
Fast Correlation Attacks Based on

Turbo Code Techniques

Thomas Johansson∗ and Fredrik Jönsson?

Dept. of Information Technology
Lund University, P.O. Box 118, 221 00 Lund, Sweden

{thomas,fredrikj}@it.lth.se

Abstract. This paper describes new methods for fast correlation at-
tacks on stream ciphers, based on techniques used for constructing and
decoding the by now famous turbo codes. The proposed algorithm con-
sists of two parts, a preprocessing part and a decoding part. The prepro-
cessing part identi�es several parallel convolutional codes, embedded in
the code generated by the LFSR, all sharing the same information bits.
The decoding part then �nds the correct information bits through an
iterative decoding procedure. This provides the initial state of the LFSR.

Keywords. Stream ciphers, correlation attacks, convolutional codes, it-
erative decoding, turbo codes.

1 Introduction

Stream ciphers are generally faster than block ciphers in hardware, and have less
complex hardware circuitry, implying a low power consumption. Furthermore,
bu�ering is limited and in situations where transmission errors can occur the er-
ror propagation is limited. These are all properties that are especially important
in, e.g., telecommunications applications.

Consider a binary additive stream cipher, i.e., a synchronous stream cipher
in which the keystream, the plaintext, and the ciphertext are sequences of bi-
nary digits. The output sequence of the keystream generator, z1, z2, . . . is added
bitwise to the plaintext sequence m1, m2, . . ., producing the ciphertext c1, c2,
The keystream generator is initialized through a secret key k, and hence, each
key k will correspond to an output sequence. Since the key is shared between
the transmitter and the receiver, the receiver can decrypt by adding the output
of the keystream generator to the ciphertext, obtaining the message sequence,
see Figure 1.

The design goal is to e�ciently produce random-looking sequences that are
as �indistinguishable� as possible from truly random sequences. Also, from a
cryptanalysis point of view, a good stream cipher should be resistant against
di�erent kind of attacks, e.g., a known-plaintext attack. For a synchronous stream
cipher, a known-plaintext attack is equivalent to the problem of �nding the key

? The authors are supported by the Foundation for Strategic Research - PCC under
Grant 9706-09.

Michael Wiener (Ed.): CRYPTO'99, LNCS 1666, pp. 181�197, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

182 T. Johansson, F. Jönsson

j- -?

keystream
generator

m1, m2, . . . c1, c2, . . .

z1, z2, . . .

Fig. 1. Principle of binary additive stream ciphers

k that produced a given keystream z1, z2, . . . , zN . We hence assume that a given
output sequence from the keystream generator z1, z2, . . . , zN is known to the
cryptanalyst and that his task is to restore the secret key k.

In stream cipher design, it is common to use linear feedback shift registers,
LFSRs, as building blocks in di�erent ways. Furthermore, the secret key k is
often chosen to be the initial state of the LFSRs.

Several classes of general cryptanalytic attacks against stream ciphers exist
[13]. A very important, if not the most important, class of attacks on LFSR-
based stream ciphers is correlation attacks. If one can, in some way, detect a
correlation between the known output sequence and the output of one individual
LFSR, it is possible to mount a �divide-and-conquer� attack on the individual
LFSR [16,17,11,12]. Observe that there is no requirement of structure of any
kind for the key generator. The only requirement is the fact that, if u1, u2, . . .
denotes the output of the particular LFSR, we have a correlation of the form
P (un = zn) 6= 0.5, n ≥ 1. Other types of correlations may also apply.

A common methodology for producing random-like sequences from LFSRs
is to combine the output of several LFSRs by a nonlinear Boolean function f
with desired properties [13]. The purpose of f is to destroy the linearity of the
LFSR sequences and hence provide the resulting sequence with a large linear
complexity [13]. Note that for such a stream cipher, there is always a correlation
between the output zn and either one or a set output symbols from di�erent
LFSRs.

Finding a low complexity algorithm that successfully can use the existing
correlation in order to determine a part of the secret key can be a very e�cient
way of attacking stream ciphers for which a correlation is identi�ed. After the
initializing ideas of Siegenthaler [16,17], Meier and Sta�elbach [11,12] found a
very interesting way to explore the correlation in what was called a fast correla-
tion attack. A necessary condition is that the feedback polynomial of the LFSR
has a very low weight. This work was followed by several papers, providing mi-
nor improvements to the initial results of Meier and Sta�elbach, see [14,3,4,15].
However, the algorithms demonstrate true e�ciency (good performance and low
complexity) only if the feedback polynomial is of low weight. Based on these
attacks, it is a general advise that the generator polynomial should not be of low
weight when constructing stream ciphers.

Fast Correlation Attacks Based on Turbo Code Techniques 183

More recently, a step in another direction was taken, and it was suggested
to use convolutional codes in order to improve performance [8]. More precisely,
it was shown that one can identify an embedded low-rate convolutional code in
the code generated by the LFSR sequences. This convolutional code can then be
decoded using, e.g., the Viterbi algorithm, and a correctly decoded information
sequence will provide the correct initial state of the LFSR.

The purpose of this paper is to describe new algorithms for fast correlation at-
tacks. They are based on combining the iterative decoding techniques introduced
by Meier and Sta�elbach [11,12] with the framework of embedded convolutional
codes as suggested by the authors [8]. The proposed algorithm consists of two
parts, a preprocessing part and a decoding part.

By considering permuted versions of the code generated by the LFSR se-
quences, several �parallel� embedded convolutional codes can be identi�ed. They
all share the same information sequence but have individual parity checks. This
is the preprocessing part.

In the decoding part, the keystream z1, z2, . . . , zN is �rst used to construct
sequences acting as received sequences for the above convolutional codes. These
sequences are then used to �nd the correct information sequence by an iterative
decoding procedure.

The code construction in the preprocessing part and the iterative decoding
technique in the decoding part resemble very much the by now famous turbo

codes and its decoding techniques [2]. Iterative decoding requires APP (a poste-
riori probability) decoding (also called MAP decoding), and for decoding convo-
lutional codes one can use the famous BCJR algorithm [1], or preferably some
modi�cation of it [19,5].

For a �xed memory size, the proposed algorithm provides a better perfor-
mance than previous methods. As a particular example taken from [14], consider
a LFSR of length 40 and an observed sequence of length 40000 bits. Let 1−p be
the correlation probability. Then for a certain memory size (B = 13), the best
known algorithm [8] is successful up to p = 0.19, whereas the maximum p for
the proposed algorithm lie in the range 0.20− 0.27 when the number of parallel
codes varies from one to 32. The price payed for increased performance is an
increased computational complexity, but as argued in the paper, it is usually
the available memory that limits the performance and not the computational
complexity.

The paper is organized as follows. In Section 2 we give some preliminaries
on the decoding model that is used for cryptanalysis, and in Section 3 and 4
we shortly review previous algorithms for fast correlation attacks. In Section 5
we present some of the new ideas in a basic algorithm using only one code.
In Section 6 the use of several �parallel� codes is introduced and the complete
algorithm is described. Simulation results are presented in Section 7. In Section 8
a parallelizable algorithm is proposed, and in Section 9 we conclude with some
possible extensions.

184 T. Johansson, F. Jönsson

2 Preliminaries

As most other authors [17,11,12,14,3], we use the approach of viewing our crypt-
analysis problem as a decoding problem. An overview is given in Figure 2. Let
the LFSR have length l and let the set of possible LFSR sequences be denoted by
L. Clearly, |L| = 2l and for a �xed length N the truncated sequences from L is
also a linear [N, l] block code [10], referred to as C. Furthermore, the keystream
sequence z = z1, z2, . . . , zN is regarded as the received channel output and the
LFSR sequence u = u1, u2, . . . , uN is regarded as a codeword from the linear
block code C.

Due to the correlation between un and zn, we can describe each zn as the
output of the binary symmetric channel, BSC, when un was transmitted. The
correlation probability 1 − p, de�ned by 1 − p = P (un = zn), gives p as the
crossover probability (error probability) in the BSC. W.l.o.g we assume p < 0.5.
This is all shown in Figure 2.

g(x) - -
-

-

HHHHHHj������*
un znU Z

0

1

0

1

p

p

1 − p

1 − p

LFSR BSC

Fig. 2. Model for a correlation attack

The problem of cryptanalysis is now the following. Given the received word
(z1, z2, . . . , zN) as output of the BSC(p), �nd the length N codeword from C
that was transmitted.

It is known that the length N should be at least around N0 = l/(1 − h(p))
for unique decoding [3], where h(p) is the binary entropy function. If the length
N of the observed keystream sequence is small but allows unique decoding, the
fastest methods for decoding are probabilistic decoding algorithms like Leon or
Stern algorithms [9,18].

We assume instead received sequences of large length, N >> N0. For this
case, the fast correlation attacks [11,12] are applicable. These attacks resemble
very much the iterative decoding process proposed by Gallager [6] for low-weight
parity-check codes. The drawback is the fact that the above attacks require the
feedback polynomial g(x) (or any multiple of g(x) of modest degree) to have a
low weight. Hence one usually refrain from using such feedback polynomials in
stream cipher design.

Fast Correlation Attacks Based on Turbo Code Techniques 185

3 Fast Correlation Attacks � An Overview

In [11,12] Meier and Sta�elbach presented two algorithms, referred to as A and
B, for fast correlation attacks. Instead of the exhaustive search as originally sug-
gested in [17], the algorithms are based on using certain parity check equations
created from the feedback polynomial of the LFSR.

In the �rst pass, a set of suitable parity check equations in the code C is
found. The second pass uses these parity check equations in a fast decoding
algorithm to recover the transmitted codeword and hence the initial state of the
LFSR.

Parity check equations in [11,12] were created in two separate steps. Let
g(x) = 1+g1x

1 +g2x
2 + . . .+glx

l be the feedback polynomial, and t the number
of taps of the LFSR, i.e., the weight of g(x) (the number of nonzero coe�cients)
is t + 1. Symbol number n of the LFSR sequence, un, can then be written as
un = g1un−1 + g2un−2 + . . . + glun−l. Since the weight of g(x) is t + 1, there
are the same number of relations involving a �xed position un. Hence, we get
in this way t + 1 di�erent parity check equations for un. Secondly, using the
fact that g(x)j = g(xj) for j = 2i, parity check equations are also generated by
repeatedly squaring the polynomial g(x). The obtained parity check equations
are then (essentially) valid in each index position of u.

The number of parity check equations, denoted m, that can be found in this
way is m ≈ log(N

2l)(t + 1), where log uses base 2 [11,12].
In the second pass, we have m equations for position un as,

un + b1 = 0,
un + b2 = 0,

...
un + bm = 0,

(1)

where each bi is the sum of t di�erent positions of u. Applying the above relations
to the keystream we can introduce Li, ≤ i ≤ m, de�ned as the following sums,

zn + y1 = L1

zn + y2 = L2

...
zn + ym = Lm.

(2)

where yi is the sum of the positions in the keystream z corresponding to the
positions in bi. Assume that h out of the m equations in (1) hold, i.e.,

h = |{i : Li = 0, 1 ≤ i ≤ m}|,

The probability p∗ = P (un = zn|h equations hold) is calculated as

p∗ =
psh(1− s)m−h

psh(1 − s)m−h + (1− p)(1− s)hsm−h
,

186 T. Johansson, F. Jönsson

where p = P (un = zn), and s = P (bi = yi). This is used as an estimate of
whether zn was correct or not.

Two di�erent decoding methods was suggested in [11,12]. The �rst algorithm,
called Algorithm A, can shortly be described as follows: Calculate the probabil-
ities p∗ for each bit in the keystream, select the l positions with highest value
of p∗, and calculate a candidate initial state. Finally, �nd the correct value by
checking the correlation between the sequence and the keystream for di�erent
small modi�cations of the candidate initial state.

The second algorithm, called AlgorithmB, uses instead an iterative approach.
The algorithm uses two parameters pthr and Nthr .

1. For all symbols in the keystream, calculate p∗ and determine the number of
positions Nw with p∗ < pthr.

2. If Nw < Nthr repeat step 1 with p replaced by p∗ in each position.
3. Complement the bits with p∗ < pthr and reset the probabilities to p.

4. If not all equations are satis�ed go to step 1.

This iterative approach is fundamental for our considerations, and we refer to
[11,12] for more details.

The algorithms above work well when the LFSR contains few taps, but for
LFSRs with many taps the algorithms fail. The reason for this failure is that for
LFSRs with many taps each parity check equation gives a very small average
correction and hence many more equations are needed in order to succeed. Or
in other words, the maximum correlation probability p that the algorithms can
handle is much lower if the LFSR has many taps (≈ l/2). Minor improvements
were suggested in, e.g., [14] and [3].

4 Fast Correlation Attacks Based on Convolutional
Codes

The general idea behind this algorithm, proposed recently in [8], is to consider
slightly more advanced decoding algorithms including memory, but which still
have a low decoding complexity. This allows weaker restrictions on the parity
check equations that can be used, leading to manymore and more powerful equa-
tions. The work in [8] then uses the Viterbi algorithm as its decoding algorithm
in the decoding part.

We now review the basic results of [8]. The algorithm transforms a part of
the code C stemming from the LFSR sequences into a convolutional code. The
encoder of this convolutional code is created by �nding suitable parity check
equations from C. It is assumed that the reader is familiar with basic concepts
regarding convolutional codes (see also [8]).

Let B be a �xed memory size and let R denote the rate. In a convolutional
encoder with memory B and rate R = 1/(m + 1) the vector vn of codeword
symbols at time n,

vn = (v(0)
n , v(1)

n , . . . , v(m)
n),

Fast Correlation Attacks Based on Turbo Code Techniques 187

is of the form
vn = ung0 + un−1g1 + . . . un−BgB , (3)

where each gi is a vector of length (m+1). The task in the �rst pass of the algo-
rithm is to �nd suitable parity check equations that will determine the vectors
gi, 0 ≤ i ≤m, de�ning the convolutional code.

Let us start with the linear code C stemming from the LFSR sequences. There
is a corresponding l × N generator matrix GLFSR, such that u = u0GLFSR,
where u0 is the initial state of the LFSR. The generator matrix is furthermore
written in systematic form, i.e., GLFSR =

(
Il Z

)
, where Il is the l × l identity

matrix.
We are now interested in �nding parity check equations that involve a cur-

rent symbol un, and an arbitrary linear combination of the B previous symbols
un−1, . . . , un−B, together with at most t other symbols. Clearly, t should be
small and in this description t = 2 is mainly considered.

To �nd these equations, start by considering the index position n = B + 1.
Introduce the following notation for the generator matrix,

GLFSR =
(

IB+1 ZB+1

0l−B−1 Zl−B−1

)
. (4)

Parity check equations for uB+1 with weight t outside the �rst B + 1 positions
can then be found by �nding linear combinations of t columns of Zl−B−1 that
adds to the all zero vector.

For the case t = 2 the parity check equations can be found in a very simple
way as follows. A parity check equation with t = 2 is found if two columns from
GLFSR have the same value when restricted to the last l − B − 1 entries (the
Zl−B−1 part). Hence, we simply put each column of Zl−B−1 into one of 2l−B−1

di�erent �buckets�, sorted according to the value of the last l−B−1 entries. Each
pair of columns in each bucket will provide us with one parity check equation,
provided uB+1 is included.

Assume that the above procedure gives us a set of m parity check equations
for uB+1, written as

uB+1 +
∑B

i=1 ci1uB+1−i +
∑≤t

i=1 uji1 = 0,

uB+1 +
∑B

i=1 ci2uB+1−i +
∑≤t

i=1 uji2 = 0,
...

uB+1 +
∑B

i=1 cimuB+1−i +
∑≤t

i=1 ujim = 0.

(5)

It directly follows from the cyclic structure of the LFSR sequences that the same
set of parity checks is valid for any index position n simply by shifting all the
symbols in time, resulting in

un +
∑B

i=1 ci1un−i + b1 = 0,

un +
∑B

i=1 ci2un−i + b2 = 0,
...

un +
∑B

i=1 cimun−i + bm = 0,

(6)

188 T. Johansson, F. Jönsson

where bk =
∑≤t

i=1 ujik, 1 ≤ k ≤ m is the sum of (at most) t positions in u.
Using the equations above one can create an R = 1

m+1 bi-in�nite systematic
convolutional encoder. Recall that the generator matrix for such a code is of the
form

G =




. . .
. . .

. . .

g0 g1 . . . gB

g0 g1 . . . gB

. . .
. . .

. . .


 , (7)

where the blank parts are regarded as zeros. Identifying the parity check equa-
tions from (6) with the description form of the convolutional code as in (7)
gives




g0

g1

...
gB


 =




1 1 1 . . . 1
0 c11 c12 . . . c1m

0 c21 c22 . . . c2m

...
. . .

. . .
...

0 cB1 cB2 . . . cBm




. (8)

For each de�ned codeword symbol v
(i)
n in the convolutional code one has

an estimate of that symbol from the transmitted sequence z. If v
(i)
n = un (an

information bit) then P (v(i)
n = zn) = 1− p. Otherwise, if v

(i)
n = uj1i + uj2i from

(6) then P (v(i)
n = zj1i + zj2i) = (1 − p)2 + p2. Using these estimates one can

construct a sequence

r = . . . r(0)
n r(1)

n . . . r(m)
n r

(0)
n+1r

(1)
n+1 . . . r

(m)
n+1 . . . ,

where r
(0)
n = zn and r

(i)
n = zj1i + zj2i , 1 ≤ i ≤ m, that plays the role of a

received sequence for the convolutional code, where P (v(0)
n = r

(0)
n) = 1 − p and

P (v(i)
n = r

(i)
n) = (1− p)2 + p2 for 1 ≤ i ≤ m.

To recover the initial state of the LFSR it is enough to decode l consecutive
information bits correctly. Optimal decoding (ML decoding) of the convolutional
code using the Viterbi algorithm can thus be performed.

The original Viterbi algorithm assumes that the convolutional encoder starts
in state 0. However, in this application there is neither a starting state, nor
an ending state for the trellis corresponding to the convolutional code. Hence,
one runs the Viterbi algorithm over a number of �dummy� information sym-
bols, placed before and after the l information symbols that one tries to decode
correctly, see [8]. A suitable choice is to decode over J = l + 10B information
symbols, where the l symbols in the middle are regarded as the l information
bits that we want to estimate. The particular choice of J is based on heuristics
for the decision distance of the decoding algorithm.

Fast Correlation Attacks Based on Turbo Code Techniques 189

5 Some New Ideas for Fast Correlation Attacks

Two methods for decoding a noisy LFSR sequence have been described in Sec-
tion 3 and 4. The Meier and Sta�elbach Algorithm B calculates an a posteriori
probability for each symbol of the complete received sequence and then itera-
tively tries to improve these probabilities by recalculating them. The procedure
is based on very simple (memoryless) parity checks. The method of Section 4
uses instead convolutional codes but uses a simple Viterbi decoding procedure
on a small part of the received sequence.

The ideas to be proposed try to combine the best parts of both methods into
a single algorithm. The �rst and basic construction uses one convolutional code
(Section 4 method) and then applies an APP (a posteriori probability) decoding
algorithm in order to provide an a posteriori probability for each symbol in a
certain part of the received sequence. Optimal APP decoding (also referred to
as MAP decoding) on a convolutional code can be performed by the famous
BCJR algorithm [1], or variations of it. The a posteriori probabilities are then
fed back as a priori probabilities and in this fashion the procedure is iterated
until convergence. This is now described in more detail.

The �rst step involves computing parity check equations for a convolutional
code with �xed memoryB. We follow the procedure of Section 4 and compute all
parity check equations with t = 2 involving the particular index position B + 1,
as given by (5). Parity checks for index position B + 1 + i are then immediately
obtained through a cyclic shift of the original parity checks with i steps, as in
(6). We refer to Section 4 for a review of the details. Write the obtained parity
check equations in the form

un +
∑B

i=1 ci1un−i + uin1 + ujn1 = 0,

un +
∑B

i=1 ci2un−i + uin2 + ujn2 = 0,
...

un +
∑B

i=1 cimun−i + uinm + ujnm = 0.

(9)

The convolutional code is de�ned by all codeword sequences v,

v = . . . v(0)
n v(1)

n . . . v(m)
n v

(0)
n+1v

(1)
n+1 . . . v

(m)
n+1 . . . , B + 1 ≤ n ≤ J,

where

v(0)
n = un, v(k)

n = un +
B∑

i=1

cikun−i, 1 ≤ k ≤ m.

Observe that the code is de�ned only over the interval B + 1 ≤ n ≤ J . Since
there are neither a starting state nor an ending state for the code trellis, we again
decode over J − B > l information symbols. Following Section 4, we choose
J = 10B + l as a starting point. Through simulations one can later adjust J
to the most suitable value. Furthermore, the starting state, denoted ss, of the
trellis (start value for the memory contents of the convolutional code) is given a
probability distribution which is P (ss) = P (u1, u2, . . . , uB).

190 T. Johansson, F. Jönsson

The second step is the APP decoding phase. After receiving a sequence z,
construct a sequence r acting as a received sequence for the convolutional code
by

r = . . . r(0)
n r(1)

n . . . r(m)
n r

(0)
n+1r

(1)
n+1 . . . r

(m)
n+1 . . . , B + 1 ≤ n ≤ J,

where
r(0)
n = zn, r(k)

n = zink + zjnk , 1 ≤ k ≤ m.

Next, we transfer the a priori probabilities of u to the sequence v by

P (v(0)
n = r(0)

n) = P (un = zn), (10)

where P (un = zn) = 1− p only in the �rst iteration, and

P (v(k)
n = r(k)

n) = (1− p)2 + p2, 1 ≤ k ≤ m. (11)

Then decode the constructed sequence r stemming from a codeword v of
the convolutional code using an APP decoding algorithm. The original BCJR
algorithm requires storage of the whole trellis. However, suboptimal versions of
the BCJR algorithm, see [19,5], remove this problem with a negligible decrease
in performance. This procedure provides us with the a posteriori probabilities
for the information sequence, i.e.,

P (v(0)
B+1 |r), P (v(0)

B+2|r), . . . , P (v(0)
J |r).

Finally, since v
(0)
B+1 = uB+1, v

(0)
B+2 = uB+2, . . . this information is fed back

as new a priori probabilities for (uB+1, uB+2, . . . , uJ) and the a priori probabil-
ities of the codeword sequence v of the convolutional code is recalculated. The
decoding procedure is performed a second time, and this procedure is iterated
2− 5 times (until convergence).

Basic algorithm description:

Input: The l×N generator matrixGLFSR for the code generated by a LFSR;
the received sequence z; the error probability p; the number of iterations I.

1. (Precomputation) For each position n, B + 1 ≤ n ≤ J , in GLFSR, �nd the
set of parity check equations of the form (9) and construct the convolutional
code.

2. (Decoding phase) After receiving z, construct the a priori probability vector
(P (uB+1), P (uB+2), . . . , P (uJ)) by P (un = zn) = 1 − p. Construct the re-
ceived sequence r by

r(0)
n = zn, r(k)

n = zink + zjnk , 1 ≤ k ≤ m.

and the corresponding a priori probabilities for vn, B + 1 ≤ n ≤ J by

P (v(k)
n = r(k)

n) = (1− p)2 + p2, 1 ≤ k ≤ m.

Fast Correlation Attacks Based on Turbo Code Techniques 191

3. (Decoding phase) Update

P (v(0)
n) = P (un), B + 1 ≤ n ≤ J.

Run the APP decoding algorithm with starting state distribution P (ss) =
P (u1, u2, . . . , uB). Receive the a posteriori probabilities

P (v(0)
B+1|r), P (v(0)

B+2|r), . . . , P (v(0)
J |r).

Since v
(0)
n = un, set

P (uB+1)← P (v(0)
B+1 |r), P (uB+2)← P (v(0)

B+2|r), . . . , P (uJ)← P (v(0)
J |r).

4. If the number of iterations < I go to 3., otherwise select the most probable
value for each of the symbols u5B+1, u5B+2, . . . , u5B+l, calculate the initial
state u0 and check if it is correct.

We end by presenting some simulation results for the basic algorithm. The ob-
tained results are compared with the results in [11,12,14,8]. We choose to use the
same case as tabulated in [14,8], which is based on a LFSR with length l = 40,
and a weight 17 feedback polynomial.

[11,12], Alg B. [14] [8] Basic algorithm
B = 13 B = 14 B = 15 B = 13 B = 14 B = 15

0.092 0.096 0.19 0.22 0.26 0.20 0.23 0.26

Table 1. Maximum p for some di�erent algorithms when N = 40000 and B =
13, 14, 15.

6 Algorithms Based on Turbo Code Techniques

One of the most revolutionary ideas in coding theory the last decade has been
the introduction of turbo codes. The original turbo code [2] consists of two
convolutional codes, where the information bits are directly fed into one of them
and an interleaved version of the same information bits are fed into the other
convolutional code. The fundamentally new idea was the proposed decoding
scheme, which uses an iterative procedure. Decode the �rst code using an APP
decoding algorithm which provides a posteriori probabilities for all information
symbols. Use these as a priori information when decoding the second code using
again APP decoding. The obtained a posteriori probabilities are now used as a
priori informationwhen decoding the �rst code a second time, and the procedure
continues in this iterative fashion.

192 T. Johansson, F. Jönsson

Much the same ideas as described above can be applied to our decoding
problem. Instead of using just one �xed convolutional code, as in the basic al-
gorithm described in Section 5, we will show how to �nd and use two or more
di�erent convolutional codes. These are obtained by randomly permuting the
index positions of the original code in the interval B + 1 . . . J .

The a posteriori probability vector, which is the result of the decoding phase,
from one code is fed as a priori information to the other code. This is viewed in
Figure 3. A problem arises, however, since we need parity check equations for

Code 1 Code 2

Code 1

?

?

?A priori

A posteriori

A priori

A posteriori

A priori

A posteriori

Fig. 3. The basic algorithm and the turbo code algorithm with two constituent
codes.

permuted versions of the code C. The shifting technique will no longer provide
this for all indices, since after the column permutation the new code has no
longer the cyclic properties of C. To overcome this problem we simply search
for all valid parity check equations in each index position. It will increase the
precomputation time by a factor J − B, but for the case t = 2 this is not at all
a problem. Hence, this procedure will create di�erent parity check equations for
di�erent index positions, thus leading to a timevarying convolutional code (in
opposite to the code in Section 5). Also the number of parity checks will vary
with n.

In order to �nd the parity check equations for an index position n, where
B + 1 ≤ n ≤ J , write the permuted generator matrix in the form

GLFSR =
(

Z11 IB+1 Z12

Z21 0l−B−1 Z22

)
, (12)

where Z21 has length n−B−1 and Z22 has length N−n. Then put each column of
Z22 together with its index position into one of 2l−B−1 di�erent �buckets�, sorted
according to the column value. Each pair of columns in each bucket will provide
us with one valid parity check equation (of the form (9)) for index position n,
provided un is included. Finally, since the number of parity checks will vary with

Fast Correlation Attacks Based on Turbo Code Techniques 193

n, we introduce m(n) as the number of found parity checks for index position n.
The parity check equations for index position n is written as

un +
∑B

i=1 ci1un−i + uin1 + ujn1 = 0,

un +
∑B

i=1 ci2un−i + uin2 + ujn2 = 0,
...

un +
∑B

i=1 cim(n)un−i + uinm(n) + ujnm(n) = 0.

(13)

For each n, the constants de�ning the parity check equations,




g0(n)
g1(n)

...
gB(n)


 =




1 1 1 . . . 1
0 c11 c12 . . . c1m(n)

0 c21 c22 . . . c2m(n)

...
. . .

. . .
...

0 cB1 cB2 . . . cBm(n)




. (14)

must be stored in order to build the trellis in the decoding phase. After this
precomputation phase, the decoding of the �rst code follows the procedure of
Section 5, but the resulting a posteriori probabilities are now fed as a priori infor-
mation to the second decoder. The same procedure is repeated until all decoders
have completed their task, and then the resulting a posteriori information is fed
back to the �rst decoder, starting the second iteration. After 2-5 iterations the
decoding phase is completed. A comprehensive description of the procedure for
M constituent codes/decoders follows.

Turbo algorithm description:

Input: The l × N generator matrix GLFSR for the code generated by the
LFSR; the received sequence z; the error probability p; the number of itera-
tions I; the number of constituent codes M .

1. (Precomputation) Let π2, . . . , πM be M − 1 random permutations permut-
ing indices B + 1, . . . , J and leaving the other indices �xed. Let G1 =
GLFSR, G2 = π2(GLFSR), . . . , GM = πM (GLFSR) be generator matrices
for M di�erent codes which are all permuted versions of GLFSR. For Gi, let
πi(z) be the received sequence, 2 ≤ i ≤ M . Then �nd all parity checks of
the form (13) for each Gi, 1 ≤ i ≤M . Initiate i← 1.

2. (Decoding phase) After receiving z, construct the a priori probability vector
(P (uB+1), P (uB+2), . . . , P (uJ)) by P (un = zn) = 1− p.
For each Gi, construct the received sequence r by

r(0)
n = zn, r(k)

n = zink + zjnk , 1 ≤ k ≤ m.

and the corresponding a priori probabilities for vn, B + 1 ≤ n ≤ J by

P (v(k)
n = r(k)

n) = (1− p)2 + p2, 1 ≤ k ≤ m.

194 T. Johansson, F. Jönsson

3. (Decoding phase) For Gi, update

P (v(0)
n) = P (un), B + 1 ≤ n ≤ J.

Run the MAP algorithm on Gi with starting state distribution P (ss) =
P (u1, u2, . . . uB). Receive the a posteriori probabilities

P (v(0)
B+1|r), P (v(0)

B+2|r), . . . , P (v(0)
J |r).

Set

P (uB+1)← P (v(0)
B+1 |r), P (uB+2)← P (v(0)

B+2|r), . . . , P (uJ)← P (v(0)
J |r).

Let i← i + 1 and if i = M + 1 then i← 1.
4. If the number of iterations< I ·M go to 3., otherwise select the most probable

value for each of the symbols u5B+1, u5B+2, . . . , u5B+l, calculate the initial
state u0 and check it for correctness.

7 Performance of the Turbo Algorithm

In this section we present some simulation results for the turbo algorithm. The
parameter values are J = 10B + l and I = 3. In Table 2 we show the maximum
error probability for a received sequence of length N = 40000 when the memory
B is varying in the range 10−13 and the number of constituent codes is 1, 2, 4, 8
and 16. Table 3 then shows the same for length N = 400000.

B [8] M = 1 M = 2 M = 4 M = 8 M = 16

12 0.12 0.18 0.21 0.22 0.23 0.25
13 0.19 0.20 0.22 0.24 0.25 0.26
14 0.22 0.23 0.24 0.26 0.27 0.28
15 0.26 0.26 0.27 0.29 0.30 0.30

Table 2. Maximum p for turbo algorithm with B = 12, . . . , 15 and varying M
when N = 40000.

We can see the performance improvement with growing M for �xed B. A few
comments regarding computational complexity and memory requirements are in
place.

If one uses the suboptimal APP decoding algorithm in [19] the memory re-
quirements will be roughly the same as in Viterbi decoding. The computational
complexity for the algorithm in [19] is roughly a factor 3 higher compared to the
Viterbi algorithm, since it runs through the trellis three times. There are also
slightly di�erent operations performed in the algorithms. The computational
complexity is then further increased a factor M when the turbo algorithm with

Fast Correlation Attacks Based on Turbo Code Techniques 195

B [8] M = 1 M = 2 M = 4 M = 8 M = 16

10 0.31 0.31 0.33 0.34 0.35 0.36
11 0.34 0.34 0.36 0.37 0.38 0.38
12 0.36 0.37 0.38 0.38 0.39 0.39
13 0.37 0.39 0.40 0.40 0.41 0.41

Table 3. Maximum p for turbo algorithm with B = 10, . . . , 13 and varying M
when N = 400000.

M constituent codes are considered. Finally, we iterate at least twice. To con-
clude, for �xed parameters B and N , the turbo algorithm have roughly the same
memory requirements, but an increase of computational complexity of at least
a factor 6M .

It is important to note that in many cases, the possible performance is not
limited by the computational complexity, but rather, limited by the required
memory. For example, if N = 40000, the maximal memory size that our current
implementation could handle for the basic algorithm on a regular PC (for the
example given in Table 2) was B = 17, but this required only roughly half an
hour CPU time. Hence, in this case we do not consider the penalty of increased
computational complexity to be severe.

8 A Parallel Version of the Turbo Algorithm

As can be seen from the description of the turbo algorithm, it is not directly
parallelizable (the APP decoding can be partly parallelized). Since it is very
reasonable to assume that the opponent can compute in parallel, we shortly
describe a modi�ed turbo algorithm. Assume that the opponent has access to
M di�erent processors. He then constructs M di�erent constituent convolutional
codes exactly as described in Section 6 using some suitable memory B. After
having received the keystream z, the received sequences r are constructed and
the a priori probabilities are calculated. Next, processor number i works as the
APP decoder for code number i, with the a priori probabilities as input. Observe
that all the decoders work on the same input. Each decoder then outputs an a
posteriori probability vector.

For each position n, an overall a posteriori probability for that position,
P (un = zn) is calculated. Let Pi(un = zn|r) be the a posteriori probability
stemming from code i. Then the overall a posteriori probability for this algorithm
is given by

P (un = zn) =
ΠM

i=1Pi(un = zn|r)
ΠM

i=1Pi(un = zn|r) + ΠM
i=1(1− Pi(un = zn|r)) . (15)

The probability vector is then fed back as a priori information, and the same
process is repeated again. The structure is depicted in Figure 4. The performance
is slightly worse than the turbo algorithm. Some simulation result for N = 40000
are given in Table 4.

196 T. Johansson, F. Jönsson

Code 1 Code 2 Code M

P (un = zn) = . . .

?
? ??

?? ?

A priori

A posteriori

. . .

. . .

Fig. 4. The parallel turbo code algorithm combining the probabilities as in (15).

M = 1 M = 2 M = 4 M = 8 M = 16

Turbo 0.20 0.22 0.24 0.25 0.26
Parallel turbo 0.20 0.22 0.23 0.23 0.24

Table 4. Maximum p for the parallel turbo algorithm when N = 40000 and
B = 13.

9 Conclusions

In this work we have shown how iterative decoding techniques based on the ideas
from the construction and decoding of turbo codes can be used as a basis for
correlation attacks on stream ciphers. The performance has been demonstrated
through simulations. Still, many possible variations of the proposed type of fast
correlation attacks exist, that need to be examined. The proposed iterative de-
coding techniques have opened for other possibilities that can be considered in
the future. We mention two possible extensions.

• Reduced complexity decoding. As noted in this work, the main performance
limit for the proposed decoding algorithms as well as for [8] is the memory
requirement. A possible way to overcome this problem is to consider subop-
timal decoding algorithms with reduced memory. Examples of such are list
decoding and di�erent sequential decoding algorithms [7].

• Other iterative decoding structures. An alternative to the decoding structure
in this work, as given in Figure 3, could be the following. Consider all index
positions that are used to build parity check equations for the convolutional
code. Now consider these positions as information symbols for another con-
volutional code, and �nd parity checks for this code. Decoding this code will
provide APP probabilities for its information symbols and hence more reli-
able parity checks for the �rst code. This idea is easily generalized to more
complex decoding structures.

Fast Correlation Attacks Based on Turbo Code Techniques 197

References

1. L. R. Bahl, J. Cooke, F. Jelinek, and J. Raviv, �Optimal decoding of linear codes
for minimizing symbol error rate,� IEEE Trans. Inform. Theory, vol. IT-20, 1974,
pp. 284�287.

2. C. Berrou, A. Glavieux, and P. Thitimajshima, �Near Shannon limit error-
correcting coding and decoding,� Proc., IEEE Int. Conf. on Communications,

ICC'93, 1993, pp. 1064�1070.
3. V. Chepyzhov, and B. Smeets, �On a fast correlation attack on certain stream

ciphers�, In Advances in Cryptology�EUROCRYPT'91, Lecture Notes in Computer
Science, vol. 547, Springer-Verlag, 1991, pp. 176�185.

4. A. Clark, J. Golic, E. Dawson, �A comparison of fast correlation attacks�, Fast
Software Encryption, FSE'96, Lecture Notes in Computer Science, Springer-Verlag,
vol. 1039, 1996, pp. 145�158.

5. J. Hagenauer, E. O�er, and L. Papke, �Iterative decoding of binary block and
convolutional codes,� IEEE Trans. Inform. Theory, vol. IT-42, 1996, pp. 429�445.

6. R. G. Gallager, Low-Density Parity-Check Codes, MIT Press, Cambridge, MA,
1963.

7. R. Johanesson, K. Sh. Zigangirov, Fundamentals of convolutional coding, IEEE
Press, New York, 1999.

8. T. Johansson, F. Jönsson, �Improved fast correlation attacks on stream ciphers via
convolutional codes�, Advances in Cryptology�EUROCRYPT'99, Lecture Notes in
Computer Science, vol. 1592, Springer-Verlag, 1999, pp. 347�362.

9. J. Leon, �A probabilistic algorithm for computing minimum weights of large error-
correcting codes�, IEEE Trans. Information Theory, vol. 34, 1988, pp. 1354�1359.

10. F. MacWilliams, N. Sloane, The theory of error correcting codes, North Holland,
1977.

11. W. Meier, and O. Sta�elbach, �Fast correlation attacks on stream ciphers�, Ad-
vances in Cryptology�EUROCRYPT'88, Lecture Notes in Computer Science, vol.
330, Springer-Verlag, 1988, pp. 301�314.

12. W. Meier, and O. Sta�elbach, �Fast correlation attacks on certain stream ciphers�,
Journal of Cryptology, vol. 1, 1989, pp. 159�176.

13. A. Menezes, P. van Oorschot, S. Vanstone, Handbook of Applied Cryptography,
CRC Press, 1997.

14. M. Mihaljevic, and J. Golic, �A fast iterative algorithm for a shift register initial
state reconstruction given the noisy output sequence�, Advances in Cryptology�

AUSCRYPT'90, Lecture Notes in Computer Science, vol. 453, Springer-Verlag,
1990, pp. 165-175.

15. W. Penzhorn, �Correlation attacks on stream ciphers: Computing low weight parity
checks based on error correcting codes�, Fast Software Encryption, FSE'96, Lecture
Notes in Computer Science, vol. 1039, Springer-Verlag, 1996, pp. 159�172.

16. T. Siegenthaler, �Correlation-immunity of nonlinear combining functions for cryp-
tographic applications�, IEEE Trans. on Information Theory, vol. IT�30, 1984, pp.
776�780.

17. T. Siegenthaler, �Decrypting a class of stream ciphers using ciphertext only�, IEEE
Trans. on Computers, vol. C�34, 1985, pp. 81�85.

18. J. Stern, �A method for �nding codewords of small weight,� Coding Theory and

Applications, Springer-Verlag, 1989, pp. 106�113.
19. A. Tro�mov, K. Zigangirov, �A posteriori probability decoding of convolutional

codes�, to appear in Problems of Information Transmission, 1999.

	Introduction
	Preliminaries
	Fast Correlation Attacks -- An Overview
	Fast Correlation Attacks Based on Convolutional Codes
	Some New Ideas for Fast Correlation Attacks
	Algorithms Based on Turbo Code Techniques
	Performance of the Turbo Algorithm
	A Parallel Version of the Turbo Algorithm
	Conclusions

