts reported as H1 by the three algorithms.

Table 4.8 compares the efficiency and effectiveness across the three algorithms for both
datasets. Note that two measures for TRW differ from Table 4.5 because of the two cate-
gories (worm, other bad) excluded in this comparison. Bro has the highest efficiency
followed by TRW and Snort. But Bro’s highest efficiency comes at a cost of low effective-
ness. Given its simple thresholds and limited time window, we expected that Snort would

60 Chapter 4. Portscan Detection

Table 4.8: Comparison of the efficiency and effectiveness across TRW, Bro, and Snort

Trace Measures TRW Bro Snort
LBL Efficiency 0.963 1.000 0.615

Effectiveness 0.960 0.150 0.126
N 4.08 21.40 14.06

ICSI Efficiency 1.000 1.000 1.000
Effectiveness 0.992 0.029 0.029

N 4.06 36.91 6.00

provide fast detection. But, as shown in Tables 4.6 and 4.7, Snort was slower than TRW
on average. In contrast to TRW, which on average flagged scanners when they hit no more
than 5 distinct IP addresses, Snort waited for more than 13 IP addresses. Snort can increase
the detection speed by lowering Y or Z values.6 But, this will likely increase false alarms.
Indeed, for LBL, 38.5% of the alarms by Snort were due to false positives.

Compared with Snort and Bro, TRW provided the highest effectiveness while maintaining
higher than 0.96 efficiency. On average, detection was made when a target made connec-
tions to 4.1 active or inactive IP addresses. This average number of give-away IP addresses
to scanners or suspects is about 3 times lower than that of Snort and about 5 times
lower than that of Bro. In addition, TRW has the advantage over Snort that its analysis is
not confined to a limited window of time: TRW has a wide dynamic range.

4.4 Discussion

In this section we look at a number of additional dimensions to the problem space and
sketch our thinking on how each one can be pursued.

Leveraging Additional Information. TRW’s performance is somewhat remarkable given
the limited information it uses. Potential refinements include: (1) factoring in the specific
service (for example, we could use more conservative parameters for possible HTTP scan-
ning than for other ports, given the difficulty of confusing HTTP scanners with HTTP prox-
ies); (2) distinguishing between unanswered connection attempts and rejected connection
attempts, as the former might be more indicative of a complete “shot in the dark” whereas
the latter could sometimes indicate a service that is temporarily off-line; (3) considering
the time duration that a local address has been inactive, to be robust to benign connection
attempts made to temporarily unavailable hosts; (4) considering the rate at which a remote
host makes connection attempts (see Chapter 6); (5) introducing a component of correla-
tion in the model, e.g., that two consecutive failed connection attempts are more suspect
than two failures separated by a success; (6) devising a model of which local addresses and
ports are historically more likely to be visited by benign sources or scanners.

6See Section 3.1.1 for the definitions of Y and Z: Snort raises an alarm if a given source IP address
contacted more than X number of ports or Y number of IP addresses in Z seconds.

4.4. Discussion 61

However, incorporating information such as the above is a two-edged sword. It may provide
additional detection power—something to keep in mind for the discussion of other issues
in this section—but at the cost of complicating use of the model, analysis of its properties,
and, potentially, undermining its performance in some situations.

Managing State. The need to track for each remote host the different local addresses to
which it has connected can in fact require a large amount of state. For example, imagine the
operation of the algorithm during a SYN flooding attack with spoofed remote addresses.
Virtually every arriving SYN will require the instantiation of state to track the new pur-
ported remote host. If, however, we cap the state available to the detector, then an attacker
can launch a flood in order to exhaust the state, and then conduct a concurrent scan with
impunity.

How to Respond. As shown in Section 4.3, TRW is much more effective at detecting
low-volume scanners than Bro or Snort. However, this then raises the question of what to
do with the alerts. For example, Table 4.5 shows that TRW detects nearly 14,000 scan-
ners in the LBL dataset (presumably almost all of these are worms), vastly more than the
122 detected by Bro at the site. As mentioned in the Introduction, LBL uses Bro’s scanner
detection decisions to trigger blocking of the hostile remote host. However, the site reports
that the blocking mechanism cannot scale to 1000’s of blocks per day (this is why the site
does not block HTTP scanners, because at times the endemic HTTP scans from worms
can reach such levels). Thus, there is future work needed on mechanisms for determining
whether a particular scanner is “block-worthy,” i.e., will the given scanner continue to scan
to a degree significant enough that they merit blocking or some form of rate control, or
can they be ignored because they are scanning at a rate (or for a service of sufficiently low
interest) that the site can afford to let the scan run its course?

Evasion and Gaming. Any scan detection algorithm based on observing failed connection
attempts is susceptible to manipulation by attackers who spoof remote addresses and cause
innocent remote hosts to be penalized. Depending on the reactive response taken when a
scan is detected, address spoofing could provide the attacker with a great deal of leverage
for denial-of-service. We note that the operators at LBL recognize this risk, and address
it using “white lists” of critical remote hosts that should never be blocked. They have
found this approach practical in today’s environment, but this could change in the future if
attackers become more energetic in targeting the response system. A possible additional
approach here would be to have a honeypot respond to some of the connection attempts
to see whether the remote host then completes the 3-way establishment handshake. If not,
then the remote address is potentially spoofed.

Another issue concerns ways for an attacker to evade detection. For TRW, this is not so
difficult. An attacker could compile a list of known servers at a site (running services other
than those of interest to them) and then intermingle connection attempts to those with the
wider connection attempts of a true scan. The successes of the camouflage connections
would then drive the random walk away from an H1 decision. Countering this threat re-
quires either incorporating service information (as discussed above) or modeling which
combinations of addresses legitimate users tend to access, and then giving less weight to
successful connections not fitting with these patterns.

62 Chapter 4. Portscan Detection

Distributed Scans. As stated in the Introduction, we confined our work to the problem of
determining whether a single remote address corresponds to a malicious scanner. It appears
difficult to directly adapt our framework to determining whether a set of remote addresses
collectively correspond to malicious scanning (such as if they divide up the address space
and each probe just a couple of addresses within it), because our algorithm depends on
tracking success/failure information of individual remotes. It may, however, be possible to
extend our algorithm with post processing to try to do so by combining a number of “low
grade” signals (either detected scanners, or those whose random walks have taken them
somewhat in the direction of H1).

4.5 Summary

We have presented the development and evaluation of TRW—Threshold Random Walk—an
algorithm to rapidly detect portscanners based on observations of whether a given remote
host connects successfully or unsuccessfully to newly-visited local addresses. TRW is
motivated by the empirically-observed disparity between the frequency with which such
connections are successful for benign hosts vs. for known-to-be malicious hosts. The un-
derpinnings of TRW derive from the theory of sequential hypothesis testing, which allows
us to establish mathematical bounds on the expected performance of the algorithm.

Using an analysis of traces from two qualitatively different sites, we show that TRW re-
quires a much smaller number of connection attempts (4 or 5 in practice) to detect malicious
activity compared to previous schemes used by the Snort and Bro NIDS. TRW has the ad-
ditional properties that (1) even though it makes quick decisions, it is highly accurate, with
very few false positives, and (2) it is conceptually simple, which leads to both comprehen-
sibility regarding how it works, and analytic tractability in deriving theoretical bounds on
its performance.

In summary, TRW performs significantly faster and also more accurately than other current
solutions.

4.5. Summary 63

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 1700 1720 1740 1760 1780 1800

Λ
 (

H
1)

η1
η0

(a) Scanners

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 860 880 900 920 940

Λ
 (

H
0)

η1
η0

(b) Benign users

Figure 4-7: Simulation results: The graphs show how the likelihood ratio changes as ran-
dom events are generated according to a priori probabilities, θ0 = 0.9 and θ1 = 0.2.

64 Chapter 4. Portscan Detection

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
 2

 4

 6

 8

 10

 12

 14

 16

 18
E

[N
|H

1]

θ1

α= 0.001
α = 0.005

α = 0.01

(a) θ0 = 0.8

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
 2

 4

 6

 8

 10

 12

 14

 16

 18

E
[N

|H
1]

θ1

α= 0.001
α = 0.005

α = 0.01

(b) θ0 = 0.9

Figure 4-8: E[N |H1] vs. other parameters; β is fixed to 0.99

Chapter 5

Detection of Scanning Worm Infections

Network worms propagate to other hosts on the Internet via many methods: by searching
the IPv4 address space (scanning worms); by searching the file system of an infected host
for addresses that the infected host has already contacted (topological worms); by using
the hist-lists of susceptible hosts identified by earlier scans (flash worms); or by querying
specific servers for the addresses of potential victim hosts (meta-server worms). See [82]
by Weaver et al. for more discussions of a taxonomy of network worms.

Among these propagation methods, scanning has been most frequently employed by the
worms that have been released in the past few years. At its simplest, a scanning worm
chooses its next victim by randomly drawing from the 232 IPv4 addresses and transmits a
malicious payload if the victim accepts a connection request [44, 45, 59]. A few variations
were adapted by later worms in order to speed up the infection spread: Code Red II [11]
and Sasser [73] probe local hosts that are in the same subnet as the infected machine more
often than a completely random IP address. The Blaster worm [24] sequentially probes
hosts starting from an IP address picked at random, with a bias toward local addresses on
the same subnet.

The efficiency of scanning depends on the density of targeted vulnerable hosts on the Inter-
net, which can be quite low for several reasons. First of all, more than 38% of IPv4 address
blocks are not allocated to any registries [29], and therefore no hosts are reachable via those
IP addresses. Second, many networks employ a firewall, which blocks incoming packets to
certain ports that are known to be vulnerable to many existing exploits (e.g., TCP ports 135
and 139 corresponding to Windows RPC and NetBIOS). Finally, when a worm is fortunate
enough to find an active host, the chosen host may not be running the targeted application.

To increase the chances of locating a vulnerable host, some scanning worms employ ag-
gressive probing. For example, the Sasser worm creates 128 scanning threads to accelerate
the searching process. The Slammer worm sends probing packets as fast as its bandwidth
permits. The results are devastating: the Slammer worm rapidly spread to most of its vic-
tims in a matter of minutes, and its scanning traffic flooded many networks and shut down
Internet services for hours [86].

65

66 Chapter 5. Detection of Scanning Worm Infections

For defense against these fast scanning worms, current proposals focus on automated re-
sponses to worms, such as quarantining infected machines [46], automatic generation and
installation of patches [60, 61], and reducing the rate at which worms can issue connection
requests so that a more carefully constructed response can be crafted [76, 89]. Yet even an
automated response will be of little use if it fails to trigger soon after a host is infected.
Infected hosts with high-bandwidth network connections can initiate thousands of connec-
tion requests per second, each of which has the potential to transmit the infection. On the
other hand, an automated response that triggers too easily will erroneously identify hosts as
infected, interfering with these hosts’ reliable performance and causing significant damage.

We develop an approach that accurately detects scanning worm infection promptly after
the infected host begins to engage in worm propagation. At its heart, the detection method
uses the same intuition as the Threshold Random Walk (TRW) portscan detection algorithm
discussed in Chapter 4. The intuition is that scanning worms are more likely than benign
hosts to generate traffic to hosts that do not exist or do not have the requested service
activated. TRW, which is designed to detect inbound scans initiated by hosts outside the
local network, automatically adjusts the number of events to be collected with the strength
of the evidence supporting the hypothesis that the observed host is, in fact, scanning.

Firewall
Router

Switch+WDS

Internet

1 0

Figure 5-1: A Worm Detection System (WDS) is located to monitor a local network.

While TRW shows promise for quickly detecting scanning by hosts inside a local network,
there are two significant hurdles to overcome. The first is that to determine whether a
request to connect to a remote host will fail, one must often wait to see whether a successful
connection response will be returned. Until a sufficient number of connection requests can
be established as failures, a detector will lack the observations required to conclude that
the system is infected. By the time the decision to contain the host is made, a worm with a
high scan rate may have already spread to thousands of other hosts.

67

The second hurdle is that an observed host can change its behavior at any moment. TRW
uses a single sequential hypothesis test per host and does not re-evaluate benign hosts over
time. Unlike an intrusion detection system observing remote hosts, a worm detector is
likely to observe benign traffic originating from an infected host before it is infected. It is
therefore necessary to adapt this method to continuously monitor hosts for indications of
scanning.

Figure 5-1 illustrates a network layout where one can set up a Worm Detection System
(WDS), which monitors traffic generated from local hosts and automatically contains in-
fected hosts to prevent further infection spread to other subnets within the local network.
To detect infected hosts, the WDS need only process a small fraction of network events:
a subset of connection request observations that we call first-contact connection requests
and the responses to these requests that complete the connections. A first-contact connec-
tion request is a packet (TCP or UDP) addressed to a host with which the sender has not
recently communicated.1 These events are monitored because scans are mostly composed
of first-contact connection requests.

In this work, we focus on detecting local hosts infected by a scanning worm, which searches
through the IP address space for new victims. Hence, our approach is not likely to detect
targeting worms that utilize other information about potentially vulnerable hosts. Examples
of targeting worms are topological worms (e.g., Morris), flash worms, and meta-server
worms (e.g., Santy).

In Section 5.1, we introduce a scan detection algorithm that we call a reverse sequential
hypothesis test (←−−HT), and show how it can reduce the number of first-contact connections
that must be observed to detect scanning.2 This last-in, first-out event processing ensures
that the number of observations ←−−HT requires to detect hosts’ scanning behavior is not
affected by the presence of benign network activity that may be observed before scanning
begins.

In Section 5.2, we present a credit-based algorithm for limiting the rate at which a host may
issue the first-contact connections that are indicative of scanning activity. This credit-based
connection rate limiting (CBCRL) algorithm results in significantly fewer false positives
(unnecessary rate limiting) than existing approaches.

When combined, this two-pronged approach is effective because these two algorithms are
complementary. Without credit-based connection rate limiting, a worm could rapidly issue
thousands of connection requests before enough connection failures have been observed by←−−
HT so that it can report the worm’s presence. Because ←−−HT processes connection success
and failure events in the order that connection requests are issued, false alarms are less
likely to occur than if we used an approach purely relying on credit-based connection rate

1This definition of the first-contact connection request can be extended to differentiate servers running
on a same host by taking a destination port into account. For example, two connection requests to a same
destination host can be both first-contact connection requests by the extended definition if one goes to port
80 (Web server) and the other to port 25 (mail server).

2The letters in this abbreviation, ←−−HT , stand for Hypothesis Testing and the arrow indicates the reverse
sequential order in which observations are processed.

68 Chapter 5. Detection of Scanning Worm Infections

limiting, for which first-contact connections attempts are assumed to fail until the evidence
proves otherwise.
We demonstrate the utility of these combined algorithms with the trace-driven simulations
described in Section 5.3. The results of the simulations are presented in Section 5.4. The
limitations of our approach, including strategies that worms could attempt to avoid de-
tection, are presented in Section 5.5. We conclude with a discussion of future work in
Section 5.6.

5.1 Reverse Sequential Hypothesis Testing
In this section, we present an on-line algorithm for detecting the presence of scanners
within a local network by observing a host’s network traffic. Here a scanner means a
host sending out packets or connection initiation requests to a set of arbitrarily picked
destination IP addresses on a given destination port. We use a sequential hypothesis test
for its ability to adapt the number of observations required to make a decision to match the
strength of the evidence it is presented with.
As with previous approaches to scan detection discussed in Chapter 4 and [55], we rely
on the observation that only a small fraction of external addresses are likely to respond to
a connection request at any given port. Benign hosts, which only contact systems when
they have reason to believe that this connection request will be accepted, are more likely to
receive a response to a connection request.

Recall that a first-contact connection request is a packet (TCP or UDP) addressed to a host
with which the sender has not communicated for a given period of time. When a local
host l initiates a first-contact connection request to a destination address, d, we classify the
outcome as either a “success” or a “failure”. If the request was a TCP SYN packet, the
connection is said to succeed if a SYN-ACK is received from d before a timeout expires. If
the request is a UDP packet, any UDP packet from d received before the timeout will do.
We let Yi be a random (indicator) variable that represents the outcome of the ith first-contact
connection request by l, where

Yi =

{

0 if the connection succeeds
1 if the connection fails

As defined in Chapter 2.1, we call H1 the hypothesis that host l is engaged in scanning
(indicating infection by a worm) and H0 the null hypothesis that the host is not scanning.
Here l is a host in the local network, unlike in Chapter 4. We assume that, conditional on
the hypothesis Hj , the random variables Yi|Hj i = 1, 2, . . . are independent and identically
distributed. We can express the distribution of the Bernoulli random variable Yi as:

Pr[Yi = 0|H0] = θ0, Pr[Yi = 1|H0] = 1− θ0

Pr[Yi = 0|H1] = θ1, Pr[Yi = 1|H1] = 1− θ1

Given that connections originating at benign hosts are more likely to succeed than those
initiated by a scanner, θ0 > θ1.

5.1. Reverse Sequential Hypothesis Testing 69

Sequential hypothesis testing chooses between two hypotheses by comparing the likeli-
hoods that the model would generate the observed sequence of events, Yn ≡ (Y1, . . . , Yn),
under each hypothesis. It does this by maintaining the ratio Λ(Yn), the numerator of which
is the likelihood that the model would generate the sequence of events Yn under hypothesis
H1, and the denominator under hypothesis H0.

Λ(Yn) ≡ Pr[Yn|H1]

Pr[Yn|H0]
(5.1)

We can write the change to Λ(Yn) as a result of the ithobservation as φ(Yi):

φ(Yi) ≡
Pr[Yi|H1]

Pr[Yi|H0]
=







θ1

θ0

if Yi = 0 (success)

1−θ1

1−θ0

if Yi = 1 (failure)
(5.2)

This formula and the i.i.d. assumption enable us to rewrite Λ(Yn) inductively, such that
Λ(Y0) = 1, and Λ(Yn) may be calculated iteratively as each observation arrives.

Λ(Yn) =
n
∏

i=1

φ(Yi) = Λ(Yn−1)φ(Yn) (5.3)

One compares the likelihood ratio Λ(Yn) to an upper threshold, η1, above which we accept
hypothesis H1, and a lower threshold, η0, below which we accept hypothesis H0. If η0 <
Λ(Yn) < η1 then the result will remain inconclusive until more events in the sequence can
be evaluated.3 This is illustrated in Figure 5-2.

Y2 Y4Y3 Y5Y1

η1

η0

10 1 0 1
0

Figure 5-2: A log scale graph of Λ(Y) as each observation, Yi, is added to the sequence.
Each success (0) observation decreases Λ(Y), moving it closer to the benign conclusion
threshold η0, whereas each failure (1) observation increases Λ(Y), moving it closer to the
infection conclusion threshold η1.

3Section 2.2 discusses how to set the thresholds in terms of a target false positive probability (α) and a
target detection probability (β).

70 Chapter 5. Detection of Scanning Worm Infections

5.1.1 Detecting Infection Events

In TRW, we assumed that each remote host was either a scanner or benign for the duration
of the observed period. When a host was determined to be benign it would no longer
be observed. In contrast, in this work we are concerned with detecting infection events,
in which a local host transitions from a benign state to an infected state. Should a host
become infected while a hypothesis test is already running, the set of outcomes observed
by the sequential hypothesis test may include those from both the benign and infected
states, as shown in Figure 5-3. Even if we continue to observe the host and start a new
hypothesis test each time a benign conclusion is reached, the test may take longer than
necessary to conclude that an infection has occurred.

Yi Yi+1 Yi+4 Yi+5 Yi+6 Yi+7Yi+3Yi+2Yi−1i−2Y

1
0η

η1
0

0
infection 1

11 1 1 101

Figure 5-3: A log scale graph tracing the value of Λ(Y) as it is updated for a series of
observations that includes first-contact connection requests before (Yi−1 and Yi−2) and
after (Yi and beyond) the host was infected.

The solution to this problem is to run a new sequential hypothesis test as each connec-
tion outcome is observed, evaluating these outcomes in reverse chronological order, as
illustrated in Figure 5-4. To detect a host that was infected before it issued first-contact
connection i (event Yi), but after it had issued first-contact connection i − 1, a reverse se-
quential hypothesis test (←−−HT) would require the same number of observations to detect the
infection as would a forward sequential hypothesis that had started observing the sequence
at observation i. Because the most recent observations are processed first, the reverse test
will terminate before reaching the observations that were collected before infection.

Yi−1i−2Y Yi+5Yi+4Yi+3Yi+2Yi+1Yi

η1

1
0η

infection 10 0 1 1
1 01

Figure 5-4: A log scale graph tracing the value of Λ(Yi+5, Yi+4, . . .), in which the observa-
tions in Y are processed in reverse sequential order. The most recent (rightmost) observa-
tion is the first one processed.

5.1. Reverse Sequential Hypothesis Testing 71

When we used the sequential hypothesis testing in Chapter 4 to detect scanning of a local
network by remote hosts, the intrusion detection system could know a priori whether a
connection would fail given its knowledge of the network topology and services. Thus, the
outcome of a connection request from host i could immediately be classified as a success
or failure observation (Yi) and Λ(Yn) could be evaluated without delay.

When a local host initiates first-contact connection requests to remote hosts, such as those
shown in Figure 5-5, the worm detection system cannot immediately determine if the con-
nection will succeed or fail. While some connection failures will result in a TCP RST
packet or an ICMP packet [10], empirical evidence has shown that most do not [9]. The
remaining connection attempts can be classified as failures only after a timeout expires.

r2src:

Y1 = 1

Y5 = 1

Y4 = 1
Y3 = 1

Y2 = 0

r5

r4dst:
r3dst:
r2dst:
r1dst:

time time

tim
eout

WDSlocal host

dst:

Figure 5-5: The success of first-contact connection requests by a local host to remote
hosts cannot be established by the Worm Detection System (WDS) until a response is
observed or a timeout expires.

While a sequential hypothesis test waits for unsuccessful connections to time out, a worm
may send thousands of additional connection requests with which to infect other systems.
To limit the number of outgoing first-contact connections, a sequential hypothesis testing
approach must be paired with a method that limits connection initiation rates: the credit-
based connection rate limiter described in Section 5.2 is one such scheme.

5.1.2 Optimizing the Computation of Repeated Reverse Sequential Hy-
pothesis Tests

A straightforward implementation of the reverse sequential hypothesis testing requires that
an arbitrarily large sequence of first-contact connection observations be stored. An iterative

72 Chapter 5. Detection of Scanning Worm Infections

computation of the likelihood ratio, Equation (5.3) does not apply for a reverse sequential
hypothesis test. Instead, one has to maintain a sequence of observations from the beginning
and step through a portion of this sequence each time a new observation is received in order
to run a new test starting at that observation. The computational resources required for this
implementation may be onerous.

In this section, we show that there exists an iterative function for reverse sequential hypoth-
esis tests:

Λ̄(Yn) = max
(

1, Λ̄(Yn−1)φ(Yn)
)

Λ̄(Y0) ≡ 1

with state variable Λ̄(Yn), that can be calculated in the sequence in which events are ob-
served, and that has the property that its value will exceed η1 if and only if a reverse se-
quential hypothesis test would conclude from this sequence that the host was infected. φ is
the likelihood ratio of an individual event as defined in Equation (5.2).

We first prove the following lemma stating that if a reverse sequential hypothesis test re-
ports an infection, our optimized function will also report an infection.

Lemma 1. For η1 > 1 and for mutually independent random variables Yi,

∀m ∈ [1, n] : Λ(Yn, Yn−1, . . . , Ym) ≥ η1 ⇒ Λ̄(Yn) ≥ η1 (5.4)

Proof. We begin by replacing Λ with its equivalent expression in terms of φ:

η1 ≤ Λ(Yn, Yn−1, . . . , Ym) =
n
∏

i=m

φ(Yi) (5.5)

We can place a lower bound on the value of Λ̄(Yn) by exploiting the fact that, in any
iteration, Λ̄ cannot return a value less than 1.

Λ̄(Yn) = Λ̄(Y1, Y2, . . . , Yn)

≥ 1 · Λ̄(Ym, Ym+1, . . . , Yn)

≥
n
∏

i=m

φ(Yi)

≥ η1 (using Equation (5.5))

Thus, Λ(Yn, Yn−1, . . . , Ym) ≥ η1 ⇒ Λ̄(Yn) ≥ η1.

We must also prove that our optimized function will only report an infection when a reverse
sequential hypothesis test would also report an infection. Recall that a reverse sequential
hypothesis test will only report an infection if Λ exceeds η1 before falling below η0.

Lemma 2. For thresholds η0 < 1 < η1 and for mutually independent random variables
Yi, if Λ̄(Yi) ≥ η1 for some i = n, but Λ̄(Yi) < η1 for all i ∈ [0, n − 1], then there exists a
subsequence of observations starting at observation n and moving backward to observation

5.1. Reverse Sequential Hypothesis Testing 73

m ∈ [0, n − 1] for which Λ(Yn, Yn−1, . . . , Ym+1) ≥ η1 and such that there exists no k in
[m + 1, n] such that Λ(Yn, Yn−1, . . . , Yk) ≤ η0.

Proof. Choose m as the largest observation index for which it held that:

Λ̄(Ym−1)φ(Ym) < 1

We know that m < n because Λ̄(Yn−1)φ(Yn) is greater than η1 which is in turn greater than
1. Let m = 0 if the above relation does not hold for any observation with index greater
than or equal to 1. It follows that Λ̄(Ym) = 1 and thus:

Λ̄(Ym+1) = φ(Ym+1)

Because we chose m such that Λ̄(Yj−1)φ(Yj) ≥ 1 for all j > m:

Λ̄(Yn) =
n
∏

j=m+1

φ(Yj)

= Λ(Yn, Yn−1, . . . , Ym+1)

Thus, Λ̄(Yn) ≥ η1 ⇒ Λ(Yn, Yn−1, . . . , Ym+1) ≥ η1.

To prove that there exists no k in [m + 1, n] such that Λ(Yn, Yn−1, . . . , Yk) ≤ η0, suppose
that such a k exists. It follows that:

n
∏

j=k

φ(Yj) ≤ η0 < 1 (5.6)

Recall that we chose m to ensure that:

η1 ≤
n
∏

j=m+1

φ(Yj) (5.7)

The product on the right hand side can be separated into factors from before and after
observation k.

η1 ≤
k−1
∏

j=m+1

φ(Yj) ·
n
∏

j=k

φ(Yj)· (5.8)

We then use Equation (5.6) to substitute an upper bound of 1 on the latter product.

η1 <
k−1
∏

j=m+1

φ(Yj) ≤ Λ̄(Yk−1)

This contradicts the hypothesis that Λ̄(Yi) < η1 for all i ∈ [0, n− 1].

74 Chapter 5. Detection of Scanning Worm Infections

5.1.3 Algorithmic Implementation

Updating Λ̄ for each observation requires only a single multiplication and two comparison
operations. In fact, addition and subtraction operations are adequate as the iterative function
is equivalent to Θ(Yn) = max (0, Θ(Yn−1) + ln φ(Yn)), where Θ(Yn) ≡ ln Λ̄(Yn).
Because Λ̄ is updated in sequence, observations can be discarded immediately after they
are used to update the value of Λ̄.

When running this algorithm in a worm detection system, we must maintain separate state
information for each host being monitored. Thus, a state variable Λ̄l is maintained for each
local host l. It is also necessary to track which hosts have been previously contacted by l.
We track the set of Previously Contacted Hosts, or PCH set, for each local host.

enum status {PENDING, SUCCESS, FAILURE};
struct FCC_Queue_Entry {
ip4_addr DestAddr;
time WhenInitiated;
status Status;

}

Figure 5-6: The structure of entries in the First-Contact Connection (FCC) queue

Finally, each local host l has an associated queue of the first-contact connection attempts
that l has issued but that have not yet been processed as observations. The structure of the
records that are pushed on this FCC queue are shown in Figure 5-6. The choice of a queue
for this data structure ensures that first-contact connection attempts are processed in the
order in which they are issued, not in the order in which their status is determined.

The algorithm itself is quite simple and is triggered upon one of three events:

1. When the worm detection system observes a packet (TCP SYN or UDP) sent by
local host l, it checks to see if the destination address d is in l’s previously contacted
host (PCH) set. If it isn’t, it adds d to the PCH set and adds a new entry to the end
of the FCC queue with d as the destination address and status PENDING. Note that
the current algorithm does not act on a connection initiation packet if its destination
address belongs to the PCH set in order to ensure that the algorithm processes only
first-contact connections.

2. When an incoming packet arrives addressed to local host l and the source address is
also the destination address (DestAddr) of a record in l’s FCC queue, the packet is
interpreted as a response to the first-contact connection request and the status of the
FCC record is updated. The status of the FCC record is set to SUCCESS unless the
packet is a TCP RST packet, which indicates a rejected connection.

3. Whenever the entry on the front of the FCC queue has status PENDING and has been
in the queue longer than the connection timeout period, a timeout occurs and the
entry is assigned the status of FAILURE.

5.2. Credit-Based Connection Rate Limiting 75

When any of the above events causes the entry at the front of the FCC queue to have status
other than PENDING, it is dequeued and Λ̄l is updated and compared to η1. If Λ̄l ≥ η1, we
halt testing for host l and immediately conclude that l is infected. Dequeuing continues so
long as Λ̄l < η1, the front entry of the FCC queue has status other than PENDING, and the
queue is not empty.

5.2 Credit-Based Connection Rate Limiting

It is necessary to limit the rate at which first-contact connections can be initiated in order
to ensure that worms cannot propagate rapidly between the moment scanning begins and
the time at which the scan’s first-contact connections have timed out and been observed by
our reverse sequential hypothesis test (←−−HT).

Twycross and Williamson [76, 89] use a technique they call a virus throttle to limit out-
going first-contact connections. When observing a given host, their algorithm maintains
a working set of up to five hosts previously contacted by the host they are observing. In
their work, a first-contact connection is a connection to a host that is not in this working
set. First-contact connections issued when the working set is full are not sent out, but in-
stead added to a queue. Once per second, the least recently used entry in the working set is
removed and, if the pending queue of first-contact connection requests is not empty, a re-
quest is pulled off the queue, delivered, and its destination address is added to the working
set. All requests in the queue with the same destination address are also removed from the
queue and delivered.

Virus throttling is likely to interfere with HTTP connection requests for embedded objects,
as many Web pages contain several or more embedded objects each of which may be lo-
cated on a distinct server. While a slow but bursty stream of requests from a Web browser
will eventually be released by the throttle, mail servers, Web crawlers, and other legitimate
services that issue first-contact connections at a rate greater than once per second will over-
flow the queue. In this case, the virus throttling algorithm quarantines the host and allows
no further first-contact connections.

To achieve rate limiting with a better false positive rate we once again present a solution
inspired by sequential hypothesis testing and that relies on the observation that benign first-
contact connections are likely to succeed whereas those issued by scanners are likely to fail.
This credit-based approach, however, is unlike←−−HT in that it assumes that a connection will
fail until evidence proves otherwise. Because it does not wait for a timeouts to act, it can
react immediately to a burst of connections and halt the flow so that ←−−HT can then make a
more informed decision as to whether the host is infected. As it does not force connections
to be evaluated in order, CBCRL can also immediately process evidence of connection
successes. This will enable it to quickly increase the allowed first-contact connection rate
when these requests are benign.

CBCRL, as summarized in Table 5.1, works by allocating to each local host, l, a start-
ing balance of C0 credits, which can be used for issuing first-contact connection requests.
Whenever a first-contact connection request is observed, the sending host’s balance is

76 Chapter 5. Detection of Scanning Worm Infections

decremented by p. If the successful acknowledgment of a first-contact connection is ob-
served, the host that initiated the request is issued with q additional credits. No action is
taken when connections fail, as the cost of issuing a first-contact connection has already
been deducted from the issuing host’s balance. Finally, first-contact connection requests
are blocked if the host does not have any credit available (Cl = 0).

Table 5.1: The underlying equations behind credit-based connection rate limiting. Changes
to a host’s balance are triggered by the first-contact connections (FCCs) it initiates and by
the passing of time.

Event Change to Cl

Starting balance Cl ← C0

FCC issued by l Cl ← Cl − p
FCC succeeds Cl ← Cl + q (q > p)
Every second Cl ← max(C0, rCl) if Cl > C0 (0 < r < 1)
Allowance Cl ← 1 if Cl = 0 for t seconds

If a first-contact connection succeeds with probability θ, its expected payoff from issuing
that connection is its expected success credit minus its cost, or qθ−p. This payoff is positive
for θ > p

q
and negative otherwise. To penalize a host with a less than 50% success rate,

we set q = 2 and p = 1. Hosts that scan with a low rate of successful connections (< p

q
)

will quickly consume their credits whereas benign hosts that issue first-contact connections
with high rates of success will increase their credits each time they invest them.

As described so far, the algorithm could result in two undesirable states. First, a host could
acquire a large number of credits while performing a benign activity (e.g., Web crawling)
which could be used later by a scanning worm. Second, a network outage could cause a
benign host to use all of its credits after which it would starve for a lack of first-contact
connection successes.

These problems are addressed by providing each host with a small allowance and by putting
in place a high rate of inflation. If a host has been without credits for t seconds, we issue
the host a single credit (Cl ← 1 if Cl ≤ 0). This not only ensures that the host does not
starve, but enables us to collect another observation to feed into the hypothesis test (←−−HT).

Because←−−HT , as configured below in Section 5.3, observes all first-contact connection re-
quests as successes or failures within three seconds, providing a starving process with a
credit allowance only after more than three seconds have passed ensures that←−−HT will have
been executed on all previously issued first-contact connection requests. In other words, t

should be set such that it is greater than a timeout value based on which ←−−HT determines a
failure for a non-responding first-contact connection request. If←−−HT has already concluded
that the host is a worm, it is expected that the system will be quarantined and so no requests
will reach their destination regardless of the credit balance.

For each second that passes, a host that has acquired more than C0 credits will be forced
to surrender up to (1− r) of them, but not so many as to take its balance below C0 (Cl ←

5.3. Experimental Setup 77

max(C0, rCl) if Cl > C0). A host that is subject to the maximum inflation rate, with a
first-contact connection rate γ, success rate θ > 0, and credit balance Cl,t at time t, will see
this balance reach an equilibrium state Ĉ when Ĉ = Cl,t = Cl,t+1.

Cl,t+1 = r[Cl,t + γ · (qθ − p)]

Ĉ = r[Ĉ + γ · (qθ − p)]

Ĉ =
r

1− r
· γ · (qθ − p)

One way to choose the inflation constant r is to ensure that, in the upcoming second, a host
that has a perfect first-contact connection success rate (θ = 1) will have twice as many
credits as it could have needed in the previous second. In the case of p = 1 and q = 2:

r

1− r
· γ = 2 · γ

r =
2

3

Also note that the maximum inflation rate, which seems quite steep, is only fully applied
when Ĉ ≥ 15, which in turn occurs only when the first-contact connection rate r is greater
than 7.5 requests per second. Twycross and Williamson’s virus throttle, on the other hand,
can only assume that any host with a first-contact connection rate consistently greater than
1 per second is a worm.

The constant of 10 was chosen for the starting credit balance (and for the equilibrium
minimum credit balance for benign hosts with first-contact connection rates below 5 re-
quests/second) in order to match the requirements of our sequential hypothesis test (←−−HT)
as currently configured (see parameters in Section 5.3), which itself requires a minimum of
10 observations in order to conclude that a host is engaged in scanning. Slowing the rate at
which the first 10 observations can be obtained will only delay the time required by←−−HT to
conclude that a host is engaged in scanning. Should the parameters of←−−HT be reconfigured
and the minimum number of observations required to conclude a host is a scanner change,
the starting credit balance for rate-limiting can be changed to match it.

5.3 Experimental Setup
We evaluated our algorithms using two traces collected at the peering link of a medium
sized ISP: one collected in April 2003 (isp-03) containing 404 active hosts and the other
in January 2004 (isp-04) containing 451 active hosts. These traces, summarized in Ta-
ble 5.2, were collected using tcpdump.

Obtaining usable traces was difficult. Due to privacy concerns, network administrators are
loathe to share any traces, let alone those that contain payload data in addition to headers.
Yet we required the payload data in order to manually determine which, if any, worm was
present on a host that was flagged as infected.

78 Chapter 5. Detection of Scanning Worm Infections

Table 5.2: Summary of network traces
isp-03 isp-04

Date 2003/04/10 2004/01/28
Duration 627 minutes 66 minutes

Total outbound connection attempts 1,402,178 178,518
Total active local host 404 451

In configuring the reverse sequential hypothesis test (←−−HT), first-contact connection requests
were interpreted as failures if they were not acknowledged within a three second grace pe-
riod. First-contact connection requests for which TCP RST packets were received in re-
sponse were immediately reported as failure observations. Connection success probability
estimates were chosen to be:

θ0 = 0.7 θ1 = 0.1

Confidence requirements were set to:

α = 0.00005 β = 0.99

Note that these confidence requirements are for each reverse sequential hypothesis test, and
that a test is performed for each first-contact connection that is observed. Therefore, the
false positive rate (α) is chosen to be particularly low as testing will occur many times for
each host.
For each local host we maintained a Previously Contacted Host (PCH) set of only the last
64 destination addresses that each local host had communicated with (LRU replacement).
In the experiment, a first-contact connection request was any TCP SYN packet or UDP
packet addressed to a host that was not in the local host’s PCH set. While using a fixed
sized PCH set demonstrates the efficacy of our test under the memory constraints that are
likely to occur when observing large (e.g., class B) networks, this fixed memory usage
comes at a cost. As described in Section 5.5, it is possible for a worm to exploit limitations
in the PCH set size to avoid having its scans detected.
For comparison, we also implemented Twycross and Williamson’s virus throttle as de-
scribed in [76]. Because our traces contain only those packets seen at the peering point,
our results may differ from a virus throttle implemented at each local host as Twycross and
Williamson recommend. However, because observing connections farther from the host
results in a reduction in the number of connections observed, it should only act to reduce
the reported number of false positives in which benign behavior is throttled.
All algorithms were implemented in Perl. We used traces that had been pre-processed by
the Bro Network Intrusion Detection System [1, 52].
We did not process FTP data-transfer, finger, and ident connections as these connections
are the result of local hosts responding to remote hosts, and are not likely to be accepted
by a host that has not issued a request for such a connection. These connections are thus
unlikely to be useful for worm propagation.

5.4. Results 79

5.4 Results
←−−
HT detected two hosts infected with Code Red II [13, 69] from the April, 2003 trace
(isp-03). Our test detected one host infected with Blaster [24], three hosts infected with
MyDoom [26, 85], and one host infected with Mimail.j [25] from the January, 2004 trace
(isp-04). The worms were conclusively identified by painstakingly comparing the logged
traffic with the cited worm descriptions at various online virus/worm information libraries.
Our test also identified four additional hosts that we classify as HTTP scanners because
each sent SYN packets to port 80 of at least 290 addresses within a single class B network.
These results are summarized in Table 5.3.

Table 5.3: Alarms reported by reverse sequential hypothesis testing combined with credit-
based rate limiting. The cause of each alarm was later identified manually by comparing
observed traffic to signature behaviors described at online virus libraries.

isp-03 isp-04
Worms/Scanners detected

Code Red II 2 0
Blaster 0 1
MyDoom 0 3

Mimail.j 0 1
HTTP (other) 3 1

Total 5 6
False alarms

HTTP 0 3
SMTP 0 3

Total 0 6
P2P detected 6 11
Total identified 11 23

While peer-to-peer applications are not necessarily malicious, many network administra-
tors do not classify them as benign. Peer-to-peer file sharing applications also exhibit
ambiguous network behavior, as they attempt to contact a large number of transient peers
that are often unwilling or unavailable to respond to connection requests. While peer-to-
peer clients are deemed undesirable on most of the corporate networks that we envision our
approach being used to protect, it would be unfair to classify these hosts as infected. For
this reason we place hosts that we detect running peer-to-peer applications into their own
category. Networks that allow peer-to-peer traffic may avoid these false alarms by limiting
the detection algorithm to outgoing traffic to the well known port numbers [75]. However,
this may not eliminate false alarms due to peer-to-peer applications because some of them
tunnel through port 80.

Three additional false alarms were reported for three of the 60 (isp-04) total hosts trans-
mitting SMTP traffic. We suspect the false alarms are the result of bulk retransmission of
those emails that have previously failed when the recipients’ mail servers were unreachable.

80 Chapter 5. Detection of Scanning Worm Infections

We suggest that organizations may want to white-list their SMTP servers, or significantly
increase the detection thresholds for SMTP.

The remaining three false alarms are specific to the isp-04 trace, and resulted from HTTP
traffic. It appears that these false alarms were raised because of a temporary outage at a
destination network at which multiple remote hosts became unresponsive. These may have
included servers used to serve embedded objects.

Upon discovering these failures, we came to realize that it would be possible for an ad-
versary to create Web sites that served pages with large numbers of embedded image tags
linked to non-responsive addresses. If embedded with scripts, these sites might even be de-
signed to perform scanning of the client’s network from the server. Regardless, any client
visiting such a site would appear to be engaged in HTTP scanning. To prevent such denial
of service attacks that fool a user to generating scan-like traffic, we require a mechanism
for enabling users to deactivate quarantines triggered by HTTP requests. We propose that
HTTP requests from such hosts be redirected to a site that uses a CAPTCHA (Completely
Automated Public Turing Test to Tell Computers and Humans Apart [79]), to confirm that
a user is present and was using a Web browser at the time of quarantine.

Table 5.4: Alarms reported by virus throttling [76]
isp-03 isp-04

Worms/Scanners detected
Code Red II 2 0

MyDoom 0 1
HTTP (other) 1 1

Total 3 2
False alarms 0 0
P2P detected 2 3
Total identified 5 5

Results for our implementation of Twycross and Williamson’s virus throttle [76] are sum-
marized in Table 5.4. Their algorithm blocked both instances of Code Red II, but failed
to detect Blaster, three instances of MyDoom (which is admittedly an email virus and not
an IP scanning worm), and two low rate HTTP scanners. It did, however, detect one host
infected with MyDoom that ←−−HT failed to detect. The MyDoom infected host was also
active in accessing stock trading Web sites while transmiting a viral email to other hosts.
This combining activity resulted in a high first-contact connection rate, and thus triggered
the virus trottle. But, because of a low failure rate due to accesses to legitimate Web sites,
it did not trigger←−−HT . The virus throttle also detected fewer hosts running peer-to-peer ap-
plications, which for fairness we classify as a reduction in false alarms in virus throttling’s
favor in our composite results summarized in Table 5.5.

These composite results for both traces report the number of hosts that resulted in alarms
and the number of those alarms that were detections of the 12 worms located in our traces.

5.4. Results 81

Table 5.5: Composite results for both traces: A total of 7 HTTP scanning worms and 5
email worms were present.

Alarms Detection Efficiency Effectiveness
←−−
HT 34 11 0.324 0.917
virus-throttling 10 5 0.500 0.417

We also include the efficiency, which is the number of detections over the total number of
alarms, and the effectiveness, which is the total number of detections over the total number
of infected hosts we have found in these traces. While←−−HT is somewhat less efficient than
virus throttling, we believe that the more-than-two-fold increase in effectiveness is well
worth the trade-off. In addition, corporate networks that forbid peer-to-peer file sharing
applications will see a two-fold increase in efficiency.

Table 5.6 shows the number of hosts that had connection requests blocked by the CBCRL
algorithm and the number of hosts that were rate-limited by Twycross and Williamson’s
algorithm. For credit-based connection rate limiting, we say that a machine has been rate
limited if a single packet is dropped. For the virus throttle, we say that a machine has been
rate limited if the outgoing delay queue length is greater than five, giving Twycross and
Williamson the benefit of the doubt that users won’t notice unless connections are severely
throttled. CBCRL only limited the rates of hosts that our reverse sequential hypothesis test
reported as infected. In contrast, even given our generous definition, more than 10% of the
hosts in both traces were rate limited by Twycross and Williamson’s algorithm.

Table 5.6: Comparison of rate limiting by CBCRL vs. virus throttling
CBCRL Virus Throttling

isp-03 isp-04 isp-03 isp-04
Worms/Scanners 5 1 3 4

P2P 4 8 3 7
Unnecessary rate limiting 0 0 84 59

Table 5.7 reports the number of first-contact connections permitted by the two approaches
for those scanners that both detected. Code Red II is a fast scanner, and so virus throttling
excels in blocking it after 6 to 7 connection requests. This speed is expected to come at
the price of detecting any service, malicious or benign, that issues high-rate first-contact
connections.
←−−
HT with credit-based connection rate limiting detects worms after a somewhat higher num-
ber of first-contact connections are permitted (10), but does so regardless of the scanning
rate. Whereas our approach detects a slow HTTP scanner after 10 first-contact connection
requests, the virus throttle requires as many as 526.

82 Chapter 5. Detection of Scanning Worm Infections

Table 5.7: The number of first-contact connections permitted before hosts were reported as
infected: the value pairs represent individual results for two different Code Red II infections
and two different HTTP scanners. ←−−

HT with CBCRL Virus Throttling
Code Red II 10,10 6,7

Other HTTP scanners 10,10 102,526

5.5 Limitations
CBCRL is resilient to network uplink outages as hosts starved for credits will receive an
allowance credit seconds after the network is repaired. Unfortunately, this will be of little
consolation as Reverse Sequential Hypothesis Testing (←−−HT) may have already concluded
that all hosts are scanners. This may not be a problem if network administrators are given
the power to invalidate observations made during the outage period, and to automatically
reverse any quarantining decisions that would not have been taken without these invalid
observations.

Of greater concern is that both ←−−HT and CBCRL rely exclusively on the observation that
hosts engaged in scanning will have lower first-contact connection success rates than be-
nign hosts. New hypotheses and tests are required to detect worms for which this statistical
relationship does not hold.

Also problematic is that two instances of a worm on different networks could collaborate to
ensure that none of their first-contact connections will appear to fail. For example, if worm
A does not receive a response to a first-contact connection request after half the timeout
period, it could send a message to worm B asking it to forge a connection response. This
forged response attack prevents our system from detecting connection failures. To thwart
this attack for TCP connections, a worm detection system implemented on a router can
modify the TCP sequence numbers of traffic as it enters and leaves the network. For ex-
ample, the result of a hash function h(IPlocal, IPremote, salt) may be added to all sequence
numbers on outgoing traffic and subtracted from all incoming sequence numbers. The use
of the secret salt prevents the infected hosts from calculating the sequence number used
to respond to a connection request which they have sent, but not received. By storing the
correct sequence number in the FCC queue, responses can then be validated by the worm
detection system. However, modifying sequence numbers can disrupt a pre-existing con-
nection that is already in progress when the detection system starts running. It is important
that the detection system modifies a packet’s sequence number (or acknowledgement num-
ber) only if the packet belongs to a connection that is initiated by a local host and the
connection’s initial SYN packet has been observed by the detection system.

Another concern is the possibility that a worm could arrive at its target already in possession
of a list of known repliers – hosts that are known to reply to connection requests at a given
port. This known-replier attack could employ lists that are programmed into the worm at
creation, or accumulated by the worm as it spreads through the network. First-contact con-
nections to these known-repliers will be very likely to succeed and can be interleaved with

5.6. Summary 83

scans to raise the first-contact connection success rate. A one to one interleaving is likely
to ensure that more than half of all connections succeed. This success rate would enable
the scanner to bypass credit-based connection rate limiting, and delay detection by Reverse
Sequential Hypothesis Testing until the scanner had contacted all of its known-repliers.
What’s worse, a worm could avoid detection altogether if the detection system defines a
first-contact connection with respect to a fixed sized previously contact host (PCH) set.
If the PCH set tracks only the n previously visited hosts, the scanner can cycle through
(n/2)+1 known-repliers, interleaved with as many new addresses, and never be detected.4

To prevent a worm from scanning your local network by interleaving connections to known-
repliers outside of your network, Weaver et al. [83] propose that one hypothesis test be run
for local connections (i.e., those within the same IP block) and another for connections to
remote hosts. If hosts in your local network are widely and randomly dispersed through a
large IP space,5 then a worm will have a low probability of finding another host to infect
before being quarantined.

A worm might also avoid detection by interleaving scanning with other apparently benign
behavior, such as Web crawling. A subset of these benign interleaving attacks can be
prevented by detecting scanners based on the destination port they target in addition to the
source IP of the local host. While it is still fairly easy to create benign looking traffic for
ports such as HTTP, for which one connection can lead to information about other active
hosts receptive to new connections, this is not the case for ports such as those used by SSH.
Running separate scan detection tests for each destination port that a local host addresses
can ensure that connections to one service aren’t used to mask scans to other services.

Finally, if an infected host can impersonate other hosts, the host could escape quarantine
and cause other (benign) hosts to be quarantined. To address these address impersonation
attacks, it is important that a complete system for network quarantining include strong
methods for preventing IP masquerading by its local hosts, such as switch-level egress
filtering. Host quarantining should also be enforced as close to the host as is possible
without relying on the host to quarantine itself. If these boundaries cannot be enforced
between each host, one must assume that when one machine is infected, all of the machines
within the same boundary will also be infected.

5.6 Summary

When combined, credit-based connection rate limiting and reverse sequential hypothesis
testing ensure that worms are quickly identified with an attractively low false alarm rate.
While no current system can detect all possible worms, our new approach is a significant
improvement over prior methods, which detect a smaller range of scanners and unnec-
essarily delay network traffic. What’s more, the techniques introduced in this work lend
themselves to efficient implementation, as they need only be activated to observe a small

4For detecting such a worm, a random replacement policy will be superior to an LRU replacement policy,
but will still not be effective enough for long known-replier lists.

5Randomly dispersing local hosts through a large IP space can be achieved by using a network address
translation (NAT) switch.

84 Chapter 5. Detection of Scanning Worm Infections

subset of network events and require little calculation for the common case that traffic is
benign.

As worm authors become aware of the limitations discussed in Section 5.5, it will be nec-
essary to revise our algorithms to detect scanning at the resolution of the local host (source
address) and targeted service (destination port), rather than looking at the source host alone.
Solutions for managing the added memory requirements imposed by this approach have
been explored by Weaver, Staniford, and Paxson [83].

The intrusiveness of credit-based connection rate limiting, which currently drops outgoing
connection requests when credit balances reach zero, can be further reduced. Instead of
halting outgoing TCP first-contact connection requests from hosts that do not maintain a
positive credit balance, the requests can be sent immediately and the responses can be held
until a positive credit balance is achieved. This improvement has the combined benefits of
reducing the delays caused by false rate limiting while simultaneously ensuring that fewer
connections are allowed to complete when a high-speed scanning worm issues a burst of
connection requests. As a result, the remaining gap in response speed between credit-based
connection rate limiting and Twycross and Williamson’s virus throttle can be closed while
further decreasing the risk of acting on false positives.

Finally, we can employ additional indicators of infection to further reduce the number of
first-contact connection observations required to detect a worm. For example, it is reason-
able to conclude that, when a host is deemed to be infected, those hosts to which it has most
recently initiated successful connections are themselves more likely to be infected (as was
the premise behind GrIDS [68]). We propose that this be accomplished by adding an event
type, the report of an infection of a host that has recently contacted the current host, to our
existing hypothesis test.

Chapter 6

Detection of Targeting Worm
Propagations

The previous chapter presented algorithms for detecting network worms that use random
scanning to discover new victims. This chapter describes an algorithm for detecting fast-
propagating worms that use high-quality targeting information. It then presents a unified
framework for detecting network worms independently of their target discovery strategy.

If a network worm penetrates a site’s perimeter, it can quickly spread to other vulnera-
ble hosts inside the site. The infection propagates by the compromised host repeatedly
attempting to contact and infect new potential victims. Figure 6-1 illustrates a situation
where a worm bypasses a firewall and then propagates to local machines via an infected
laptop plugged in to a local network. The traffic pattern of fast worm propagation—a single
host quickly contacting many different hosts—is a prominent feature across a number of
types of worms, and detecting such patterns constitutes the basis for several worm detection
approaches [14, 76].

The problem of accurately detecting such worm propagation becomes particularly acute
for enterprise networks comprised of a variety of types of hosts running numerous, dif-
ferent applications. This diversity makes it difficult to tune existing worm detection meth-
ods [14,76] that presume preselected thresholds for connection rates and window sizes over
which to compute whether a host’s activity is “suspicious.” First, finding a single threshold
rate that accommodates most of benign hosts requires excessive tuning because of diverse
application behaviors (e.g., a Web browser generating multiple concurrent connections to
fetch embedded objects vs. an SSH client connecting to a server). Second, the window
size chosen to compute the average rate affects the detection speed and accuracy; if too
small, the detection algorithm is less resilient to small legitimate connection bursts, but if
too big, the detection algorithm reacts slowly to fast propagating worms, for which prompt
response is vital.

We first develop an algorithm for detecting fast-propagating worms that use high-quality
targeting information. We base our approach on analyzing the rate at which hosts initi-
ate connections to new destinations. One such class of worms are those that spread in a

85

86 Chapter 6. Detection of Targeting Worm Propagations

Switch

Router

Firewall

Internet

1 0

Figure 6-1: Worm propagation inside a site

topological fashion [67, 82]: they gather information on the locally infected host regard-
ing other likely victims. For example, the Morris worm examined .rhosts files to see what
other machines were known to the local machine [20, 63]. A related technique is the use
of meta-servers, such as worms that query search engines for likely victims [22]. These
targeting worms can spread extremely quickly, even using relatively low-rate scanning, be-
cause the vulnerability density of the addresses they probe is so much higher than if they
use random scanning. Furthermore, these worms can evade many existing worm defense
systems that rely on the artifacts of random scanning such as number of failed connections
and the absence of preceding DNS lookups [14, 83, 84].

Our detection algorithm, Rate-Based Sequential Hypothesis Testing (RBS), operates on
a per-host and per-connection basis and does not require access to packet contents. It is
built on a probabilistic model that captures benign network characteristics, which enables
us to discriminate between benign traffic and worm traffic. RBS also provides an analytic
framework that enables a site to tailor its operation to its network traffic pattern and security
policies.

We then present RBS + TRW, a unified framework for detecting fast-propagating worms
independent of their target discovery strategy. RBS + TRW is a blend of RBS and the
Threshold Random Walk (TRW) algorithm from Chapter 4, which rapidly discriminates
between random scanners and legitimate traffic based on their differing rates of connection
failures.

Section 6.1 presents an analysis of network traces we obtained from two internal routers
of Lawrence Berkeley National Laboratory (LBL). Such data allow us to assess RBS’s
efficacy in detecting worms that remain inside an organization network, rather than just
those that manifest in a site’s external Internet traffic (a limitation of previous studies).

6.1. Data Analysis 87

The traced traffic includes more than 650 internal hosts, about 10% of the total at the
site. We examine the distribution of the time between consecutive first-contact connection
requests, defined in Chapter 5 as a packet addressed to a host with which the sender has not
recently communicated. Our analysis finds that for benign network traffic, these interarrival
times are bursty, but within the bursts can be approximately modeled using exponential
distributions with a few hundred millisecond average intervals.

In Section 6.2, we develop the RBS algorithm, based on the same sequential hypothesis
testing framework as TRW. RBS quickly identifies hosts that initiate first-contact connec-
tion requests at a rate n times higher than that of a typical benign host. RBS updates its
decision process upon each data arrival, triggering an alarm after having observed enough
empirical data to make a distinction between the candidate models of (somewhat slower)
benign and (somewhat faster) malicious host activity.

In Section 6.3, we evaluate RBS using trace-driven simulations. We find that when n is
small, RBS requires more empirical data to arrive at a detection decision; for example,
it requires on average 10.4 first-contact connections when n = 5. However, when n is
larger, RBS provides accurate and fast detection. On the other hand, we show that a fixed-
threshold rate-based scheme will inevitably require more difficult tradeoffs between false
positives and false negatives.

Section 6.4 presents RBS + TRW, which automatically adapts between the rate at which
a host initiates first-contact connection requests and observations of the success of these
attempts, combining two different types of worm detection. Using datasets that contain
active worms caught in action, we show that RBS + TRW provides fast detection of two
hosts infected by Code Red II worms, while generating less than 1 false alarm per hour.

6.1 Data Analysis
We hypothesize that we can bound a benign host’s network activity by a reasonably low
fan-out per unit time, where we define fan-out as the number of first-contact connection
requests a given host initiates. This fan-out per unit time, or fan-out rate, is an important
traffic measure that we hope will allow us to separate benign hosts from relatively slowly
scanning worms. In this section, we analyze traces of a site’s internal network traffic,
finding that a benign host’s fan-out rate rarely exceeds a few first-contact connections per
second, and time intervals between those connections can be approximately modeled as
exponentially distributed.

We analyze a set of 22 anonymized network traces, each comprised of 10 minutes’ of traffic
recorded at LBL on Oct. 4, 2004. These were traced using tcpdump at two internal routers
within LBL, enabling them to collect bidirectional traffic originated by internal hosts to
both external hosts outside LBL and to other internal hosts inside LBL. While ideally we
would have such traces from a number of different sites in order to assess the range of
behavior normally seen, such traces have to date been unavailable. Indeed, we believe the
internal traces to which we have access are unique or nearly so for the research community
at present. Thus, we view them as highly valuable, if fundamentally limited, though we
need to continually keep in mind the caution that we should not readily generalize from

88 Chapter 6. Detection of Targeting Worm Propagations

them. (A much larger dataset, LBL-II, later became available from this same site. We use
it in Section 6.4 to evaluate RBS + TRW, independently of data analysis.)

Table 6.1 summarizes the LBL dataset after some initial filtering to remove periodic NTP
traffic and “triggered” connections in which a connection incoming to a host causes the
host to initiate a secondary connection outbound. Such triggered connections should not
be considered first-contact connections when assessing whether a host is probing.

The table shows that the traffic between internal LBL hosts consists of about 70% of the
total outbound traffic recorded in the datasets. Had we traced the traffic at the site’s bor-
der, we would have seen much less of the total network activity, and lower first-contact
connections accordingly.

Table 6.1: LBL dataset summary: This analysis does not include NTP traffic or triggered
outgoing connections such as Ident, Finger, and FTP data-transfer.

Outgoing connections
to internal hosts 32,967
to external hosts 16,082

total 49,049
Local hosts ≥ 652

For each 10-minute trace, we observe that the number of active internal hosts that initiated
any outbound traffic during the observation period varies. The last row in Table 6.1 shows
that the largest number of active internal hosts in a 10-minute trace is 652. Because each
trace was anonymized separately, we are unable to tell how many distinct internal hosts
appear across all of the traces.

We plot the cumulative distribution of per-host fan-out in Figure 6-2. We see that over
99.5% of hosts contacted fewer than 60 different hosts in 10 minutes, which results in
less than 0.1/sec fan-out rate on average. However, the top 0.5% most active hosts greatly
stretch out the tail of the distribution. In what follows, we examine those hosts with a high
fan-out rate to understand what distinguishes their behavior from that of worm propagation.
Then, we find a set of “purely” benign hosts, which we use to develop a model that captures
their fan-out rate statistics.

6.1.1 Separating Benign Hosts

Our starting point is the assumption that a host is benign if its fan-out rate is less than 0.1/sec
averaged over a 10-minute monitoring period. Note that Twycross and Williamson [76] use
a 1/sec fan-out rate as a maximum allowed speed for throttling virus spreads. Only 9 hosts
exceed this threshold. Of these, 4 were aliases (introduced by each trace having a separate
anonymization namespace) for an internal scanner used by the site for its own vulnerability
assessment. Of the remainder, 3 hosts are mail servers that forward large volumes of email,
and the other 2 hosts are internal web crawlers that build search engine databases of the
content served by internal Web servers.

6.1. Data Analysis 89

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 1 2 3 6 10 20 30 60 100 300

C
um

ul
at

iv
e

%
 o

f L
oc

al
 H

os
ts

Fan-Out

Figure 6-2: Fan-out distribution of an internal host’s outbound network traffic for a 10 minute
observation period: only 9 hosts contacted more than 60 different hosts in 10 minutes.

By manual inspection, we also later found another appearance of the internal scanner that
we missed using our 0.1/sec fan-out rate threshold, as in that instance the scanner contacted
only 51 different IP addresses during the 10-minute period. Table 6.2 shows the average
fan-out per each type of scanners detected from the LBL dataset. Note that we do not
include the mail servers here, as they are not scanners per se, but rather applications that
happen in this environment to exhibit high fan-out.

Table 6.2: Scanners detected from the LBL dataset
Type Count Average fan-out

Internal scanner 5 196.4
Internal crawler 2 65.5

We exclude the scanners from our subsequent analysis, because including them would
greatly skew the fan-out statistics of benign hosts. Given their low number, it is reasonable
to presume that sites could maintain white-lists of such hosts to filter out detections of their
activities by our algorithm.

6.1.2 Time Interval to Visit New Destinations

A host engaged in scanning or worm propagation will generally probe a significant number
of hosts in a short time period, yielding an elevated first-contact connection rate. In this
section, we analyze our dataset to determine the distribution of first-contact connection’s
interarrivals as initiated by benign hosts. We then explore the discriminating power of this
metric for a worm whose interarrivals arrive a factor of n more quickly.

Figure 6-3 shows the distribution of the amount of time between first-contact connections
for individual hosts. Here we have separated out the scanners (identified as discussed

90 Chapter 6. Detection of Targeting Worm Propagations

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

10-3 10-2 10-1 100 101 102 103 104 105 106

C
D

F

Millisecond

Scanners
Non-Scanners

Figure 6-3: Distribution of first-contact interarrival time, per host

above), listing two groups, scanners and non-scanners. We see that scanners have
a much shorter average interarrival time (1.1 sec) compared to the non-scanners (39.2 sec).
Yet, the average is deceptive because of the uneven distribution of time intervals. Although
the average non-scanner interarrival time is 39.2 sec, we often see benign, non-scanner
hosts initiating multiple first-contact connections separated by very little (< 1 sec) time.
In fact, these short time intervals account for about 40% of the total intervals generated by
benign hosts, which makes it impractical to use 1/sec fan-out rate to identify possible worm
propagation activity.

0 200 400 600 800 1000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Milliseconds

C
D

F

Non−Scanner Interarrivals
Exponential Fit

Figure 6-4: First-contact interarrivals initiated by benign hosts roughly follow an exponential
distribution with mean µ = 261 msec.

However, when focusing on sub-second interarrivals, we find that a benign host’s short-
time-scale activity fits fairly well to an exponential distribution, as illustrated in Figure 6-4.
Here the fit to non-scanners uses µ = 261 msec. In comparison, scanners on av-

6.2. Rate-Based Sequential Hypothesis Testing 91

erage wait no more than 69 msec between first-contact connections in this trace. We note
that a scanner (or a worm) could craft its probing scheduling such that its fine-grained scan-
ning behavior matches that of benign users, or at least runs slower than what we model as
benign activity. However, this will significantly slow down the scanning speed, so com-
pelling attackers to make this modification constitutes an advance in the ongoing “arms
race” between attackers and defenders.

We also note that we could extract significantly more precise interarrival models—including
differing mean interarrival rates—if we partitioned the traffic based on its application pro-
tocol. While investigating this refinement remains a topic for future work, in our present
effort we want to explore the efficacy of as simple a model as possible. If our algorithm
can prove effective without having to characterize different protocols separately, we will
benefit a great deal from having fewer parameters that need to be tuned operationally.

In the next section, based on these characteristics of benign activity, we develop our de-
tection algorithm, RBS, for quickly identifying scanners or worm infectees with a high
accuracy.

6.2 Rate-Based Sequential Hypothesis Testing

In the previous section we examined traces and found that benign hosts often initiate more
than one first-contact connection request per second, but in such cases we can approximate
the interval between these connections with an exponential distribution. In this section, we
develop a rate-based sequential hypothesis testing algorithm, RBS, which aims to quickly
identify hosts issuing first-contact connections at rates higher than what we model as benign
activity.

Let H1 be the hypothesis that a given host is engaged in worm propagation, and let H0

be the null hypothesis that the host exhibits benign network activity. A host generates an
event when it initiates a connection to a destination with which the host has not previously
communicated (since the observation began), i.e., when the host initiates a first-contact
connection. We assume that the interarrival times of such events follow an exponential
distribution with mean 1/λ0 (benign host) or 1/λ1 (scanner or a worm infectee). When a
host generates the ith event at time ti, we can compute an interarrival time, Xi = ti − ti−1

for i ≥ 1 and t0 the initial starting point, and update the likelihood ratio of the host being
engaged in scanning (or benign).

Define X1, X2, . . . , Xn as a sequence of such interarrival times. Since each Xi follows
an exponential distribution, Tn = X1 + X2 + · · · + Xn can be modeled as an n-Erlang
distribution,

fn(Tn|H1) =
λ1(λ1Tn)n−1

(n− 1)!
e−λ1Tn (6.1)

fn(Tn|H0) =
λ0(λ0Tn)n−1

(n− 1)!
e−λ0Tn (6.2)

92 Chapter 6. Detection of Targeting Worm Propagations

Based on Equations (6.1) and (6.2), we can develop a sequential hypothesis test in which
we define the likelihood ratio as:

Λ(n, Tn) =
fn(Tn|H1)

fn(Tn|H0)
=

(

λ1

λ0

)n

e−(λ1−λ0)Tn (6.3)

and the detection rules as:

Output =







H1 if Λ(n, Tn) ≥ η1

H0 if Λ(n, Tn) ≤ η0

Pending if η0 < Λ(n, Tn) < η1

where we can set η1 and η0 in terms of a target false positive rate, α, and a target detection
rate, as discussed in Chapter 2.2.

η1 ←
β

α
(6.4)

η0 ←
1− β

1− α
(6.5)

As shown by Wald, above thresholds guarantee that the resulting false positive rate is
bounded by α

β
and the false negative rate is by 1−β

1−α
[80]. Given that β is usually set to

a value higher than 0.99 and α to a value lower than 0.001, the margin of error becomes
negligible (i.e., 1

β
≈ 1 and 1

1−α
≈ 1).

There are four parameters that need to be set in order to run RBS: α and β can be chosen
with the values of the false positive rate (α) and the detection rate (β) that we want to
achieve with the detection algorithm. However, the selection of two priors, λ0 and λ1,
is less straightforward than that of α and β as it depends on an average fan-out rate of
benign hosts (λ0) at the site and the site’s security policy (i.e., a host issuing first-contact
connections at a rate higher than nλ0 (λ1) will trigger an alarm). In what follows, we show
the impact of these four parameters on the detection result, which in turn sheds light on
how they should be chosen.

Upon each arrival of a first-contact connection by a host, RBS estimates whether the current
behavior provides evidence strong enough to choose one hypothesis against the other. For
instance, if a host has initiated n first-contact connections and the elapsed time for the nth

connection is Tn, RBS chooses H1 (worm) only if the likelihood ratio Λ(n, Tn) exceeds η1.

Using Equations (6.3) and (6.4), we can obtain a threshold on the elapsed time, TH1
, below

6.2. Rate-Based Sequential Hypothesis Testing 93

-1

-0.5

 0

 0.5

 1

 1.5

 0 1 2 3 4 5 6 7 8 9

T
n

(s
ec

)

n

H0

Pending

H1 TH1TH0
 worm

(a) Fast spreading worm with 100 first-contact connections/second
will be detected by RBS at the 8th connection attempt.

-1

-0.5

 0

 0.5

 1

 1.5

 0 1 2 3 4 5 6 7 8 9

T
n

(s
ec

)

n

H0

Pending

H1 TH1TH0
 benign

(b) Benign host with 4 first-contact connections/second will be de-
clared “benign” by RBS at the 4th connection attempt.

Figure 6-5: TH1
and TH0

when λ0 = 3/sec, λ1 = 20/sec, α = 10−5, and β = 0.99. The X

axis represents the nth event and Y axis represents the elapsed time for the nth event.

94 Chapter 6. Detection of Targeting Worm Propagations

which we arrive at an H1 (worm) decision:

β

α
≤ Λ(n, Tn)

β

α
≤
(

λ1

λ0

)n

e−(λ1−λ0)Tn

ln
β

α
≤ n ln

λ1

λ0

− (λ1 − λ0)Tn

Tn ≤ n
ln λ1

λ0

λ1 − λ0

− ln β

α

λ1 − λ0

= TH1
(6.6)

Likewise, we can obtain a threshold elapsed time TH0
, above which we conclude H0 (be-

nign host):

TH0
= n

ln
λ1

λ0

λ1−λ0

− ln 1−β

1−α

λ1−λ0

(6.7)

Figure 6-5 shows how those threshold elapsed times, TH1
and TH0

, partition the area into
three decision regions—H1, H0, and Pending. Figure 6-5(a) illustrates Tn of a host
issuing first-contact connections at 100/second. At the 8th event, T8 falls below TH1

, which
drives the likelihood ratio to reach the H1 decision. Note that with the set of parameters
used in Figure 6-5, RBS holds a decision until it sees at least 7 events ; this occurs because
the elapsed time, Tn, is always greater than TH1

up to n = 6. Ti is a non-negative, non-
decreasing random variable and TH1

becomes positive when n > 6.1, given λ0 =3/sec,
λ1 =20/sec, α = 10−5, and β = 0.99. This initial holding period makes RBS robust
against a small traffic burst. We can shorten this initial holding period, however, if we use a
smaller β or larger α. In general, Equation (6.6) provides important insights into the priors
and the performance of RBS. TH1

is a function of n, taking a form of g(n) = a(n − c),
where a = (ln λ1

λ0

)/(λ1 − λ0) and c = (ln β

α
)/(ln λ1

λ0

):

1. α and β affect only c, the minimum number of events required for detection. For fixed
values of λ1 and λ0, lower values of α or higher values of β (i.e., greater accuracy
in our decisions) let more initial connections escape before RBS declares H1. One
can shorten this initial holding period by increasing α or decreasing β. But we can
only do so to a limited degree, as c needs to be greater than the size of bursty arrivals
that we often observe from applications on benign hosts, in order to avoid excessive
false alarms. Another way to prevent damage from those initially allowed connection
attempts is to hold them at a switch until proved innocent as discussed in Section 5.6.

2. λ0 and λ1 determine a, the slope of TH1
over n. The inverse of the slope gives the

minimum connection rate that RBS can detect. Any host generating first-contact
connections at a higher rate than λ1 intercepts g(n) with probability 1. There is a
built-in robustness in this, because the slope is strictly larger than 1

λ1

(what we model
as a worm), which follows from the inequality ln(x) < x−1, 0 < x < 1 (Figure 6-6).

6.3. Evaluation 95

-1

-0.5

 0

 0.5

 1

-0.5 0 0.5 1 1.5

x-1
ln(x)

Figure 6-6: ln(x) < x− 1 when 0 < x < 1

3. Although we use λ1 to model a worm’s first-contact connection rate, RBS can detect
any worm with a rate λ′ provided that:

λ′ >
1

a
=

λ1 − λ0

ln λ1 − ln λ0

(6.8)

because a host with a rate higher than λ′ will eventually cross the line of TH1
and

thus trigger an alarm.

6.3 Evaluation

We evaluate the performance of RBS in terms of false positives, false negatives, and the
detection speed using a trace-driven simulation of the LBL dataset. The dataset contains
650 active hosts, including 14 hosts that are legitimate but exhibit network behavior resem-
bling that of fast targeting worms. We then discuss the robustness of RBS to the bursty
nature of benign traffic that a naı̈ve fixed threshold based algorithm is unable to capture.

Each line in the LBL dataset represents a connection seen by the Bro NIDS [52], sorted
by the timestamp of the first packet belonging to the connection. Connection information
includes a source address, s, a destination address, d, and a connection start time. For
each connection, our trace-driven simulator checks if s has previously accessed d. If not, it
updates the likelihood of s being a scanner as described in Section 6.2.

In addition to the hosts identified in Table 6.2, by operating RBS we found 9 more hosts
whose network activity involved some sort of scanning: 2 more instances of the internal
scanner (not found using the previous simple fan-out threshold of 60 destinations over
10 minutes, because their scanning was limited to 7 and 34 destinations, respectively); a
network monitoring system, “WhatsUp” [6], which contacted 14 hosts in 0.4 sec; and 6

96 Chapter 6. Detection of Targeting Worm Propagations

Table 6.3: Trace-driven simulation results of RBS varying λ1 when λ0 = 3.83 Hz, α = 10−5,
and β = 0.99 : N |H1 represents the average number of first-contact connections initiated
by the flagged hosts until detection. The final line gives the theoretical bound on the slowest
scanner (or worm) the RBS can detect (Equation (6.8)).

λ1 = 2λ0 3λ0 4λ0 5λ0 10λ0 15λ0 20λ0 25λ0

scanners (7) 4 5 6 6 7 7 7 7
Web crawlers (2) 2 2 2 2 2 2 2 2

WhatsUp (1) 0 1 1 1 1 1 1 1
iprint (6) 0 0 1 2 3 3 6 6

Total detection (16) 6 8 10 11 13 13 16 16
False positives 0 0 0 0 0 0 0 0

N |H1 30.2 18.1 13.8 10.4 6.6 5.7 5.2 5.0
Theoretical bound (Hz) > 5.5 > 7.0 > 8.3 > 9.5 > 15.0 > 19.8 > 24.3 > 28.5

instances of an iprint printer management client [5] that occasionally accesses all the
printers to check availability. These all exhibit greater than 5/sec fan-out rates averaged
over a second because of their bursty first-contact connections.

For high accuracy, we set β = 0.99 (99% target detection rate) and α = 0.00001 (0.001%
target false alarm rate). Note that α is set very low because the detection algorithm executes
at every first-contact connection initiated by a local host, which adds up to a very large
number of tests. We choose λ0 such that 1/λ0 equals 261 (msec), the mean time interval
to visit new destinations of benign hosts as shown in Section 6.1.2. However, there is no
obvious pick for λ1 since a worm can choose an arbitrary rate to propagate. If λ1/λ0 is
close to 1, RBS takes longer to make a decision. It can also miss short bursts; but on the
other hand, it can detect slower scanners than for higher λ1/λ0 ratios, per Equation (6.8).

Table 6.3 shows the simulation results of RBS for the LBL dataset as we vary λ1 as a
multiple of λ0 = 3.83 Hz. With increasing λ1, we see that RBS’s detection rate increases
without incurring false positives. Hosts that RBS often fails to detect include an internal
scanner that probed only 7 hosts in a 10 minute trace, and 6 iprint hosts that accessed
only 10 or fewer other printers, sometimes in two separate 5-connection bursts, which thins
out the sources’ average fan-out rate, making them difficult to detect.

Thus, while this assessment is against a fairly modest amount of data, we find the results
promising. We conduct a more extensive evaluation in Section 6.4.

6.3.1 Limitations of Simple Rate-Base Thresholds

An issue to consider is whether we really need RBS’s more sophisticated approach, or if a
simpler scheme using a fixed-rate threshold suffices. We model such a simpler scheme as
one that, upon each connection arrival, compares the fan-out rate, n/T , with a threshold η,
alerting if the rate exceeds the threshold. Here, n is the number of first-contact connections
from a host and T the elapsed time over which they occurred.

6.4. RBS + TRW: A Combined Approach 97

1 2 5 10 20 50 100

0.
95

0.
97

0.
99

1

Fan−Out Rate (Hz)

U
pp

er
 T

ai
l o

f C
D

F

N = 15, 10, 7, 5

Figure 6-7: CDF of fan-out rates of non-scanner hosts using a window size of 15, 10, 7
and 5 (from left to right).

In this section we evaluate such schemes and find that they suffer from either significant
false alarms, due to legitimate bursty connections, or significant false negatives. RBS is
more robust to such bursts as it demands consistency over a larger number of observations
before reaching a decision.

We compute a host’s instantaneous fan-out rate as follows. For an outgoing connection
initiated by the host at time tc, we look back in time for the n− 1 most recent first-contact
connections. If the time of the first of these is tp, then we calculate the fan-out rate as the
ratio of n/T = n/(tc − tp).

After removing the scanners listed in Table 6.3, Figure 6-7 shows the upper tail of the
distribution of the fan-out rate of the remaining hosts, as a function of the aggregation
window size n. Recall that any detection of these connections constitutes a false positive.
So, for example, for windows of size n = 7, the 99th percentile occurs right around 10 Hz.
Thus, using a window of size 7, to detect scanners that scan as slowly as 10 Hz, we must
accept a false positive rate of 1% per window. With a window size of 7, this would mean
over our dataset the detector would generate 118 false positives. While higher values of
n reduce the false positive rate, they also will increase false negatives, such as the bursty
scanners discussed in the previous section.

Comparing these curves with the slowest scanners detectable by RBS, per Table 6.3, we
see that RBS gains significant power in both detecting slower or briefer scanners and in
avoiding false positives. The essential advantage of RBS over the simpler schemes is that
RBS effectively can adapt its window n and threshold η, rather than having to use single,
fixed values for these.

6.4 RBS + TRW: A Combined Approach

RBS uses fan-out rate to differentiate benign traffic from scanners (or targeting worms),
which we model as Poisson processes with rates λ0 (benign) and λ1 (scanner or a worm
infectee), with λ0 < λ1. Another discriminatory metric proved to work well in detecting
scanners (or random scanning worms) is the failure ratio of first-contact connections as
discussed in Chapter 4, Chapter 5, and [83]. TRW works by modeling Bernoulli processes
with success probabilities, θ0 (benign) and θ1 (scanner), with 1−θ0 < 1−θ1. In this section,
we develop a combined worm detection algorithm that exploits both a fan-out rate model
and a failure ratio model. We evaluate the hybrid using trace-driven simulation, finding

98 Chapter 6. Detection of Targeting Worm Propagations

that this combined algorithm, RBS + TRW, improves both overall accuracy and speed of
detection.

Suppose that a given host has initiated connections to n different destinations, and that the
elapsed time until the nth connection is Tn. Among those n destinations, Sn peers accepted
the connection request (success) and Fn = n− Sn rejected (TCP RST) or did not respond
(failure). Applying the models from RBS and TRW (Chapter 4), we obtain a conditional
probability distribution function for worms:

f [(Sn, Tn)|H1] = P [Sn|Tn, H1]× f [Tn|H1]

=

(

n

Sn

)

θSn

1 (1− θ1)
Fn

×λ1(λ1Tn)n−1

(n− 1)!
e−λ1Tn

where P [Sn|Tn, H1] is the probability of getting Sn success events when each event will
succeed with an equal probability of θ1, and f [Tn|H1] is an n-Erlang distribution in which
each interarrival time is exponentially distributed with mean interarrival time 1/λ1.

Analogous to f [(Sn, Tn)|H1], for benign hosts we can derive:

f [(Sn, T)|H0] =

(

n

Sn

)

θSn

0 (1− θ0)
Fn

×λ0(λ0Tn)n−1

(n− 1)!
e−λ0Tn .

We then define the likelihood ratio, Λ(Sn, Tn), as

Λ(Sn, Tn) =
f [(Sn, Tn)|H1]

f [(Sn, Tn)|H0]

=

(

θ1

θ0

)Sn
(

1− θ1

1− θ0

)Fn

×
(

λ1

λ0

)n

e−(λ1−λ0)Tn .

It is interesting to note that Λ(Sn, Tn) is just the product of ΛTRW and ΛRBS . Moreover,
Λ(Sn, Tn) reduces to ΛTRW when there is no difference in fan-out rates between benign and
scanning hosts (λ1 = λ0). Likewise, Λ(Sn, Tn) reduces to ΛRBS when there is no difference
in success ratios (θ1 = θ0).

We evaluate this combined approach, RBS + TRW, using two new sets of traces, each of
which contains different types of scanners and worm infectees that happen to wind up
contrasting the strengths of RBS and TRW. We first categorize hosts into classes based on
their fan-out rates and failure ratios. In what follows, we discuss types of scanners falling
into each region and detection algorithms capable of detecting such hosts.

6.4. RBS + TRW: A Combined Approach 99

• Class LH (low fan-out rate, high failure ratio): Slow-scanning worms or scanners
that probe at blindly (randomly or sequentially) will likely generate many failures,
triggering TRW with a high probability.

• Class HH (high fan-out rate, high failure ratio): Fast-scanning worms (e.g., Code
Red, Slammer) that exhibit both a high fan-out rate and a high failure ratio will very
likely to drive both TRW and RBS to quickly reach their detection thresholds.

• Class HL (high fan-out rate, low failure ratio): Flash, metaserver, and topological
worms [82] belong to this class. These worms build or acquire a list of target hosts
and then propagate over only those potential victims, so their connection attempts
tend to succeed. While these targeting worms can bypass TRW, their high fan-out
rate should trigger RBS.

• Class LL (low fan-out rate, low failure ratio): Most benign hosts fall into this class, in
which their network behavior is characterized by a low fan-out rate and a low failure
ratio. Typically, a legitimate host’s fan-out rate rarely exceeds a few first-contact
connections per second. In addition, benign users do not initiate traffic to hosts unless
there is reason to believe that the host will accept the connection request, and thus will
yield a high success probability. Neither TRW nor RBS will trigger hosts in this class,
which in turn, allows particularly stealthy worms, or passive “contagion” worms that
rely on a user’s behavior for propagation [82], to evade detection. Worms of this type
represent a formidable challenge whose detection remains an open problem.

We use an average 3.83 Hz fan-out rate (λ0) and 0.3 failure ratio (1 − θ0) as baselines
in order to categorize hosts in our trace, where the setting for λ0 comes from Section 6.1
and that for θ0 from Section 5.3. We compute a fan-out rate with a sliding window of
size 5 in order to capture bursty arrivals that often result from concurrent Web connections
addressed to different Web sites for embedded objects. Figure 6-8 classifies hosts in the
datasets based on the 3.83 Hz fan-out rate and 0.3 failure ratio thresholds.

Table 6.4 shows the details of the datasets we use for evaluation. The LBL-II dataset was
also collected from Lawrence Berkeley Laboratory (LBL). It is composed of 135 one-hour
long traces from Dec. 2004 and Jan. 2005, recorded at internal routers connecting a variety
of subnets to the rest of the laboratory and the Internet. The ISP dataset was recorded using
tcpdump at the border of a small ISP in April 2003. It contains traffic from 389 active
hosts during the 10-hour monitoring period (The high number of connections is due to
worm infections during the time of measurement.).

The table shows the division of the internal hosts into the four categories discussed above.
Manual inspection of the hosts in HH, HL, and LH1 reveals that there are 9 (LBL-II)
and 5 (ISP) hosts that are actual worms or scanners or whose behavior qualifies them as
proxies for targeting worms that we aim to detect because of their high-fan-out behaviors:
for LBL-II, the 3 HH hosts are one internal vulnerability scanner, one host that did a fast

1We looked into each host in those three classes for the ISP dataset, and the 66 of such hosts for the
LBL-II dataset that generated more than 20 first-contact connections in a one-hour monitoring period.

100 Chapter 6. Detection of Targeting Worm Propagations

 0

 0.2

 0.4

 0.6

 0.8

 1

10-4 10-3 10-2 10-1 100 101 102 103 104 105

A
ve

ra
ge

 F
ai

lu
re

 R
at

io

Average Fan-Out Rate (Hz)

S

S

N

M

C

C

P

P

PLL

LH HH

HL

(a) LBL-II (S: scanner, N: host running nmap, M: “Whatsup”
monitor, C: internal Web crawler, P: print management host): There
are 2 S’s, 1 N, 1 M, 2 C’s and 3P’s in the plot.

 0

 0.2

 0.4

 0.6

 0.8

 1

10-4 10-3 10-2 10-1 100 101 102 103 104 105

A
ve

ra
ge

 F
ai

lu
re

 R
at

io

Average Fan-Out Rate (Hz)

WW

S S

S

LL

LH HH

HL

(b) ISP (S: scanner, W: Code Red II infectee): There are 3 S’s and
2 W’s in the plot. Two W’s are almost overlapped with each other.

Figure 6-8: Classification of hosts present in the evaluation datasets: Each point repre-
sents a local host that generated more than 5 first-contact connections.

6.4. RBS + TRW: A Combined Approach 101

Table 6.4: Evaluation datasets: scanning hosts include vulnerability scanners, worm
infectees and hosts that we use proxies for targeting worms because of their anomalous
high-fan-out rate.

LBL-II ISP
Outgoing Connections 796,049 1,402,178

Duration 137 hours 10.5 hours
HH scanning 3 3

H benign 4 3
LH scanning 1 2

O benign 147 6
HL scanning 5 0

S benign 32 1
LL scanning 0 0

T benign 1195 255
≤ 5 first-contact connections 2,621 119

S Total scanning 9 5
benign 3,999 384

Total 4,008 389

nmap [4] scan of 7 other hosts, and one internal Web crawler that occasionally contacted
tens of internal Web servers to update search engine databases; 1 LH host is another in-
ternal vulnerability scanner, whose average fan-out rate was 3.68 (slightly lower than the
threshold); 5 HL hosts are 1 internal Web crawler, one “WhatsUp” monitor, and 3 printer
management hosts. For ISP, the HH hosts were two Code Red II infectees plus an HTTP
scanner, and the LH hosts were 2 slower HTTP scanners. We classify these 14 hosts as
scanning.

The 4 HH hosts in the LBL-II dataset that we classify as benign turn out to all be
benign NetBIOS clients that often made connection requests to absent hosts. The 3 benign
HH hosts in the ISP dataset are all clients running P2P applications that attempt to contact
a large number of transient peers that often do not respond. Most benign LH hosts are
either low-profile NetBIOS clients (LBL-II) or P2P clients (ISP), and most benign HL
hosts from both datasets are caused by Web clients accessing Web sites with many images
stored elsewhere (e.g., a popular news site using Akamai’s content distribution service, and
a weather site having sponsor sites’ images embedded).

Table 6.4 also shows that while those two thresholds are useful for nailing down a set
of suspicious hosts (all in either HH, LH, or HL), a simple detection method based on
fixed thresholds would cause 187 false positives because of benign hosts scattered in the
LH and HL regions, as shown in Figure 6-8. However, using dynamic thresholds based
on the observed behavior, RBS + TRW accurately identifies those 14 target hosts while
significantly reducing false positives.

We evaluate RBS + TRW by varying λ1 from λ0 to 15λ0, and θ1 from 1
7
θ0 to θ0. We fix

λ0 = 3.83 Hz, θ0 = 0.7, β = 0.99, and α = 10−5. Figures 6-9 and 6-10 show the number

102 Chapter 6. Detection of Targeting Worm Propagations

of detection and false positives for each pair of λ1 and θ1. In particular, for λ1 = λ0, the
combined algorithm reduces to TRW (dashed vertical lines along the θ1 axis), and when
θ1 = θ0, to RBS (dashed vertical lines along the λ0 axis).

Table 6.5: Evaluation of RBS + TRW vs. RBS and TRW: LBL-II has 9 scanners and
ISP has 5 scanners. N |H1 represents the average number of first-contact connections
originated from the detected hosts upon detection.

LBL-II ISP
λ1 θ1 False - False + N |H1 False - False + N |H1

RBS 11λ0 = θ0 0 25 5.6 2 8 6.4
TRW = λ0

1
7
θ0 7 5 18.5 0 3 10.0

RBS + TRW 10λ0
4
7
θ0 1 9 6.9 1 6 5.0

Table 6.5 compares the performance of the combined algorithm against that of RBS and
TRW alone. First, we find the priors that make RBS (TRW) the most effective (0 false
negatives) in identifying scanners in the LBL-II (ISP) dataset. The nature of our test
datasets keeps either algorithm from working better across both datasets. In fact, when
λ1 = 11λ0 and θ1 = θ0, RBS has 0 false negatives for LBL-II, but misses 2 LH scanners
in ISP. In comparison, when λ1 = λ0 and θ1 = 1

7
θ0, TRW has 0 false negatives for ISP,

but misses 7 scanners in LBL-II, including the HL hosts, 1 Web crawler and the LH
nmap scanner.

We could address the problem of false negatives for either algorithm by running TRW and
RBS in parallel, raising an alarm if either algorithm decides so. However, this approach
comes at the cost of an increased number of false alarms, which usually result from LH
hosts (e.g., Windows NetBIOS connections, often made to absent hosts) or HL hosts (e.g.,
a busy mail server or a Web proxy).

In general, improving the accuracy of a detection algorithm requires iterative adjustments
of decision rules: first improving the detection rate by loosening the decision rule, and then
decreasing the false positive rate by tightening the decision rule without losing too many
correct detections. For this iteration, our combined algorithm, RBS + TRW provides two
knobs, λ1 and θ1, that we can adjust to tune the detector to a site’s traffic characteristics.

The trace-driven simulation shows that RBS + TRW with λ1 = 10λ0 and θ1 = 4
7
θ0 misses

only two low-profile target hosts (one iprint host from LBL-II and a slow HTTP scanner
from ISP) while generating no more than 15 false positives, per Table 6.5. Had we run
RBS and TRW in parallel, we could have eliminated all the false negatives, but at the cost
of 41 false alarms altogether.

Overall, RBS + TRW provides the good detection of high-profile worms and scanners (no
more than 2 misses across both datasets) while generating less than 1 false alarm per hour
for a wide range of parameters (λ1 ∈ [10λ0, 15λ0] and θ1 ∈ [4

7
θ0,

6
7
θ0]), and reaching its

detection decisions quickly (less than 7 first-contact connections on average).

6.4. RBS + TRW: A Combined Approach 103

λ1

θ1

 0
 2
 4
 6
 8

 10

Detection

λ0
2λ0

4λ0
6λ0

8λ0
10λ0

12λ0
14λ0

θ0

5θ0/7
3θ0/7

θ0/7

Detection

(a) Detection (out of 9 targets)

λ1

θ1

 0
 5

 10
 15
 20
 25
 30

False positives

λ0
2λ0

4λ0
6λ0

8λ0
10λ0

12λ0
14λ0

θ0

5θ0/7
3θ0/7

θ0/7

False positives

(b) False alarms (out of 4,008 hosts)

Figure 6-9: Simulation results of RBS + TRW for the LBL-II dataset, varying λ1 and θ1:
each point represents the number of detection or false alarms when the detection algorithm
is run with a certain pair of λ1 and θ1. In particular, points connected with the vertical lines
along the θ1 axis are the results when λ1 = λ0 (TRW) and those connected with the vertical
lines along the λ1 axis are the results when θ1 = θ0 (RBS).

104 Chapter 6. Detection of Targeting Worm Propagations

λ1

θ1

 0
 1
 2
 3
 4
 5

Detection

λ0
2λ0

4λ0
6λ0

8λ0
10λ0

12λ0
14λ0

θ0

5θ0/7
3θ0/7

θ0/7

Detection

(a) Detection (out of 5 targets)

λ1

θ1

 0
 1
 2
 3
 4
 5
 6
 7
 8

False positives

λ0
2λ0

4λ0
6λ0

8λ0
10λ0

12λ0
14λ0

θ0

5θ0/7
3θ0/7

θ0/7

False positives

(b) False alarms (out of 389 hosts)

Figure 6-10: Simulation results of RBS + TRW for the ISP dataset, varying λ1 and θ1: each
point represents the number of detection or false alarms when the detection algorithm is
run with a certain pair of λ1 and θ1. In particular, points connected with the vertical lines
along the θ1 axis are the results when λ1 = λ0 (TRW) and those connected with the vertical
lines along the λ1 axis are the results when θ1 = θ0 (RBS).

6.5. Discussion 105

6.5 Discussion

This section discusses several technical issues that may arise when employing RBS + TRW
in practice. While addressing these issues is beyond the scope of this work, we outline
general ideas and directions.

Operational Issues. A worm detection device running RBS + TRW needs to maintain
per local host information. For each host, a detector must track first-contact connections
originated by the host, their failure/success status, and the elapsed time. The state thus
increases proportional to the number of local hosts in the network (N) and the sum of all
their currently pending first-contact connections. Given that RBS + TRW requires ≤ 10
first-contact connections on average to reach a decision (see Section 6.4), we can estimate
amount of state as scaling on the order of 10N . Note that every time RBS + TRW crosses
either threshold, it resets its states for the corresponding host.

When constrained by computation and storage resources, one can employ cache data struc-
tures suggested by Weaver et al. [83] that track first-contact connections with a high preci-
sion. However, we note that running RBS + TRW on the aggregated traffic across hosts (as
opposed to the per-host operation for which it is designed) can significantly affect the de-
tection performance due to the uneven traffic distribution generated by each end-host [90].

Post-detection Response. The results in Table 6.5 correspond to RBS + TRW generating
0.07 false alarms per hour at the LBL-II site and 0.57 per hour at the ISP site. This
low rate, coupled with RBS + TRW’s fast detection speed, make it potentially suitable for
automated containment, crucial to defending against fast-spreading worms. Alternatively, a
network operator could employ connection rate-limiting for hosts detected by RBS + TRW,
automatically restricting such hosts to a low fan-out rate.

Limitations. As indicated in Figure 6-8, RBS + TRW is unable to detect targeting worms
using high-quality hit lists comprised of at least 70% active hosts and spreading no faster
than several first-contact connections per second. Detecting such worms might be possi-
ble by working on larger time scales. For example, a scanner that generates first-contact
connections at a rate of 1 Hz will end up accessing 3,600 different hosts in an hour, far
outnumbering the sustained activity of a typical benign host. Thus, a natural avenue for
future work is assessing the operation of RBS on longer timescales.

Finally, attackers can game our detection algorithm by tricking end users into generat-
ing first-contact connections either at a high rate (RBS), or that will likely end up failing
(TRW). For instance, similar to an attack discussed in Section 5.4, an attacker could put
content on a web site with numerous embedded links to non-existent destinations.

6.6 Summary

We have presented a worm detection algorithm, RBS (Rate-Based Sequential Hypothesis
Testing), that rapidly identifies high-fan-out behavior by hosts (e.g., targeting worms) based
on the rate at which the hosts initiate connections to new destinations. RBS is built on an
empirically-driven probability model that captures benign network characteristics, which

106 Chapter 6. Detection of Targeting Worm Propagations

allows us to discriminate between benign traffic and scanning traffic. Developed using the
mathematical framework of sequential hypothesis testing [80], RBS can effectively adapt
its threshold and window size, based on which it computes instantaneous rates to use in
updating its decision-making in real-time. This gives RBS an essential advantage over
schemes using single, fixed values for these.

We have evaluated RBS using trace-driven simulations. We find that when the factor of
speed difference, n, between a scanner and a benign host is small, RBS requires more
empirical data to arrive at a detection decision; for example, it requires on average 10.4 first-
contact connections when n = 5, but the theoretical bound shows that it can detect any
scanners that sustain more than 9.5 first-contact connections per second. In addition, as n
grows larger RBS provides accurate and quick detection.

Finally, we have developed RBS + TRW, a hybrid of RBS and TRW, which combines fan-
out rate and probability of success of each first-contact connection. RBS + TRW provides
a unified framework for detecting fast-propagating worms independent of their target dis-
covery strategy (i.e., targeting worm or scanning worm). Using two traces from two quali-
tatively different sites, containing 389 active hosts and 4,008 active hosts, respectively, we
show that RBS + TRW provides fast detection of hosts infected by Code Red II, as well as
the internal Web crawlers and a network monitoring tool that we use as proxies for targeting
worms. In doing so, it generates less than 1 false alarm per hour.

Chapter 7

Conclusion and Future Directions

We have investigated three malicious network activities — portscan, scanning worm infec-
tion, and targeting worm propagation, and developed detection algorithms that accurately
identify a host engaged in such forms of malicious activities in real-time. A common basis
of our detection algorithms is an ability to capture connection-level characteristics that are
inherent to each activity type. We have shown that there is a disparity between the fre-
quency with which connections to newly visited addresses are successful for benign hosts
vs. for scanners (Chapters 4 and 5). Another characteristic is the rate at which a host ini-
tiates connections to new destinations, which proves useful for identifying high-fan-out
behavior by hosts infected by targeting worms (Chapter 6).

Our algorithms rely on connection-level information (e.g., source and destination IP ad-
dresses, protocol, connection status) and do not require access to packet contents. Com-
pared to content-based approaches [37, 62, 81], our connection-based approach incurs sig-
nificantly lower processing cost when implemented in a detection system. Moreover, pay-
load information is not always available (e.g., failed connection attempts), and the increas-
ing use of application-level encryption can render content-based approaches ineffective.
However, we note that content-based approaches are capable of detecting slow-propagating
(stealthy) worms that are indistinguishable from benign hosts in their traffic behavior.

Our study shows that due to the stochastic nature of a host’s network behavior, it is im-
portant that a detection algorithm should be able to dynamically adapt its decision-making
based on observed traffic data. Built on Wald’s mathematical framework of sequential anal-
ysis [80], our detection algorithms automatically adjust the number of events to be collected
according to the strength of the evidence. Furthermore, the sequential hypothesis testing
methodology enables engineering the detection algorithms to meet false positive and false
negative targets, rather than triggering when fixed thresholds are crossed.

While sequential analysis provides an underlying structure over which one can develop
an adaptive real-time detection algorithm, the algorithm’s performance greatly depends on
how well priors model actual benign and malicious network activities. When poor priors
are used, the performance bounds that the sequential analysis provides are no longer valid:
false positives can occur because of atypical benign applications whose behavior is similar

107

108 Chapter 7. Conclusion and Future Directions

to what is modeled as malicious. Likewise, false negatives can occur if the a priori models
of benign activity include some cases of low-profile attack traffic.

In this study, we obtain priors based on the analysis of real network trace data that contain
various types of network traffic as well as the malicious traffic of interest. However, we
find it challenging to find “good” priors that properly separate benign network traffic from
malicious mainly because of the following two reasons.

1. Once a detection algorithm is known, attackers can craft traffic behavior such that
their attack traffic smears among other legitimate traffic flows. Because of this never-
ending arms race between attackers and defense systems, it may be impossible to
design a bullet-proof detection algorithm. Yet, some traffic properties are harder to
modify and therefore work better as priors. In Chapter 4, we show that a strong
modality appears when we look at the ratio of failed connection attempts over the
total number of connections originated from each remote host. Since a portscanner
has little knowledge of the configuration of a target network, this pattern of frequently
accessing non-responding hosts (thus making a connection attempt unsuccessful) is
hard to alter.

2. Applications vary a lot in their network behavior, making it difficult to find a reason-
ably simple model that captures all benign network activity. As shown in Chapter 6, a
benign host’s first-contact connection interarrival times are distributed across a wide
range of intervals. However, when focusing on sub-second interarrivals, we find that
those interarrival times fit an exponential distribution fairly well.

Using real trace data collected from multiple sites, we have evaluated the performance
of our algorithms and examined false alarms and missed detections: our portscan detec-
tion algorithm, TRW, is more accurate and requires a much smaller number of events
(4 or 5 packets in practice) to detect remote portscanners compared to previous schemes
such as Bro [52] and Snort [56] (Chapter 4). Our credit-based rate limiting algorithm re-
sults in significantly fewer unnecessary rate limiting than the virus throttle [76] (Chapter 5).
Our worm detection algorithm, RBS + TRW, provides fast detection of hosts infected by
Code Red II, as well as hosts exhibiting abnormal level of high fan-out-rate. In doing so,
RBS + TRW generates less than 1 false alarm per hour (Chapter 6).

This dissertation demonstrates that, when properly modeled, traffic characteristics can be
used for identifying certain malicious network activities with high accuracy. One avenue
for future work includes extending a detection algorithm to further classify the results with
application-level semantics. For instance, if there is a database available that maintains
information about which worms exploit which services, the detection algorithm can trigger
an alarm of the “Slammer worm” as opposed to “some worm”, if the detector finds a local
host generating scan traffic to port 1434. Imbuing alarms with such semantics will facilitate
the construction of an appropriate response after detection. If an alarm results from the
traffic from the application in which a critical vulnerability is recently published, it is a
strong indicator of a new worm outbreak and thus automatic containment is vital.

109

Finally, this dissertation provides important building blocks toward a general framework
of categorizing network traffic by the activity being performed at the originating client.
If traffic profiles are available for multiple activity types, one can build a classifier that
analyzes network traffic associated with active hosts and reports their activity in real-time
(e.g., worm propagation over port 80, running peer-to-peer applications tunneling through
port 80, benign Web browsing). This kind of classifier will not only protect the network
against many known Internet attacks, but also significantly enhance our understanding of
ongoing “network situational awareness” [91].

Appendix A

Implementation of TRW in Bro policy

The Bro network intrusion detection system includes a number of policy scripts, which
analyze network traffic and determine alarm worthy events used by the main program [1].
We implemented the Threshold Random Walk (TRW) portscan detection algorithm in Bro
policy. One can load the TRW policy file, trw.bro using the @load command. Below is
the source code of trw.bro.
@load a l e r t
@load p o r t−name
@load h o t
@load scan

r e d e f use TRW algor i thm = T ;

r e d e f enum A l e r t + = {
TRWAddressScan , # Source f l a g g e d as s c a n n e r by TRW a l g o r i t h m
TRWScanSummary , # Summary o f s c a n n i n g a c t i v i t i e s r e p o r t e d by TRW
} ;

module TRW;

g l o b a l t a r g e t d e t e c t i o n p r o b = 0 . 9 9 & r e d e f ;
g l o b a l t a r g e t f a l s e p o s i t i v e p r o b = 0 . 0 1 & r e d e f ;

As d e f i n e d i n Chapter 4 , t h e t a z e r o (t h e t a o n e) i s t h e s u c c e s s
p r o b a b i l i t y o f a g i v e n b e n i g n (s c a n n i n g) remote h o s t ’ s f i r s t
c o n t a c t c o n n e c t i o n
g l o b a l t h e t a z e r o = 0 . 8 & r e d e f ;
g l o b a l t h e t a o n e = 0 . 1 & r e d e f ;

S e t o f remote h o s t s s u c c e s s f u l l y a c c e s s e d by l o c a l h o s t s
g l o b a l f r i e n d l y r e m o t e s : s e t [add r] ;

S e t o f l o c a l h o n e y p o t h o s t s i f any

111

112 Chapter A. Implementation of TRW in Bro policy

g l o b a l honeypo t : s e t [add r] ;

Upper and lower t h r e s h o l d s : i n i t i a l i z e d when Bro s t a r t s
g l o b a l e t a z e r o : d o u b l e ;
g l o b a l e t a o n e : d o u b l e ;

T e l l TRW n o t t o f l a g f r i e n d l y r e m o t e s
g l o b a l d o n o t f l a g f r i e n d l y r e m o t e s = T & r e d e f ;

S e t o f s e r v i c e s o f ou tbound c o n n e c t i o n s t h a t are
p o s s i b l y t r i g g e r e d by incoming c o n n e c t i o n s
c o n s t t r i g g e r e d o u t b o u n d s e r v i c e s =
{ i d e n t , f i n g e r , 2 0 / t cp , } & r e d e f ;

g l o b a l TRW scan sources : s e t [add r] ;
g l o b a l TRW benign sources : s e t [add r] ;

g l o b a l f i r s t c o n t a c t c o n n e c t i o n s : s e t [addr , add r] ;

g l o b a l lambda : t a b l e [add r] o f d o u b l e & d e f a u l t = 1 . 0 ;
g l o b a l n u m s c a n n e d l o c a l s : t a b l e [add r] o f c o u n t & d e f a u l t = 0 ;

e v e n t b r o i n i t () {
Approx imate s o l u t i o n s f o r upper and lower t h r e s h o l d s

e t a z e r o =
(1 − t a r g e t d e t e c t i o n p r o b) / (1 − t a r g e t f a l s e p o s i t i v e p r o b) ;

e t a o n e = t a r g e t d e t e c t i o n p r o b / t a r g e t f a l s e p o s i t i v e p r o b ;
}

e v e n t TRW scan summary (o r i g : add r) {
ALERT ([$ a l e r t =TRWScanSummary , $ s r c = o r i g ,

$msg=fmt (”%s scanned a t o t a l o f %d h o s t s ” ,
o r i g , n u m s c a n n e d l o c a l s [o r i g])]) ;
}

e x p o r t {
f u n c t i o n check TRW scan (c : c o n n e c t i o n , s t a t e : s t r i n g ,
r e v e r s e : boo l) : boo l {

l o c a l i d = c $ i d ;
l o c a l s e r v i c e =

(c $ s e r v i c e = = p o r t n a m e s [2 0 / t c p]) ? 2 0 / t c p : i d $ r e s p p ;
l o c a l o r i g = r e v e r s e ? i d $ r e s p h : i d $ o r i g h ;
l o c a l r e s p = r e v e r s e ? i d $ o r i g h : i d $ r e s p h ;
l o c a l outbound = i s l o c a l a d d r (o r i g) ;

Mark a remote as f r i e n d l y i f i t i s s u c c e s s f u l l y a c c e s s e d by
a l o c a l w i t h p r o t o c o l s o t h e r than t r i g g e r e d o u t b o u n d s e r v i c e s

113

i f (ou tbound) {
i f (r e s p ! i n TRW scan sources &&

s e r v i c e ! i n t r i g g e r e d o u t b o u n d s e r v i c e s &&
o r i g ! i n honeypo t && s t a t e ! = ”OTH”)
add f r i e n d l y r e m o t e s [r e s p] ;

re turn F ;
}

i f (o r i g i n TRW scan sources)
re turn T ;

i f (o r i g i n TRW benign sources)
re turn F ;

i f (d o n o t f l a g f r i e n d l y r e m o t e s && o r i g i n f r i e n d l y r e m o t e s)
re turn F ;

S t a r t TRW e v a l u a t i o n
l o c a l f l a g = + 0 ;
l o c a l r e s p b y t e = r e v e r s e ? c $ o r i g $ s i z e : c $ r e s p $ s i z e ;
l o c a l e s t a b l i s h e d = T ;

i f (s t a t e = = ” S0 ” | | s t a t e = = ”REJ” | | s t a t e = = ”OTH” | |
(s t a t e = = ”RSTOS0” && r e s p b y t e < = 0))

e s t a b l i s h e d = F ;

i f (! e s t a b l i s h e d | | r e s p i n honeypo t) {
i f ([o r i g , r e s p] ! i n f i r s t c o n t a c t c o n n e c t i o n s) {

f l a g = 1 ;
add f i r s t c o n t a c t c o n n e c t i o n s [o r i g , r e s p] ;
}
}

e l s e i f ([o r i g , r e s p] ! i n f i r s t c o n t a c t c o n n e c t i o n s) {
f l a g = −1 ;
add f i r s t c o n t a c t c o n n e c t i o n s [o r i g , r e s p] ;
}

i f (f l a g = = 0)
re turn F ;

l o c a l r a t i o = 1 . 0 ;

Update t h e c o r r e s p o n d i n g l i k e l i h o o d r a t i o o f o r i g
i f (t h e t a z e r o < = 0 | | t h e t a z e r o > = 1 | | t h e t a o n e < = 0 | |

t h e t a o n e > = 1 | | t h e t a o n e >= t h e t a z e r o) {

114 Chapter A. Implementation of TRW in Bro policy

Error : t h e t a z e r o s h o u l d be be tween 0 and 1
l o g ” bad t h e t a z e r o / t h e t a o n e i n check TRW scan ” ;
use TRW algor i thm = F ;
re turn F ;
}

i f (f l a g = = 1)
r a t i o = (1 − t h e t a o n e) / (1 − t h e t a z e r o) ;

i f (f l a g = = −1)
r a t i o = t h e t a o n e / t h e t a z e r o ;

++ n u m s c a n n e d l o c a l s [o r i g] ;

lambda [o r i g] = lambda [o r i g] ∗ r a t i o ;
l o c a l u p d a t e d l a m b d a = lambda [o r i g] ;

i f (t a r g e t d e t e c t i o n p r o b < = 0 | |
t a r g e t d e t e c t i o n p r o b > = 1 | |
t a r g e t f a l s e p o s i t i v e p r o b < = 0 | |
t a r g e t f a l s e p o s i t i v e p r o b > = 1) {
Error : t a r g e t p r o b a b i l i t i e s s h o u l d be be tween 0 and 1
l o g ” bad t a r g e t p r o b a b i l i t i e s i n check TRW scan ” ;
use TRW algor i thm = F ;
re turn F ;
}

i f (u p d a t e d l a m b d a > e t a o n e) {
add TRW scan sources [o r i g] ;
ALERT ([$ a l e r t =TRWAddressScan , $ s r c = o r i g ,

$msg=fmt (”%s scanned a t o t a l o f %d h o s t s ” ,
o r i g , n u m s c a n n e d l o c a l s [o r i g])]) ;
s c h e d u l e 1 day { TRW scan summary (o r i g) } ;
re turn T ;

}

i f (u p d a t e d l a m b d a < e t a z e r o) {
add TRW benign sources [o r i g] ;
re turn F ;
}
}
}

Bibliography

[1] Bro Intrusion Detection System. http://bro-ids.org. (Cited on pages 78
and 111.)

[2] Internet Security Systems — Internet Scanner. http://www.
iss.net/products_services/enterprise_protection/
vulnerability_assessment/scanner_internet.php. (Cited on
page 16.)

[3] Nessus. http://www.nessus.org/. (Cited on page 16.)

[4] Nmap — Free Security Scanner for Network Exploration & Security Audits.
http://www.insecure.org/nmap/. (Cited on pages 16, 30 and 101.)

[5] Novell: iPrint Overview. http://www.novell.com/products/netware/
printing/quicklook.html. (Cited on page 96.)

[6] WhatsUp Gold — The Standard for Network Monitoring Systems. http://www.
areawidetech.com/whatsup_gold.htm. (Cited on page 95.)

[7] D. Anderson, T. Lunt, H. Javits, A. Tamaru, and A. Valdes. Detecting Unusual Pro-
gram Behavior Using the Statistical Components of NIDES. Technical Report SRI-
CSL-95-06, SRI Computer Science Laboratory, May 1995. (Cited on page 21.)

[8] Michéle Basseville and Igor V. Nikiforov. Detection of Abrupt Changes: Theory
and Application, chapter 4.3: Sequential Analysis. Prentice-Hall, Inc., Upper Saddle
River, NJ, USA, 1993. (Cited on page 25.)

[9] Vincent Berk, George Bakos, and Robert Morris. Designing a Framework for Ac-
tive Worm Detection on Global Networks. In Proceedings of the IEEE International
Workshop on Information Assurance, March 2003. (Cited on pages 35 and 71.)

[10] Vincent Berk, Robert Gray, and George Bakos. Using Sensor Networks and Data
Fusion for Early Detection of Active Worms. In Proceedings of the SPIE Aerosense
Conference, April 2003. (Cited on pages 35 and 71.)

[11] CAIDA. CAIDA-Analysis of Code Red. http://www.caida.org/
analysis/security/code-red/. (Cited on page 65.)

115

http://bro-ids.org
http://www.iss.net/products_services/enterprise_protection/vulnerability_assessment/scanner_internet.php
http://www.iss.net/products_services/enterprise_protection/vulnerability_assessment/scanner_internet.php
http://www.iss.net/products_services/enterprise_protection/vulnerability_assessment/scanner_internet.php
http://www.nessus.org/
http://www.insecure.org/nmap/
http://www.novell.com/products/netware/printing/quicklook.html
http://www.novell.com/products/netware/printing/quicklook.html
http://www.areawidetech.com/whatsup_gold.htm
http://www.areawidetech.com/whatsup_gold.htm
http://www.caida.org/analysis/security/code-red/
http://www.caida.org/analysis/security/code-red/

116 BIBLIOGRAPHY

[12] CERT. CERT Advisory CA-2001-26 Nimda Worm. http://www.cert.org/
advisories/CA-2001-26.html. (Cited on page 33.)

[13] CERT. “Code Red II:” Another Worm Exploiting Buffer Overflow in IIS In-
dexing Service DLL. http://http://www.cert.org/incident_notes/
IN-2001-09.html. (Cited on pages 34 and 79.)

[14] Shigang Chen and Yong Tang. Slowing Down Internet Worms. In Proceedings of
the 24th International Conference on Distributed Computing Systems (ICDCS’04),
Tokyo, Japan, March 2004. (Cited on pages 35, 85 and 86.)

[15] CIO Asia. CA Details Sophisticated Web At-
tack. http://www.idg.com.sg/ShowPage.aspx?
pagetype=2&articleid=1482&pubid=5&issueid=48. (Cited on
page 15.)

[16] Fred Cohen. Computer Viruses: Theory and Experiments. Computers and Security,
6(1):22–35, 1987. (Cited on page 32.)

[17] Marco de Vivo, Eddy Carrasco, Germinal Isern, and Gabriela O. de Vivo. A Review of
Port Scanning Techniques. SIGCOMM Computer Communication Review, 29(2):41–
48, 1999. (Cited on page 30.)

[18] Sven Dietrich, Neil Long, and David Dittrich. Analyzing Distributed Denial Of Ser-
vice Tools: The Shaft Case. In Proceedings of LISA, 2000. (Cited on page 17.)

[19] Holger Dreger, Anja Feldmann, Vern Paxson, and Robin Sommer. Operational Ex-
periences with High-Volume Network Intrusion Detection. In Proceedings of the
11th ACM Conference on Computer and Communications Security, 2004. (Cited on
page 20.)

[20] Mark Eichin and Jon Rochlis. With Microscope and Tweezers: An Analysis of the In-
ternet Virus of November 1988. In Proceedings of the IEEE Symposium on Research
in Security and Privacy, 1989. (Cited on pages 32 and 86.)

[21] F-Secure. F-Secure Virus Description Database. http://www.f-secure.com/
v-descs/. (Cited on page 32.)

[22] F-Secure. F-Secure Virus Descriptions : Santy. http://www.f-secure.com/
v-descs/santy_a.shtml. (Cited on page 86.)

[23] F-Secure Computer Virus Information page. LoveLetter. http://www.
f-secure.com/v-descs/love.shtml. (Cited on page 33.)

[24] F-Secure Computer Virus Information page. Lovesan. http://www.f-secure.
com/v-descs/msblast.shtml. (Cited on pages 34, 65 and 79.)

[25] F-Secure Computer Virus Information page. Mimail.J. http://www.f-secure.
com/v-descs/mimail_j.shtml. (Cited on page 79.)

http://www.cert.org/advisories/CA-2001-26.html
http://www.cert.org/advisories/CA-2001-26.html
http://http://www.cert.org/incident_notes/IN-2001-09.html
http://http://www.cert.org/incident_notes/IN-2001-09.html
http://www.idg.com.sg/ShowPage.aspx?pagetype=2&articleid=1482&pubid=5&issueid=48
http://www.idg.com.sg/ShowPage.aspx?pagetype=2&articleid=1482&pubid=5&issueid=48
http://www.f-secure.com/v-descs/
http://www.f-secure.com/v-descs/
http://www.f-secure.com/v-descs/santy_a.shtml
http://www.f-secure.com/v-descs/santy_a.shtml
http://www.f-secure.com/v-descs/love.shtml
http://www.f-secure.com/v-descs/love.shtml
http://www.f-secure.com/v-descs/msblast.shtml
http://www.f-secure.com/v-descs/msblast.shtml
http://www.f-secure.com/v-descs/mimail_j.shtml
http://www.f-secure.com/v-descs/mimail_j.shtml

BIBLIOGRAPHY 117

[26] F-Secure Computer Virus Information page. Mydoom. http://www.f-secure.
com/v-descs/novarg.shtml. (Cited on pages 34 and 79.)

[27] F-Secure Computer Virus Information page. Nimda. http://www.f-secure.
com/v-descs/nimda.shtml. (Cited on page 33.)

[28] F-Secure Computer Virus Information page. Zotob.A. http://www.f-secure.
com/v-descs/zotob_a.shtml. (Cited on page 34.)

[29] Nick Feamster, Jaeyeon Jung, and Hari Balakrishnan. An Empirical Study of “Bogon”
Route Advertisements. In Computer Communication Review, Volume 35, Number 1,
January 2005. (Cited on page 65.)

[30] Simson Garfinkel, Gene Spafford, and Alan Schwartz. Practical UNIX & Internet
Security, chapter 5.5: SUID. O’Reilly Media, Inc., Sebastopol, CA, 3rd edition,
February 2003. (Cited on page 21.)

[31] Anup K. Ghosh, Aaron Schwartzbard, and Michael Schatz. Learning Program Be-
havior Profiles for Intrusion Detection. In Proceedings of the 1st USENIX Workshop
on Intrusion Detection and Network Monitoring, April 1999. (Cited on page 21.)

[32] HackFix. SubSeven Removals. http://www.hackfix.org/subseven.
(Cited on page 20.)

[33] L. Todd Heberlein, Gihan Dias, Karl Levitt, Biswanath Mukherjee, Jeff Wood, and
David Wolber. A Network Security Monitor. In Proceedings of the IEEE Symposium
on Research in Security and Privacy, 1990. (Cited on page 30.)

[34] Koral Ilgun, Richard A. Kemmerer, and Phillip A. Porras. State Transition Analysis:
A Rule-Based Intrusion Detection Approach. Software Engineering, 21(3):181–199,
1995. (Cited on page 20.)

[35] Don Johnson. Criteria in Hypothesis Testing. http://cnx.rice.edu/
content/m11228/latest/. (Cited on pages 25 and 26.)

[36] Jaeyeon Jung, Vern Paxson, Arthur W. Berger, and Hari Balakrishnan. Fast Portscan
Detection Using Sequential Hypothesis Testing. In Proceedings of the IEEE Sympo-
sium on Security and Privacy, May 2004. (Cited on page 22.)

[37] Hyang-Ah Kim and Brad Karp. Autograph: Toward Automated Distributed Worm
Signature Detection. In Proceedings of the 13th USENIX Security Symposium, Au-
gust 9–13, 2004. (Cited on pages 35 and 107.)

[38] C. Ko, M. Ruschitzka, and K. Levitt. Execution Monitoring of Security-Critical Pro-
grams in Distributed Systems: a Specification-Based Approach. In Proceedings of
the IEEE Symposium on Security and Privacy, 1997. (Cited on page 21.)

[39] Sandeep Kumar and Eugene H. Spafford. A Pattern Matching Model for Misuse Intru-
sion Detection. In Proceedings of the 17th National Computer Security Conference,
1994. (Cited on page 20.)

http://www.f-secure.com/v-descs/novarg.shtml
http://www.f-secure.com/v-descs/novarg.shtml
http://www.f-secure.com/v-descs/nimda.shtml
http://www.f-secure.com/v-descs/nimda.shtml
http://www.f-secure.com/v-descs/zotob_a.shtml
http://www.f-secure.com/v-descs/zotob_a.shtml
http://www.hackfix.org/subseven
http://cnx.rice.edu/content/m11228/latest/
http://cnx.rice.edu/content/m11228/latest/

118 BIBLIOGRAPHY

[40] Christopher Leckie and Ramamohanarao Kotagiri. A Probabilistic Approach to De-
tecting Network Scans. In Proceedings of the 8th IEEE Network Operations and
Management Symposium (NOMS 2002), pages 359–372, Florence, Italy, April 2002.
(Cited on page 31.)

[41] Ulf Lindqvist and Phillip A Porras. Detecting Computer and Network Misuse
Through the Production-Based Expert System Toolset (P-BEST). In Proceedings
of the 1999 IEEE Symposium on Security and Privacy, pages 146–161, Oakland, Cal-
ifornia, may 1999. IEEE Computer Society Press, Los Alamitos, California. (Cited
on page 20.)

[42] Matthew V. Mahoney and Philip K. Chan. Learning Nonstationary Models of Normal
Network Traffic for Detecting Novel Attacks. In Proceedings ACM SIGKDD interna-
tional conference on Knowledge discovery and data mining, NY, USA, 2002. (Cited
on page 21.)

[43] Jelena Mirkovic, Sven Dietrich, David Dittrich, and Peter Reiher. Internet Denial
of Service: Attack and Defense Mechanisms. Prentice Hall PTR, 2004. (Cited on
page 17.)

[44] David Moore, Vern Paxson, Stefan Savage, Colleen Shannon, Stuart Staniford, and
Nicholas Weaver. Inside the Slammer worm. IEEE Security and Privacy, 1:33–39,
July 2003. (Cited on pages 15, 29, 34 and 65.)

[45] David Moore and Colleen Shannon. The Spread of the Code-Red Worm
(CRv2). http://www.caida.org/analysis/security/code-red/
coderedv2_analysis.xml. (Cited on pages 33 and 65.)

[46] David Moore, Colleen Shannon, Geoffrey M. Voelker, and Stefan Savage. Internet
Quarantine: Requirements for Containing Self-Propagating Code. In Proceedings of
IEEE INFOCOM, April 2003. (Cited on pages 34 and 66.)

[47] Robert Morris and Ken Thompson. Password Security: A Case History. Communi-
cations of the ACM, 22(11):594–597, 1979. (Cited on page 17.)

[48] George Moustakides. Optimal Procedures for Detecting Changes in Distributions.
Annals Statistics, 14:1379–1387, 1986. (Cited on pages 22 and 35.)

[49] Peter G. Neumann. Risks of Passwords. Communications of the ACM, 37(4), 1994.
(Cited on page 17.)

[50] Openwall Project. John The Ripper. http://www.openwall.com/john/.
(Cited on page 17.)

[51] Martin Overton. Bots and Botnets: Risks, Issues and Prevention. In Proceedings of
the 15th Virus Bulletin Conference, 2005. (Cited on page 17.)

http://www.caida.org/analysis/security/code-red/coderedv2_analysis.xml
http://www.caida.org/analysis/security/code-red/coderedv2_analysis.xml
http://www.openwall.com/john/

BIBLIOGRAPHY 119

[52] Vern Paxson. Bro: a System for Detecting Network Intruders in Real-Time. Computer
Networks (Amsterdam, Netherlands: 1999), 31(23–24):2435–2463, 1999. (Cited on
pages 20, 31, 78, 95 and 108.)

[53] J. B. Postel. Transmission Control Protocol, September 1981. RFC 793. (Cited on
page 30.)

[54] Thomas H. Ptacek and Timothy N. Newsham. Insertion, Evasion, and Denial of
Service: Eluding Network Intrusion Detection. Technical report, Suite 330, 1201 5th
Street S.W, Calgary, Alberta, Canada, T2R-0Y6, 1998. (Cited on page 20.)

[55] Seth Robertson, Eric V. Siegel, Matt Miller, and Salvatore J. Stolfo. Surveillance
Detection in High Bandwidth Environments. In Proceedings of the 2003 DARPA
DISCEX III Conference, Washington, DC, April 2003. (Cited on pages 31 and 68.)

[56] Martin Roesch. Snort: Lightweight Intrusion Detection for Networks. In Proceedings
of the 13th Conference on Systems Administration (LISA-99), Berkeley, CA, Novem-
ber 1999. USENIX Association. (Cited on pages 20, 30 and 108.)

[57] Stuart E. Schechter, Jaeyeon Jung, and Arthur W. Berger. Fast Detection of Scan-
ning Worm Infections. In Proceedings of the 7th International Symposium on Recent
Advances in Intrusion Detection (RAID 2004), September 2004. (Cited on page 23.)

[58] R. Sekar and P. Uppuluri. Synthesizing Fast Intrusion Prevention/Detection Systems
from High-Level Specifications. In Proceedings of the 8th USENIX Security Sympo-
sium, 1999. (Cited on page 21.)

[59] Colleen Shannon and David Moore. The Spread of the Witty Worm. Technical report,
Cooperative Association for Internet Data Analysis (CAIDA), March 2004. (Cited on
pages 34 and 65.)

[60] Stelios Sidiroglou and Angelos D. Keromytis. A Network Worm Vaccine Architec-
ture. In Proceedings of the IEEE International Workshops on Enabling Technologies:
Infrastructure for Collaborative Enterprises (WETICE), Workshop on Enterprise Se-
curity, June 2003. (Cited on page 66.)

[61] Stelios Sidiroglou and Angelos D. Keromytis. Countering Network Worms Through
Automatic Patch Generation. In Proceedings of the IEEE Symposium on Security and
Privacy, 2005. (Cited on page 66.)

[62] Sumeet Singh, Cristian Estan, George Varghese, and Stefan Savage. Automated
Worm Fingerprinting. In Proceedings of the 13th Operating Systems Design and
Implementation OSDI, December 2004. (Cited on pages 35 and 107.)

[63] Eugene H. Spafford. A Failure to Learn from the Past. In Proceedings of the 19th
Annual Computer Security Applications Conference, pages 217–233, December 2003.
(Cited on pages 32 and 86.)

120 BIBLIOGRAPHY

[64] @stake. L0phtCrack. http://www.atstake.com/products/lc/. (Cited
on page 17.)

[65] Stuart Staniford. Containment of Scanning Worms in Enterprise Networks. Journal
of Computer Security, Forthcoming. (Cited on page 35.)

[66] Stuart Staniford, James A. Hoagland, and Joseph M. McAlerney. Practical Auto-
mated Detection of Stealthy Portscans. In Proceedings of the 7th ACM Conference on
Computer and Communications Security, Athens, Greece, 2000. (Cited on pages 32
and 58.)

[67] Stuart Staniford, Vern Paxson, and Nicholas Weaver. How to 0wn the Internet in Your
Spare Time. In Proceedings of the 11th USENIX Security Symposium, Berkeley, CA,
USA, August 2002. (Cited on page 86.)

[68] S. Staniford-Chen, S. Cheung, R. Crawford, M. Dilger, J. Frank, J. Hoagland,
K. Levitt, C. Wee, R. Yip, and D. Zerkle. GrIDS – A Graph-based Intrusion De-
tection System for Large Networks. In Proceedings of the 19th National Information
Systems Security Conference, volume 1, pages 361–370, October 1996. (Cited on
pages 35 and 84.)

[69] Symantec. Security Response – Code Red II. http://securityresponse.
symantec.com/avcenter/venc/data/codered.ii.html. (Cited on
pages 29, 34 and 79.)

[70] Symantec. Symantec Internet Security Threat Report Identifies More Attacks Now
Targeting e-Commerce, Web Applications. http://www.symantec.com/
press/cgi/printfriendlypress.cgi?release=2004/n040920b.
html. (Cited on page 15.)

[71] Symantec Security Response. Search and Latest Virus Threats. http://www.
symantec.com/avcenter/vinfodb.html. (Cited on page 32.)

[72] Symantec Security Response. W32.Nimda.A@mm. http://
securityresponse.symantec.com/avcenter/venc/data/w32.
nimda.a@mm.html. (Cited on page 33.)

[73] Symantec Security Response. W32.Sasser.Worm. http://
securityresponse.symantec.com/avcenter/venc/data/w32.
sasser.worm.html. (Cited on page 65.)

[74] silicon.com. Denial of Service Attack Victim Speaks Out. http://http://
management.silicon.com/smedirector/0,39024679,39130810,
00.htm, 2005. (Cited on page 17.)

[75] The Internet Assigned Numbers Authority. Port Numbers. http://http://
www.iana.org/assignments/port-numbers/, last accessed on February
1, 2006. (Cited on page 79.)

http://www.atstake.com/products/lc/
http://securityresponse.symantec.com/avcenter/venc/data/codered.ii.html
http://securityresponse.symantec.com/avcenter/venc/data/codered.ii.html
http://www.symantec.com/press/cgi/printfriendlypress.cgi?release=2004/n040920b.html
http://www.symantec.com/press/cgi/printfriendlypress.cgi?release=2004/n040920b.html
http://www.symantec.com/press/cgi/printfriendlypress.cgi?release=2004/n040920b.html
http://www.symantec.com/avcenter/vinfodb.html
http://www.symantec.com/avcenter/vinfodb.html
http://securityresponse.symantec.com/avcenter/venc/data/w32.nimda.a@mm.html
http://securityresponse.symantec.com/avcenter/venc/data/w32.nimda.a@mm.html
http://securityresponse.symantec.com/avcenter/venc/data/w32.nimda.a@mm.html
http://securityresponse.symantec.com/avcenter/venc/data/w32.sasser.worm.html
http://securityresponse.symantec.com/avcenter/venc/data/w32.sasser.worm.html
http://securityresponse.symantec.com/avcenter/venc/data/w32.sasser.worm.html
http://http://management.silicon.com/smedirector/0,39024679,39130810,00.htm
http://http://management.silicon.com/smedirector/0,39024679,39130810,00.htm
http://http://management.silicon.com/smedirector/0,39024679,39130810,00.htm
http://http://www.iana.org/assignments/port-numbers/
http://http://www.iana.org/assignments/port-numbers/

BIBLIOGRAPHY 121

[76] Jamie Twycross and Matthew M. Williamson. Implementing and Testing a Virus
Throttle. In Proceedings of the 12th USENIX Security Symposium, August 2003.
(Cited on pages 13, 35, 66, 75, 78, 80, 85, 88 and 108.)

[77] United States Computer Emergency Readiness Team. US-CERT Vulnerability Notes.
http://www.kb.cert.org/vuls/. (Cited on page 17.)

[78] USA TODAY. Unprotected PCs can be Hijacked in Minutes.
http://www.usatoday.com/money/industries/technology/
2004-11-29-honeypot_x.htm. (Cited on page 15.)

[79] Luis von Ahn, Manuel Blum, and John Langford. Telling Humans and Computers
Apart (Automatically) or How Lazy Cryptographers Do AI. Technical Report CMU-
CS-02-117, February 2002. (Cited on page 80.)

[80] Abraham Wald. Sequential Analysis. J. Wiley & Sons, New York, 1947. (Cited on
pages 18, 21, 26, 48, 50, 54, 92, 106 and 107.)

[81] Ke Wang, Gabriela Cretu, and Salvatore J. Stolfo. Anomalous payload-based worm
detection and signature generation. In Proceedings of the Eighth International Sym-
posium on Recent Advances in Intrusion Detection (RAID 2005), September 2005.
(Cited on page 107.)

[82] Nicholas Weaver, Vern Paxson, Stuart Staniford, and Robert Cunningham. A Taxon-
omy of Computer Worms. In Proceedings of the ACM Workshop on Rapid Malcode,
Washington, DC, 2003. (Cited on pages 65, 86 and 99.)

[83] Nicholas Weaver, Stuart Staniford, and Vern Paxson. Very Fast Containment of Scan-
ning Worms. In Proceedings of the 13th USENIX Security Symposium, August 2004.
(Cited on pages 35, 83, 84, 86, 97 and 105.)

[84] David Whyte, Evangelos Kranakis, and P.C. van Oorschot. DNS-based Detection of
Scanning Worms in an Enterprise Network. In Proceedings of the Network and Dis-
tributed System Security Symposium (NDSS’05), February 2005. (Cited on pages 35
and 86.)

[85] Wikipedia. Mydoom. http://en.wikipedia.org/wiki/MyDoom, last ac-
cessed on February 10, 2006. (Cited on pages 34 and 79.)

[86] Wikipedia. SQL Slammer Worm. http://en.wikipedia.org/wiki/
SQL_slammer_worm, last accessed on February 10, 2006. (Cited on page 65.)

[87] Wikipedia. Timeline of Notable Computer Viruses and Worms. http://en.
wikipedia.org/wiki/Notable_computer_viruses_and_worms, last
accessed on February 10, 2006. (Cited on page 32.)

[88] Wikipedia. Zotob. http://en.wikipedia.org/wiki/Zotob, last accessed
on February 10, 2006. (Cited on page 34.)

http://www.kb.cert.org/vuls/
http://www.usatoday.com/money/industries/technology/2004-11-29-honeypot_x.htm
http://www.usatoday.com/money/industries/technology/2004-11-29-honeypot_x.htm
http://en.wikipedia.org/wiki/MyDoom
http://en.wikipedia.org/wiki/SQL_slammer_worm
http://en.wikipedia.org/wiki/SQL_slammer_worm
http://en.wikipedia.org/wiki/Notable_computer_viruses_and_worms
http://en.wikipedia.org/wiki/Notable_computer_viruses_and_worms
http://en.wikipedia.org/wiki/Zotob

122 BIBLIOGRAPHY

[89] Matthew M. Williamson. Throttling Viruses: Restricting Propagation to Defeat Mali-
cious Mobile Code. In Proceedings of The 18th Annual Computer Security Applica-
tions Conference (ACSAC 2002), December 2002. (Cited on pages 35, 66 and 75.)

[90] Cynthia Wong, Stan Bielski, Ahren Studer, and Chenxi Wang. Empirical Analysis of
Rate Limiting Mechanisms. In Proceedings of the Eighth International Symposium
on Recent Advances in Intrusion Detection (RAID 2005), September 2005. (Cited on
page 105.)

[91] Vinod Yegneswaran, Paul Barford, and Vern Paxson. Using Honeynets for Internet
Situational Awareness. In Proceedings of ACM Sigcomm Hotnets, 2005. (Cited on
page 109.)

[92] T. Ylonen and C. Lonvick Ed. The Secure Shell (SSH) Protocol Architecture. Internet
Engineering Task Force, January 2006. RFC 4251. (Cited on page 17.)

	Introduction
	Malicious Network Activity
	Challenges to Real-Time Detection
	Detection Schemes
	Contributions

	Background
	Hypothesis Testing
	Sequential Hypothesis Testing

	Related Work
	Portscan
	Network Virus and Worm Propagation

	Portscan Detection
	Data Analysis
	Threshold Random Walk: An Online Detection Algorithm
	Evaluation
	Discussion
	Summary

	Detection of Scanning Worm Infections
	Reverse Sequential Hypothesis Testing
	Credit-Based Connection Rate Limiting
	Experimental Setup
	Results
	Limitations
	Summary

	Detection of Targeting Worm Propagations
	Data Analysis
	Rate-Based Sequential Hypothesis Testing
	Evaluation
	RBS + TRW: A Combined Approach
	Discussion
	Summary

	Conclusion and Future Directions
	Implementation of TRW in Bro policy

