Efficient Compilation of Lazy Evaluation

Thomas Johnsson

Abstract

This paper describes the principles underlying an efficient implementation of a
lazy functional language, compiling to code for ordinary computers. It is based
on combinator-like graph reduction: the user defined functions are used as rewrite
rules in the graph. Each function is compiled into an instruction sequence for an
abstract graph reduction machine, called the G-machine, the code reduces a function
application graph to its value. The G-machine instructions are then translated into
target code. Speed improvements by almost two orders of magnitude over previous
lazy evaluators have been measured; we provide some performance figures.

1 Background

Functional programming is emerging as an alternative to the conventional imperative style
of programming [Lan66], [Bac78]. Lazy evaluation (call by need, normal order evaluation)
has been proposed as a method for executing functional programs, the advantages being,
among others, that unbound data structures, e.g. infinite lists, can easily be handled, and
further that it makes interactive input/output possible in functional programs [Fri76].
Though functional programming languages have many pleasing properties, an obstacle to
their wider use has been the lack of efficient implementations.

Our work is based on Turner’s combinator approach [Tur79], where programs are trans-
formed into expressions containing the combinators S, K, I etc from combinatory logic,
thus removing all variables from the program. A combinator expression is evaluated in the
‘SKI-machine’ using normal order graph reduction. A problem with combinators is that
each combinator defines rather a small interpretative step, and combinator expressions
have a tendency to become very cumbersome for non-trivial programs.

Our lazy evaluation method is similar to the combinator reduction regime, but in-
stead of using a standard, fixed set of combinators, each user defined function is used as
a ‘combinator’, i.e., a rewrite rule for the graph. Functions are compiled into code se-
quences for an abstract graph reduction machine, called the G-machine, with instructions
that explicitly construct and manipulate expression graphs to reduce expressions to their
values; both shared and cyclic graphs can be directly constructed. Target code gener-
ation for ordinary computers from the G-machine code is rather straight-forward. One
might say that the compiler constructs a specialised, machine-language coded combinator
interpreter from each program.

2 Graph reduction

In our graph reduction approach a program is an expression whose value will appear as,
in general, a stream of basic values (integers, booleans etc) on the output file. Expres-
sions are evaluated using normal order graph reduction, and is carried out by performing
transformations on the graph to reduce it to its canonical form. A canonical form is an
expression which cannot be further reduced on the outermost level (even though subex-
pressions may be further reducible). In this paper canonical forms are integer and boolean
constants, list expressions e7.e5 with arbitrary expressions e; and ey, and function appli-
cations f e;---e€, where f is a function that takes more than m curried arguments; a
reduction of an application can take place only if all curried arguments to the functions are
present. Thus in general for an expression to become completely reduced, subexpressions
must also be reduced to canonical form, for instance the elements of a list. Evaluation of
a function application amounts to using the corresponding function definition as a graph
rewrite rule, repeatedly rewriting the application graph to an instance of the right hand
side of the function definition, with arguments substituted for formal parameters, until
having reached a canonical form.

For illustration, consider the following functional program, its value being the infinite
list of natural numbers.

letrec from n = n.from(suce n) in from 0

C-1

from 0 = Q@ = from @ =
from @ succ ()
succ ()

0 0 01 @
@ = @ = from @ =
from @ from @ suce 1
suce Q suce |
succ ()

(d) (e) (f)

Figure 1: Graph reduction of from 0. The output is shown to the left of each graph.

succ is the predefined successor function, °.” is the infix list construction operator and

juxtaposition denotes function application. Graph reduction of this program is shown in
figure 1, In the figures function application is denoted by @.

The start expression 1(a) is transformed to 1(b) using the rewrite rule for the function
from as defined above, with a pointer to the integer 0 substituted for the parameter n. In
1(b) the expression is on canonical form, and so is also its head part 0. The head value
can now be output and dropped from the graph, 1(c). Again the the rewrite rule for from
is applied to the graph, 1(d), and is now on the form e.¢’, which is canonical. The next
step 1s to reduce the head part suce 0 to its canonical form using the rewrite rule for suce,
1(e). The resulting integer 1 is then written on output and dropped from the graph.

The execution continues in this way ad infinitum. Note that the shared expression
suce 0 has been replaced in 1(e) by its value. In general expression graphs are evaluated,
i.e., reduced to their canonical forms, at most once and all expressions that share a
particular subexpression benefit from the evaluation (call by need).

3 An introductory example of G-machine execution

In our graph reduction scheme each function definition is compiled into a sequence of
G-machine instructions. Each graph rewrite, according to a function definition, is carried
out by executing the code for that function. We here illustrate execution of the G-machine
with the reduction step (c)—(d) from figure 1. The G-machine state transitions are shown
in figure 2.

Before the start of the reduction a pointer to the expression graph is at the top of a

C-2

pointer stack, figure 2(a) (the stack grows downwards). Reduction is started by execution
of the G-machine instruction EVAL, in this case by the print mechanism. EVAL causes
a new stack frame to be created with the previously topmost pointer as its single entry,
saving the old stack on another stack called the dump (not shown in figure 2), then an
unwind state pushes pointers to the application nodes of the left ‘backbone’ until having
reached a function node, (a) — (¢). The stack is then rearranged so that the topmost
pointer of the stack points to the argument of from, the second pointer from the top is
left untouched and will thus point to the apply node which is to be updated by the code
with the result of the application. The G-machine now starts to execute the code for
from, which is (see section 4.2 and table 3 how we obtain this)

from: PUSH 0; PUSHFUN from;
PUSHFUN succ; PUSH 3; MKAP;
MKAP; CONS; UPDATE 2; RET 1.

Except for the last two instructions, this instruction sequence is essentially a postfix
representation of the right hand side of from. The PUSH m instruction pushes the mth
pointer of the stack relative to the top and starting with 0; note that different offsets
have to be used to push pointers to the formal parameter m, depending on the current
depth of the stack (the reason for this is explained in section 5.5). The PUSHFUN succ
instruction pushes a pointer to a succ function node. MKAP constructs an application
node with the to topmost as subparts; similarly for CONS. After having constructed the
graph for the right hand side of the definition of from, figure 2(k), the cons node is copied
onto the result apply node by the UPDATE 2 instruction, having thereby transformed
from(suce 0) to (suce0).from(suce(suce 0)) in the graph, which is a canonical expression.
The RET 1 instruction pops one element from the stack, and since the top graph is now
on canonical form, the old stack is restored from the dump and control is returned to the
instruction following EVAL. In general, had the top graph been not on canonical form but
an application node or a function node, instead of restoring the old stack and returning
the G-machine would have reentered the unwind state to continue the reduction of the
new expression graph.

4 Short-circuiting graph reduction

We have previously indicated that we do graph reduction by repeatedly rewriting the
graph to the right hand sides of functions. Indeed we can use G-machine code that does
precisely this; in most cases, however, we can take considerable shortcuts an do away with
many intermediate graph rewritings.

Consider the function definition suce n = n + 1. If we compile it into code that
constructs the graph for the right hand side, add n 1, then when executed the expression
graph succe will be rewritten into addel, thus leaving over the task of further reduction to
add, which will reduce the expression to its integer value. Much efficiency can be gained
if we compile suce into code that first reduces its parameter n, computes the value of
n + 1, and then remakes the apply node to a integer node with this value. This avoids
the construction of the intermediate graph addel. A code sequence for the function suce
is accordingly

- from@ @ - from@ @ H from@ @ H from@ Q

succ () succ () succ () succ ()

EVAL unwind rearrange

@ - @
from @ — from @
succ () : succ ()
from — from
succ ~ suce

PUSHFUN suce PUSH 3
(2) (h)

E from@ @ H | @

suce () from @
. succ Q@
@ succ ()
succ from @
MKAP MKAP cons 7" UPDATE 2

(i) () (k) (1)

RET 1

Figure 2: G-machine reduction of from (succ 0).

C-4

S

S S
H Q Q Q
succ A succ A succ hH

unwind PUSH 0 EVAL
V S V S V S
)y .0, BE., L
succ hH succ hH succ hH
GET PUSHBASIC 1 ADD
S S IS
@ H 6 (] 6
suce 5 5
6
MKINT UPDATE 2 RET 1

Figure 3: Shortcut evaluation of function succ.

succ: PUSH 0; EVAL; GET; PUSHBASIC 1; ADD:;
MKINT; UPDATE 2: RET 1.

The execution of this code sequence is shown in figure 3. The addition is done on a separate
stack for basic values, called V, with instructions MKINT and GET for transfering values
to and from the graph. PUSHBASIC pushes a basic value constant on the V stack.

Similar reasoning can be applied to all other predefined primitive functions; if the right
hand side is an if-expression, for example, then the code would do the following: compute
the value of the condition, and if true the proper apply node is to be updated with the
value of the then-expression, else updated with the value of the else-expression.

This line of reasoning is systematized in the next section by having different compila-
tion schemes, one giving code that computes the value of an expression, and one giving
code that constructs the graph of an expression. This more direct method is significantly
faster; in our compiler implementation we have measured a speedup of about a factor of
ten for some typical programs, compared to naive graph reduction.

5 Technical details of the abstract machine and com-
piler

In this section we give a complete set of compilation rules for a simple functional language,
compiling to G-machine code. We also give an abstract description of the G-machine,

C-5

describing the the effects of the G-machine instructions on a machine state.

5.1 Source Language

A program in the language described here consists of a set of recursive functions and an
expression whose value is the value of the program, as summarised in table 1. Normal
order evaluation is assumed. Each function f; takes n; curried arguments and the free
variables of e; are in the set {x -+ - x,,}. Operators +, — etc are viewed as syntactic sugar
for applications to predefined functions add, sub etc, of which we deal with the ones given
in table 2.

Table 1: Syntax of programs

program = fixq--- 1, = € (function definitions)

fmwl Ty, = Em
€o (the value of the program)

e == identifiers | constants | e e
| let 7y =¢;and ---and z,, =¢,, In ¢
(multiple simultaneous local definitions)
| letrec 2y =e¢; and ---and z,, =¢,, In ¢
(multiple simultaneous local recursive definitions)

Table 2: Predefined functions

add sub mul div (binary arithmetic operators)
unary negation)

binary relational operators)

(
g (
It le eq ne ge gt (
and or (conditional and, or)
not (logical negation)
cons (
(
(
(

hd tl

null

if

binary list construction)
unary head and tail of a list)
unary test on empty list)
ternary if-then-else)

Note that there is no lambda expression in the syntax of expressions, functions are
defined only globally. Functional programs with local function definitions and lambda
expressions with free variables can be transformed into the form above, using super com-
binators [Hug82]; an algorithm to the same effect is used in our compiler implementation,
however, the program resulting from our transformation does not exhibit ‘full laziness’,
as is the main issue in Hughes’ work.

C-6

5.2 Compilation rules

The abstract compiler given in table 3 is subdivided into 4 compilation schemes:

FIf x1 -+ x,, = €] gives the code for a function which reduces the graph of an applica-
tion to canonical form.

Cle] rn gives code that constructs the graph of e and leaves a pointer to the result on
the top of the stack.

Ele] rn gives code that computes the value, i.e. canonical form, of ¢ and leaves a pointer
to the value on the top of the stack. It yields the sames result as C[e] r n followed
by an EVAL instruction and embodies the short-circuiting described in section 4.

Ble] r n computes the basic value of e and leaves the result on the basic value stack
V, yielding the same result as E[e] r n followed by a GET instruction. The idea
behind B is to avoid construction of a new node for each intermediate result in an
arithmetic or logical expression. The value is transferred to the graph only when
the entire expression has been evaluated, by the MKINT or MKBOOL instruction.

Table 3: Compilation rules

Flfer - am=€] = E[e] r (m+1); UPDATE (m+ 1); RET m,

where r =[xy =m+ 1, 20 =m, -, &, = 2]

Scheme &: Evaluate

1. &[] rn = PUSHINT ¢
2. Eb]rn = PUSHBOOL &
3. &ni]rn = PUSHNIL
4. Ex]rn = PUSH (n — r(x)); EVAL
5. E[flrn = PUSHFUN f
6. Eladd ey es] rn = Bfadd ey e3] r n; MKINT, and similarly for sub, mul, div
7. E&lnege]l rn = Blneg €] r n; MKINT
8. Elegeyes] rn = Bfeg ey es] r n; MKBOOL, and similarly for It, gt, ne, ge, le
9. E&fnote]rn = B[not €] r n; MKBOOL
10. Efandejex] rn = &[if e1 e false] rn
11. Eforeies] rn = &[if ey true es] rn
12. Efconseres] rn = Cle1] 7 n; Clez] v (n + 1); CONS
13. E[nulle] rn = &[le] r n; NULL; MKBOOL
14. E[hde] rn = &[le] r n; HD; EVAL, similarly for ¢
15. E[ifeiezes] rn = B[ei] 7 n; JFALSE ly; E[es] r n; IMP lo; LABEL [y; E[es] 7 n; LABEL [y
where [; and [, are new unique labels
16. E[letdine] rn = Clet[d] r n; E[e] ' n’; SLIDE (n’ — n), where (+',n') =X r[d] r n
17. E[letrec dine] rn = Cletrec[d] v' n'; E[e] ¥ n’; SLIDE (n' — n), where (v, n') =X r[d] r n
18. Ele] rn = C[e] r n; EVAL otherwise
Scheme B: Evaluate basic value
1. B[rn = PUSHBASIC ¢
2. B[] rn = PUSHBASIC b
3. Bladdejes] rn = Ble1] v n; Blez] v (n + 1); ADD, similarly for sub, mul, div, eq, ne, It, gt, ge, le.
4. Blnege] rn = Ble] r n; NEG
5. Blnote] rn = Ble] r n; NOT
6. Bnulle] rn = &[e] r n; NULL
7. Blifeireses]rn = B[ei] r n; FALSE ly; B[e2] » n; JMP l5; LABEL ly; B[es] » n; LABEL [
where [; and [, are new unique labels
8. Bletdine] rn = Clet[d] r n; Ble] ' n’; POP (n’ —n) where (+',n') =X r[d] rn
9. Bletrecdine] rn = Cletrec[d] v’ n'; Ble] v’ n'; POP (n' —n) where (+',n') = Xr[d] r n
10. Bfe] rn = &[e] r n; GET, otherwise
Scheme C: Construct graph
1. C[]rn = PUSHINT ¢
2. C[b]rn = PUSHBOOL &
3. Cnid] rn = PUSHNIL
4. C[f]rn = PUSHFUN f
5. Clz] rn = PUSH (n — r(z))
6. Clcons ey es] rn = Cle1] 7 n; Clez] v (n + 1); CONS
7. Cleres] rn = Cle1] v n; Clez] » (n+ 1); MKAP, if not matched above
8. C([letdine] rn = Clet[d] r n; C[e] v n’; SLIDE (n’ — n) where (+',n') =Xr[d] rn
9. C(C[letrecdine] rn = Cletrec[d] v’ n'; C[e] v’ n’; SLIDE (n’ — n) where (+',n') =X r[d] rn

Miscellaneous schemes for local definitions

Xr[vi=erand---v;=¢;--rand vy, = ey rn= (Pl =n+1,- v, =n+i,-- vy =n+m], n+m)
Clet[vy = eqand - v; = ¢; - --and vy, = ey] rn=Cler] rn;- - Cles] r (n+i—1); - Clem] v (n+m—1)
Cletrec[vy = ey and - - -v; = ¢; - -and v, = ey]| ¥ n= ALLOC m; C[e1] 7 (n + m); UPDATE m;- -

Clei] ¥ (n +m); UPDATE (m + 1 —4);--- Clem] 7 (n + m); UPDATE 1

C-8

In addition, there are 3 help-functions used for local definitions: X'r returns a pair of
the extended environment and the new stack depth, Clet and Cletrec gives code to extend

the stack with local definitions. In the translation schemes r is a mapping from identifiers
of parameters to their location on the stack, and n is the current depth of the stack.

Below we show compilation of the function fz =a.f « .

5.3

Flfx=consa(fa)] =
Efcons x (f x)] [x =2] 2; UPDATE 2; RET 1 =

Clx] [+ = 2] 2; C[f x] [« = 2] 3; CONS; UPDATE 2; RET 1 =

PUSH 0; C[f] [x=2] 3; C[z] [x = 2] 4; MKAP; CONS; UPDATE 2; RET 1 =
PUSH 0; PUSHFUN f; PUSH 2; MKAP; CONS; UPDATE 2; RET 1.

The abstract machine

A state in the abstract G-machine is a 7-tuple (O,C, S, V, G, E, D) where

@)

QA T« Q

is the output produced so far, as shown in the example in figure 1. It consists of
a sequence of integers and booleans. In an actual implementation O is printed on
standard output.

is the G-code sequence currently being executed.

is a stack of node names, i.e., pointers into the graph.

is a stack of basic values, i.e., integers and booleans on which the arithmetic and
logical operations are performed, as shown in section 4.

is the graph: a mapping from node names to nodes. We have nodes of the following

types:

INT . integer nodes,
BOOL b boolean nodes,
NIL empty list nodes,

CONS ny ny list nodes, where n is a pointer to the head graph and ns is a pointer
to the tail graph,

AP ny ng application nodes, where ny is a pointer to the function graph and ns
is a pointer to the argument graph,

FUN f a node with a reference to the compiled function f,

HOLE a node which is to be filled in with another value later; it is used while

constructing cyclic graphs for letrec expressions.

is a global environment, which is a mapping from function names to pairs consisting
of the number of curried arguments of the function, and its code sequence. E cor-
responds to the code segment in conventional machines and is constant throughout
the execution of the program.

is a dump used for recursive calls to EVAL: a stack of pairs consisting of

e a stack of node names: S before EVAL,
o a (G-code sequence: (' before EVAL.

Table 4 summarises the state transition rules for the G-machine instructions used in
the compilation rules given in table 3.

N =

=

10.

11.

12,
13.
14.
15.
16.
17.
18.
19.
20.
21.

22,

23.
24.
25.
26.
27.

28.
29.
30.
31.
32.
33.
34.

35.
36.
37.

©C O 0 O O O

bl

o,

o s e s e e e,

o,

—~
°o

o,
o,
o,
o,
o,

@]

bl

o,

@]

bl

bl

@]

bl

bl

PR e e e e e
O

bl

Table 4: State transition rules for G-machine instructions

PRINT.c,ns, v, G

n =INT], F, D) = {o;i, ¢, 8, v, G[n =INT 4], E, D)

[
PRINT.c, n.s, v, G[n = BOOL b], F, D) = (o;b, ¢, 8, v, G[n = BOOL b], E, D)

PRINT.c, n.s, v, G[n = CONS ny ns], £, D) =

(o, EVAL.PRINT.EVAL.PRINT .c, ny.na.s, v, G[n = CONS ny ns, E, D)

PRINT.c, n.s, v, G[n = NIL], E, D)
EVAL.c, n.s, v, G[n = AP ny ny, E, D) =

= (o, ¢, s, v, G[n =NIL], E, D)

(o, UNWIND.(), n.(), v, G[n = AP n1 ns], E, (¢,s).D)

EVAL.c, n.s, v, Gln = INT 4], E, D)

= (o, ¢, n.s, v, G[n = INT ¢], E, D),

similarly for nodes BOOL &, NIL, CONS n; ns and FUN f.

UNWIND.(), n.s, v, G[n = AP ny no], E, D) = (o, UNWIND.(), ny.n.s, G[n = AP ny ns], F, D)

UNWIND.(), ng.ny - - ng.s, v, G[ng = FUN f,

ny = AP nf nf,-- ny = AP nl, n}l), E[f = (k,c)], D) =

(o, ¢, nf -+ nflngs, v, Glng = FUN f, ny = AP nf nY, --- ny = AP n}, 0], E[f = (k,J)], D)

UNWIND.(), ng.ny - -~ ng.(), v, Glng = FUN f], E[f = (a,¢)], (¢/,s').D) and k < a =

(o, ¢, ny .s', v, G[ng = FUN f], E[f = (k,Z')], D)

RET m.c,v, ny -+ np.n.(), Gln =INT {, E, (¢,s').D) =
(o, ¢, n.s', v, Gln = INT {], E, D), similarly for nodes BOOL b, NIL and CONS n; ns.
RET m.c, ny.--- ny.n.s, v, Gln = AP ny no], E, D) =

(o, UNWIND.(), n.s, v, G[n = AP ny ns], E, D)
PUSHINT i.c, s, v, G, E, D) = (o, ¢,
PUSHBOOL b.c, s, v, G, E, D) = (o, ¢,
PUSHNIL.c, s, v, G, E, D) = (o, ¢,
PUSHFUN f.c, s, v, G, E, D) = (o, ¢,
PUSH m.c, ng.- - .npm .8, v, G, E, D) = (o, ¢,
MKINT.c, s, i.v, G, E, D) = (o, ¢,
MKBOOL.c, s, b.v, G, E, D) = (o, ¢,
MKAP.c, ny.na.8, G, E, D) = (o, ¢,
CONS.c, ny.nq.8, G, E, D) = (o, ¢,
ALLOC m.c, s, v, G, E, D) =

(o, ¢, ny---nl .8 v, G[ny = HOLE, --- n,, = HOLE]
UPDATE m.c, ng.- -+ nm.8, v, G[ng = No , i = Ny, E

(o, ¢, ny. s, v, Glng = Ny , nm = Nol, E, D)
SLIDE m.c, ng.- - ~.nm.s, v, G, E, D) = (o, ¢,
GET.c,n.s, v, Gln = INT 4], E, D) = (o, ¢,
GET.c, n.s, v, G[n = BOOL], F, D) = (o, ¢,
PUSHBASICi.c, s, v, G, E, D) = (o, ¢,
ADD.c, s, ia.11.v, G, E, D) = (o, ¢,

similarly for SUB, MUL, DIV, EQ, NE, LT, GT, LE

the last six putting boolean values on V.

, stmilarly for n = FUN f.

n'.s, v, G[n' = INT {], FE, D)
n’.s, v, G[n' = BOOL 4], E, D)
n’.s, v, G[n' = NIL], E, D)

n'.s, v, G[n' = FUN f], E, D)
Nm.No.- - N8, v, G, E, D)

n'.s, v, G[n' = INT {], FE, D)
n’.s, v, G[n' = BOOL 4], E, D)
n'.s, v, G[n' = AP na mq], E, D)
n’.s, v, G[n' = CONS ns nq], E, D)
? E7 D>

’ > =

ng.s, v, G, E; D)

s,iv, Gln =INT {], E, D)

s, b.v, G[n = BOOL b], E, D)
s,1.v, G, E, D)

S, (Zl + iz).V, G, E, D>,

and GE,

NEG.c, s, i.v, G, E, D) = (o, ¢, s, (—i).v, G, E, D)

NOT.c, s, b.v, G, E; D) = (o, ¢, 8, (0b).v, G, E, D)

JFALSE l.c, s, true.v, G, E, D) = (o, ¢, 8, G, E, D)

JFALSE l.c, s, false.v, G, E, D) = (0, JMP l.c; s, v, G, E, D)

JMP 1..-- LABEL l.c, s, v, G, E, D) = (o, ¢, 8, v,G, E D)

LABEL l.c, s, v, G, E; D) = (o, ¢, 8, v,G, E D)

HD.c, n.s, v, G[n = CONS ny ns], E, D) = (o, ¢, n1.8, v, G[n = CONS ny ns], E, D),
similarly for TL

NULL.c, n.s, v, G[n = CONS ny ns], F, D) = (o, ¢, s, false.v, G[n = CONS ny ns, E, D)

NULL.c, n.s, v, G[n = NIL], E, D) = (o, ¢, s, true.v, G[n = NIL], E, D)

POP m.c, ny.---.npm.8, v, G, E, D) (0, ¢, 8, v, G, E, D)

C-10

<()7007()7()7{}7E07()>
where ¢g = E[eg] 70 0; PRINT

and Fy = { fo i(n1,f[[f0$1"'$n1:€0]])7

fm 0 (M, Flfmxr -0, = €m]),
add : (2, F[pxy=addxy]),
sub (2, Flpxy=subzy]),

Figure 4: Initial state of the G-machine.

In a G-machine state, () denotes an empty stack or an empty code sequence. The
semicolon appends values onto an output sequence. Period is used as infix cons for
instruction sequences and push for stacks. Updating of the graph is written as e.g. G[n =
INT]. If there is a node named n previously in G, then the node n is updated with a new
value, otherwise a new node is created. This notation is also used in pattern matching
situations, for instance state transition rule 1 is applicable if the top of the stack points to
an integer node. For instructions with parameters, e.g. PUSH m.c binds as (PUSH m).c.
A node name that occurs only in the right hand side of a transition rule is considered to
be new and unique, e.g. n’ in transition rule 12. G-machine states that do not match any
rule are considered to be run time errors.

The definition of the G-machine has certain similarities with the definition of the
SECD machine [Lan64], new in our model is that we describe how we do lazy output, and
handle updating and sharing in a graph, in the framework of the abstract machine.

5.4 Initial and final state of the machine

The initial configuration of the machine for a given program is shown in figure 4. The
machine starts with an empty output, a code sequence ¢ for evaluating and printing the
start expression ¢p, an empty pointer stack and an empty basic value stack, an empty
graph, an environment Fy containing the compiled code for the functions together with
their arity, and an empty dump. Since the operators +, — etc are represented with
applications to predefined functions add, sub etc in unevaluated expression graphs, the
code for these functions must also be present in Fy. The machine stops when the state

(0,(),(),(),G, E,()) has been reached.

5.5 The evaluation mechanism

The evaluation of the program is driven by PRINT, which in case of a list starts the eval-
uation of the head and the tail part of the list, see transition rules 1-4. Only the leaves of
the printed data structure appears on the output, for instance the list (2.3.nil).(5.nil).nil
gives the output sequence 2 3 5.

The EVAL instruction reduces the graph pointed to by the pointer at the top of the

C-11

Figure 5: Rearrangement of the stack after unwind.

stack to canonical form. If the top of stack is an apply node, transition rule 5, the rest
of the code sequence and the stack except for the top element is pushed onto the dump,
and the unwind state is entered, following the function parts of apply nodes, pushing the
function pointers on the way (transition rule 7). When a function node has been reached,
and the stack is deep enough to contain all curried arguments to the function, rule 8, the
stack is arranged according to figure 5. The top m elements of the stack now points to
the m curried arguments of the function, and below them there is a pointer to the apply
node which is to be updated with the value of the application. The reason for remaking
the stack in this manner is firstly to make the function arguments easily accessible, and
secondly to access function arguments and local variables introduced by let and letrec
expressions uniformly.

After the stack rearrangement the function code is executed; see also compilation rule
F. If there were too few curried arguments in the application then a premature return is
performed, rule 9.

The RET instruction performs a return from EVAL if the function code has updated
the apply node for the return value with an integer, boolean, nil or cons node, rule 10. If
the updated node is an apply node or function node then the UNWIND state is reentered,
to continue the reduction of the new graph; an example when this happens is shown in
figure 6 which illustrates reduction of the expression f (g.nil) 3 , where f 1 = hdl and
gx = 2 x x. The value of f (g.nil) is the function ¢, and f has one ’extra’ argument
supplied. After EVAL and two unwind transitions we have the configuration shown in
6(b), the top of the stack is then made to point ot the argument of f, figure 6(c). The
code for f then computes the value of hd [, which is the function ¢, and updates the apply
node of the application f : (g.nil) with the function node g, figure 6(d). Since the entire
graph for which EVAL was called for is not yet fully reduced, the RET 1 instruction of the
code for fmakes the machine reenter the unwind state, figure 6(e), and the top of of the
stack is made to point to the argument of g, figure 6(f). The code for g then computes the
value of 2 + x and updates the top apply node with the integer 6. The RET 1 instruction
of the function g finally performs a proper return from EVAL, figure 6(h).

The fact that ‘extra’ curried arguments can be applied to function in this manner,
and in general we cannot know in advance how many extra, is the reason for accessing
parameters and variables relative to the top of the stack (instead of relative to the bottom
which perhaps at first sight would seem more natural).

C-12

fl=nhdl |f PUSHO0; EVAL; HD; EVAL; UPDATE 2; RET 1.
gr=2xux |g PUSHBASIC 1; PUSH 0; EVAL;
GET; MUL; MKINT; UPDATE 2; RET 1

9 il 9 il 9 il 9 il
EVAL UPDATE 2 RET 1
(a) (b) (c) (d)
H @ H @ H 6] 6
g 3 = g 37 5 = 3
UPDATE 2 RET 1

(e) (f) () (h)
Figure 6: Graph reduction when a function returns a function.

5.6 Let and letrec expressions

The code for a let or letrec expression constructs the graphs for the locally defined
expressions and puts pointers to these graphs onto the stack. When leaving the code for
the let or letrec expression these stack elements are removed by the SLIDE instruction; see
compilation rules E16, E17 etc. The recursive local definitions in letrec expressions are
implemented by constructing cyclic graphs, see scheme Cletrec in table 3 As an example
consider the code sequence

Clletrecx = fxinax 2] rn=

CletrecJa = fa]rle=n+1] (n+1);Clra] rlt =n+1] (n +1); SLIDE 1 =
ALLOC 1; PUSHFUN f; PUSH 1; MKAP; UPDATE 1,

PUSH 0; PUSH 1; MKAP; SLIDE 1.

Figure 7 shows some of the intermediate machine states when executing this code se-
quence. To construct the graph for z we must have a pointer to z, for this purpose a
HOLE node is allocated by the ALLOC 1 instruction; when f z has been constructed the
HOLE node is updated with this graph.

6 Further improvements of the G-machine code

This section discusses two kinds of improvements of the G-machine code, which is not
embodied in the compiler given in the previous section: improved tail recursive behaviour
and exploiting the knowledge that a variable has been previously evaluated. Both kinds
of improvements are included in our compiler implementation.

C-13

UPDATE 1 SLIDE 1
(a) (b) () (d)

Figure 7: Construction of a cyclic graph.

6.1 Tail recursion

Graph reduction by succesive rewritings to right hand sides gives us a loop-like behavior for
tail recursive calls. However, this desirable property is not preserved by the compilation
scheme given in table 3, because compilation scheme F emits code for computing the
value of the right hand side, before updating with the result. Thus using scheme & in F
is advantageous if the right hand side is an application to a primitive predefined function
such as add, sub etc, but does not bring out the proper tail recursive behaviour if the right
hand side is an application to a user defined function. For instance, using the compilation
rules in table 3, we have

Flgr=F5]=E[f5][x=2]2 UPDATE 2; RET 1 =
PUSHFUN f; PUSHINT 5; MKAP; EVAL; UPDATE 2; RET 1.

Here the EVAL instruction is unnecessary, and in fact harmful, in that it will create
another stack frame for the evaluation of f5. If the EVAL instruction is removed from the
code above the UPDATE instruction will update with the apply node of f5, and the RET
instruction will make the machine reenter the unwind state; no additional stack frame is
created.

Proper tail recursive behaviour can be reinstated into our compilation schemes by
introducing yet another compilation scheme, R for return value, which preserves the
context that the result is to be returned as the value of the current function evaluation.
Starting with the compilation function F, we then have

f[[flh“‘l'm:e]]:R[[e]] [x1:m+17.--xm:2] (m‘|‘1)

where the code emitted by R also performs the updating and returning. To return the
value of an application to a user defined function we can do a simplistic graph rewite, by

R[] fer - en] rn=C[fer--- ey] rn; UPDATE n; RET (n —1).
R can also be made to propagate down the branches of an if expression, by
R[if €1 €5 €3] ¥ n= Bles] r n; JFALSE [y; R[es]] » n; LABEL [y; Rfes] rn

and down into the in-expression in let and letrec expressions, by

C-14

1 @ 1
2 2

=

B

D m+1g

Figure 8: Rearranging the stack for tail calls.

R[let din €] r n = Clet[d] r n; R]e] r' n’
R[letrec din €] r n = Cletrec[d] ' n'; R[e] ' n’
where (r',n’) = Xr[d] r n.

The default case for R is
Rle] r n = E[e] r n; UPDATE n; RET (n —1).

To return the value of the application fe; - --e€,,, we can do even better by shortcircuiting
the unwind action which in this case follows the RET instruction. Provided the arity of
f is m, which is a condition for that the same apply node will be updated both by the
calling function and f, we can use

Rlfer--en] rn=38[er--en]rn; JFUN f.

The new scheme & emits a code sequence to rearrange the stack in the manner shown in
figure 8, and then a direct jump is performed to the first instruction of f, thus turning
tail recursion into loops in the G-machine code. Using this method on our little example
above, assuming f only takes one argument, we would get

Flgx=f5] =PUSHINT 5; MOVE 1; JFUN f.
The new instructions MOVE and JFUN are defined by

(o, MOVE m.c, ng -+ np_1.np.s, v, Gy B, D) = (o, ¢, ny -+ nypm_1.n0.8, v, G, B, D)
(o, JFUN f.c, s, (), G, E[f = (a,)], D) = (o, ¢, G, E[f = (a,)], D).

6.2 On evaluated variables

The first time EVAL is executed for a particular variable, that graph is reduced to canon-
ical form, and subsequent EVALs on the same variable has no effect. By keeping count of
when variables are being evaluated in each function we can avoid emitting EVAL instruc-
tions more than once for each variable. For example, to compute the basic value of the
expression = X x, table 3 gives us the code sequence

Blmulz 2] [t =1] 1 =
Ble] [x=1]1; B[«] [+ =1] 1; MUL =
PUSH 0; EVAL; GET; PUSH 0; EVAL; GET; MUL.

C-15

Here the second EVAL instruction is clearly useless and can be eliminated. Apart from
having removed a useless EVAL instruction, conditions also become better for target code
generation from the G-code, since we get longer code sequences unbroken by calls to EVAL
and may thus keep things in machine registers a bit longer.

Because of the cost involved in construction and reduction of expression graphs, it
is cheaper to evaluate some expressions directly than to construct their graphs, even if
the value is not going to be used. This is the case for expressions involving constants,
variables which has been evaluated previously, and arithmetic and logical primitive func-
tions (we ignore the problem of overflow and other exceptions). As an example, consider
construction of the expression 2 x x + y. The compilation rules in table 3 gives us

Cladd(mul2 z) y] [+ =2,y =1] 2 =
PUSHFUN add; PUSHFUN mul; PUSHINT 2:
MKAP; PUSH 2; MKAP; PUSH 3; MKAP.

If the variable x has been previously evaluated, it is safe to compute the value of 2 x z,
and instead we can use the code sequence

PUSHFUN add; PUSHBASIC 2;: PUSH 1; GET; MUL; MKINT PUSH 3; MKAP.
and if both # and y have been previously evaluated, we can use the code sequence

PUSHBASIC 2; PUSH 0; GET; MUL; PUSH 1; GET; ADD; MKINT.

When dealing with expressions with list values the situation is similar. For instance,
consider construction of the expression #/ [, as in the function definition

fl=1if null [then --- else g (¢l 1)

Because of the test in the condition part of the if-expression, not only can we know for
sure that [has been evaluated, in the else part of the if-expression we can also assert that
1 is on cons form. To construct the expression ¢l [, instead of using

PUSHFUN tl; PUSH 2; MKAP
we can use the code sequence

PUSH 1; TL.

Not only does this avoid allocation of an apply node, it also removes the overhead of
executing the code for the ¢/ function when function g calls for evaluation of its argument.

When a variable with a list value cannot be determined statically to be on cons-form,
we can test for this dynamically, with instructions MKHD and MKTL, used in the following
compilation rules.

Clhde]rn = C[e]rn; MKHD
Cltle]lrn = CJe]rn; MKTL

MKHD and MKTL test whether the top of stack is on cons-form, and if this is the case
then behaves as the HD and TL instructions respectively, otherwise constructs the graphs.
These instruction are defined by

C-16

(o, MKHD.c, n.s, v, G[n = CONS ny nq), E, D) =
(0, ¢, ny.s, v, Gn = CONSnyny], £, D)

otherwise:

(o, MKHD.c, n.s, v, G, E, D) =
(0, ¢, n1.s, v, Glny = AP nyn, ny = FUN hd], E, D)

and similarly for MKTL.

The analysis shown above can detect call-by-name to call-by-value transformations
only locally within a function. A more general method would be to use a global analysis
method, as described in [Myc80]. A future version of our compiler may include such an
analysis phase.

7 Implementation

This section discusses some features of our compiler implementation of the G-machine
concept. The source language is a completely function variant of ML [GMW79], with
call-by-name semantics. The last phase of the compiler translates the G-machine code
into target code for the VAX-11 computer.

7.1 Compiler organisation
The compiler is organised into the following parts:
Syntax analysis: Builds an abstract syntax tree of the program.

Type checking: Checks that the program is well-typed, using a polymorphic type check-
ing algorithm [Mil78].

Program transformation: Transforms the program into a set of functions, possibly
mutually recursive, as described in section 5.1. Also, the user defined data types
and pattern matching is transformed into simpler constructs.

Value analysis: Performs the analysis on evaluated variables as discussed in section 6.2.
G-code generation: Translates the functions into G-machine code.

Target code generation: Translates the G-machine code into assembly code for the
VAX-11 computer.

The entire compiler, except for the syntax analysis, has been written in fe [Aug82],
a functional language with lazy evaluation, a forerunner to the present implementation
based on our earlier ideas of compiled graph reduction [Joh81]. We are currently in the
process of rewriting the compiler into its own language.

C-17

7.2 Target code generation

For target code generation, the components of the G-machine state is mapped onto the
target computer in the following way:

is printed on standard output.

is the target code of the currently executed function, and the program counter.

is a data area for the pointer stack, and a stack pointer register (called ep).

is the system stack and stack pointer (sp).

is a large heap area divided into two equally sized halves, and a register (called hp)
as heap pointer, pointing to the next free location (see below).

is the target code for the functions, with code that performs nr-of-arguments-check.

QD" Qo

T

is the system stack and stack pointer (sp). Only pointers into the S stack and into the
system stack are pushed, not entire stacks and dumps as description of the abstract
machine suggests.

Both the V' stack and the dump D is mapped onto the same stack in the target
machine, which is possible because things pushed onto the V' stack are only used locally
in functions which pushed the value.

The garbage collector is a variant of Fenichel-Yochelson’s copying garbage collector
[F'Y69], but for vary-sized cells, and works as follows. The heap is divided into two equally
sized areas. Memory is allocated from one area at a time by simply incrementing the heap
pointer hp, and when running out of memory in one area the entire graph is copied into
the other heap area, leaving the garbage behind, also updating the pointers on the pointer
stack 5. In the target code, before an instruction sequence that allocates a certain amount
of memory, a check is made if that amount of memory is available on the heap, if not the
garbage collector is invoked. A disadvantage of this method of memory management is
that only half of the total available memory can be utilised; however on computers with
large virtual address spaces this is not a serious problem. To its advantage, the time used
for garbage collection is proportional to the size of the graph, (not the size of the heap
area, as it is for mark-scan methods) thus taking little time for small graphs.

The target code generation is done by deferring some operations on the pointer stack
S and basic value stack V', and instead simulate the contents of the topmost elements.
Thus instructions PUSHINT, PUSHFUN, PUSHBASIC, etc, which pushes constants, will
in the code generator push these constants on the simulated stacks. The instruction
MKAP, for instance, will thus take two arguments from the simulated stack if nonempty,
otherwise from the real stack. To bring out the main idea, a simple example of target
code generation is shown in figure 9, which constructs the graph for the expression 3.f 5.
In the simulated stack fun f refers to a pointer to a function node f, int i refers to an
integer node with value i, and heap n refers to a pointers into the heap at location n.
In the code, newly created nodes on the heap are referred to relative to the hp register,
and since node allocation changes the value of hp, we also need to carry along a current
relative value of hp, called HP. Function nodes, integer nodes, boolean nodes and the nil
node are not allocated each time on the heap; instead pointers to nodes in a constant area
are used. (The simulated V' stack is irrelevant for this example and is not shown.)

A further possibility which is not shown in this example is to allocate machine registers
for entries into the simulated stacks, particularly the for V stack entries for the result of
the usual arithmetic operations.

C-18

G-code VAX assembler code HP Simulated S stack Remark

0 () Start configuration

PUSHINT 3 0 int 3.() Push pointer to integer constant 3
PUSHFUN f 0 fun f.int 3.() Push pointer to function node for f
PUSHINT 5 0 int 5.fun fint 3.() Push pointer to integer constant 5
MKAP movl $APPLY, (hp)+ 4 Tag of apply node to heap ...

movl $C_F, (hp)+ 8 Fun. part = fun f to heap ...

movl $I 5, (hp)+ 12 heap 0.int 3.() Arg. part = int 5 to heap.
CONS movl $CONS, (hp)+ 16 Tag of cons node to heap ...

movl $I_3, (hp)+ 20 Head part = int 3 to heap ...

moval -20(hp), (hp)+ 24 heap 12.() Tail part = result of MKAP to heap ...

moval -12(hp),-(ep) 24 () Move result to real S stack.

Figure 9: Target code generation from graph construction code.

The target code is assembled in the usual manner, and loaded together with the
runtime system to make an executable file. The runtime system contains code for PRINT,
EVAL, unwind, the garbage collector, and also target code for the primitive predefined
functions add, sub etc.

7.3 Performance

We have compared our implementation with a couple of other implementations of func-
tional languages that have been available to us, both with strict and lazy evaluation. The
implementations in the table below are the following:

1. Our implementation; lazy evaluation, executes VAX-11 code.

Cardelli’s ML system [Car84]; strict evaluation, executes VAX-11 code.

The Liszt Lisp compiler under UNIX; strict evaluation, executes VAX-11 code.
The ML implementation in the LCF system; strict evaluation, interprets Lisp.

SASL, based on the SECD machine [Tur75]; lazy evaluation, interpretative.

SN AN T

C compiler under UNIX (applies only to the Fibonacci program).

The table below shows the execution time in seconds for three programs: fib(20) using
fib(n) = if n < 2 then 1 else fib(n — 1) + fib(n — 2), primes up to 300 using sieve of
Erathostenes, and insertion sort of 100 random elements.

1. 2. 3. 4. 5 6.
Fibonacct | 0.92 0.5 1.1 46 31 0.46
Primes 0.50 1.2 1.1 29 20 -
Insert sort | 0.37 1.0 0.8 15 12 -

The programs above have been chosen so that the results are the same independent of
whether lazy or strict evaluation is used, but in general lazy evaluation permits a more
direct programming style. It should be noted that in our Fibonacci program, in the
recursive call to fib the arguments are passed by value, due to the analysis on evaluated
variables described in section 6.2.

C-19

8 Related work

Jones and Muchnick [JM82] gives an alternative evaluation mechanism for combinator
expressions, with a compilation algorithm which translates combinators to fixed-program
code for a stack machine.

Hudak’s combinator based compiler [HK84] resembles our work in many respects.
He uses the standard combinators as a convenient intermediate language for performing
program transformations and optimisations. The program is the converted into one con-
taining macro-combinators, which is similar to Hughes’ super-combinators [Hug82] and
our global function definitions. Each macro-combinator is then translated into code for a
conventional machine.

Dick Kieburtz et. al at Oregon Graduate Center is currently in the process of designing
and implementing a VLSI chip for the G-machine.

9 Acknowledgements

This work was supported by the Swedish Board for Technical development (STU). The
compiler has been implemented together with Lennart Augustsson, and many ideas has
grown out of this close cooperation. I also wish to thank Alan Mycroft for helpful com-
ments on earlier drafts of this paper, and the members of the Programming Methodology
Group for numerous nice cake parties.

References

[Aug82] L. Augustsson. FC mamual. Technical Report Memo 13, Programming
Methodology Group, Chalmers University of Technology, Goteborg, Sweden,
1982.

[Bac78] J. Backus. Can programming be liberated from the von Neumann style? A
functional style and its algebra of programs. Communications of the ACM,

21:280-294, August 1978.

[Car84] L. Cardelli. ML under UNIX. Polymorphism: The ML/LCF/Hope Newsletter,
1(3), January 1984.

[Fri76] D. P. Friedman. Cons should not evaluate its arqguments, pages 257-284. Ed-
inburgh University Press, 1976. In the book Automata, languages and Pro-
gramming.

[FY69] R. Fenichel and J. Yochelson. A lisp garbage-collector for virtual memory
computer systems. Communications of the ACM, 12(11):611-612, November
1969.

[GMW79] M. Gordon, R. Milner, and C. Wadsworth. FEdinburgh LCF. Volume 78 of
Lecture Notes in Computer Science, Springer-Verlag, 1979.

[HK84]

[Hug82]

[JM82]

[Joh81]

[Lan64]

[Lan66]

[Mil78]

[Myc80]

[Tur75]

[Tur79]

P. Hudak and D. Kranz. A combinator-based compiler for a functional lan-
guage. In Proceedings 11th ACM Symposium on Principles of Programming
Languages, pages 122-132, 1984.

J. Hughes. Super combinators - a new implementation method for applicative
languages. In Proceedings of the 1982 ACM Symposium on Lisp and Functional
Programming, pages 1-10, Pittsburgh, 1982.

N. D. Jones and S. S. Muchnick. A fixed-program machine for combinator
expression evaluation. In Proceedings of the 1982 ACM Symposium on Lisp
and Functional Programming, pages 11-20, Pittsburgh, 1982.

T. Johnsson. Code Generation for Lazy Fvaluation. Technical Report Memo
22, Programming Methodology Group, Chalmers University of Technology,
Goteborg, Sweden, 1981.

P. J. Landin. The mechanical evaluation of expressions. Computer Journal,

(6):308-320, 1964.

P. J. Landin. The next 700 programming languages. Communications of the

ACM, 9(3):157-164, 1966.

Robin Milner. A theory of type polymorphism in programming. Journal of
Computer and Systems Sciences, 17:348-375, 1978.

A. Mycroft. The theory and practice of transforming call-by-need into call-by-
value. In Proceedings 4th International Symposium on Programming, Lecture
Notes in Computer Science 83, pages 269-281, Springer Verlag, Paris, April
1980.

D. A. Turner. An implementation of SASL. Technical report 4, University of
St. Andrews, 1975.

D. A. Turner. A new implementation technique for applicative languages.
Software - Practice and Experience, 9:31-49, 1979.

