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Abstract

This dissertation examines the interactions between the on-chip interconnection

network and the cache coherence protocol. By exploring the cache-coherent commu-

nication behavior of applications, superior performance can be achieved through the

co-design of the on-chip interconnect and the cache coherence protocol. The shift to-

ward many-core architectures allows researchers and designers to leverage solutions from

the traditional multiprocessor design space. However, these solutions are not always ad-

equate for the differing needs and opportunities presented by many-core architectures.

In this dissertation, I seek to challenge some of the conventional wisdom that has been

taken from that design space and has emerged in many-core designs and provide alterna-

tive solutions to the communication challenges that our industry faces. Communication

will be a central component of these large many-core systems; without efficient commu-

nication it will be difficult to scale these systems due to both power envelope limits and

performance requirements.

Two co-designed interconnect and protocol solutions are presented. System per-

formance is sensitive to on-chip communication latency; to address this, we propose

hybrid circuit switching. This network design removes circuit setup time by intermin-

gling packet-switched flits with circuit-switched flits. This design is further optimized

through a prediction-based coherence protocol that leverages the existence of circuits

to optimize pair-wise sharing between cores.

The second solution addresses the poor throughput of state-of-the-art on-chip



ii

networks in the presence of multicast communication. We present the Virtual Circuit

Tree Multicasting router design that removes redundant messages from the network

through the construction of multicast trees. Then, we further extend this router archi-

tecture to provide network ordering to implement Virtual Tree Coherence. Virtual Tree

Coherence is a multicast coherence protocol that leverages both the network ordering

and low overhead of our Virtual Circuit Tree Multicasting router to provide low latency

cache to cache transfers.

By considering on-chip communication from both the perspective of the network

and the coherence protocol, superior systems can be designed. The interconnection

networks and protocols presented in this dissertation are two such examples.
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Chapter 1

Introduction

Computers have become pervasive throughout our society. By increasing produc-

tivity and mobility, as well as providing new avenues of entertainment, computers are

commonplace in professional and personal lives. The wide array of uses and applications

of computers presents numerous challenges to hardware designers but also provides us

with a vast audience for consuming our innovations.

Over the course of this decade, single processor computer chips have given way

to chip multiprocessors. These chip multiprocessors are becoming the primary building

blocks of computer systems. The emergence of many-core architectures marks a massive

shift in the way we think about designing and engineering these systems.

Particularly, the presence of multiple cores on a chip shifts the focus from compu-

tation to communication as a key bottleneck to achieving performance improvements.

Extracting additional instruction level parallelism (ILP) has been a much researched

way of keeping execution units busy with work and achieving higher performance. In-

creasingly, efficient communication between execution units or cores will become a key

factor in improving performance for many-core chips. High performance on-chip com-

munication is necessary to keep cores fed with work.

Communication requirements and patterns have been well-researched in the tra-

ditional multiprocessor domain (multi-chip) and the supercomputing domain. These

solutions, while valuable, cannot be fully recycled for on-chip use. Tight area and power
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budgets require new, efficient solutions. Additionally, performance is more tightly cou-

pled with router delay than to link transmission delay (the reverse of an off-chip inter-

connect). Bandwidth in on-chip networks is no longer pin-limited and on-chip wires are

a readily available commodity. These changes require that application communication

be re-examined for many-core systems.

1.1 Many-core Era

As the computer industry seeks to continuously provide customers with perfor-

mance improvements, its design focus has shifted from large single core designs to many-

core designs consisting of many simpler cores. This ability to place many-cores on a

single die is driven by technology scaling that has scaled consistently with Moore’s law.

1.1.1 Technology Projections

As scaling has continued along the projected Moore’s law curve, feature sizes have

shrunk to the sub-micron range allowing billions of transistors to be packed on a single

chip. Historically, this increase in transistor counts has allowed the industry to drive up

single threaded performance. Creating large and complex designs to extract additional

ILP and thus improve execution throughput has been a predominant trend. However,

wire delays are now dominating pipeline delay making it difficult to shrink cycle times

and this is leading to a plateauing of single-threaded performance [7, 106].

As a result, the computer industry is shifting from building large, complex single

core chips to building simpler cores and placing dozens or hundreds of these simple

cores on a single chip [13, 60, 72, 114, 129, 132, 137, 142]. In 2008, designs are being

produced both in academia and industry ranging from two cores to 80 cores. The use

of many simpler cores shifts the focus from instruction level parallelism to thread level

parallelism (TLP). Communication architectures that facilitate the coordination and

communication of dozens to hundreds of threads are a central concern to architects
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moving forward.

Based on these emerging designs, Figure 1.1 depicts a high-level view of the

architecture that will be used in this dissertation. This system, with cores and cache

laid out as tiles and arranged in a grid fashion and connected with a network represents a

likely direction for many-core architectures moving forward. This dissertation will focus

on optimizations to this baseline in the areas of on-chip caches and the interconnection

network.

1.1.2 Challenges of Many-Core

This industry-wide shift to many-core architectures provides numerous opportu-

nities and challenges that need to be explored. In ILP-driven machines, parallelism

can be extracted automatically by the hardware or by the compiler. Many-core archi-

tectures shift the focus from ILP-driven architectures to those focused on thread-level

parallelism (TLP). Now, with TLP-architectures, there is a pressing and urgent need

for parallel applications to utilize these machines.
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1.1.2.1 Parallel programming

In addition to the research and design challenges faced by large scale many-core

design, the industry faces the challenge of finding applications and workloads with which

to benchmark and evaluate these designs. Parallel programming is challenging in both

correctness and performance. Yet the demand for parallel applications is substantial.

No longer is parallelism confined to a small subset of machines, namely servers and su-

percomputers. Rather, parallel architectures are available in laptops and desktops and

will be available in handhelds and other pervasive computing devices. Parallelism is

becoming a commodity feature of computing systems requiring significant performance

improvements to drive the industry further. Optimizing the communication architec-

ture of many-core chips can alleviate some of the performance burdens placed on the

programmer.

Parallel applications of the future may exhibit different properties; however, one

commonality will be the need for highly efficient communication between threads. Fine-

grained parallelism is exhibited in existing suites such as RMS workloads [26] and the

PARSEC benchmarks [14]; fine-grained parallel applications will require a fast and

seamless communication substrate.

1.1.2.2 Server consolidation

An alternative class of applications for many-core architectures are server con-

solidation workloads. The resurgence of virtualization technology [46, 123] has allowed

the consolidating of several physical servers onto one single physical, high-end server.

Amongst many other benefits, servers can experience higher utilization and may dy-

namically meet changing demands by scaling their resource requirements [62].

Many-core architectures are well-suited to commercial workloads running in a

server consolidation environment. Each workload may be given the impression of run-
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ning on its own private system but in actuality, the hardware may be shared with

other workloads in a variety of possible arrangements. These workloads, which tend to

be multi-threaded and communication-intensive applications, are a good match for a

many-core architecture’s memory system, which allows for fast inter-thread communi-

cation while the multiple cores allow for concurrency. Server consolidation workloads

exhibit both spatial and temporal sharing of on-chip resources such as the interconnec-

tion network and caches.

Communication requirements are also significant for server consolidation work-

loads; now several discrete applications are competing to use the same communication

infrastructure. This competition introduces new challenges; however, the unique char-

acteristics of server consolidation workloads also present opportunities for optimization.

These workloads are characterized by a majority of communication remaining local

within a virtual machine and very limited global communication across virtual ma-

chines. These characteristics will be explored and exploited in this dissertation. Cache

coherence protocols and on-chip networks can be optimized for this class of commu-

nication while still maintaining the flexibility to perform well with single monolithic

workloads.

1.1.2.3 Computation vs. Communication

As the industry moves toward commodity parallel applications and hardware,

efficient communication becomes central to high performance. With an abundance of

transistor resources, architects can create an abundance of computational units, result-

ing in computation that is essentially “for free”. The key to keeping computational

units active will be communicating data between them; communication therefore be-

comes central to performance improvements. This dissertation focuses on the demands

placed on the communication architecture and the opportunities present to optimize

the communication system.
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In a multiprocessor system, the communication substrate can be viewed from

two different perspectives. The first is the physical infrastructure which focuses on how

cores communicate. Specifically, the design of this physical infrastructure looks at what

resources and wiring are necessary to facilitate the efficient physical transfer of bits.

The second component of the communication substrate focuses on what needs to be

communicated. In a shared memory multiprocessor (the focus of this dissertation), the

cache coherence protocol governs what is communicated between cores. Much of the

existing research in this area, both for traditional multiprocessors and many-core chips

examines these subsystems separately; however, insight and opportunities are found

when we examine how these two components are intertwined.

As systems become more tightly coupled in many-core architectures, co-design

of system components becomes increasingly important. In particular, coupling the de-

sign of the on-chip network with the design of the coherence protocol can result in a

synergistic relationship providing superior performance.

1.2 Communication Challenges in the Many-core Era

Using dedicated ad-hoc wires to directly interconnect cores on-chip has become

an intractable solution for the many-core era [35]. Dedicated wires are costly, in terms of

area and delay and are an inefficient way to realize parallel communication. This ineffi-

ciency has resulted in a shift to on-chip networks, where communications between cores

are multiplexed on shared wires; these on-chip networks provide the scalable solutions

that many-core architectures will require.

1.2.1 Interconnect Architectures

The interconnection network design space contains many dimensions along which

architects can optimize for power and performance. Topology is among the first con-

siderations; for a modest number of cores, buses, rings and crossbars provide viable
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solutions. These communication substrates have been utilized in systems such as the

IBM Cell [59,64] and Sun’s Niagara [72]. Shared buses and simple rings do not provide

the scalability (bandwidth) needed to meet the communication demands of these future

many-core architectures, while full crossbars are impractical due to their size and wiring

requirements. More scalable topologies such as meshes and tori provide the scalability

needed on-chip.

To date, designers have assumed a packet-switched on-chip network as the com-

munication fabric for many-core chips [52, 132]. One downside of transitioning from

dedicated wires to a network architecture is the introduction of router delay overheads.

With dedicated wires, communication delay is solely a function of the physical proper-

ties of the wires; however, with an on-chip network, additional delay is added by the

routers. A large on-chip network such as a mesh or torus, utilizes routers to determine

the resource allocation, switching, flow control and routing of messages at each juncture

in the network. In on-chip networks, routers consume significant area and power and

therefore must be carefully designed.

In addition to added area and power overheads, the introduction of these routers

results in increased communication latency over the use of dedicated wires. Due to this

additional overhead, significant research has focused on driving down the latency over-

heads. The choice of switching technique contributes to the router latency experienced

by messages. Packet-switching networks suffer from the overhead of router latency

but efficiently multiplex communication from different sources. Alternatively, circuit-

switching networks can eliminate these router overheads but are traditionally much less

efficient than packet-switching networks. This dissertation asserts that circuit-switching

can perform well without sacrificing bandwidth. In this dissertation, one such technique,

hybrid circuit switching, is proposed and examined.

Routers are responsible for computing the path messages take from source to

destination through the network. Current designs focus this routing computation on a
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message bound from a single source for a single destination (a unicast message). In order

for low-latency, high-throughput communication to be realized, messages from a single

source bound for multiple destinations (multicast messages) must also be considered.

This requirement to support multicast messages is especially pressing in light of the

large number of proposals and designs that generate multicast messages finding their

way into many-core architectures. In this dissertation, we propose an efficient, low-cost

technique to improve router handling of this class of message.

1.3 Cache Coherence for Many-Core architectures

The interconnection network architecture provides the physical resources needed

to realize communication. The bits transmitted on that interconnection network archi-

tecture are determined by the application’s sharing of data and instructions in memory.

The shared-memory model is an intuitive way to realize this sharing. Logically, all

processors access the same memory, allowing each processor to see the most up-to-date

data. Practically speaking, memory hierarchies are employed to improve performance

of shared-memory systems. These hierarchies complicate the logical, unified view of

memory held in the shared-memory paradigm due to the presence of multiple copies in

different caches. Each processor’s view of memory must remain consistent with others’

view of memory. Cache coherence protocols are designed to maintain one coherent view

of memory for all processors. The cache coherence protocol governs what communica-

tion is needed in a shared memory multiprocessor to maintain a single coherent view of

memory.

A variety of cache coherence protocols have been designed targeting different

systems. In traditional multiprocessor systems designed using commodity single-core

chips, the cache coherence protocol design choices need not be central to the chip design

choices. As with interconnection networks, we need to adapt and re-engineer these

protocols to make them appropriate for on-chip use. Two classes of protocols are the
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most commonly used: broadcast protocols and directory protocols. Generally speaking,

there is a tension within these protocols between scalability and performance. With the

tight coupling of many-cores on a single chip, the performance of the cache coherence

protocol has become increasingly important. Specific trade-offs between these designs

will be discussed in Chapter 2. This dissertation seeks to combine the best features of

both into two novel protocols.

Very broadly speaking, broadcast protocols provide excellent performance for a

modest number of cores and directory protocols provide scalability to many cores but at

a performance cost. Directory protocols require additional on-chip storage in many-core

systems. In traditional systems, broadcasting provides the best performance when the

number of nodes is small; the same holds true for chip multiprocessors. Going forward,

it is highly likely that only a small number of cores will need to be involved in coherence.

Focusing coherence on this small number of cores naturally lends itself to a broadcast-

based protocol. However, to date, chip multiprocessor research has focused on directory

protocols as the appropriate scalable solution. We believe that systems will want some

form of multicast- or broadcast-based coherence on chip (for high performance) but it

must be realized in an inexpensive fashion (where the primary costs are bandwidth and

storage overhead).

Specifically, this dissertation explores protocol optimizations that provide low

latency requests and scalability with low power and area overheads. The first solution,

circuit-switched coherence, reduces the latency of pair-wise read-sharers; this solution

overcomes some of the latency problems of directories but does not address storage

overheads. Through the co-design of a circuit-switched interconnect and the protocol,

we challenge the predominant use of packet switching in networks and achieve superior

network performance through the protocol co-design. The second solution, virtual tree

coherence, simplifies ordering and achieves low latency for reads and writes with low

storage requirements. Through the co-design of a multicast interconnect and a multicast
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coherence solution, we challenge the predominant use of directories in many-core designs

by leveraging our novel high bandwidth, ordered interconnect to provide snooping-based

coherence.

Both of these solutions leverage coarse-grain sharing information; data and co-

herence behavior are examined across multiple memory addresses to better observe and

respond to common communication patterns. Optimizations can be made within the co-

herence protocol by providing the system with more information about communication

behavior and patterns. Recent research has leveraged the benefits of coarse-grained co-

herence information [8,20,21,99]. Rather than simply tracking coherence information on

a cache block level; information can also be tracked across multiple cache lines. Patterns

can be observed better and exploited at this coarser granularity. We utilize this tracking

of coarse grained information for coherence protocol improvements; specifically, coarse-

grained predictions of pair-wise sharing relationship are leverage by circuit-switched

coherence. Secondly, virtual tree coherence uses coarse-grain information to determine

multicast destination sets.

1.4 Thesis Contributions

This dissertation re-examines and challenges some of the design assumptions that

hold true for shared-memory multiprocessors when explored in the context of chip mul-

tiprocessors. As we migrate many of these design choices on-chip, it is worthwhile to

examine their suitability and present novel solutions that are attractive in the unique

environment of a many-core architecture. The goal of this dissertation to carefully con-

sider communication requirements (as dictated by the coherence protocol), codesign the

interconnect to better serve the coherence protocol, and improve the cache coherence

protocols to better leverage the functionality of the on-chip interconnection network.

Specifically, this dissertation makes the following contributions:
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• Hybrid Circuit Switching (HCS) explores the impact of communication

latency on traditional and emerging applications for many-core designs. Com-

munication latency is critical to the performance of these applications. Hybrid

circuit switching focuses on reducing the routing latency for pair-wise commu-

nication patterns through a novel router architecture that interleaves circuit-

and packet-switched messages on the same physical network. Packet-switching

is typically favored over circuit-switching due to the bandwidth limitations of

circuit-switching. Hybrid circuit switching overcomes this limitation through

bandwidth stealing.

• Virtual Circuit Tree Multicasting (VCTM) characterizes the demand for

on-chip multicasting across a variety of scenarios. Virtual Circuit Tree Multi-

casting employs a novel multicast router architecture that facilitates efficient

on-chip broadcast and multicast communication. Performing the routing com-

putation for a multicast message can complicate the router design significantly.

VCTM leverages the repetitive nature of multicast communication to setup mul-

ticast routes with minimal extra hardware and then reaps throughput benefits

from subsequent use of these routes. By removing redundant unicast messages,

VCTM saves significant bandwidth, reduces dynamic power, and drastically

improves the throughput of the network in the presence of multicast communi-

cation patterns.

• Circuit-Switched Coherence (CSC) leverages the presence of HCS and pair-

wise sharing to design an optimized directory-based protocol. Pair-wise sharing

will experience lower latency by avoiding indirections through the directory

protocol. Recent sharers are predicted based on coarse-grain tracking of cache

blocks. This network-protocol co-design results in superior performance for

commercial workloads.
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• Virtual Tree Coherence (VTC) utilizes the implicit ordering of the virtual

trees provided by VCTM to facilitate scalable coherence for many-core architec-

tures. A conceptually simple ordering invariant is described and demonstrated

to have performance superior to directory and broadcast protocols. Tree roots

are used to order multicast requests to active sharers of data. Coupling this

ordering mechanism with coherence information maintained for coarse-grained

address regions reduces on-chip coherence storage and improves performance

over a baseline directory protocol.

• Server Consolidation Workloads present unique data sharing and commu-

nication behavior. Server consolidation workloads represent an emerging and

important class of applications for many-core architectures. We utilize server

consolidation workloads to further evaluate both proposed networks and proto-

cols using server consolidation workloads.

Hybrid Circuit Switching and Virtual Circuit Tree Multicasting focus on im-

provements to the interconnection network while Circuit-Switched Coherence and Vir-

tual Tree Coherence focus on optimizations for the cache coherence protocol. While

described separately in this dissertation, HCS and CSC work together to provide su-

perior performance while VCTM and VTC are intertwined for both performance and

correctness reasons.

1.4.1 Relationship to published works

This dissertation includes work that has been previously published in four con-

ference publications.

HCS (Computer Architecture Letters, NOCS-2) : HCS and Circuit-Switched Co-

herence were previously published as a Computer Architecture Letter and in the Net-

work on Chip Symposium with co-authors Li-Shiuan Peh and Mikko Lipasti [41, 42].
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Additional analysis and explanation is provided in this dissertation for a more in-depth

understanding of the benefits of HCS and Circuit-Switched Coherence.

VCTM (ISCA-35): Virtual Circuit Tree Multicasting was originally published

in the International Symposium on Computer Architecture with co-authors Li-Shiuan

Peh and Mikko Lipasti [43]. In this dissertation, we consider further optimizations to

improve the scalability of the original design as well as expand upon the description of

the implementation.

VTC (MICRO-41): Virtual Tree Coherence originally appears in the proceedings

of the International Symposium on Microarchitecture with co-authors Li-Shiuan Peh and

Mikko Lipasti [44]. Additional protocol optimizations are explored in this dissertation

to reduce network hop count and alleviate network pressure from coherence traffic.

Server Consolidation (IISWC 2007) : The simulation methodology and infras-

tructure for evaluating server consolidation workloads originally appeared in the IEEE

International Symposium on Workload Characterization 2007 with co-authors Dana

Vantrease and Mikko Lipasti [45]. In this dissertation, we utilize these server consoli-

dation workloads and methodology to further evaluate the ideas presented here.

1.5 Dissertation Organization

This dissertation is organized as follows: Chapter 2 presents background infor-

mation related to both interconnection network architectures and cache coherence pro-

tocols. Chapters 3 and 4 present the two network designs: the Hybrid Circuit-Switched

network and the Virtual Circuit Tree Multicasting network along with their respective

evaluations. The co-designed coherence protocols that operate in a synergistic fashion

with the previously presented interconnection network designs are presented in Chapters

5 and 6. In Chapter 7, conclusions and avenues of future research are discussed.
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Chapter 2

Background

This chapter presents an overview of both interconnection networks (Section 2.1)

and cache coherence protocols (Section 2.2) which form the basis of the work presented

throughout this dissertation. The interconnection network provides the physical medium

on which communication occurs. After providing an overview of how interconnection

networks are designed, the cache coherence problem is presented along with two common

classes of protocols. Finally, the chapter ends with a discussion of recent research on

server consolidation workloads; an emerging class of applications considered in this

dissertation (Section 2.3).

2.1 Interconnection Network Overview

With the promise of many cores on a single chip, research emphasis has been

placed on designing on-chip interconnection networks. Why are such network designs

necessary? The alternative to building on-chip networks is to use dedicated ad-hoc

wires to connect cores and communicating components. In this dissertation, we con-

sider interconnection networks to broadly encompass buses, crossbars as well as higher

bandwidth substrates, such as meshes and tori, [34] as depicted in Figure 2.1.

With a small number of components, dedicated wiring can be used to interconnect

them. However, the use of dedicated wires is problematic for several reasons. First, as we

increase the number of cores on chip, the amount of wiring required to directly connect
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Figure 2.1: Examples of Various Interconnection Networks

every component will become prohibitive. In addition to scalability, the performance

of dedicated wiring is a problem. As the number of components increase, the length

of dedicated wiring to connect them will also increase resulting in long latency global

communication.

On-chip networks are an attractive alternative to dedicated wiring for several

reasons. First and foremost, networks represent a scalable solution to on-chip commu-

nication. In addition to scalability, on-chip networks are also very efficient and are able

to better utilize resources by multiplexing different communication flows on the same

links allowing for significant amounts of parallel communication. On-chip networks with

regular topologies have nice electrical properties and are built modularly from regular,

repetitive structures easing the burden of verification [35].

To begin the discussion of interconnections networks, we must examine the key

differences between off-chip and on-chip networks; these differences motivate the need

for new on-chip solutions presented later in this dissertation. After discussing these

differences, an overview of the different components of a network architecture will be

presented.
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2.1.1 On-Chip vs. Off-Chip interconnects

Substantial research has been done in the realm of off-chip networks for multipro-

cessors and supercomputers (for a more in-depth explanation of off-chip networks we

refer the interested reader to [34]). Several key differences between off-chip networks and

on-chip networks motivate the need for new interconnect solutions for the many-core

era.

First, on-chip networks are designed under very tight area and power budgets.

With multi- and many-core chips, now cores, caches and interconnects are competing

for the same chip real estate. Integrating large number of components under tight area

and power constraints poses a significant challenge for architects to create a balance

between these components. The logic to support on-chip networks may consume ∼ 25%

of each tile in an many-core design [60]. On-chip networks consume a significant faction

of total on-chip power [16,140]; up to ∼ 30% for Intel’s 80 core teraflops network [60,137]

and 36% for the RAW on-chip network [132]. This tight integration in on-chip networks

requires innovative and efficient solutions for the communication substrate.

In off-chip networks, communication latency is heavily dependent on link trans-

mission latencies. In on-chip networks, short links can be traversed with low latency

(typically a single cycle to travel a one-hop distance); this quick traversal results in

router latencies becoming a more significant contributor to overall communication la-

tency. Off-chip networks, such as the Alpha 21364 [100] can accommodate long router

pipelines but the dramatic shortening of transmission delay on-chip makes this a grow-

ing problem. While communication latency is dominated by router delays, bandwidth

becomes a much more abundant resource for on-chip networks. Bandwidth in off-chip

networks is constrained by the pin bandwidth afforded by packaging technology. On-

chip wires are cheap and plentiful resulting in significantly higher bandwidth than can

be provided to off-chip network links.
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Now that several key differences between off-chip and on-chip networks have been

enumerated, specifically the tight area and power constraints, the relative contribution of

router and link delays and the increased bandwidth available for on-chip, the remainder

of this section will focus on the components of network design, specifically flow control,

topology, routing algorithms and router microarchitectures, and the challenges facing

on-chip network design.

2.1.2 Flit Level Flow Control

Flow control determines how resources are allocated to messages as they travel

through the network. The flow control mechanism is responsible for allocating (and

de-allocating) buffers and channel bandwidth to waiting packets. Resources can be al-

located to packets in their entirety (done in store-and-forward and virtual cut-through

[34]); however, this requires very large buffer resources making it impractical on chip.

Most commonly, on-chip networks handle flow control at the flit level 1 ; buffers and

channel bandwidth are allocated on the small granularity of flits rather than whole pack-

ets. Wormhole and virtual channel flow control are two types of flit level flow control.

Wormhole flow control allocates buffers and channel bandwidth on a flit granularity

requiring small buffering resources. With wormhole flow control, each input port has

a single buffer queue. The packet travels through the network like a worm; the down-

side is if the head of the packet becomes blocked the body flits will still hold channel

bandwidth that cannot be released to other resources since there is only a single virtual

channel per link (known as head of line blocking).

The alternative to wormhole flow control is virtual channel flow control. Again,

this technique allocates channel bandwidth and buffers on the granularity of flits; but

now, since there are multiple virtual channels per physical channel, if one packet becomes

blocked other packets can use the idle bandwidth if they have been assigned to a different
1 A flit is a flow control unit, a subdivision of a packet
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virtual channel. Buffers are distributed or shared among virtual channels. Virtual

channel flow control is used in the baseline network in this dissertation since it makes

effective use of channel bandwidth and buffering resources.

2.1.3 Topology

The topology determines the physical layout and connections between nodes in

the network. A wide range of topologies is available for network design. Topologies can

be classified as direct and indirect; with direct topologies, each router is coupled with

a network node (core). In an indirect topology, there are several intermediate routers

that are not connected to network nodes. Most networks use topologies that can be

derived from two families, butterflies (indirect) and tori (direct). Average hop count is

an important metric in topology selection; average hop count determines the average

packet latency in an uncongested network. Another characteristic of topologies is path

diversity; the path diversity (the number of unique paths that exist between the source

and destination) of a network impacts its ability to distribute the traffic load and to

tolerate faults in the network.

To date a small subset of network topologies have been explored for on-chip

networks. Topologies such as a bus or a ring architecture do not provide the scalability

required for many-core architectures; they provide too little bandwidth and long latency

due to high hop counts as the network size increases. Two dimensional topologies

such as meshes (a grid) and tori (a grid with wrap-around links) are popular with

on-chip networks as they easily map to a planar substrate. To reduce hop count and

thereby lessen the impact of router delay, high radix topologies such as the flattened

butterfly have been proposed [69]. Another technique to reduce hop count, is to employ

concentration [11]. Concentration connects several network nodes to a single router;

often four network nodes are grouped to the same router. In this case, a 64-node system

would utilize a 4x4 mesh rather than an 8x8 mesh; this reduces hop count considerably.
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Topology is not the focus of this dissertation and the techniques proposed in Chapters

3 and 4 are agnostic to topology selection. As such, the most common on-chip topology

- a 2-D mesh - is used throughout this work.

2.1.4 Routing Algorithm

The routing algorithm determines the path a message takes through the network.

Routing algorithms can be deterministic, adaptive or oblivious; additionally routing al-

gorithms can be classified as minimal or non-minimal. Deterministic routing algorithm

allow only one fixed path between a source and destination pair. Adaptive routing can

choose from multiple paths between a source and destination pair and factors in the

current state of the network. Oblivious routing algorithms route traffic without any

regard to the state of the network; for example, Valiant’s randomized routing provides

excellent load balancing but destroys any locality in the communication pattern and is

non-minimal [136]. Minimal routing algorithms choose the shortest path between the

source and the destination, while non-minimal routing algorithms may include addi-

tional hops. On-chip networks which are sensitive to communication latency typically

choose minimal routing algorithms; the flattened butterfly [69] is one exception. To

better distribute the load and provide better bandwidth utilization, the flattened but-

terfly leverages a non-minimal routing algorithm. In this case, by avoiding congestion

on non-minimal routes, packet latency is kept low.

Dimension-order routing, which routes first in the X direction and then in the Y

direction, is often chosen for its simplicity and deadlock-freedom properties. Limiting

turns, as dimension order routing does, removes the potential for a resource cycle to

occur between multiple packets in the network. Dimension order routing is both minimal

and deterministic. Adaptive routing, such as turn-model routing [50] can provide more

flexibility to better distribute the network load with some additional complexity while

still maintaining deadlock-freedom. If the routing algorithm does not provide deadlock-
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freedom, escape virtual channels can be used to break deadlock cycles. When all possible

turns are permitted by the routing algorithm, restrictions are placed on virtual channel

allocation to create acyclic resource graphs [34].

Several adaptive routing algorithms have been proposed to avoid congestion in

on-chip networks [53, 74, 117]. O1Turn [117] is an oblivious routing algorithm that

distributes the load by randomly choosing between XY and YX dimension order routing

at the source node. Region Congestion Aware (RCA) [53] communicates congestion

information to neighboring routers via a monitoring network. This information can be

used to make more intelligent routing decisions based more network state information

rather just local router information. Token Flow Control [74] communicates tokens to

nearby routers; these tokens help a router select the least congested path, as well as

improve packet bypassing (discussed in the next section) at nearby routers for packets

holding tokens.

Throughout this dissertation, dimension order routing is assumed; however, as

with the choice of topology, our proposals are independent of routing algorithm and can

be extended to various routing algorithms.

2.1.5 Router Micro-architecture and Pipeline

Much of the work in this dissertation focuses on optimizing the router micro-

architecture. A router microarchitecture is comprised of the following components:

input buffers, virtual channel router state, routing logic, allocators, and a crossbar.

These primary components are shown in Figure 2.2.

Our baseline router is a 5x5 virtual channel router. The 5 input and output ports

are the cardinal directions and the core injection/ejection port. Virtual channels [32]

have been quickly adopted from off-chip networks into on-chip networks due to the

improved throughput they provide. By creating multiple virtual channels per physical

channel and associating buffers with each virtual channel, packets destined for different
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output ports can pass blocked packets in a router.

The router pipeline of an on-chip network consists of the following stages (shown

in Figure 2.3): the buffer write (BW) stage, the routing computation stage (RC), the

virtual channel allocation stage (VA), switch allocation stage (SA), switch traversal

stage (ST) and link traversal (LT). When a new flit arrives at the router, it is decoded

and buffered according to its specified input virtual channel (BW). Routing computation

(RC) is performed in the second stage to determine the appropriate output port. In

the virtual channel allocation stage (VA), the flit arbitrates for a virtual channel based

on the output port determined in the previous stage. Once a virtual channel has been

successful allocated, the flit proceeds to the fourth stage. Here, the flit arbitrates for

access to this switch (SA) based on its input-output port pair. Once the switch has

been allocated to the flit, it can proceed to the switch traversal stage (ST) and traverse

the router crossbar. The link traversal stage (LT) occurs outside the router to carry the

flit to the next node in its path. Each packet is broken down into several flits; as shown

in Figure 2.3, the header flit is responsible for routing computation and virtual channel

allocation while the body and tail flits reuse that computation and allocation.
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Figure 2.3: Packet-Switched Router Pipeline: Buffer Write (BW), Routing Computation
(RC), Virtual Channel Allocation (VA), Switch Allocation (SA), Switch Traversal (ST)
and Link Traversal (LT)

2.1.5.1 Pipeline Optimizations

Delay through each router in the network is the primary contributor to commu-

nication latency. As a result, significant research effort has been spent reducing router

pipeline stages and improving router throughput. Some key techniques are discussed

below.

Lookahead Routing: a single pipeline stage is devoted to computing the proper

output port for the current packet (RC); this stage adds latency overhead as the packet

progresses through multiple routers. Lookahead routing moves this computation from

the current router to the previous router. As a result, the packet already has its rout-

ing decision in hand when it arrives at the current router; this eliminates the routing

computation from the critical path of a packet. Lookahead routing was proposed in the

SGI SPIDER chip [47].

Pipeline Bypassing is employed to reduce the critical path through the router.

If there are no other flits in the input buffer, the incoming flit may speculatively enter the

switch traversal stage (ST). In one cycle, the crossbar is setup for the bypassing flit and a

virtual channel is allocated. If a port conflict is detected the bypassing must be aborted.

The bypassing pipeline is shown in Figure 2.4b. Recent work [52, 73] uses lookahead

signals or advanced bundles to shorten the pipeline to a single stage. While the flit is
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traversing the switch, a lookahead signal is traveling to the next router to perform the

routing computation. In the next cycle, when the flit arrives, it can proceed directly to

switch traversal, resulting in a single cycle router pipeline (ST+LT) as shown in Figure

2.4c. This bypassing is possible when there are no waiting flits in the input buffers when

the advanced bundle arrives, there is no port conflict with existing flits and there is no

output port conflict between advanced bundles arriving simultaneously.

Speculation: another way to reduce the number of router pipeline stages that a

packet must traverse, is to use aggressive speculation techniques [100,102,109]. Virtual

channel and switch allocation may occur in parallel in the same stage. By speculatively

performing virtual channel and switch allocation, we can reduce the critical path through

the router. If speculation succeeds, the flit proceeds directly to the switch traversal

stage. However, if speculation fails, the flit must repeat these pipeline stages to achieve

the necessary allocations.

The benefit due to bypassing and speculation techniques is predicated on low

loads; as the number of in-flight packets in the network increases, so does the likelihood

of misspeculation. Failed bypassing or speculation results in a longer critical path

through the router.

With the application of state-of-the-art router pipeline optimizations, the router

pipeline shown in Figure 2.3 is transformed into the pipeline shown in Figure 2.4. We

utilize this highly optimized router pipeline as a baseline of comparison for our hybrid

circuit-switched router and the virtual circuit tree multicasting router.

2.1.6 Key Challenges Addressed in this Dissertation

The design of on-chip networks is still a relatively young field. As such, there

are many open research problems that need to be addressed. As the focus of this

dissertation is on network-protocol co-design, we limit our study of these open challenges

to those that we believe will be most amenable to coupling with coherence protocols
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Figure 2.4: Packet-Switched Router Optimized Pipeline: Buffer Write (BW), Virtual
Channel Allocation (VA), Switch Allocation (SA), Switch Traversal (ST) and Link
Traversal (LT)

improvements.

2.1.6.1 Router Overhead

As noted earlier, one of the key differences between on-chip and off-chip network

is the relative contribution of router delay to overall communication latency. While

packet switching provides efficient use of link bandwidth by interleaving packets on

a single link, it adds higher router latency overhead. Alternatively, circuit switching

trades off poorer link utilization with much lower latency, as data need not go through

routing and arbitration once circuits are set up. Packets traversing established circuits

experience the router pipeline in Figure 2.4c. We present the design of a hybrid circuit-

switched router to overcome both the router delay and the bandwidth limitations of

circuit-switching (Chapter 3).

2.1.6.2 Efficient Multicast Routing

Current on-chip routers are heavily optimized for one-to-one, or unicast traf-

fic. Routing logic is designed to route each packet to a single output port. The vast

majority of current network-on-chip proposals ignore the issue of multicast communica-

tion. Proposals that might effectively leverage a multicast router either naively assume

the existence of an on-chip multicast router or fail to model network contention (once
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contention is modeled, the need for hardware multicast support becomes abundantly

clear). The presence of one-to-many (multicast) or one-to-all (broadcast) traffic can

significantly degrade the performance of these designs since they rely on multiple uni-

casts to provide one-to-many communication. This results in a burst of packets from a

single source and is a very inefficient way of performing multicast and broadcast com-

munication. This inefficiency is compounded by the proliferation of architectures and

coherence protocols that require multicast and broadcast communication. While unicast

messages are likely to dominate traffic patterns, efficient on-chip multicast support is

essential for many-core architectures moving forward. We present Virtual Circuit Tree

Multicasting (VCTM) which adds multicast routing functionality to a state-of-the-art

router with low overhead (Chapter 4).

2.1.6.3 Power Consumption

In addition to addressing issues of communication performance in on-chip net-

works, it is important to design power-efficient solutions to the router overhead and

multicast routing problems. In this dissertation, we explore two techniques, HCS and

VCTM that can reduce interconnection latency and/or improve throughput while main-

taining or reducing the power consumption relative to the baseline. Streamlining com-

munication through the addition of small router structures can have a significant im-

pact on dynamic network power. Reducing network activity saves the dynamic power

of switching activity and translates into overall power savings despite additional router

overheads.

2.2 Coherence Overview

In addition to optimizing the physical medium that transfers bits around the

chip, we must also consider the design of the coherence protocol that determines what

data needs to be sent to whom and when. First, we present an overview of the cache
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coherence problem as well as some existing approaches; additional existing approaches

related to this work will be presented in subsequent chapters.

Parallel programming is extremely difficult and has become increasingly impor-

tant. With the emergence of many-core architectures, parallel hardware will be present

in commodity systems. The growing prevalence of parallel systems requires an increasing

number of parallel applications. Maintaining a global, shared address space alleviates

some of the burden placed on programmers to write high performance parallel code.

When a shared address space is not employed, message passing explicitly moves data

between cores and address spaces but incurs substantial overheads to do so. It is eas-

ier to reason about a global address space than a partitioned one which is why many

current architectures support the shared memory paradigm rather than the message

passing paradigm.

Cache coherence protocols are necessary to maintain a single unified address space

in the presence of cache/memory hierarchies. While hierarchies serve to substantially

improve performance, they allow multiple copies of a memory location to exist on-chip.

Coordinating these multiple copies falls to the cache coherence protocol.

2.2.1 Memory Consistency Overview

A memory system is coherent if it is possible to construct a hypothetical serial

order of all memory operations to a given address location [31]. For programs execut-

ing on a uniprocessor all instructions appear to execute in the order specified by the

programmer or the compiler. The hardware implementation may execute these instruc-

tions out of order but maintains this abstraction so that the programmer has a simple

and intuitive model with which to reason about program order and program execution.

What follows from this model is that a load is expected to return the value of the last

store to that memory address.

With parallel programs, it becomes more difficult to reason about program order;



27

specifically the order of loads and stores. With a single thread, a load will return the

value of the last store from that thread. But with multiple threads, the most recent store

may have occurred on a different processor; therefore, the value to be returned by any

given load is not as straightforward as in a sequential program. To help programmers

reason about valid orderings of loads and stores by multiple threads, the hardware must

adhere to a given memory consistency model. Memory consistency models specify the

order a processor observes the memory operations performed on other processors.

One such memory consistency model, sequential consistency, specifies that a pro-

gram execution is sequentially consistent “if the result of any execution is the same as

if the operations of all processors were executed in some sequential order, and the op-

erations of each individual processor occur in this sequence in the order specified by its

program.” [78]. Relaxing the constraints placed on the memory system implementation

through relaxed consistency models [4] allows designers freedom to implement optimiza-

tions that overcome memory latency. Sequential consistency is the simplest and most

intuitive consistency model; however, it can also restrict performance optimizations. As

such, we explore the use of weaker consistency models for VTC in Chapter 6. Sequential

consistency is assumed for Circuit-Switched Coherence in Chapter 5.

2.2.2 Cache Coherence Ordering Invariants and Permissions

Cache hierarchies have long been used to reduce the latency of memory operations

and provide significant performance improvements. The addition of caches, however,

complicate multiprocessor memory consistency. Caching allows processors to retain

copies of a memory location closer to them for lower latency. If two processors both

cache and subsequently read a memory location, their respective loads will return the

same value. However, if one processor then writes that memory location in its private

cache, subsequent loads from both processors will return different values resulting in

incoherence. The mechanisms that guarantee that the value one processors writes will



28

propagate to all processors are defined by the cache coherence protocol.

This dissertation uses as its basis, invalidation-based protocols that maintain

coherence by enforcing a single writer-multiple reader invariant. Any number of cores

may cache a copy of memory to read from; if a core wishes to write to that memory

address, it must ensure that no other cores are caching that address.

At their basis, cache coherence protocols require three states for cache lines:

Invalid, Shared and Modified. A cache line in the invalid state is not cached by the

processor. When a processor holds a line in the shared state it can read from that line

but cannot perform a store to that line; multiple copies of the same shared line may

exist throughout the system. In order to store to a line, a processor must hold a cache

line in the Modified state; this means that only one copy of the cache line is cached

anywhere in the system and all or part of the cache line is dirty with respective to the

value held in main memory. To perform a write to a shared line, the cache coherence

protocol must invalidate externally shared copies of the cache block.

Two additional states are commonly added to invalidation-based protocols to

improve their performance: Exclusive and Owned. A cache line is loaded in the exclusive

state when no other copies exist on chip. On a subsequent write to the cache line, the

upgrade coherence request can be saved as no other cores are caching the block. If the

block was loaded in the Shared state, an upgrade request would need to be sent. A fifth

coherence state, owned may be added to indicate which core will source the data. If a

block is held in the owned state, that core, rather than memory will supply the data

when a remote coherence request is observed. The use of the owned state also saves

writebacks on dirty misses as owned can signify a block that is shared and dirty.

With these five states, a processor can write to a block that it finds in its cache in

modified or exclusive and it can read from a block it finds in modified, owned, exclusive

or shared. Three basics actions are required: Read-Shared, Read-For-Ownership and

Upgrade. On a load or instruction miss in the last level cache, a read-shared request
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is issued to the interconnect and the data is returned. A processor caching the block

in modified, owned or exclusive is responsible for supplying the data and will no longer

have write permission to the block (transitions to owned or shared). For a store miss, a

Read-For-Ownership is issued, this operation returns the data to the requesting cache

and invalidates other copies that may exist. Again, to obtain the most recently written

value, a cache with the block in modified, owned or exclusive will respond to this request.

The protocol must have a means of indicating to the requesting processor that it is safe

to assume all copies have been invalidated so that the store can complete. An upgrade

is issued to convert a read-shared block to be writable by the requesting processor.

Write propagation and write serialization are two properties implied from co-

herence. Write propagation means that writes to a memory location are visible to all

processors, while write serialization dictates that all processors see all writes to the same

location in the same order.

Throughout the literature, there are two predominant ways of implementing cache

coherence protocols: broadcast-based protocols and directory-based protocols. Both

of these forms of coherence protocols exhibit problems for emerging many-core chip

multiprocessors. Furthermore, these two protocols place vastly different demands on

the interconnection network; the former exhibiting one-to-all traffic and the latter being

dominated by point-to-point traffic.

2.2.2.1 Broadcast/Snooping Protocols

A widely adopted approach to cache coherence is a snooping protocol on a bus.

A snooping broadcast protocol issues coherence requests to all processors via a shared,

totally-ordered interconnect such as a bus. All components in the systems are connected

to a bus. A bus can be viewed electrically as a set of wires or as a logical equivalent.

The key advantage of using a bus for cache coherence is that it is a totally-ordered

interconnect. All components attached to the bus will observe all requests in the same
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logical, total order.

In addition to the total order properties of a bus, another advantage is the use

of shared (wired-or) lines; any endpoint on the bus can assert a shared line and that

assertion is globally visible to all endpoints on the bus. These shared lines can be useful

for cache coherence. For example, a processor with a cache line in owned can assert the

owned line which signifies to memory and other processors that it will source the data

for the current request.

When coherence requests are placed on the bus, all caches attached to the bus

will snoop the request. Each cache controller contains a state machine that responds as

needed to each request. The key to snooping-based protocols is that all cores see requests

in the identical order. Once a processor observes its own store request on the bus, it

knows that no other outstanding request can be ordered before it. It is now safe for the

processor to assume that all other cores have observed its store request and invalidated

any valid copies. Sequential consistency is maintained as all other outstanding requests

to the cache line have completed when a processor observes its own store request on the

bus.

A bus-based multiprocessor system is depicted in Figure 2.5. Goodman [51] was
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the first to propose snooping-based protocols for cache coherence. Initially, electrically

shared buses where used; in these early implementations the bus was held for the entire

coherence transaction. Higher performing bus designs including pipelined and split

transaction buses have been used to improve the performance of these protocols. Modern

systems such as Sun’s UltraEnterprise Servers, implement a logical bus from a hierarchy

of buses [23,24,119]. This design relaxes the atomicity provided by a bus but continues

to provide the requisite total order.

Broadcast protocols do not scale well in performance and power since they rely on

a central ordering point for all coherence requests and flood the interconnect with broad-

cast requests. However, they offer fast cache-to-cache transfers and a simple abstraction

for reasoning about coherence ordering.

2.2.2.2 Directory Protocols

Unlike broadcast protocols that rely on the total order of a bus for coherence,

directory protocols use directories to serve as ordering points for coherence requests.

Directory protocols rely on point-to-point messages rather than broadcasts; this re-

duction in coherence messages improves their scalability. Removing the centralized

bottleneck of a shared bus also results in a more scalable protocol.

Directories maintain information about the current sharers of cache lines in the

system and as well as state information. By maintaining sharing lists, directory pro-

tocols eliminate the need to broadcast an invalidation to the entire system; instead,

point-to-point messages are sent to the subset of cores that are listed as sharers. Ad-

dresses are interleaved across directory nodes; each address is assigned a home node

which is responsible for ordering and handling all coherence requests to that address.

Directories order cache requests instead of relying on the total order provided by a

bus. But since directory protocols are often built on top of unordered interconnects, they

can only handle one outstanding request to a cache line at a time. For example, when
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a directory receives a store request, it sends out invalidation requests and transitions

to a busy state until the store has completed. While in this busy state, the directory

will negatively acknowledge (or NACK) incoming requests to that line. These NACKed

requests must be retried by that processor. If multiple outstanding stores were in

flight from the directory, they could be reordered with respect to each other by the

interconnection network; processors would then see different orderings of stores which

would break the sequential consistency model. An alternative to NACKing requests

when the directory is in a pending or busy state are NACK-free directories protocols [25];

this protocol queues pending requests at the home node until they can be serviced.

Figure 2.6 depicts a system built with a directory protocol. The SGI Origin [80]

and the Alpha 21364 [100] are examples of systems employing directory protocols.

Directory protocols provide greater scalability by distributing the ordering points

across various directory nodes; but latency penalties are paid for traveling to and ac-

cessing these ordering points. In large multi-chip multiprocessor systems, it is fairly

easy to add extra bits to memory for directory storage and use directories to build scal-

able coherence protocols. However, to make performance acceptable for on-chip usage,

directory information must be stored on-chip (not as part of off-chip memory as is done
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in distributed systems). Caching directory information on-chip represents substantial

overhead; this additional area could be better utilized for the core itself or for larger

on-chip caches.

In [94], significant directory cache miss rates were observed for commercial work-

loads (up to 74%). Directory cache miss rates will become an even more significant

performance problem with server consolidation workloads. Multiple server workloads

sharing the same resources on chip will touch large amounts of memory, placing enor-

mous pressure on these directory caches. So, while directory protocols do provide design-

ers with scalability; they do so with significant performance degradation when directory

indirections and directory misses are factored in.

2.2.3 Coarse Grain Coherence Tracking

The coherence protocols proposed in Chapters 5 and 6 leverage coarse-grain track-

ing information to improve cache-to-cache transfer latency and reduce bandwidth over-

heads. In this section, we briefly discuss existing work on coarse-grained coherence.

In conventional systems, information about cache coherence is maintained on a

per-block granularity. However, by looking at a set of contiguous addresses (a region),

more optimizations can be enabled. A region is defined as a contiguous portion of

memory consisting of a power of two number of cache blocks.

Coarse Grain Coherence Tracking (CGCT) [20] has been proposed to eliminate

unnecessary broadcasts in order to improve the scalability of broadcast-based systems.

Requests to non-shared regions of the address space can send a request directly to

the memory controller rather than order their request on the broadcast bus which is

a precious and limited resource. Tracking sharing patterns on a coarser granularity

than cache lines can take advantage of spatial locality and reduce the storage overhead

associated with maintaining this information. RegionScout [99] makes similar observa-

tions about the benefits of tracking information on a coarse granularity for coherence
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purposes.

The structures required by CGCT and RegionScout have been generalized in

RegionTracker [147] to scalably incorporate additional functionality. Specifically, Re-

gionTracker replaces a conventional tag array with region tracking structures, and is

shown to achieve comparable performance to a conventional fine-grained tag array with

the same area budget. With RegionTracker, one structure is used to encompass the func-

tionality of both the fine-grained tags of a conventional cache and maintain additional

information about larger regions.

2.2.4 Desirable Properties

Scalable cache coherence solutions are imperative to drive the many-core revolu-

tion forward. There is tension between the need for an ordered interconnect to simplify

coherence and the need for an unordered interconnect to provide scalable communica-

tion.

Even with hundreds to thousands of cores on a chip, in the common case, only

a few processors need to observe a given coherence request. With the single-writer,

multiple-reader protocol invariant, only cores that are actively caching a block need to

be made aware of a pending write to that block. Since providing global coherence, such

as a broadcast, across thousands of nodes is impractical from both a performance and a

power standpoint, a logical solution is to maintain coherence amongst just the current

subset of readers. Infrequently, it will be the case that every core on-chip does need

to observe a coherence request; this case must be handled correctly but not necessarily

quickly.

In short, to address the key shortcomings of broadcast- and directory-based pro-

tocols, the desirable properties for scalable on-chip coherence are:

• Limit coherence actions to the necessary subset of nodes: this will
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reduce the power consumption and the interconnect pressure.

• Fast cache-to-cache transfers: send requests to sharers as quickly as possi-

ble, avoiding the overheads of directory indirections.

• Limited bandwidth overhead: limit unnecessary broadcasts to the entire

chip; only communicate amongst the subset of sharers where coherence needs

to be maintained.

• Limited storage overhead: make efficient use of on-chip directory storage

and cache tag array storage.

Chapters 5 and 6 propose coherence protocols targeting these four properties.

In this section, we have laid the groundwork for the coherence protocols that will be

discussed in Chapters 5 and 6. Next we will discuss an emerging class of workloads

whose unique sharing and communication characteristics can be leveraged in the design

of coherence protocols.

2.3 Emerging Workloads

Now that we have provided background on interconnection networks and cache

coherence protocols, we briefly discuss the workloads considered in this dissertation.

The proposals in this dissertation are evaluated with scientific, commercial and server

consolidation workloads in order to examine a variety of communication and sharing

behaviors. We study workloads that have been traditionally used in SMP evaluations;

these are scientific workloads are from the SPLASH-2 suite [146] and commercial work-

loads including SPECjbb, SPECweb [124], TPC-H and TPC-W [134].

Server consolidation workloads are a class of emerging workloads that present

opportunities for coherence optimizations based on sharing characteristics. With server

consolidation workloads, multiple discrete server applications share a many-core CMP.
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Each application runs inside its own virtual machine and the multiple applications

are coordinated through the virtual machine monitor. The common case for these

applications is that any cache sharing will occur only within a virtual machine. Sharing

across virtual machines (e.g. between applications) will be very rare.

By integrating a large-scale multiprocessor onto a single chip, where several re-

sources may be shared, interference can come from many sources; this interference occurs

at a much finer granularity than in traditional multi-chip, multi-board servers. Many

cores may compete for the same interconnect bandwidth, memory controllers and cache

resources. Sharing these resources to provide superior performance as well as ensuring

fairness has been the subject of recent research [54,61,103] and will continue to grow in

importance. The interconnect, which must be able to provide fast and reliable commu-

nication between any two cores may be shared across many cores. Memory controllers,

which are central arbiters between the chips and memory, may receive requests from

multiple cores. Lastly, caches may be shared to varying degrees amongst cores. The

last level cache is the final opportunity to keep requests on chip before incurring the

high latency effects of going off-chip. As we focus on communication and coherence in

this dissertation, there are opportunities for interference among server workloads in the

consolidated environment.

For the purposes of this discussion, sharing within a virtual machine will require

local coherence operations and sharing across virtual machines will require global co-

herence operations. Note that the term local is not meant to imply physical locality

between requests but rather that local requests are limited to those nodes within a sin-

gle virtual machine. Threads within a virtual machine can be scheduled to maintain

physical locality, resulting in local coherence requests that only travel short distances to

other cores. However, the coherence mechanisms explored in subsequent chapters are

not predicated on physical locality and may ease the burden of scheduling.

To reduce memory pressure, Waldspurger proposes content-based sharing, the



37

sharing of read-only pages across virtual machines [138]. This inter-vm sharing could

precipitate more global coherence between virtual machines; however, this is limited

to read-sharing. We do not model any inter-vm sharing of this kind for our coherence

protocols; however, inter-vm sharing can be handled by these protocols. Virtual machine

monitor code is also shared across virtual machines.

Recently, server consolidation workloads have been receiving attention in the

research community. Coherence protocols such as the Virtual Hierarchies protocols [97]

leverage this class of workloads for performance optimizations. Analysis has been done

to explore the impact of the virtual machine overheads [10]. The interaction of multiple

virtual machines has also raised quality of service issues [54, 61, 103]. Wells et al. [141]

have explored scheduling of these workloads.

In the subsequent chapters, we first explore interconnect optimizations address-

ing the key problems of router overhead and multicast routing. Next we address the

bottlenecks present in cache coherence protocols for many-core architectures.

2.4 Conclusion

In this chapter, we have provided background on interconnection networks, cache

coherence protocols and emerging workloads. We focus our background discussion of

interconnects on the router architectures since both HCS (Chapter 3) and VCTM (Chap-

ter 4) modify the router architecture. The first proposes modifications for low latency

while the second proposes modifications for improving routing and throughput of mul-

ticast messages. The latency associated with network routers impacts performance;

specifically, the low-latency delivery of coherence requests is imperative.

Interconnection networks and cache coherence protocols are tightly coupled. First,

the cache coherence protocol is responsible for the bandwidth demands placed on the

interconnection network. These bandwidth demands have an impact on a given proto-

col’s ability to scale to a large number of cores; Circuit-Switched Coherence, discussed
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in Chapter 5 places low bandwidth demands on the interconnect through the use of pair-

wise traffic. Second, cache coherence protocols may require an ordered interconnect for

correctness; there is tension between providing an ordered interconnect and offering the

high bandwidth required for large systems. We explore the ability of the interconnect

to provide both ordering and high bandwidth in Chapter 6.

Finally, emerging workloads such as server consolidation present new sharing

patterns; we explore optimizing the coherence protocol for these applications. The vast

majority of traffic in these applications is going to be local; we propose a hierarchi-

cal protocol that accelerates this local coherence with multicasting (Chapter 6). The

designs proposed in the following chapters emphasize the intertwining of application be-

havior, cache coherence protocols and interconnection networks in chip multiprocessor

architectures.
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Chapter 3

Hybrid Circuit Switching

Hybrid Circuit Switching optimizes the router pipeline to streamline on-chip com-

munications. Router pipeline delay can contribute significantly to on-chip network la-

tency and therefore is an important candidate for improvement. Before presenting the

router design, we characterize the on-chip communication that motivates this work.

3.1 Communication Characterization

This section presents characterization data to further stress the importance of

solving existing communication challenges, particularly reducing router overhead. We

characterize the importance of on-chip network latency to overall performance. Addi-

tionally, we demonstrate the contribution of one type of communication pattern: pair-

wise sharing in real workloads.

For the suite of commercial and scientific workloads evaluated (see Section 3.5.1 on

page 54 for details on workloads, machine model and additional simulation parameters),

the network latency of a 4x4 multicore design can have a high impact on performance

(Figure 3.1) while the bandwidth demands placed on the network are relatively low

(Figure 3.2). Figure 3.1 illustrates the change in overall system performance as the per-

hop delay is increased from 1 to 11 processor cycles. When a new packet is placed on a

link, the number of concurrent packets traversing that link is measured (including the

new packet); this is the channel load [34]. The average is very close to one, illustrating
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Figure 3.1: Impact of Interconnect Latency on Overall Performance

very low link contention given our simulation configuration.

Wide on-chip network channels are significantly underutilized for these workloads

while overall system performance is sensitive to interconnect latency. An uncontended 5-

cycle per-hop router delay in a packet-switched network can lead to 10% degradation in

overall system performance. As the per-hop delay increases, either due to deeper router

pipelines or network contention, overall system performance can degrade by 20% or

more. With the use of simple in-order cores, the ability to tolerate this delay is limited.

Looking forward, as applications exhibit more fine-grained parallelism and more true

sharing, this sensitivity to interconnection latency will become more pronounced. This

latency sensitivity coupled with low link utilization motivates the exploration of circuit-

switched fabrics for many-core architectures.

3.1.1 Pair-wise Sharing

One of the goals in this research is to provide optimizations for certain commu-

nication patterns and types while maintaining a flexible substrate that performs well

in the absence of these patterns. The first application behavior that we take note of

is pair-wise sharing. Our workloads exhibit frequent pair-wise sharing between cores.

This behavior can be due to the presence of migratory sharing and producer-consumer
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Figure 3.2: Bandwidth Demands placed on On-Chip Network

relationships. Prior work has also shown that processor sharing exhibits temporal lo-

cality and is often limited to a small subset of processors (e.g. [15, 37]). Designing a

router architecture to take advantage of such sharing patterns can out-perform even a

highly optimized packet-switched router.

Figure 3.3 illustrates the percentage of on-chip misses that can be satisfied by

cores that recently shared data with the requester. The requester might have requested

other cache blocks from the core or sent cache blocks to the other core. The categories on

the x-axis indicate the number of most recent sharers and the corresponding percentage

of on-chip misses that can be satisfied by one of those cores on the y-axis. For example,

with the commercial workloads, the two most recent sharers (of any cache block) have a

65% chance of sourcing data for the next cache miss. The likelihood of a recent sharer

supplying the data improves when we consider recent sharers for smaller spatial regions

of memory.

Using the above characterization as motivation, the next section presents the

hybrid circuit-switched network targeting pair-wise sharing.
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Figure 3.3: On-chip misses satisfied by recent sharer(s). On-chip misses are 54% and
70% of all misses for the scientific and commercial workloads evaluated.

3.2 Hybrid Circuit Switching Overview

Switching or flow control techniques used in networks can be broken down into

buffered and bufferless. Packet-switching is a buffered flow control technique. There are

several types of packet-switching that are employed in networks (distinguished by the

granularity at which resources are allocated). Virtual channel flow control is utilized in

our baseline router design. Buffers and channels are allocated in a per-flit basis at each

hop in the network. Only the head flit is responsible for allocating the virtual channel

but all flits are responsible for allocating necessary buffer space and channel bandwidth.

Allocating resources on a flit granularity reduces the buffering required in the network.

Circuit-switching is a form of bufferless flow control. With circuit-switching flow

control, channel bandwidth is allocated to an entire packet from the source to the

destination (across multiple hops). In traditional circuit-switching, a probe (setup flit)

is injected into the network to reserve the necessary channel bandwidth. Once the source

receives an acknowledgment message that all channels have been acquired, it injects the

circuit-switched packet into the network; other messages needing to acquire the reserved

bandwidth are blocked until the current circuit-switched packet releases its resources.
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Figure 3.4: Performance of Traditional Circuit Switching

The area and power associated with buffering is removed in a circuit-switched network;

however, messages pay a long startup latency (but thereafter pass through individual

routers with only the switch traversal stage).

Our investigations show that traditional circuit-switched networks do not per-

form well, as circuits are not reused sufficiently to amortize circuit setup delay. As

seen in Figure 3.4, every application saw a slowdown when using traditional circuit-

switched networks versus an optimized packet-switched interconnect for a 16 in-order

core CMP (simulation parameters can be found in Section 3.5.1). A second downside to

a traditional circuit-switched network is the low bandwidth that it provides. Reserving

channels across multiple hops severely restricts the bandwidth offered by the network.

These observations motivate a network with a hybrid router design that supports

both circuit and packet switching with very fast circuit reconfiguration. The key design

goals for this network are to avoid the circuit setup delay of traditional circuit switching

and offer bandwidth comparable to that of the baseline packet-switched network.
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3.2.1 Hybrid Circuit Switched Network

As shown in Figure 3.5, our design consists of two separate mesh networks: the

main data network and a tiny setup network. The main data network supports two types

of traffic: circuit-switched (CS) and packet-switched (PS). Circuit-switched messages

and packet-switched messages are interleaved on the same physical resources within the

network. The latency benefits of circuit-switching are derived from multiples uses of

a circuit between reconfigurations. To increase the lifetime of a single dynamic circuit

instance, we partition each link into multiple narrower physical channels. Multiple

physical channels allow multiple circuits to occupy the same link concurrently which

reduces the frequency of reconfiguration.

In the data network, there are C separate physical channels, one for each circuit.

To allow for a fair comparison, each of these C channels has 1/C the bandwidth of

the baseline packet-switched network in our evaluations. A baseline packet-switched

network has a channel width of D data bits along with a log2(V ) virtual channel ID.

Flits on the data network of our hybrid circuit switched network are D/C wide, plus

the virtual channel ID for packet-switched flits and an additional bit to designate the

flit type (circuit- or packet-switched). A single setup network is shared by all C circuits.

3.2.2 Setup Network

Similar to a traditional circuit-switched network, the setup network handles the

construction and reconfiguration of circuits. The setup network is responsible for storing

the switch configuration information for active circuits. In a traditional circuit-switched

network, a packet must wait for acknowledgment that a circuit has been successfully

constructed before leaving the source node. A key feature that distinguishes our hybrid

network from a traditional circuit-switched network is that we do not rely on acknowl-

edgment messages. The packet payload is piggy-backed immediately behind the circuit
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Figure 3.6: Setup Network Router Stages

setup request; this piggy-backing eliminates the latency penalty associated with setting

up a new circuit.

At the time of injection, the network interface controller chooses one of the C

circuit planes to be used by the circuit under construction. If there are no unused

circuit planes, the least recently used circuit at the injection site will be reconfigured as

packet-switched whilst the new circuit request will take over the old circuit. Incoming

circuit-switched flits intended for this reconfigured circuit will henceforth be tagged as

packet-switched flits and will traverse the packet-switched pipeline from this node until

reaching their destination. The setup network will dispatch a control flit to the source

of the old circuit notifying it of the reconfiguration. This control flit signals the source

to either stop sending circuit-switched flits or re-establish the circuit. As this control

flit travels upstream along the circuit-switched path, it deconfigures each segment of the

circuit. This is analogous to sending credits upstream to indicate that a downstream

buffer is available. The difference in this case is that the control flit slows the arrival of

reconfigured circuit-switched flits by reconfiguring them closer to the source; as a result

of this, we do not require additional buffering at each router to handle reconfiguration.

The control flit prevents buffer overflow due to too many circuit-switched flits arriving

at the reconfigured node. When a circuit has been reconfigured, the rate of arriving

flits may be greater than the rate that the newly converted packet-switched flits can be

consumed, which could lead to overflow if the source is not notified.

The routers in the setup network have three pipeline stages (shown in Figure 3.6),

similar to stages of our baseline packet-switched router. Speculation and virtual channel

allocation are removed from the setup network router. Virtual channels are unnecessary
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since traffic on the setup network is low and wormhole routing is sufficient and requires

less overhead. When a setup flit arrives, consisting of the destination field (log2(N)

bits, where N is the number of nodes) and the circuit number (log2(C), where C is the

number of physical circuits), it will first be written to an input buffer (BW). Next, it

will go through switch arbitration (SA), with each port having a C:1 allocator. This is

followed by a circuit reservation on the data network which sets up the data network

switch at that current node to route incoming circuit-switched flits correctly; successful

switch arbitration determines the ordering of two setup flits requesting the same circuit

resources. The setup flit then traverses the crossbar (ST) and the link (LT) towards the

next router in the setup network. The width of the setup network is log2(N) + log2(C)

bits. Because the the setup network is very narrow, the switch allocation and switch

traversal stages occur in a single clock cycle. This allows data trailing the setup flit to

experience lower latency as its routers are setup in advance of its arrival on the data

network.

The physical circuit plane C is selected at the injection router based on LRU

information and the circuit number (log2(C) bits) is stored at the network interface

controller for access by future circuit-switched flits injected at that router. A circuit

must remain in the same physical circuit plane from source to destination. As a result

of this constraint, log2(C) bits are sufficient to identify the circuit.

3.2.3 Circuit Switched Pipeline

The circuit-switched pipeline on the hybrid network is depicted in Figure 3.7.

To allow circuit- and packet-switched flits to intermingle throughout the network, we

add an extra bit field to each flit indicating if this flit is a circuit- or packet-switched

flit. When a flit enters the router pipeline, the circuit field is checked (CFC). If the

field is set, this is a circuit-switched flit and will proceed through the pipeline shown

in Figure 3.7, bypassing directly to the switch traversal (ST). The switch was already
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Figure 3.7: Circuit-Switched Router Pipeline. CFC: Circuit Field Check, ST: Switch
Traversal, T: Tagging, LT: Link Traversal.

configured to the appropriate output port when this circuit was originally established.

When enabled, the tagging stage (T) flips the circuit field bit for incoming packets. The

tagging stage is enabled when a reconfiguration has taken place. By flipping the circuit

field bit, flits originally intended for a circuit will now be redirected to packet buffers.

In subsequent hops, the tagging stage will not be enabled but former circuit-switched

flits will stay packet-switched until they arrive at their destination.

A hybrid router architecture with two circuit planes is depicted in Figure 3.5. If

the circuit field is set and the reconfiguration signal has not been asserted by the setup

network, then the incoming flit will take the direct path to the crossbar (the lower lane

for each port shown in Figure 3.5). If the circuit field has been cleared or the circuit

has been reconfigured, the flit will take the packet-switched path (upper lane) and be

written into an input buffer.

This circuit-switched pipeline is nearly identical to the highly optimized single-

cycle packet-switched router in Figure 2.4c. However, note that circuit-switching is

able to achieve better performance than a single-cycle packet-switched router under

certain communication patterns. In the packet-switched baseline, multiple incoming flits

prevent bypassing; with circuit-switching, these flits can occupy different circuit planes

and proceed simultaneously through the router in a single cycle. This opportunity will

be explored in greater depth in the evaluation (Section 3.5).



49

3.2.4 Packet Switched Pipeline

If the circuit field is zero, the flit entering the router is packet-switched and will

be buffered, proceeding through the packet-switched pipeline shown in Figure 2.4. The

allocator in the packet-switched pipeline is designed to enable packet-switched flits to

steal bandwidth from idle circuits. The packet-switched flit will perform speculative

virtual channel and switch allocation each subsequent cycle after the buffer write stage

until it is able to steal bandwidth through the switch. The router receives a signal from

the input ports indicating the presence or absence of incoming flits on the circuit C

that the packet-switched flit has also been assigned to and therefore is attempting to

steal bandwidth from. If there are no incoming flits for that circuit, the packet-switched

flit arbitrates for the switch. Once a packet-switched flit has won passage through the

crossbar, it then traverses the output port and continues to the next hop. The circuit

field bit remains set to zero; this flit will continue to be interpreted as packet-switched

and buffered appropriately at each hop; bandwidth stealing will occur at each hop.

To prevent the unlikely scenario where packet-switched flits become starved by

circuit-switched flits, a timeout mechanism is used to trigger the reconfiguration of the

starved circuit plane. The timeout triggers if a flit has been waiting in a buffer for

15 cycles. This will force circuit-switched flits into the packet-switched pipeline and

allow the starved packet-switched flits to make forward progress. Starvation of flits is

characterized in Section 3.5.

3.2.5 Narrow Data Network

To prevent frequent reconfiguration, hybrid circuit switching subdivides the net-

work links into multiple narrow links for multiple circuits. The same subdivision can be

done for the baseline packet-switched network. A recent many-core architecture from

Tilera [142] utilizes multiple packet-switched networks. In their design, the networks



50

are assigned to different classes of traffic, e.g. processor to memory traffic, processor to

processor traffic, etc. Utilizing multiple networks can improve throughput by reducing

the network load but can suffer from increased serialization delays. Correct speculation

rates can be improved by the presence of fewer flits in the input buffers which will enable

more frequent bypassing.

3.3 Power and Area Overhead

Area and power are first order design constraints when dealing with on-chip net-

works. Circuit-switched flits do not trigger activity in all router stages (e.g. no buffer

read/write, no allocation); as a result, circuit-switched flits consume less dynamic power

as they traverse the network than packet-switched flits. We look at the area and power

impact of the hybrid circuit-switched interconnection network.

Using Orion and a 70nm technology [139], a setup network router (including

configuration memory) consumes less than 2% of the overall router power. An activity

factor of 1 was used to provide a worst case analysis. The configuration memory in the

setup network consists of 25 bits for each of the C circuits. For each of the five input

ports, 5 bits drive the select signals of the crossbar to activate the correct output port.

The setup network also consumes additional area due to the addition of buffers, switch

allocators and wiring. However, as the setup network is very narrow, we do not expect

significant area overhead.

On the data network, components of the hybrid router that increase power con-

sumption and area are C D/C-wide multiplexers that select from either the circuit or

the buffers and tagging hardware to reset the circuit bit in each flit. To reduce the

area and power consumed by the C D/C multiplexers, we add an additional input to

the 4:1 multiplexers in the baseline router that select between the VCs. Replacing 4:1

multiplexers with 5:1 multiplexers increases the power consumption of the router less

than 1%. Power can be potentially lowered further by reducing the buffers and VCs
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in the hybrid router; however we chose to stick with the same configuration as the

packet-switched baseline for a consistent comparison.

3.4 Discussion

In the following sections, we explore some of the potential issues and drawbacks of

hybrid circuit switching. We discuss the potential for circuits to thrash in the network

or to become fragmented. Policies governing when to establish circuits are explored and

finally, we look at the ability of HCS to scale to larger systems.

3.4.1 Circuit thrashing

If two different source-destination pairs try to establish a circuit at the same time

sharing a common link on the same circuit plane, these requests will be serialized in the

setup network. The first request through the setup router will only hold the circuit for

a single cycle making reuse by subsequent messages impossible. The following cycle, the

second request will reconfigure the link and hold the circuit until a subsequent request

wishes to claim the link. In the event that these two source-destination pairs continue

thrashing by trying to establish circuits over the same link, their latency will degrade to

the baseline packet-switched latency. Circuit thrashing is less likely with more available

circuit planes.

3.4.2 Circuit Fragmentation

Circuit fragmentation due to reconfiguration can occur in the hybrid network.

The reconfiguration mechanism only reclaims contentious links for a new circuit (not all

the links of the circuit). The remaining fragments of the old circuit are left intact, thus

leaving partial circuits in the network. Links in a circuit downstream from the recon-

figuration site will no longer see circuit-based traffic intended for that circuit (packets

intended for that circuit will have been tagged as packet-switched at the reconfiguration
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site). Therefore, until this link is claimed as part of a new circuit, there will always be

idle bandwidth for packet-switched flits to steal.

In a scenario where a link in the circuit has been reconfigured at a node other

than the source node, the source of that circuit would be unaware of the reconfiguration

and could keep sending circuit-switched flits on the circuit fragment. These circuit-

switched flits will be converted to packet-switched flits at the reconfiguration site; this

could potentially cause a buffer back-pressure situation back to the source node if there

is not enough bandwidth available on the contended link for the packet-switched flits

to steal and continue on to their destination. As such, upon reconfiguration we send

a notification flit back to the source of the circuit. The source of the circuit can then

choose to re-establish the circuit or send packet-switched flits.

3.4.3 Setting up Circuits

Determining when and if to set up a new circuit impacts the reconfiguration fre-

quency, circuit reuse potential and the possibility of circuit thrashing. In this work, two

different policies regarding the set up of new circuits are explored. In the first policy,

the decision to allow a new message to construct a circuit-switched path (if one is not

already present) is made based on the nature of the message. For example, invalida-

tion requests from the directory are not indicative of a pair-wise sharing relationship

and therefore are injected as packet-switched flits. Read and store requests and data

transfers will setup a circuit if one is not present. All types of messages can reuse an

existing circuit between given source-destination pairs. We refer to this first policy as

the limited setup policy. The second policy is to allow messages of any type to always

initiate new circuit set up.
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3.4.4 Scalability

Given the same traffic load on a larger network, there can potentially be higher

circuit contention which would require more circuits, limiting the scalability of the

proposed network. With a fixed channel width, subdividing to create more circuit

planes increases the serialization delay; narrower links result in more flits per packet.

However, in large systems, circuit switching has the potential for greater latency savings.

As the hop count increases from source to destination, the number of cycles saved will

also increase.

So far, our discussion of hybrid circuit-switching has assumed a mesh topology.

There is nothing fundamental that limits hybrid circuit switching to a mesh. As such,

to scale hybrid circuit switching and the interconnect in general, we suggest moving

to a more scalable topology as the number of nodes in the system grows. Enriched

connectivity (such as an express cube [33]) will not only lower circuit contention and

thrashing, but can potentially reduce global cross-chip latency to just pure wire delay

as circuits can be formed with mostly express links.

Future many-core workloads, such as server consolidation, are unlikely to require

significant global communication. This limited sharing will reduce the need for large

numbers of circuits that sprawl across the chip and will be particularly well suited to

hybrid circuit-switching. Next we look at the impact of HCS on single multiprocessor

workloads and server consolidation workloads.

3.5 Evaluation

In the following sections we present an evaluation of the hybrid circuit-switched

network compared to an aggressive packet-switched baseline. Before presenting in-depth

results on the strengths and weakness of HCS, we present the simulation methodology

and workloads under consideration.
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Table 3.1: HCS Simulation Parameters

Cores 16 in-order cores
Memory System

L1 I/D Cache (lat) 32 KB 2-way set associative (1 cycle)
Private L2 Cache 512 KB (8 MB) total 4-way set associative

6 cycles, 64 byte lines
Shared L3 Cache 16 MB (1 MB bank at each tile) (12 cycles)
Main Memory Latency 100 cycles

Interconnection Network
Router 8 Virtual Channels with 4 Buffers each

Optimized Pipeline
Setup Network Wormhole with 4 Buffers
Channel Width 32 Bytes

3.5.1 Methodology

To evaluate the proposals in this dissertation, a full-system simulation environ-

ment, PHARMsim is used [18,82]. Full-system simulation has the benefits of executing

both operating system code and application code; additionally, the simulator faithfully

models real system interactions. PHARMsim is built on SIMOS-PPC and is configured

with 16 cores on a 4x4 mesh. Included in our simulation infrastructure is a cycle-accurate

network model including pipelined routers, buffers, virtual channels and allocators. To

mimic industry trends of providing simpler cores on-chip, we model in-order cores. For

performance results, statistical simulation is used with 95% confidence intervals [9].

The parameters used to configure HCS experiments are presented in Table 3.1. The

baseline interconnection network used for comparison is the optimized packet-switched

pipeline presented in Chapter 2. Under low load conditions, the delay through this

baseline router is a single cycle. For moderate to high loads, speculation will fail more

frequently, increasing the delay to three pipeline stages.

Despite its benefits, there are drawbacks to full-system simulation. In particular

it is slow and can sometimes obscure the effects of one subsystem. To focus on the
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Table 3.2: Benchmark Descriptions

Benchmark Description
SPECjbb Standard java server workload utilizing 24 warehouses,

executing 200 requests
SPECweb Zeus Web Server 3.3.7 servicing 300 HTTP requests
TPC-H Transaction Processing Council’s Decision Support

System Benchmark, using IBM DB2 v6.1,
running query 12 with a 512MB database and 1GB of memory

TPC-W Transaction Processing Council’s Web e-commerce benchmark,
DB Tier, browsing mix, 40 transactions

Barnes-Hut 8K particles, full end-to-end run including initialization
Ocean 512x512 full end-to-end run (parallel phase only)
Radiosity -room -batch -ae 5000 -en 0.050 -b 0.10 (parallel phase only)
Raytrace car input (parallel phase only)

interconnect, we have extracted our network model and also performed detailed network

level simulations in isolation.

We use a variety of commercial and scientific benchmarks to perform the evalua-

tion in this dissertation, including SPECjbb, SPECweb [124], TPC-H, TPC-W [134] and

several benchmarks from the SPLASH-2 suite [146]. Descriptions of those benchmarks

are provided in Table 3.2.

In addition to single workloads, we evaluate HCS in the presence of server con-

solidation workloads. For these experiments we create heterogeneous workload mixes of

4-core workloads of SPECjbb, TPC-H and TPC-W. For example, 4 copies of SPECjbb

are run with 4 copies of TPC-W. Each machine is overcommitted [141]; we employ a

load balanced scheduler. As a result, threads from the same virtual machine can be

scheduled anywhere on chip resulting in changing pairwise combinations.

To supplement our full-system simulation with commercial and scientific work-

loads, we further evaluate HCS through the use of synthetic traffic patterns. Two

synthetic traffic patterns commonly used for interconnection network evaluation are

uniform random and permutation traffic. With uniform random traffic each node can
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Figure 3.8: HCS Network Performance

communicate with any other node chosen at random. Under permutation traffic, each

node communicates with one other node (all pair-wise communication). For both traffic

patterns, we vary the injection rate to study the behavior under increasing loads.

3.5.2 Network Performance Results

One of the primary goals of this work is to reduce the interconnect latency by

removing the router overhead. Our hybrid circuit-switched network succeeds in reducing

interconnect latency by as much as 23% as shown in Figure 3.8. We measure the average

interconnect latency for two and four circuit planes as compared to the baseline packet-

switched interconnect. Average packet delay is calculated as the time between the

injection of the head flit and when the critical word arrives at the destination. The

four circuit plane configuration gives us additional benefit as circuits can be maintained

longer between reconfigurations and see more reuse, thus reaping more benefit. To

combat the increased serialization delay that moving to four circuits would cause, we

send the critical word first through the network. As such, for a fair comparison, we also

send critical word first for HCS with two circuits and NPS with four circuits.

In addition to comparing HCS against the baseline packet-switched network, we
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Figure 3.9: Latency Breakdown of Circuit-Switched Flits and Packet-Switched/Partial
Circuit-Switched Flits

also present results for Narrow Packet-Switching (NPS); in NPS we partition the packet-

switched network into four narrower networks (similar to the four narrow circuit planes

in HCS). Each narrow network in NPS has two virtual channels with four buffers per

VC. Total buffering is kept constants across all network configurations. When a packet

is injected into the network, it selects an NPS network in a round robin fashion and

continues on the same NPS network until reaching its destination. NPS provides modest

improvement over packet-switching but under-performs when compared to HCS. NPS

improves speculation probability over PS by distributing packets across multiple narrow

channels. HCS still has the benefit of allowing pair-wise sharing packets to proceed

quickly through the router.

Circuit-switched connections are designed to enable fast connections between fre-

quently sharing cores; however, we do not want to sacrifice the performance of messages

that do not involve frequent sharing. Our design is able to circuit-switch 18-44% of all

flits with an average packet latency of 4.3 cycles. The remaining 56-82% of flits that

are packet-switched or partially circuit-switched through the network still achieve a rea-

sonable average interconnect latency of 7.9 cycles. Figure 3.9 gives the contribution of

circuit-switched flits and non-circuit-switched flits to overall average network latency.
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Figure 3.10: Impact on Network Latency of Restricting Circuit Setup to Certain Classes
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Non-circuit-switched flits include both packet-switched flits and reconfigured circuit-

switched flits (partially circuit-switched). The x-axis shows the percentage of overall

network messages that are either circuit-switched or not. With four circuit planes, we see

a larger contribution of purely circuit-switched flits; this is expected as reconfigurations

are less frequent. This larger contribution of circuit-switched flits causes the overall

average network latency to be lower. Policies that take further advantage of circuit-

switched links and reduce unnecessary reconfigurations can further reduce interconnect

latency.

3.5.2.1 Circuit Setup Policies

Two different policies regarding the setup of new circuits are compared in Figure

3.10. The first allows new circuits to be setup for a limited set of message classes. The

second policies always sets up a new circuit when one is not present in the network.

Interconnect latency in Figure 3.10 is normalized to the limited setup case. The numbers

on the x-axis indicate the percentage of flits that are circuit-switched. Limiting the

construction of new circuits to certain message classes causes a loss in opportunity as

noted by an average increase in network latency of 3% with a maximum increase of
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7%. Up to 10% more flits take advantage of circuit-switched paths when new circuits

are always constructed. The limited setup policy does drive up individual circuit reuse

by 30%. A policy that simultaneously achieves maximum circuit utilization and high

circuit reuse could result in further performance improvement.

3.5.2.2 Packet-Switched Bandwidth Stealing

Limiting the setup of circuits increases the percentage of packet-switched flits and

reduces the average interval between instances of link stealing at each input port. Sci-

entific workloads see longer intervals between link stealing than commercial workloads

due to the lower communication demands of the former as shown in Figure 3.11. In

the always setup with two circuits case, Radiosity and TPC-H see lower time intervals

between instances of link stealing; this can be attributed to the very frequent reconfigu-

ration of links which causes circuit-switched flits to be transitioned into packet-switched

flits and necessitates more bandwidth stealing.
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Figure 3.12: Wait time for Packet-Switched Flits (starvation)

3.5.2.3 Packet-Switched Flit Starvation

As described in section 3.2.4, to prevent the unlikely scenario of packet-switched

flit starvation, a timeout mechanism forces the reconfiguration of the circuit starving

the packet-switched flits to allow packet-switched flits to make forward progress. To

characterize the potential for starvation, we measure the waiting time of packet-switched

flits (with the 15-cycle timeout mechanism disabled) in Figure 3.12. The values on the

x-axis indicate the percentage of all flits that must wait at least one cycle to steal

bandwidth from a circuit; in all cases it is less than 1%. The y-axis shows the average

number of cycles a request will wait; flits waiting zero cycles are omitted from the

average. The average wait time for this small number of flits is less than seven cycles

across all workloads. The average wait time increases slightly when the number of circuit

planes is increased from two to four; this is explained by higher circuit utilization.

3.5.2.4 Setup Network Evaluation

Earlier in this chapter, we assert that a wormhole network is sufficient for the

setup network. Figure 3.13 supports this claim. Utilization of the setup network is

particularly low when circuit construction is limited to a subset of messages. The data
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Figure 3.13: Channel Load of Setup Network

in Figure 3.13 is measured as the average number of flits waiting at a router when a new

flit arrives (including the new flit); this is the channel load. The always setup policy

drives up the load on the setup network but it is still at an acceptable level for wormhole

switching. The average delay through the setup network is 7.33 cycles which reflects the

very low utilization of the setup network (the average zero load delay through the setup

network is 5.4 cycles). The setup network does not need significant buffering resources

since low utilization is coupled with the small setup flit size (6-8 bits).

3.5.3 Full system results

Figure 3.14 shows the overall system performance for hybrid circuit-switching with

two and four circuit planes and narrow packet-switching with four narrow networks, all

normalized to the baseline packet-switched network. Moving from two circuits to four

circuits shows an average of 3% reduction in execution time (up to 7%) for commercial

workloads. Frequent reconfiguration prevents TPC-H from seeing any benefit from

two circuits. When characterizing the sharing patterns in TPC-H, four recent sharers

are needed to satisfy 64% of on-chip misses, in contrast to only two for the other

commercial workloads. Ocean does not benefit from circuits since most misses go off-
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Figure 3.14: Overall Performance of HCS

chip, causing the miss latency to be dominated by the memory access time. The other

scientific workloads see little benefit from hybrid circuit switching due to low overall miss

rates and low numbers of coherence misses. The performance of scientific workloads

is less sensitive to interconnection network latency than the commercial workloads.

Increasing the number of circuits further would likely yield little benefit due to the

increase in flits/packet. For most workloads, little improvement is gained from the NPS

configuration; NPS does not provide the added performance improvement for pair-wise

sharing that HCS targets.

3.5.3.1 Server Consolidation Results

In Figure 3.15, we examine the performance of HCS under server consolidation

workloads. With these server consolidation workloads, each thread can only share with

three other threads (since we consolidated multiple four core workloads and there is no

inter-VM sharing). As a result, there are many fewer possible pairs than with the 16-

core workloads; circuit-switched paths can persist for longer and provide lower latency

between sharers. We see a degradation in the performance of TPC-W in Mix 2 (when

paired with SPECjbb); however there is a net performance improvement as SPECjbb
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benefits significantly from circuit-switched links.

3.5.4 Synthetic Traffic

In addition to performing full-system simulation for HCS, we further explore its

performance through synthetic traffic patterns in Figures 3.16 and 3.17. Both figures

show average interconnect latency in cycles across all injected packets. All simulations

are run for 1 million cycles with increasing injection rates (or channel load) shown as a

percentage of maximum link capacity along the x-axis.

With uniform random traffic in Figure 3.16, we reduce latency by 10-15% over

packet switching across all loads prior to saturation, despite the fact that there is hardly

any reuse of circuits due to the randomized traffic. HCS has lower latency at low to

moderate loads primarily because circuits are always given priority on their first use –

i.e. the first packet on a circuit always bypasses through the router whereas in packet-

switching, bypassing within the router will not be possible if there are more than one

flit in the entire router.
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Figure 3.16: Performance of HCS with Uniform Random Traffic

At very low utilization circuit-switching out-performs the packet-switched base-

line since we piggyback data flits along with the setup flits, which shaves one cycle

off the serialization latency. Lookahead techniques require one extra cycle of setup in

the first router or network interface controller giving packet-switched messages a longer

latency even at low loads.

Figure 3.16 also shows network latency results for Narrow Packet Switching

(NPS). At moderately low loads, approximately 40% more incoming packets are able to

bypass directly to the crossbar with HCS than with NPS or PS. When the load reaches

roughly 30%, HCS and PS bypass similar numbers of packets resulting in similar net-

work saturation points. This attests to the effectiveness of idle bandwidth stealing for

packet-switched flits in HCS. At moderate loads (20-40%), NPS is able to bypass 5-18%

more packets than PS, delivering higher saturation throughput. This matches intuition

since NPS trades off serialization delay with bandwidth.

In Figure 3.17, we simulate the performances of HCS under permutation traffic,

where each node communicates with one other node. Since HCS specifically targets

pair-wise sharing, we would expect this type of traffic to benefit from circuit reuse and

perform very well. At low to moderate loads, HCS improves network latency by 20%

over PS and saturates at higher utilization. NPS performs slightly better than PS at
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Figure 3.17: Performance of HCS with Permutation Traffic

very low utilization. As the load increases, NPS performs considerably better than PS

(10-15% lower latency) since the load is distributed across multiple narrow networks

allowing speculation to be more effective. With round-robin placement of packets on

the NPS networks, these networks eventually saturate at a similar load to PS.

Studying permutation traffic on the HCS network leads to an interesting observa-

tion. As the load increases, a single circuit becomes saturated and it becomes beneficial

to establish additional circuits for the overloaded pair. When the load reaches 25%,

three packets (on average) are queued up at the injection port of a single circuit, even

though three out of four circuits may be completely idle. Permutation traffic repre-

sents fully pair-wise traffic between sources and destinations leaving some extra circuit

resources available for these redundant circuit paths. Distributing the load across mul-

tiple redundant circuit leads to the performance results shown in Figure 3.17.

To reiterate, Figure 3.16 represents worst-case circuit reuse behavior (we observe

much higher reuse for real applications), so it is not surprising that HCS saturates

somewhat earlier than the NPS case. Additionally HCS sees robust latency reductions

at low utilization. In contrast, Figure 3.17 demonstrates the robustness of HCS over
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both PS and NPS under all traffic loads when there is significant circuit reuse.

In summary, HCS is able to reduce network latency by up to 23% and improve

overall performance by up to 7% for real workloads. HCS achieves these performance

gains over a highly optimized baseline packet-switched router with a single-cycle delay

for low loads.

3.6 Related Work

In the following sections, we explore related works in hybrid networks and prior

research targeting router delay.

3.6.1 Hybrid Networks

Hybrid Circuit Switching proposes a hybrid circuit-switched router that inter-

leaves circuit- and packet-switched flits on the same physical network with low area and

power overhead. Several other hybrid network designs have been proposed in the liter-

ature. SoCBus [143] only packet-switches configuration messages but holds the data at

the source until the setup is acknowledged. All data in their proposal must be circuit-

switched through the network. Wolkotte et al. [145] propose a design that has both

circuit- and packet-switching; however, it is our understanding that these two networks

are physically separate. The packet-switched network is used for reconfiguration and

best-effort traffic while the circuit-switched network is used for guaranteed-throughput

communications. Wave-switching [38] combines circuit-switching and wave-pipelining

but in their design, wormhole-routed and circuit-switched data do not interact and

have physically separate resources. Pipeline circuit switching [48] requires that a setup

and acknowledgment message be sent and received prior to the data transfer. HCS

interleaves the two types of flits on the same physical links and does not require an

acknowledgment message to begin transmitting on the circuit.

Another hybrid network [113] combines a bus architecture with a switched net-
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work; the bus allows processing elements with communication affinity to transfer data

quickly without high (router) overhead while the switched network provides scalability.

HCS provides greater flexibility as sharing cores does not need to be physically close to

experience low communication latency.

3.6.2 Router Delay

Hybrid Circuit Switching is able to remove the buffer write and virtual chan-

nel/switch allocation stage for up to 44% of flits with a four circuit configuration and

always setup policy. Other recent work [75] also successfully removes a significant por-

tion of this overhead through Express Virtual Channels (EVCs). EVCs create express

virtual paths that bypass nodes for a given number of hops, allowing them to reduce

both delay and energy consumption in the network. EVCs provide a general framework

to accelerate messages. To achieve maximum benefit, EVCs are limited to a small num-

ber of hops; the HCS network will show increasing gains as the hop count goes up under

low loads. Flit reservation flow control [108] avoids the router overhead by sending a

control flit to reserve network resources ahead of data flits; however, this design suffers

from increased router complexity and high overhead.

Our baseline packet-switched router is more aggressive than a recent Intel router

design [76] which has a four-stage pipeline to accommodate an aggressive 16-FO4 clock

cycle; at low loads, it has a single-stage pipeline. Recent routers have aggressively

pursued a single-cycle pipeline, but only at low loads. The TRIPS network uses looka-

heads and bypassing to realize a single-stage router [52], while Mullin’s Lochnest router

uses aggressive speculation to shorten the pipeline to a single cycle at a 35-FO4 clock

cycle [102]. RAW’s dynamic network consists of a 3-stage pipeline [132]. Hybrid circuit-

switching can be seen as another technique to further shorten the router pipeline in the

presence of certain sharing and communication patterns.

Router delay can be avoided through reduced hop count. Topologies such as a
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flattened butterfly [69] can be used to reduce the number of router topologies; however

this design suffers from the use of long global wires. To evenly distribute the load in the

network, the flattened butterfly also relies on non-minimal adaptive routing which can

increase packet latency. HCS is able to bypass routers without the drawback of long

global wiring delays. Kim et al. propose polymorphic networks [70]; these networks

can be reconfigured to reduce latency for specific traffic patterns. Unlike hybrid circuit

switching with reconfigures frequently and at a fine granularity, polymorphic networks

incur significant overhead for reconfiguration. The granularity of reconfiguration is likely

to be on application boundaries.

3.6.3 Multiple Networks

Both RAW [132] and Tilera [142] employ multiple narrow networks similar to

our NPS baseline. RAW partitions its networks into static and dynamic networks.

The static networks send packets along routes that are precomputed by the compiler.

The dynamic networks send packets along routes that utilizes network routing and

allocation of resources similar to the packet-switched baseline. Tilera implements five

narrow packet-switched networks to be used by different classes of traffic.

3.7 Conclusion

In this chapter, we demonstrate the potential for circuit-switched networks for

multi-core architectures. Our HCS network successfully overcomes some of the draw-

backs associated with circuit-switching, specifically: avoiding setup overhead, reconfig-

uring circuits on-the-fly, and interleaving circuit- and packet-switched flits on the same

physical resources. HCS optimizes pairwise communication; next we consider the router

bottlenecks for more generalized communication behavior: multicast sharing.
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Chapter 4

Virtual Circuit Tree Multicasting

We motivate interconnection designs by observing sharing behavior and the re-

sulting communication patterns. Hybrid Circuit Switching focuses on pair-wise com-

munication; in this chapter, we examine more widely shared data that can lead to

one-to-many communication patterns.

Current state of the art on-chip networks provide efficiency, high throughput, and

low latency for one-to-one (unicast) traffic. The presence of one-to-many (multicast)

or one-to-all (broadcast) traffic can significantly degrade the performance of these de-

signs, since they rely on multiple unicasts to provide one-to-many communication. We

begin by characterizing the problems associated with the multiple unicast approach to

multicasting; then we highlight the opportunities in existing proposals for leveraging

hardware multicast. After motivating the need for multicasts, we present our solution,

Virtual Circuit Tree Multicasting.

4.1 Communication Characterization

Pair-wise sharing characteristics from the previous chapter can be generalized to

examine sharing among a small subset of cores: multicast sharing. Pair-wise communi-

cation is realized through unicast messages which current state-of-the-art routers handle

efficiently. However, efficient support for multicast sharing is lacking in current router

designs as the de facto standard is the multiple unicast approach.
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Figure 4.1: Performance of multicasts on packet-switched interconnect

Without support for multicast communication significant performance and through-

put degradation is observed. Figure 4.1 shows the performance of a state-of-the-art

packet-switched router in a 4x4 mesh in the presence of uniform random traffic. This

router performs well when all injected packets are intended for a single destination (No

MC). When we start injecting multiple packets in the same cycle, at the same source

destined for multiple nodes, we see significant throughput degradation; MC 1% converts

1% of injected packets into a multicast destined for a random number of destinations

(<=15). If 1% of injected packets are multicasts, the saturation throughput point drops

from 40% capacity to 25% capacity. Saturation is defined to by the point at which the la-

tency becomes asymptotic [34]. The network saturates at 20% and 15% for traffic with

5% and 10% multicasts respectively. These multicast packets are broken down into

multiple unicasts by the network interface controllers as the baseline packet-switched

routers are not designed to handle multiple destinations for one packet.

Even in relatively small systems, on the order of 16 nodes, multiple unicasts can

significantly degrade performance, as demonstrated in Figure 4.1. The poor performance

and throughput of the multiple unicast approach will be exacerbated by the presence of
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more one-to-many or one-to-all communication as systems grow to encompass dozens

or hundreds of nodes.

4.2 Broadcast and Multicast Architectures

Several recent research proposals could leverage hardware multicast support to

further enhance their performance. In this section, we will explore the opportunities

within existing proposals for multicasting. Beyond these scenarios, hardware multicast

support will enable new research directions that would previously have suffered from

poor interconnect performance despite utilizing state-of-the-art on-chip network designs.

In general-purpose chip multiprocessors, the most logical source of multicast traf-

fic will be messages generated by the coherence protocol. A wide variety of implemented

and proposed coherence protocols will benefit from hardware multicast support.

• Broadcast-based coherence protocols

∗ TokenB Coherence: the TokenB protocol requires broadcasting of tokens

that maintain ordering amongst requests [92].

∗ Intel’s next-generation QPI protocol: supports unordered broadcasting be-

tween subsets of nodes [65].

∗ AMD Opteron Protocol: order is maintained by communicating requests

to an ordering point (memory controller) and then broadcasting from the

ordering point [30].

∗ UnCorq [127]: unordered snoop delivery through a broadcast.

• Multicast-based coherence protocols such as Multicast Snooping [15] and Des-

tination Set Prediction [91].

• Virtual Hierarchies [97]: specifically VH-Dir-Bcast: a local directory backed by

a global broadcast protocol.
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• Invalidation requests in Directory Protocols [80]

∗ Invalidation requests for widely shared data represent the primary need for

multicasts.

• Operand delivery in scalar operand networks [114,129,132]

∗ Operands that are consumed by multiple instructions could be multicast

through the network.

• Non-Uniform Cache Architectures: Dynamic NUCA [68] utilizes a multicast to

quickly locate a block within a cache set.

• New Innovations

∗ Virtual Tree Coherence: a hierarchical protocol employing a first level

multicast with a second level global protocol (Chapter 6).

∗ New coherence protocols, prefetching, and global cache replacement poli-

cies are research areas that could benefit from the presence of on-chip

hardware multicast support.

In Figure 4.1, we demonstrate that even a multicast rate of just 1% is enough to

cause significant throughput degradation. Table 4.1 shows that in the subset of above

scenarios under evaluation, all exceed a multicast rate of 1% and will benefit from

hardware support for multicasting. More detailed descriptions of the scenarios under

evaluation can be found in Section 4.10.

Without efficient multicasting on chip, these types of otherwise promising coher-

ence protocols become much less attractive. Considering the large number of cores that

will be available on chip moving forward, interconnect support for low latency one-to-

many communication will be critical. The tight coupling of on-chip resources mandates

that interconnection network be designed with communication behavior in mind and
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Table 4.1: Percentage of network requests that can be multicast

Scenario Percentage Multicast
Directory Protocols 5.1
TokenB Coherence 5.5
Virtual Tree Coherence 8.5
Operand Networks (TRIPS) 12.4
Opteron Protocol 3.1

that coherence protocols be designed with interconnect capabilities in mind. Providing

hardware multicasting support will facilitate significant innovations in on-chip coher-

ence.

4.3 Baseline Inefficiencies

State-of-the-art packet-switched routers can (and do) utilize multiple unicast mes-

sages to achieve multicast functionality. Decomposing a multicast into several unicast

packets can consume additional cycles and cause a bottleneck at the injection port as

multiple messages try to access the network in the same cycle. In the baseline router,

this injection bottleneck can add several cycles to the average network latency.

Many current router optimizations, such as speculative virtual channel allocation

[102, 109], are effective only at low loads. Multiple unicasts drive up the network load,

even if only briefly, and can easily render these optimizations ineffective. The presence

of several redundant messages waiting in virtual channels for the same output port

prevent bypassing and can result in failed speculation.

An example of the problems of using multiple unicasts to realize a multicast is

shown in Figure 4.2. Figure 4.2 shows a multicast originating from node X intended

for nodes A,B,C and D. The network interface controller creates four identical copies of

the message (1A-1D). With deterministic dimension-ordered routing, all four messages

want to traverse the same link in the same cycle. Messages 1B and 1D successfully
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arbitrate for the output in consecutive cycles. However, the messages now intended

for nodes A and C are blocked waiting for B and D to gain access to a busy channel.

Messages intended for B and D will again compete for the same output port once the

channel becomes free.

There are several problems with this scenario. The first issue is stalled messages

1A and 1C; this problem could be addressed with more virtual channels and buffers

at each router. The second problem is competition for the same bandwidth; this can

be alleviated with wider links. Both of these solutions are costly in terms of area and

power and exhibit poor scalability. The bandwidth bottleneck along the links could

also be alleviated through the use of an adaptive routing algorithm; this would improve

throughput. For example, A and C could be routed to the North and South respectively

in the first hop. However, these solutions do not address the fundamental inefficiency of

the simultaneous presence of multiple unnecessary messages in the network. Speculation

problems also result from the presence of many concurrent packets in the network. In a

network with moderate load or approaching saturation, these additional messages, even

when spread out over disjoint paths, can drive up average network latency significantly.

Multiple redundant messages also consume unnecessary dynamic power. The use of

multiple unicasts also causes additional congestion in the network interface controller

(NIC); the competition for the injection port into the network can add significant delay

to packets.

4.4 Virtual Circuit Tree Multicasting Overview

To combat the problems highlighted in the previous section, we propose Virtual

Circuit Tree Multicasting. Virtual Circuit Tree Multicasting builds on existing router

hardware in state-of-the-art networks, and augments it with a lookup table that per-

forms multicast route calculations. To simplify route construction, multicast trees are

built incrementally, by observing the initial set of multiple unicasts and storing the rout-
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Figure 4.2: Multiple Unicast approach to multicasting

ing information in the lookup table. This approach avoids the overhead of encoding the

multicast destination sets in the initial set up message, and enables an efficient tree-ID

based approach for addressing multicast messages once the tree has been set up. As

an additional benefit, conventional unicast traffic is unaffected by these straightforward

additions to the network router.

With VCTM, each multicast first forms a virtual circuit connecting the source

with the destination set, identified by a Virtual Circuit Tree (VCT) number unique to

each source and destination set combination currently active in the network. In a tree-

based approach, a multicast continues along a common path and branches (replicates)

the message when necessary to achieve a minimal, dimension-order (e.g. one turn) route

to each destination. A tree is defined by both its source and its destination set.

Once a multicast tree has been set up, packets will be routed based on this

VCT number at each router. Multiple VCTs are time-multiplexed on physical links,

as in traditional virtual circuit switching [34]. However, unlike virtual circuit switching

where intermediate routers do flow control based on virtual circuits, and thus need to
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Figure 4.3: Cumulative distribution of unique multicast destination sets

support all virtual circuits, we use VCTs only for routing. Virtual channels are still used

for flow control at the intermediate routers, with virtual channels dynamically allocated

to each virtual circuit at each hop.

Routing information for each VCT is stored in a virtual circuit table at each

intermediate router. The virtual circuit table is statically partitioned among source

nodes; the virtual circuit tree numbers are local to each source. The virtual circuit

table is partitioned into n smaller tables each needing a Read/Write port for access

from the source assigned to that partition. A table with 1024 VCT entries would

allocate 64 entries to each source in at 16-node system. In Section 4.10, we demonstrate

that significant performance improvements can be achieved with a much smaller number

of virtual trees. Multicast trees can only be evicted at the source; this prevents any

multicast packets from missing in a downstream VCT table. We explore the impact of

dynamic versus static partitioning, as well as various replacement strategies in Section

4.10.

The goal of VCTM (independent of its use in Virtual Tree Coherence) is a flexible,

plug and play solution to multicast communication. As such, a variety of possible

communication characteristics need to be supported. Figure 4.3 shows the cumulative
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distribution of unique multicast destination sets that are used throughout the execution

for each of five scenarios. We see that some scenarios (TokenB, Opteron) require very

few destination sets for all multicast communication. Virtual Tree Coherence and the

SGI Origin Directory protocol utilize a much wider variety of destination sets. From

Figure 4.3, we see there is significant reuse of destination sets. In a 16-core system, the

number of possible unique trees is 65,399 1 ; even with VTC which uses a large number

of trees, 65% of all multicasts use less than 1% of possible tree combinations.

Restricting the number of concurrently active VCTs requires that there be reuse

of the destination sets to see benefit. The directory and virtual tree coherence protocols

have less reuse than the other scenarios; however, this figure obscures any temporal

component of reuse. Even if a large number of trees are touched (needed) across the

entire execution, these scenarios see benefit from the temporal reuse of some multicast

trees.

Figure 4.4 shows the breakdown of the number of nodes in each multicast desti-

nation set. Multicasts in TokenB Coherence and the Opteron protocol are broadcasts,

1 The number of possible trees is n − 2(n − 1) −
`
(n−1)

0

´
−

`
(n−1)

1

´
with n nodes in the system.

Combinations are removed from the trees that connect a root to 0 or 1 nodes; these are not trees with
two or more leaves.
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hence they include all possible destinations. At the other extreme, the majority of mul-

ticasts in TRIPS are to only two nodes; research has shown on average less than 15% of

dynamic instruction results have three or more future uses [17]. More future uses would

result in larger destination sets for TRIPS but this is not the case. Invalidations from

the directory in the SGI Origin protocol go to only two nodes on average as well.

The bottom line is that architectures and protocols that require multicast support

have a variety of characteristics. For example, some protocols perform broadcasts to

all nodes while other have relatively small destination sets. For VCTM to be a robust

multicast design, it must be able to perform well under this wide variety of conditions.

4.4.1 Router Micro-architecture

VCTM supports three different types of packets: normal-unicast, unicast+setup

and multicast. Normal-unicast packets are equivalent to those found in a traditional

packet-switched router, unicast+setup packets are used to set up a multicast tree (while

delivering a useful payload), and multicast packets are sent when the desired multicast

tree is already present in the network. Figure 4.5 shows the different fields encoded in

each type of packet. The first field encodes if the flit is a head, body or tail flit; the

second field encodes the type of flit. Each active tree has an ID number associated with

it; this ID number is used to determine if a destination is being added to an existing tree

or if a new tree is being constructed. When the ID bits in the packet (third field) do

not match the ID bits in the router, the entry is cleared and a new tree is constructed.

The fourth field encodes the virtual tree entry number and the source node number. If

the packet is a normal unicast, the lookahead routing information is encoded in the 4th

field instead of the virtual circuit tree number. For normal-unicast and unicast+setup

packets, the fifth field encodes the destination. The destination is unnecessary for the

multicast packets since a table lookup is used to route to each destination. The sixth

field stores the virtual channel number assigned to the packet; the final field contains
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Figure 4.5: Header packet encoding format, assuming 1024 virtual circuits, 16 network
nodes and 8 virtual channels.

the message payload.

The router micro-architecture is shown in Figure 4.6. Comparing Figure 2.2 (on

page 21) and Figure 4.6, it is clear that only modest changes are required to realize

VCTM. The largest change comes with the insertion of the Virtual Circuit Tree Table

used to store the local output ports needed to realize each tree. The width of each

Virtual Circuit Tree Table entry is proportional to the router radix. One bit is needed

for each output port; higher radix routers will need wider entries to accommodate the

additional output ports. Each Virtual Circuit Tree Table stores one entry for each

currently active tree in the network. These entries are statically partitioned among all

the nodes in the network. Normal-unicast packets traverse the highly optimized pipeline

shown in Figure 2.4b on page 24; they do not need to access the Virtual Circuit Tree

Table and are routed via existing hardware in the router pipeline (e.g. dimension-order

routing). Only multicast packets are routed via the Virtual Circuit Tree tables.

Routing a multicast packet can result in significant complexity (translating into

significant hardware cost). This complexity comes from additional hardware to choose

multiple output ports per packet, hardware to modify the destinations in each packet

header as multicasts branch and deadlock avoidance; further discussion of these com-

plexities can be found in Section 4.5. We avoid this complexity through the use of
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Figure 4.6: Multicast Router Micro-architecture

the unicast+setup packets to incrementally construct the multicast tree routes. Uni-

cast+setup packets deliver a packet payload to a single destination node (in the same

fashion as a normal-unicast packet); however, while delivering this packet, they also add

their destination to a multicast tree. They add their destination to the multicast tree

by recording a 1 in proper output port column in the VCT entry at each router.

Both the baseline router and VCTM use dynamic buffer management [130] to

share buffers among the input virtual channels of one port; this reduces the amount of

buffering needed to support the potentially longer occupancy of a packet in a buffer (due

to a multicast tree branch). VCTM potentially lengthens the buffer occupancy at nodes

where the tree branches; however, VCTM injects fewer messages into the network which

reduces buffer pressure. A small 4-input adder is also added to calculate the number

of output ports that a multicast is destined for; a multiplexer is added to select which

entry to feed in to the adder. A flit must remain in the input buffer until the switch

allocator has granted the number of requests equal to the port count computed from

the recorded output port entries for that flit.
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4.4.2 Network Interface Controller

The VCT routing tables are added to each router to support the lookup of multi-

cast tree routes by in-flight packets. VCTM also requires that a structure be added to

the network interface controller (NIC). A content-addressable memory (CAM) is added

to the NIC to quickly search for active multicast trees. This CAM stores the destination

sets corresponding to active trees. Each destination set CAM is private to the source

node and contains only trees that the source is the root node for. When a new multicast

arrives at the NIC, the CAM is queried; if there is a CAM hit, the requested multicast

tree is active in the network. A CAM miss indicates that there is no active tree for the

requested multicast and one must be constructed.

4.4.3 Router Pipeline

Figure 4.7 depicts the changes to the router pipeline originally shown in Figure

2.4a on page 24. Normal unicast packets use the original pipeline. Unicast+setup

packets follow the original pipeline, with an added step of updating the Virtual Circuit

Tree Table after the routing computation has been performed. This update is off the

critical path for the packet. For multicast packets, the routing computation stage is

replaced with the VCT table lookup. Additionally, VA/SA, ST and LT can occur

multiple times if the multicast packet is branching at this node (e.g. multiple output

ports need to be traversed); if this is not a multicast branching node, then each of these

stages executes exactly once.

Multicast packets do not use the lookahead optimization included in the baseline

router pipeline. If lookahead routing were used, at a branch in the multicast tree, a set

of output port combinations would need to be recorded in the VCT Table for each fork.

This would increase the size of the VCT table; additionally, the header information of

the branching multicast packet would need to be updated individually with these output
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port combinations.

Speculative virtual channel allocation is still performed for multicast packets. As

in the baseline, we optimistically assume that we will get the VCs needed for each

output port and speculatively perform switch allocation. However, each input may now

need to generate multiple output VC requests. We generate one request each cycle until

all multicast outputs are satisfied. A 4-input adder is used to determine the number

of output ports that must be traversed according to the ones stored in the VCT entry.

Flow control is managed using virtual channels, which are dynamically allocated to

virtual circuits. Therefore our design does not require a large number of VCs (which

would be the case if VCs were coupled to virtual trees with each active VCT assigned

its own unique VC). Switch allocation occurs in a similar fashion. Since each input VC

may generate multiple switch requests, the router generates one per cycle and queues

them up. At a tree branch, each output port is considered independently; we do not

need to successfully allocate all needed output ports in the same cycle for the packet to

proceed. Each output port can be granted in different (and non-consecutive) cycles.

Our baseline router assumes credit-based flow control; credit turnaround is length-

ened by the replicating of flits at branch nodes; once the final flit at the branch node

has traversed the switch, a credit can be sent to the upstream router.
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4.4.4 Destination Encoding

The destination set for each multicast is encoded using a bit vector. This bit

vector is stored in the destination set CAM for fast searching when a new multicast

request arrives at the network interface controller. The size requirements for the bit

vector will grow as the number of destinations in the network grows; however the bit

vector only needs to be stored in the destination set CAM (not the network routers).

Each CAM entry is N bits wide where N is the number of network nodes. Therefore the

cost of this scaling is small.

We then encode the destination set into the packet by using a virtual circuit tree

identifier. The virtual circuit tree identifier can be encoded with log2 (NumberofV irtual

CircuitTrees/N) bits. This encoding is a much more scalable solution than the desti-

nation encoding used in prior work (discussed in Section 4.11) while still allowing the

flexibility to access all destinations and have a variety of multicast trees active concur-

rently.

4.4.5 Example

Now that we have described the functionality of the VCTM router architecture,

we present a walk-through example in Figure 4.8 for the process of constructing a new

multicast tree. When the network interface controller at Node 0 initiates a multicast

message, it accesses the Destination Set CAM, which contains all of the node’s currently

active multicast trees (Step 1). In this example, no matching entry is found, so the node

will invalidate its oldest tree (e.g. VCT 1) and begin establishing a new tree (Step 2).

Step 3 decomposes the multicast into one unicast+setup packet per destination.

The packet type field is set to be unicast+setup and the ID field of former VCT 1

was 0, so we increment the ID to be 1. Matching ID bits indicate that a new node is

being added to an existing tree; while differing ID fields indicate an old tree is being
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replaced with a new one. Each unicast+setup packet is given the same VCT number

but a different destination. Additionally, all three packets contain the same payload

(e.g. memory address plus command).

In Step 4, each packet is injected into the network in consecutive cycles. Unicast

packets are dimension order (X-Y) routed with respect to the source so the resulting

multicast tree will also be dimension order routed.

The updates to the virtual circuit tree table at Node 1 are shown in Steps 5-

8. Step 5 shows the entries prior to the creation of new VCT 1 (highlighted row 2

corresponds to VCT 1). Packet A is routed first. Upon arrival at Node 1, A determines

that the VCT entry is stale (due to differing ID fields). Packet A will clear the previous

bits in the row and update the row with a 1 corresponding to its output port based on

the routing computation performed by the unicast routing hardware; in this case, the

East port. Packet A also stores the new ID of “1” in the first column of the VCT entry.

At Step 7, the unicast destined for Node 4 (Packet B) will update the VCT entry.

The ID fields are now the same, so it will not clear the information written by Packet

A. A one will be stored in the South column. Finally, Packet C traverses the link to

Node 1; Packet C will also use the East output port. Since Packet A already indicated

that this multicast will use the East port, Packet C does not need to make any updates

to the VCT entry at Node 1.

Similar updates will be performed at each Virtual Circuit Table along the route.

Updates to the Virtual Circuit Table do not impact the critical path through the router

for normal unicast packets as they do not perform any computation needed by the

unicast packet to reach its destination.

When a subsequent multicast destined for 2, 4 and 5 arrives at Node 0, it will

find its destination set in the CAM. In this case, the network interface controller will

form a multicast packet for VCT 1. The virtual circuit tree number will index into the

portion of the Virtual Circuit Table at each router assigned to source node 0. The table
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Figure 4.8: Multicast setup and routing example

will output the correct output ports that this packet needs to be routed to. All three

destinations share a common route to Node 1 where the first fork occurs. After the

first fork, one packet is routed to Node 4 and one packet is routed to the East toward

nodes 2 and 5. At Node 2, the packet forks again, with one packet being delivered to

the ejection port and another packet continuing on to Node 5.

4.5 Discussion

VCTM requires multiple unicast+setup messages (one per destination) to con-

struct a multicast tree. Alternatively, a single setup phase could be employed; however,

such an approach is subject to additional complexities. Multi-header multicasts have

been proposed [28, 88]; in this type of approach, each destination is allocated its own

header flit. The header flit is routed to the appropriate output port and the data is

then sent to as many output ports within the switch as necessary. Work by Malumbres

et al. [88] requires that sufficient storage at the router is available to buffer the entire

packet payload; this amount of buffering would be impractical in on-chip networks.
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The multi-header approach also wastes significant bandwidth; although in a 16

node system, only 4 bits are necessary to specify the destination, it will consume an

entire flit of link bandwidth. For a broadcast to N − 1 cores, N − 2 additional header

flits are added (our approach requires a single header flit). A coherence request can

fit in a single flit including the header; now this request requires N flits; this wastes

tremendous on-chip bandwidth.

VCTM encodes the destination set by using the virtual circuit tree entry number;

this is a simple approach to encoding. Alternatively, a bit-string encoding can be used;

this approach requires N bits, where N is the number of nodes in the system. Routing

hardware can be replicated to handle computing routing information to multiple des-

tinations or can be iterated over multiple times; multiple iterations will increase the

number of clock cycles spent routing. New headers will be formed using this routing

information with a separate header for each output port now containing a subset of

destinations. No branch of the multicast can proceed to the next router until all rout-

ing calculations are computing, which will increase the latency experienced by these

packets. In contrast, VCTM requires a single cycle to lookup the routing information

for all output ports in the VCT table.

An alternative to performing multiple routing calculations is to store reachability

information. Storing reachability information with a vector for each output port has

been proposed to determine which output ports to route these bit-string encoded desti-

nations to [107]. This work has been proposed for multistage interconnection networks

with a path diversity of one where there is a single path through the network from

source to destination; intermediate nodes cannot reach all destinations. A reachability

vector encodes a bit-string of destinations that can be routed to from a given output

port. In a direct network, since every node can route to every other node, we need to

remove destinations from the header as they are routed to; this will prevent messages

from cycling through the network infinitely. To remove destinations, we will need to
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send a modified header to each output port at a tree branch; this new header infor-

mation can be achieved by ANDing the destination bit-vector with the reachability bit

vector for each output. We believe that constructing new header flits will insert an extra

pipeline stage into each router pipeline as well as additional buffering to create these

new header flits. Work on applying reachability vectors to off-chip networks with path

diversity inserts uses an additional cycle to compute the new header information [121].

We are unaware of the application of these reachability vectors to on-chip networks.

The VCTM routing scheme is simple to realize; these other possible schemes described

may result in additional complexity; we leave a detailed study of the hardware and

performance of such schemes to future work.

4.6 Optimizations

Several optimizations to the original VCTM proposal are possible. In this sec-

tion, we discuss the following possible optimizations: replacement policy, optimal tree

selection, tree collapsing and dynamic table partitioning. These optimizations target

improving tree utilization, reducing the power consumption and storage overhead re-

quired by VCTM.

4.6.1 Tree Replacement Policy

Several replacement policies can be employed to select a tree entry when setting

up a new tree. We explore two replacement policies: local round robin and local least

recently used (LRU). LRU replacement can be used to prevent frequently used trees

from being evicted while they are still useful, but LRU replacement requires additional

bits to track the LRU information at each source node. Both of these policies assume a

static partitioning of VCT entries per node. A global replacement scheme would need

to be considered if dynamic partitioning of the VCT tables was employed.



88

CB D

A

(a) Non-Optimal Tree

CB D

A

(b) Optimal Tree

Figure 4.9: Difference between Non-Optimal and Optimal Tree Selection

4.6.2 Optimal Tree Selection

VCTM produces minimally routed trees: all destinations are routed to in the

fewest number of hops. However, it is possible to construct trees that are minimally

routed and utilize fewer physical resources, that is construct minimal spanning trees that

have the lowest network cost. Figure 4.9 depicts an example of the non-optimal routes

that can currently result from relying on dimension order routing versus an optimal

route that can be realized in an idealized way. In Figure 4.9a, the tree from A to B,C

and D is realized with 9 link traversals. However, in Figure 4.9b, the tree is realized in

5 link traversals.

There are several complexities associated with searching for these optimal tree

routings. The first is the cost of the search itself; determining the optimal route would

be very expensive. The hardware cost associated with constructing a minimum spanning

tree would be prohibitive. Relying on software would likewise represent too much over-

head given the fine granularity of reconfiguration in our network. Prim’s algorithm [110]

for example can find a minimum spanning tree in O(E + V log(V )) time (where E is

the number of edges and V is the number of vertices. For trees that receive substantial
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reuse, exist for a long duration, and could be realized with substantially lower cost, the

overhead of relying on software to produce a minimum spanning tree may be warranted.

The second is the potential for deadlock; routing restrictions may be violated to

achieve an optimal route. Using minimum spanning trees has the potential for resource

cycles; a single minimum spanning tree will be acyclic, however, no guarantees can be

made across multiple trees. Currently, we rely on the deadlock-freedom property of

dimension order routing; if we remove routing restrictions to find optimal tree layouts,

deadlock may be introduced. Alternatively, we could rely on virtual channel escape

paths. Using virtual channel escape paths will break a deadlock cycle but will also

break the ordering restrictions imposed on our network for use by Virtual Tree Coher-

ence (discussed in Section 4.9 and Chapter 6). We find the performance and throughput

benefits of optimal tree layouts to be very small; therefore, we do not feel that the com-

plexity is warranted. Results showing the possible link usage savings will be presented

in Section 4.10.5.2.

4.6.3 Tree Collapsing

With static partitioning of virtual trees to source nodes, the size of the Virtual

Circuit Tree tables grows with the size of the network, assuming the demand each source

node places on the network remains the same. The number of possible unique trees is

approximately 2n for n network nodes; this is a prohibitive number of trees as the

system grows (18 quintillion trees for 64 nodes). However, we believe reuse behavior

will continue to be exhibited by larger systems.

We propose a solution to improve scalability beyond relying on the reuse factor.

To combat this potential scalability problem, we explore collapsing similar trees into

one tree. Certain virtual trees subsume other virtual trees; a multicast request can

utilize an existing tree that subsumes it rather than setting up a new tree (and evicting

an old tree). The result of tree collapsing is that fewer unique trees are needed to
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Figure 4.10: Overlapping and collapsing similar trees

achieve significant performance benefits which results in smaller Virtual Circuit Tree

tables at each router. An example of similar trees that can be collapsed is shown in

Figure 4.10. All four of these destination sets require the same link traversals. Choosing

Tree 4 to route to the destination sets in Trees 1-3 would result in the same number

of link traversals without requiring the setup of a new tree. The downside is extra

switch allocations for the extra (unnecessary) output ports. Routing a multicast to

extraneous destinations must not confuse the application. In a coherence protocol, extra

destinations will generate extra snoops but not effect the correctness. Extra snoops will

consume additional power; this extra power needs to be factored into the decision to use

precise or imprecise multicast trees. In scalar operand networks, handling the presence

of extra operands may be non-trivial.

To realize this functionality, we replace the Destination Set CAM with a Ternary

CAM (TCAM). A TCAM differs from a CAM in that three values, 0, 1, and “don’t

care” can be specified in the search register and/or in the stored data [5]. Within the

destination set TCAM, all destinations must be precisely specified (e.g. a 1 or a 0);

however we can add “don’t care” values into the search register. Now, a search of the

destination set TCAM will return a match that includes all of the requested destinations

but may include extra destinations.

A tree that results in a broadcast (e.g. every node is a leaf node) subsumes all

other trees. So a multicast with two destinations specified and fourteen destinations

specified as “don’t cares” could result in a broadcast. This result is less than ideal as
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it adds significant traffic to the network, consuming bandwidth and power. As a result,

we limit the number of “don’t care” bits in the query register to a threshold based on

the extra link traversals required over a tree that is an exact match.

To do this a table is added to the NIC to determine which “don’t care” bits

result in zero or one extra link traversals for a given destination. From the example in

Figure 4.10, B and C would be potential “don’t care” candidates when constructing a

multicast to reach destination D. This “don’t care” lookup table can be used by the

NIC to construct the search destination set. Results for incorporating this functionality

are presented in Section 4.10.4.1.

4.6.4 Dynamic Table Partitioning

Static partitioning of the virtual circuit tree tables provides a simple solution;

however, this may lead to large tables and wasted table entries. Dynamically partition-

ing the virtual circuit tree tables among all cores will likely provide higher utilization

and reduce the overall size. For example, with server consolidation workloads, commu-

nication across virtual machines will be very rare. As such, routers within a virtual

machines will not require storage for trees dedicated to other virtual machines (this as-

sumes threads are scheduled with spatial locality). Without dynamic table partitioning,

these entries would be idle.

The drawback to a dynamic scheme is increased complexity. Currently, each core

manages its own pool of virtual trees. Dynamic table partitioning requires some global

coordination among cores; a core must not issue multicast packets to a tree that has

been reallocated to another source node. Doing so would result in dropped or misrouted

packets. Dynamic partitioning also increases the size of the destination set CAMs since

now each source node can utilize the full VCT table and must have a CAM entry per

VCT entry. The potential for dynamic partitioning is explored in Section 4.10.4.3.
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Table 4.2: VCT Table Overhead

Number of entries Area (mm2) Energy (nJ) Time (ns)
512 0.024 0.0018 0.43
1024 0.041 0.0023 0.44
2048 0.078 0.0030 0.46
4096 0.101 0.0037 0.51

4.7 Power and Area Analysis

Area and power overheads are associated with the addition of virtual circuit

tables and destination set CAMs. While these additional structures in our VCTM

router consume additional power, this is offset by the power savings due to reduced

switching activity shown in Section 4.10.5.1.

We use Cacti [131] to calculate the area and power overhead associated with

adding a virtual circuit tree table to each router shown in Table 4.2. Several different

VCT table sizes are calculated for a 70nm technology; energy is reported as dynamic

energy per read access. With both static and dynamic table partitioning, we assume

that idle entries can be gated off to reduce power consumption. Each entry is 7 bits

wide; these results are estimates as Cacti cannot produce the exact geometry of our

tables. Assuming a 1 ns clock period, each table can be accessed in less than half a

cycle.

In Section 4.10, we demonstrate that a small number of entries (512) is sufficient

to achieve significant benefit. We can further reduce the table size by using a TCAM

for the destination set CAM and by dynamically partitioning the VCT tables among

the source nodes.

We also added a Destination Set CAM to each network interface controller. This

small CAM is searched for the VCT number matching the given destination set and can

be overlapped with the message construction so as to not add additional latency to the
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Table 4.3: Destination CAM Overhead

Number of entries Area (mm2) Energy (nJ) Time (ns) Total Bytes
16 nodes (25)

32 0.018 0.007 0.87 64 (96)
64 0.021 0.010 0.90 128 (192)
128 0.029 0.017 1.09 256 (384)
256 0.077 0.040 1.53 512 (768)

critical path. The NIC speculates that an active tree will be found and inserts the VCT

number returned by the CAM search. In the event of a misspeculation, it is reasonable

to assume that decomposing a request into multiple unicast+setup packets will take a

couple of cycles, one per destination.

Each CAM size in Table 4.3 corresponds to the number of VCT entries in Table

4.2 partitioned evenly among 16 nodes. Both 32 and 64 entry CAMs can be accessed

in under a cycle and will give each source a reasonable number of concurrently active

multicast trees. We do not foresee each core needing significantly more trees as the

system scales.

Replacing the Destination Set CAM with a TCAM will double the storage re-

quirements. A TCAM has three possible states, 0, 1 and “don’t care” requiring 2 bits

per destination. Doubling the size of the destination set CAM pays off with a significant

reduction in the number of active trees, which reduces the entries needed in the VCT

tables. The TCAM design also adds a 32 byte table (for a 16 core system) to each NIC

to determine the “don’t care” bits for the search register. The potential reduction in

active trees is examined in Section 4.10.4.1.

4.8 Extension to other topologies and routing algorithms

VCTM is built on top of the existing routing algorithm of the baseline intercon-

nection network. As such, VCTM extends seamlessly to other topologies. A topology
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that provides greater path diversity may result in less benefit; there may be less re-

dundancy to eliminate in tree paths. With more scalable topologies (e.g. tori, express

cubes), the impact on network throughput of the multiple unicast approach to mul-

ticasting will likely be less severe. However, VCTM will still provide benefit through

reducing switching activity and improving network power consumption.

VCTM is currently implemented with dimension-order X-Y routing. There is no

fundamental dependence between these two. Overlaying VCTM on alternative routing

algorithms would also result in benefit. The tree setup can be adaptively routed, but

subsequent uses of that tree will follow the identical path. So, while an optimal path to

avoid congestion may be selected during the setup phase, this may no longer be the least

congested path on successive uses. Some additional complexity is occurred when using

an adaptive routing algorithm. If a multicast forks at an early node in the tree and joins

at a later node in the tree due to adaptive routing, duplicate messages will be spawned

at the join node; this problem is illustrated in Figure 4.11. In this example, we assume

a west first turn model routing algorithm [50]; a packet must be first routed in the

west-bound direction but can freely choose between north, south and east afterwards.

If during tree setup, a packet destined for B is routed east then south and a packet

destined for C is routed south then east, the tree will fork at the source node (A) and

join at the shaded node. Later when a multicast is routed along this tree, two messages

for B and two messages for C will be created at the shaded node. The first set for B and

C will be created when the multicast enters on the north port and the second set when

the multicast enters on the west port. This problem does not induce deadlock cycles in

the network but can increase the amount of traffic limiting the benefit of VCTM. We

leave the solving of this problem for future work.
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Figure 4.11: Potential for duplicate messages being spawned in tree from adaptive
routing

4.9 Network Ordering

VCTM was first designed without consideration to inter-message ordering within

the network. In Chapter 6, we will present the design of the Virtual Tree Coherence

(VTC) protocol. The VTC protocol requires certain inter-message ordering be main-

tained within the network.

Specifically, VTC requires that separate multicasts utilizing the same virtual tree

do not become re-ordered with respect to each other prior to reaching the leaf nodes.

For the specific case of VTC, we restrict a virtual tree to utilize the same virtual channel

throughout its network traversal and for subsequent tree traversals. This virtual channel

is assigned at the time that the tree is setup. The network still contains multiple virtual

channels so different virtual trees can take advantage of them for higher throughput.

This virtual channel restriction results in some performance degradation in the network

but it is fairly insignificant compared to the overall hop count reduction that preserving

network order achieves for the coherence protocol.
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Table 4.4: Network Parameters

Topology 4-ary 2-mesh
5-ary 2-mesh

Routing Algorithm X-Y (Dimension Order) Routing
Channel Width (flit size) 16 Bytes
Packet size 1 flit (Coherence messages)

5 flits (Data)
3 flits (TRIPS)

Virtual Channels 4
Buffers per port 24
Router ports 5
VCTs Varied from 16 to 4K

(1 to 256 VCTs/core)

4.10 Evaluation

The methodology for evaluating VCTM differs slightly from the other evaluation

methodologies used in this dissertation. One of the goals of this portion of the evalua-

tion is to demonstrate VCTM’s flexibility and amenability to a variety of scenarios. To

that end, we leverage various research groups’ infrastructures to collect network traces

to understand the network latency and bandwidth impact of using VCTM. These re-

sults do not provide the complete picture that full-system simulation achieves but do

demonstrate how powerful a mechanism VCTM is. VCTM is evaluated in a full-system

simulation environment in conjunction with VTC later in Chapter 6.

To study the impact of VCTM on a variety of architectures and coherence pro-

tocols, we leverage traffic traces collected from several simulation environments. Traces

for the directory and VTC protocols were generated with PHARMsim [18]. These traces

are collected from end-to-end runs of the 8 workloads detailed in Table 3.2 (found on

page 55). To collect traces for TokenB Coherence and the Opteron protocol, GEMS

2.1 [89] with Garnet [6] full system simulation environment was used; each SPLASH-2

workload was run for the entire parallel phase. Finally TRIPS traces use SPEC [124]
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and MediaBench [98] workloads. They were collected on an instantiation of the Grid

Processor Architecture containing an ALU execution array and local L1 memory tiles

connected via a 5x5 network 2 . For all scenarios, we use the network parameters found

in Table 4.4.

As with the HCS evaluation, we utilize synthetic traffic to further stress our router

design. With a uniform random traffic generator, we can adjust the network load as

well as the percentage of multicasts.

4.10.1 Performance of Various Multicast Scenarios

With VCTM, the potential for performance improvement comes from two main

factors, the reduction in network load (improved throughput) and reduced contention

for network injection ports. In the following sections, we will describe each scenario in

more detail and then present the performance improvements.

4.10.1.1 Directory Protocol

Directory-based protocols are often chosen in scalable designs due to the point-

to-point nature of communication; however, they are not immune to one-to-many style

communications. Directory protocols, such as the SGI Origin Protocol [80] send out

multiple invalidations from a single directory to nodes sharing a cache block. As such,

invalidation requests in a directory protocol could leverage hardware multicast support.

In current implementations, the network interface controller must decompose the sharing

list from the directory into multiple redundant packets each destined for a different

sharer. While not necessarily on the critical path, these requests can be frequent and

can waste power and hurt the performance of other network requests that are on the

critical path.
2 Traces for TokenB Coherence and the Opteron protocol were collected by Niket Agarwal. TRIPS

traces were provided by the TRIPS group and Noel Eisley provided assistance in using these traces.
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Figure 4.12: SGI Origin Directory Protocol network performance

Characterization of these invalidation messages in PHARMsim [18] with com-

mercial and scientific workloads [124,134,146] shows that invalidation messages have an

average network latency of up to two times the overall average network latency. The

percentage of total requests that are invalidation multicasts is shown in Table 4.1 (on

page 73).

For the directory protocol, we simulate 32KB L1 caches and private 1MB L2

caches. Addresses are distributed across 16 directories, with one directory cache located

at each processor tile. The reduction in network latency for the directory protocol is

shown in Figure 4.12. Invalidation requests represent approximately 5% of network

requests for the directory protocol. However, since the network load for this protocol is

low for applications like SPECjbb, TPC-H, Raytrace and Ocean, VCTM is unable to

realize substantial benefits. SPECweb has a slightly higher load which translated into

more benefit from VCTM (up to 12%).

4.10.1.2 TokenB Coherence

Token Coherence is designed to decouple protocol performance from protocol

correctness. In broadcast-based protocols, ordering (for correctness) is often implicit
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through the use of a totally-ordered interconnect. To improve scalability, Token Coher-

ence removes this implicit assumption and instead uses token counts to ensure proper

ordering of coherence requests. A processor must hold at least 1 token to read a cache

line and must hold all tokens to write to a cache line. In the event of a race, requests

must re-issue.

The TokenB protocol broadcasts for tokens; broadcasting for these tokens can

be a significant bottleneck. Originally intended as a chip-to-chip protocol with off-chip

multicast support, the absence of multicast functionality on-chip hurts the performance

of token coherence and calls in to question the feasibility of this otherwise attractive

solution.

Figure 4.13 shows the slow-down of the TokenB Coherence protocol when the

assumption of hardware multicast support is removed. GEMS [89] was used to generate

this data for a 16-core system3 . This release of GEMS models only link level contention,

ignoring router pipelining and internal router contention (prior to the incorporation of

Garnet [6]). The router is composed of a single pipeline stage with infinite buffering.

Despite the unrealistically aggressive router model, substantial slow down is already
3 This result was provided by Niket Agarwal, a graduate student at Princeton University
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Figure 4.14: TokenB network performance with VCTM

observed due to NIC and link bandwidth bottlenecks.

TokenB coherence simulations were configured with 64KB L1 caches and 1MB

private L2 caches with a MOESI TokenB protocol. Normalized interconnect latency is

presented in Figure 4.14. To request tokens, the source broadcasts to all other nodes

on-chip; as a result, only one virtual circuit tree is needed per node. If the source

node sent out a multicast with a variable destination set, a VCT count larger than 16

would be useful. Radiosity has reached network saturation with the baseline configu-

ration; relieving the pressure caused by multiple unicasts results in substantial latency

improvement of close to 100%. Barnes and LU are also very close to saturation, leading

to close to 90% saving in network latency.

We further evaluate VCTM against a path-based multicast routing. For workloads

near or at saturation, a path-based multicast can also effectively relieve network pressure

and reduce latency by an average of 70%; however, for workloads not nearing saturation

(FFT, FMM and Ocean), the path-based multicast increases network latency by 48%

over the baseline due to non-minimal path routes to reach some destinations.
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4.10.1.3 AMD Opteron (HT) Protocol

AMD’s Opteron protocol [30] has been designed for maintaining coherence be-

tween chips in a traditional multiprocessor system. Coherence requests are sent to a

central ordering point (memory controller) and then broadcast to all nodes in the sys-

tem. The feasibility and potential for moving this style of protocol on-chip is directly

tied to the performance provided by the interconnect, and can be improved with mul-

ticasting. Recent research proposals have compared themselves to an on-chip Opteron

style protocol [127].

Traces were generated for the Opteron protocol with 64 KB L1 caches and a 16

MB fully shared L2 cache. In Figure 4.15, the Opteron protocol sees steady improvement

with the addition of Virtual Circuit Trees; once 512 VCTs are available performance

levels off with a savings of 47% in network latency. Some filtering of destination occurs

in this protocol resulting in the need for a larger number of trees than the TokenB

protocol. In all cases, path-based multicasting performs worse than the baseline and

VCTM. A high percentage of all multicasts in the Opteron protocol go to 15 destinations

so a path-based multicast has to snake through the chip to each node; if a non-optimal

path is chosen, latency will be high. An addition downside to path-based multicast,

not reflected in the network latency results is that the requester will have to wait until

the last node in the path has received and responded to the snoop. VCTM delivers all

snoops in a more timely fashion resulting in faster snoop responses.

4.10.1.4 Virtual Tree Coherence

In Chapter 6 we will explain the workings of Virtual Tree Coherence in detail.

Briefly, Virtual Tree Coherence maintains lists of sharers for coarse-grained memory

regions and then multicasts coherence requests to those region sharers. For the trace-

based evaluation, we use 2KB regions; each region covers 32 cache lines. Figure 4.16
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Figure 4.15: Opteron Protocol performance with VCTM

present the improvement in network latency for virtual tree coherence. This coherence

protocol needs more simultaneous multicast trees than other scenarios to see substantial

benefit. The destination sets used by Virtual Tree Coherence vary much more widely;

however, the overhead of supporting additional trees is low; 512 to 2048 total VCT

entries would be feasible design points and would reduce network latency by up to 65%.

Without multicast support, this type of protocol would see prohibitive network latency

for sending out snoop requests.

4.10.1.5 Operand Networks

Architectures such as TRIPS [114], RAW [132] and Wavescalar [129] use an

operand network to communicate register values between producing and consuming

instructions. The result of an instruction is communicated to consumer tiles which can

then wake up and fire instructions that are waiting on the new data. If the result of one

instruction is consumed by multiple subsequent instructions on different tiles, operand

delivery could be expedited by a multicast router. Studies have shown that 35% of

dynamic values generated by an application have 2 or more future uses [17]. The cost

of on-chip communication can significantly impact compiler decisions in this style of
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Figure 4.16: Virtual Tree Coherence network performance with VCTM

architecture [71].

Figure 4.17 shows benchmarks with varying degrees of improvement due to mul-

ticast support for the TRIPS architecture. Art sees the most benefit due to the network

load approaching saturation and a significant reduction in the number of packets by

using VCTM. The majority of workloads see less than 20% improvement due to the low

number of nodes in the destination set (the average is 2). Additionally, many multicast

trees constructed for these workloads branch at the source node. If a tree branch occurs

at the source node, little or no benefit is seen as there will be little to no reduction

packets over the multiple unicast approach. Path-based multicast outperforms VCTM

for art, bzip2 and swim by 4% due to more effectively reducing the network load.

4.10.1.6 Adaptively Routed Multicast

In [88] multicasting is performed using a multiheader approach; each destination

is encoded in a separate header with a single payload. Using a multiheader approach

eliminates the need for a setup phase; each header flit is routed at each node and the

payload is fanned out to all necessary ports. The downside to using this approach

is that it significantly increases the size of multicast packets to accomodate multiple

headers per packet (as discussed in Section 4.5 on 85). In all scenarios evaluated except
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Figure 4.17: TRIPS network performance with VCTM

for TRIPs, a VCTM multicast packet consists of a single flit (3 flits for TRIPs). In

the coherence scenarios, such as TokenB, a multiheader approach now sends a single

multicast packet consisting of n + 1 flits (where n is the number of destinations in the

multicast) rather than n single-flit multicasts. With TRIPs, for a multicast destined for

two destinations, the multiheader approach would send four flits instead of six flits in

the baseline; the larger payload for TRIPs packets allows potential traffic savings.

The potential benefit to the multiheader approach is the flexibility and ease of

applying adaptive routing algorithms to multicasting. In this section, we apply a west-

first turn model routing algorithm [50]; to when multiple output ports are available, the

number of credits is used to determined the less congested route. More sophisticated

adaptive routing algorithms (e.g. [53,74]) could be considered for additional benefit but

are outside of the scope of this work. Applying a simple adaptive routing algorith such

as west-first to VCTM is not straight-forward (as discussed in Section 4.8 on page 93);

modifying an adaptive routing algorithm to be suitable for use with VCTM is left for

future work.

The results of the multiheader adaptive multicasting (MH-adaptive) is shown in

Figure 4.18 for all five scenarios with network latency normalized to the baseline mul-
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tiple unicast approach. The directory protocol sees modest performance improvements

from adaptive routing in Figure 4.18a but VCTM outperforms it by reducing traffic.

For the TokenB and Opteron scenarios (Figure 4.18b and c) MH-adaptive does not re-

duce the traffic over the multiple unicast approach but is able to better distribute the

traffic on different network channels resulting in performance improvements over the

baseline. VCTM with 8 VCTs per core still outperforms this approach. Like TokenB

and the Opteron protocol, VTC (Figure 4.18d) experiences some improvement from

adaptive routing but VCTM provides greater improvements across all workloads. With

the TRIPs scenario (Figure 4.18e), MH-adaptive improves performance over both the

baseline and the 8 VCT case for most benchmarks. TRIPs is marked by small desti-

nation sets and MH-adaptive is able to reduce the traffic over the baseline while not

paying the setup overhead associated with VCTM.

4.10.1.7 Path-Based Multicast

Figure 4.19 compares each scenario with a path-based multicast and VCTM with

16 VCT entries per core. The path algorithm we consider forms a single packet that

visits each destination in turn; dual-path algorithms that allow two packets to start

at the source node cut down on path length and are discussed in Section 4.11. Both

path multicast and VCTM are averaged across all applications within the scenario

and normalized to the multiple unicast baseline. Long path lengths impact VTC and

the AMD Opteron protocol causing performance degradation. Significant performance

improvement is observed with TokenB Coherence since path-based multicasting does

alleviate network pressure despite long path lengths. Small performance improvement

over the baseline is observed for TRIPS; consuming instructions are usually scheduled

for locality, which reduces the likelihood of long path lengths.

In summary, we see that VCTM provides a range of benefits for the different

scenarios evaluated; the impact of VCTM is tightly coupled to the multicast behavior
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Figure 4.18: Adaptively Routed Multicasts
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Figure 4.19: Comparison between VCTM and Path-Based Multicast

of the applications examined. The directory protocol sees the least benefit; for this

scenario, the network load is low leaving less room for improvement. With TokenB co-

herence, token requests are broadcast to all nodes, so only one virtual tree is needed per

node. Several of these benchmarks are running very close to network saturation result-

ing in substantial latency savings with VCTM. Virtual Tree Coherence requires more

simultaneous multicast trees than other scenarios to see substantial benefit. Without

multicast support, this type of coherence protocol would see prohibitive network la-

tency for sending out snoop requests. TRIPS sees only a small average improvement

with VCTM. The average destination set size for TRIPS is two leaving little opportunity

for improvement. The Opteron protocol sees steady improvement with the addition of

virtual circuit trees; once 512 VCTs are available, performance levels off with an average

savings of 47% in network latency. Some filtering of destinations occurs in this proto-

col resulting in a larger number of trees than the TokenB protocol. VCTM provides

the most significant improvement for networks that are operating at or near saturation

and for larger destinations sets; further modifications to the baseline design are needed

to provide improvements for small destination sets which are found in scalar operand

networks and directory protocols.
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Figure 4.20: VCTM under uniform random traffic with 10% multicasts

4.10.2 Injection Port Contention

The VCTM router reduces the number of message injected into the network from

the size of the destination set to a single message for each multicast. Injection port

contention accounts for up to 35% of packet latency in the baseline. On average, alle-

viating injection pressure reduces the cycles a message spends in the network interface

controller by 0.2 (directory), 6 (TokenB), 5 (VTC), 0.5 (TRIPS) and 3.5 (Opteron)

cycles, where the average network latency is 14 cycles.

4.10.3 Synthetic Traffic Performance

Next, we use synthetic traffic to further explore the benefits of VCTM. Several

aggressive packet-switched networks are evaluated in Figure 4.20 for their ability to

approach the performance of VCTM. The PS baseline represents the same baseline

packet-switched router configuration used in previous performance studies. The network

interface (NIC) represents a substantial bottleneck for multicasting, so the Wide-NIC

configuration allows the NIC to inject as many packets are are waiting in a cycle (in

the baseline, only one packet can be accepted per cycle). We add to the Wide-NIC
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configuration nearly infinite Virtual Channels and buffers (wide-nic+vcs). To better

distribute the network load, we utilize adaptive routing (wide-nic+vcs+adapt). Finally,

we compare each of these scenarios to VCTM with 2048 VCTs (128 VCTs per core).

With uniform random traffic, we see much less tree reuse than is seen in actual workloads

which diminishes the benefits of VCTM.

Here approximately half of the latency penalty associated with the multiple uni-

cast approach is paid in the NIC; creating a wider issue NIC would likely result in sig-

nificant overhead and complexity; more so than our proposal. Wide-NIC+VCs+Adapt

outperforms VCTM for moderate loads; performance improvements in VCTM are pred-

icated on tree reuse which is very low for uniform random traffic. Building a design

with a very large number of VCs would have a prohibitive cost (area and power); we

believe our design is much more practical.

Figure 4.21 illustrates that with real workloads, VCTM outperforms the highly

aggressive (unrealistic) packet-switched router. We compare one benchmark running

with 512 VCTs from each scenario to Wide-NIC+VCs+Adapt. In the presence of reuse,

our simple hardware solution achieves greater benefit than the aggressive network. In



110

Figure 4.20 there is very little reuse of trees; so even with VCTM, multicasts consume

significant bandwidth. In contrast, with real scenarios, reuse is very high causing VCTM

to out-perform the aggressive, adaptively routed network. TRIPS is the one exception

but again, VCTM is much less expensive than the aggressive network and performs

comparably in this case.

4.10.4 Impact of VCTM Optimizations and Modifications

Next, we examine modifications made to the original VCTM design. To improve

scalability and overall performance of VCTM, we propose replacing the Destination

CAM with a TCAM, explore other replacement algorithms, and evaluate dynamic par-

titioning of the VCT tables. Lastly, we restrict the number of virtual channels in the

network for the baseline packet-switched design and for VCTM. Utilizing VCTM with

the Virtual Tree Coherence protocol requires that a single tree use the same virtual

channel at each hop in the network.

4.10.4.1 Destination Set CAM hit rate

For VCT tables with 512 entries (32 per core), we are able to achieve significant

reuse across all scenarios. Individual benchmark VCT table hit rates range from 62%

to 100%; with directory coherence seeing the lowest hit rates overall. In Tables 4.5a

and b, we provide the average hit rates for each scenario for a range of Destination Set

CAM and TCAM entries.

Remember that replacing the CAM with a TCAM doubles the size of tree storage

in the NIC. However, we can reduce the VCT tables at each router by a factor of four

or eight resulting in a net reduction in storage for the same performance gains. The

hit rates for 16 entries with a TCAM are similar to those with a 64 entry CAM. This

reduces the overhead in the baseline design and improves VCTM’s ability to scale to

larger network sizes. There is additional potential for improvement with more sophisti-
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Table 4.5: Virtual Circuit Tree Hit Rates (%)

Destination Directory TokenB VTC TRIPS Opteron
CAM Entries

per core
4 46 100 63 30 41
16 68 100 84 92 91
32 78 100 88 98 99
64 86 100 91 99 100

(a) CAM Hit Rates

Destination Directory TokenB VTC TRIPS Opteron
TCAM Entries

4 56 100 69 82 95
16 78 100 90 99 99
32 85 100 92 99 100
64 90 100 95 99 100

(b) TCAM Hit Rates
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Figure 4.22: LRU optimization for VTC

cated matching heuristics. However, as previously mentioned imprecise trees may cause

problems depending on the application; imprecise trees may also consume additional

power due to extra cache accesses at leaf nodes.

4.10.4.2 VCT replacement policy

To improve the hit rate of frequently used multicast trees, we explore a LRU

replacement policy versus the baseline FIFO policy. When LRU replacement is applied

to VCTM with our real workload traces, we see improvements ranging from 1% to 13%

for 4 VCT entries per core. The most significant performance improvements comes for a

small number of trees (4 per core). Tracking LRU information for a large number of trees

yields only very minor benefits (1% improvement for 16 entries per core). Improvements

for the VTC scenario with LRU replacement are presented in Figure 4.22.

With uniform random synthetic traffic (with 10% multicasts), we found the switch

from FIFO replacement to LRU to have no impact on performance; however, when

we couple the LRU replacement policy with the TCAM optimization, we see lower la-

tency by between 13% and 31% (depending on network load) and improved throughput.

Saturation throughput is improved by approximately 5% with the LRU+TCAM opti-

mizations. Uniform random traffic does not exhibit the reuse property that VCTM is
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predicated on but by maintaining frequently used TCAM entries, we are able to capture

reuse of similar destination sets and see throughput and performance benefits. There-

fore, even with low-reuse scenarios, we can achieve benefit in the presence of similar

destination sets. The Virtual Circuit Tree hit rate improves from 0% to 11% with the

TCAM and to 33% with the TCAM+LRU configuration when the network load is 10%.

4.10.4.3 Static vs. Dynamic Table Partitioning

We explore the opportunity to use dynamic virtual circuit tree table partitioning

to reduce the virtual circuit tree table sizes at each router. Figure 4.24 provides the

minimum, average and maximum tree usage per core for a one million cycle window

sampled every 10,000 cycles throughout the execution for the Virtual Tree Coherence

scenario. We focus on the VTC scenario since it has the highest tree demand of all

the scenarios. We find that there are periods of high demand from a small number of

cores as well as periods where one or more cores are exhibiting very little tree usage.

This data suggests that a dynamic partitioning scheme could more effectively use the

virtual circuit tree entries; however, we leave the details of such a scheme for future
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Figure 4.24: Dynamic Partitioning

work. Dynamic partitioning increases the size of the destination set CAMs which could

negate the improved utilization of virtul circuit tree tables.

4.10.4.4 Impact of reducing Virtual Channels

To maintain in-network ordering of messages, a virtual tree is allowed to only use

one virtual channel; however with a modest number of available virtual trees (16 trees

per core), we are able to use network bandwidth efficiently and only see a degradation

of 3% in end-to-end network latency (versus an unrestricted virtual channel allocation).

In Figure 4.25, we illustrate the impact of a varying number of virtual channels on the

baseline network and the VCTM network. Figure 4.25 includes results for Virtual Tree

Coherence (a variable multicast scenario) and for the TokenB scenario (a full broadcast

scenario); we believe these two scenario capture the range of virtual channel impact.

TokenB has the same results for 4, 16 and 64 VCTs/core since it is a broadcast scheme;

each source node needs only 1 VCT to reap the full benefit. Without VCTM support,

virtual channels play a much more critical role in the performance and throughput of

the network; this matches intuition as the baseline network experiences a much higher

load from the multiple unicast approach. With VCTM, we see that virtual channels

have some impact but it is much smaller and restricting the virtual channels does not
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Figure 4.25: Virtual Channel Restriction: Interconnect Performance with 1 VC normal-
ized to 16 VC

result in significant degradation. Therefore, the in-network ordering of virtual trees

comes at a small network performance cost making VCTM effective for Virtual Tree

Coherence ordering.

4.10.5 Activity/Power

The virtual circuit tree table increases the power consumption of our multicast

router over the baseline packet-switched router; however this increase in power con-

sumption is offset by reducing redundant link switching and buffering. As shown in

Tables 4.2 and 4.3 (on page 92), the per-access energy consumed by our added hard-

ware structures is small. For 32 VCTs/core, a read consumes 0.0018 nJ; while a read

of a 32-entry DCAM consumes 0.007 nJ. Using the power models from Orion [139], the

energy consumed by a link traversal is 0.049 nJ. This number was calculated using a

70 nm technology and 5mm, 16-byte links. The energy saved for each link traversal

is significantly more than the energy spent performing the VCT lookup (13x for table

with 4096 entries); for a small energy cost associated with the tables, significant savings

are possible.
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Figure 4.26: Reduction in buffering, link and crossbar traversals

4.10.5.1 Reduction in Network Usage

Figure 4.26 shows the reduction in buffering, link and crossbar traversals across

the five scenarios under evaluation compared to the baseline router. These three compo-

nents consume nearly 100% of the router power [140]; the reduction in switching shown

will translate into significant dynamic power savings over the use of multiple unicast

messages. This figure shows the activity reduction for a very small number of multicast

trees (16) and a very large number of trees (4096). As performance levels off at or

before 4K VCTs, these numbers represent the maximum activity reduction that can be

achieved with our technique. Substantial savings can be achieved with a more modest

number of trees.

Buffer accesses are already reduced in our baseline through the use of bypassing

in state-of-the-art routers. VCTM is able to further reduce overall accesses by removing

redundant packets from the network. Removing redundant packets allows more packets

to bypass input buffers than in the base case.
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4.10.5.2 Impact of Optimal Trees

Virtual Circuit Trees are constructed along X-Y routing paths. The use of X-Y

routing results in deadlock-free tree formations; however, X-Y routing does not necessar-

ily produce optimal trees. All destinations are routed to in a minimal fashion in VCTM

but alternative routing algorithms may produce trees that utilize fewer links to reach

those destinations (these minimum spanning trees would be considered optimal). To

determine how close to optimal our trees are, we remove the X-Y routing restriction; as

a result minimum spanning trees can be found that use up to 60% fewer links. Despite

the large possible reduction, the average reduction in link traversals is only 2% when

compared to the saving achieved with X-Y routing as shown in Figure 4.27. This figure

depicts the average link usage for each scenario when minimum spanning trees (MST)

are constructed normalized to the link usages with dimension order X-Y trees. Both

MST and XY results utilize 16 VCT entries per core. As a result, the power savings

shown in Figure 4.26 are close to the maximum possible savings.

4.11 Related Work

Network design for multi- and many-core chips is an area of significant research

effort. In the following sections, we examine the related work for VCTM, focusing on
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routing, encoding and deadlock. As many on-chip network solutions have leveraged

off-chip designs, we also explore relevant off-chip network research.

4.11.1 Multicast Routing

There are two techniques for routing multicast messages: path-based routing and

tree-based routing. In path-based routing, each destination is visited sequentially until

the last node is reached [83]. Paths must be carefully selected to avoid deadlock; cycles

can occur in the network even in the presence of dimension-order routing. Path-based

multicasting also has the added complexity of finding the shortest path that visits all

nodes in the destination set; this is done by ordering the destinations in the network

interface controller. This ordering phase of message formatting can be quite costly; it

has a software cost of O(n × log(n)) [88] which would add considerable latency to the

total message transmission latency.

Several multicast routing algorithms based on Hamiltonian paths have been pro-

posed [84]. Dual-path and multi-path routing algorithms partition the destination set

into disjoint sets and then route to each set using a path-based multicast. The desti-

nation set can be partitioned based on various heuristics. These algorithms fork at the

source node but not at subsequent nodes; in their message passing environment, mes-

sage replication is avoided because it is very expensive. Based on routing restrictions

to prevent cycles in the paths, not all nodes are routed to in a minimal fashion which

can lead to high network latencies; VCTM reaches all leaf nodes with a minimal path

to provide a low multicast latency.

Very little prior work focuses on the design of on-chip multicast routers. In

[87], the authors construct circuits for multicasting in a wormhole network. Path-

based routing plus the requirement of setup and acknowledgment messages results in

a long latency overhead for their approach. Alternatively, VCTM focuses on a tree-

based routing; path-based multicasting was explored for the various scenarios. In these
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scenarios, we found that path-based multicast does improve performance by relieving

congestion. The latency for the multicast to arrive at the final node is high for path-

based multicasting; since requests in a coherence protocol may have to wait until they

receive responses from all nodes, we believe path-based multicasting is unattractive in

these systems. VCTM delivers all requests in minimum hop counts so that all responses

will be returned in a timely fashion.

With a path-based multicast, current lookahead routing mechanism can be used

as only one destination is being routed to at a time. Path-based multicasting is at-

tractive for its routing simplicity; implementing a path multicast would require only

minor modifications to the current packet-switched router. We have demonstrated that

network latency is a critical factor for commercial workloads on CMPs; therefore it

is preferable to avoid the sequential latency associated with a path-based routing ap-

proach. Our design is able to leverage lookahead techniques by using slightly wider

bundles to remove the VCT lookup from the critical path.

A multicast router design [63] for DNUCA caches [68] is constrained to match

very specific characteristics of the DNUCA design space, i.e. many routes are un-

used. Additionally, the details of how they realize their multicast router are sparse.

Circuit-switching and time-division multiplexing have been used for on-chip networks

that provide multicast functionality [85], but suffer from the constrained bandwidth of

circuit-switching.

Significant work has been done for off-chip multicast routers. Several proposals

target multistage interconnection networks [128, 135]. Domain-specific requirements of

off-chip networks (e.g. ATM switches) can be quite different [135]; this work targets a

switch with 1000 input ports. Routers with a large number of ports are prohibitively

expensive for on-chip networks making this type of solution unattractive. While a

lookup table is also indexed to find the proper output port mappings, VCTM utilizes

a much smaller lookup table that is more suitable for on-chip designs. Additionally,
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their work adds and removes nodes incrementally to a multicast tree while our work

creates a new tree at low latency and overhead and hence does not support addition or

deletion of nodes. Adding nodes to an existing tree in VCTM is fairly straight forward;

a unicast+setup packet is formed in the NIC with the VCT number and the ID field

corresponding to the existing. As this unicast+setup packet is routed its output ports

are added to the tree as needed. This feature could be easily achieved with VCTM but

assessing its usefulness is left to future work. Deleting nodes from an existing tree is

decidedly more complicated since an output port at any given router could be utilized

by multiple destinations and there is not enough information inside the network to

determine which destinations need which output ports. Another design [128] also uses a

lookup table to determine the routes but advocates using software to set up this table;

this approach would work well for fixed routes that endure for a significant amount of

time. For fine-grained on-chip parallelism, software approaches to routing may incur

too much overhead.

Recently, Anton [118], specifically designed for molecular dynamics, uses off-chip

multicasting; multicasts can be sent to limited sets of nodes. The Piranha architecture’s

novel technique, cruise missile invalidations limits the number of messages injected into

the off-chip network from a single request [13]; each invalidate multicasts to a subset of

nodes. As with VCTM, Piranha sees improved invalidation latencies by reducing the

number of messages. They also reduce the number of acknowledgments; we defer study

of similar reduction operations to future work.

4.11.2 Multicast Destination Encoding

Another significant challenge with on-chip multicasting is the destination encod-

ing within the header flit. There are several approaches to destination encoding [29]

including all-destination encoding and bit-string encoding. The all-destination approach

encodes each destination node number into the header. The header can be of variable
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size with an end of header character to delineate it from the payload. Bit string en-

coding uses a single bit for each possible destination. If the node is included in the

destination set, the bit will be set to one. The header size needed to encode the number

of destinations is fixed. The number of bits to encode the number of destinations grows

as the network grows for each of these approaches.

Nodes can also be partitioned into regions and multicasts sent to all destinations

within each region. The header size can be fixed to limit the number of possible des-

tinations that a multicast can reach; however, our solution is more flexible. The 16

bits necessary to encode all possible destinations in a 4x4 mesh could reference 216 dif-

ferent trees. Virtual Circuit Tree Multicasting is thus a much more scalable solution

than destination or bit-string encoding. If extra messages can be handled properly by

the application (coherence protocol or operand network), then coarse vectors can be

used for encoding the multicast destination similar to what has been done to reduce

the required directory storage in traditional DSM multiprocessors [55]. The DiriCVr

approach for directories specifies i pointers and a region size of r. I destinations can

be specified precisely, but when the number of destinations exceeds i a coarse bit vec-

tor is used. This approach could be applied to multicasting; additional logic would be

required within the router to determine the output ports for a coarse region.

In an off-chip network design, multi-port encoding [122] determines when to repli-

cate a packet in each state of a multistage network; this restricts the destination sets

that can be reached by a packet. Some multicasts require multiple passes through the

network to reach all destinations; due to the latency sensitivity of our workloads, mul-

tiple passes are undesirable. Multiple output ports are encoded in the header flits; a

different output is used in each pass until all destinations are reached. This approach

is closely tied to the multistage topology and would be difficult to implement in a two-

dimensional mesh. VCTM efficiently routes multicasts in a straightforward manner.

Their work also acknowledges the inefficiencies of the multiple unicast approach but in
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an off-chip setting.

There is a continuum of ways to realize a multicast. At one end of the spectrum

you have the multiple unicast approached; the other extreme is a single multicast. The

unicast approach requires nx1-destination messages; the full multicast approach requires

a 1xn-destination message. In between you have a range of options; a multicast could be

realized by n
2 messages with two destinations each (bicasts). Another example would be

n
4 multicast messages with four destinations each. The multi-port encoding scheme [122]

requires multiple serial phases to deliver a multicast to all destinations; this approach

lies between the two extremes of the continuum. Exploring alternative ways of encoding

and realizing multicast through multiple multicasts may provide additional benefit for

our schemes that have small destination sets; we leave this exploration as future work.

Realizing a multicast destination set with multiple trees may also reduce the amount of

tree storage required by our VCTM design.

4.11.3 Multicast Deadlock

Routing decisions are more complex with multicast routing than unicast routing.

In tree-based routing difficulties arise when a branch occurs in a multicast tree. Rout-

ing to multiple destinations simultaneously would require either replication of of the

routing hardware for all n possible destinations of a multicast packet or would require n

iterations through the routing logic. Lookahead routing could encode multiple output

ports for the next hop in the network, however, the destination set would need to be

properly partitioned. At a branch, a subset of the destinations would need to be encoded

for each output port. Failing to prune destinations from the header flit or improperly

pruning destinations would result in deadlock. VCTM uses the VCT number to avoid

partitioning and pruning the destination set to avoid these deadlock problems.

Research into deadlock-free multicast tree routing [88] uses pruning to prevent

deadlock in a wormhole-routed network. Their work targets small messages such as
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invalidates in a DSM system. In VCTM, for a given tree, all of the leaf destinations

are reached via dimension-order routing with respect to the source node; therefore no

cycles can occur within a single multicast tree instance. If a tree were allowed to

adaptively route with respect to a branch (an intermediate route point) deadlock would

be a problem. Path-based multicast routing can also result in deadlock in a wormhole-

routed network. The ordering of destinations within the path can result in a cycle

within the route of a single multicast message.

At a branch in the network, multiple output ports will need to be traversed by the

same packet. In VCTM, a multicast packet does not need to wait for all output ports

to be available in a single cycle, but can instead route to each output as it becomes

available. Requiring a packet to wait for all output ports to be available in the same

cycle would degrade performance and possibly induce deadlocks across multiple active

multicast trees.

4.12 Conclusion

In this chapter, we present the second of two interconnection networks, Virtual

Circuit Tree Multicasting. Hybrid Circuit Switching is a technique to streamline the

router pipeline used in on-chip communication. It is particularly effective for pair-wise

communication patterns. Virtual Circuit Tree Multicasting attacks a different part of

the router architecture. Rather than try to optimize the entire pipeline, VCTM focuses

on a single stage, the routing computation. By providing efficient routing for multicast

messages, VCTM causes such messages to flow through the rest of the router pipeline

in a streamlined fashion. There are some commonalities in two interconnect designs

developed in this dissertation; both HCS and VCTM rely on communication reuse for

benefit. Both designs also overlap the set up phase in the network with useful work to

keep packet latency low.
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Chapter 5

Circuit-Switched Coherence

In the previous two chapters, we proposed optimizations to the on-chip inter-

connection network. Hybrid Circuit Switching and Virtual Circuit Tree Multicasting

are interconnection network designs that optimize how data is communicated assum-

ing certain application and protocol behaviors. In these two chapters we will focus on

what is communicated and design protocols that map well to these two interconnect de-

signs. This chapter looks at co-designing the first of two protocols with our interconnect

optimizations in order to improve overall communication performance.

We couple the hybrid circuit-switched network with a directory coherence protocol

based on the SGI Origin 2000 [80]. As noted earlier, directory-based protocols are

more scalable than broadcast-based ones; however, a key performance disadvantage of

directory protocols is the indirection through the directory that is required to request

data from another processor. With a pairwise interconnect such as HCS, we want a

protocol that is going to best maximize pair-wise communication.

5.1 Circuit-Switched Coherence Overview

Our protocol extensions streamline coherence requests for load and instruction

misses by predicting pairs of processors that frequently share data and directly request-

ing data from one cache to another, via a circuit-switched link without first consulting

the directory. Sequential consistency is maintained by ordering all coherence events at
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the directory, but latency is improved by overlapping the circuit-switched data transfer

with the directory access.

To allow directory indirections to be streamlined, we modified the directory pro-

tocol as follows:

• Allow a cache to send a request directly to another cache.

• Notify the directory that a sharer has been added without having the directory

forward the request to the owning cache or initiate a memory request.

• Retry the request to the directory if the direct request fails due to an incorrect

prediction or a race condition.

The directory does not need to be aware of which circuit-switched paths are active

as long as it is notified to add a new sharer to the sharing list for each cache line. The

protocol implementation is decoupled from changes to the interconnection network.

5.2 Pair-wise Sharing Prediction

Coarse grain coherence information is used to predict the likely pair-wise sharer

of data. Each processor stores information about sharers of an address region alongside

its last level cache. When data is sourced from another processor, the predictor stores

the identity of the sourcing processor for the address region of the data. The next time

a cache access misses to an address in that region, we predict that the same processor

will again source the data. Unlike the region tracking that will be done for VTC, these

regions just serve to provide a prediction and are not required to be correct. At the

time of the prediction, if no circuit-switched path exists between the requesting and

predicted processor, one is established.

If the predicted core cannot provide the cache line requested, it responds to the

requesting processor to indicate an incorrect prediction. The requesting core must then
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Table 5.1: Prediction and Protocol Walk-through Example

1. Processor 1 misses to Address A
First miss to A → No Prediction Available

2. Send Request to Directory
3. Directory forwards request to Processor 4
4. Processor 4 responds with data
5. Processor 1 receives data and stores Prediction(Region A) = 4
6. Processor 1 misses to address A + 8 → Predicts Processor 4

Send request to Processor 4
Notify Directory (in parallel)

7. Processor 4 receives predicted request
Prediction is correct → responds with data

8. Directory adds Processor to sharing list for Address A + 8
9. Processor 1 receives data from Processor 4 and ACK from Directory

retry to the directory. The latency of the mispredicted request is thus the round trip

latency from cache to cache on the interconnect plus the indirection latency of the

conventional directory request. In some cases, the directory will be able to detect an

incorrect prediction and initiate first level actions to reduce the latency impact of mispre-

dictions. The prediction array is then updated to reflect the core that actually sourced

the data for that cache line. An example of the protocol and prediction mechanism is

given in Table 5.1.

In the example in Table 5.1, if Processor 1’s prediction had been incorrect, the

directory will have already added Processor 1 to the sharing list due to the decoupling

of the data request from the ordering request. The directory protocol already supports

silent evictions of shared lines, so having Processor 1 added as a sharer will not result in

any incorrect coherence actions (even though Processor 1 will have to retry and is not

currently sharing that cache line). The sharing list must include all processor caching

that block but can contain additional processors at the expense of more invalidation

messages should an upgrade or store request occur. Processor 1 will retry its request to

the directory once Processor 4 has acknowledged Processor 1’s incorrect prediction.
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5.3 Ordering Invariants

We build these protocol modifications on top of an existing protocol [80]. In both

the baseline and the modified protocol, the directory serves as the sole ordering point

for requests. Our modifications decouple the data request message from the ordering

message. The data response may be received prior to the acknowledgment that the

requests has been properly ordered from the directory, but the requesting processor

cannot consume the data without that acknowledgment. The directory will send a

negative acknowledgment if the decoupled ordering request reaches the directory in a

busy state. The busy state indicates that a store or upgrade was ordered prior to this

request and the read must be retried. To illuminate the protocol changes as well as

demonstrate that ordering properties have been preserved, we include pseudo-code for

a read request for both the baseline and modified protocols in Table 5.2.

5.3.1 Race Example

Figure 5.1 illustrates the necessity of the directory acknowledgment message in-

cluded in Table 5.2. This acknowledgment (or negative acknowledgment) message en-

sures that all requests complete in the correct order, thereby maintaining a coherent

view of memory. If a directory notification arrives at the directory while it is in a busy

state, the directory must respond with a negative acknowledgment so that the request-

ing processor does not acquire a shared block without being successfully added to the

sharing list.

Consider the example in Figure 5.1a, in which P0 initiates a shared request di-

rectly to P1 who currently holds a shared copy of the data. At time 1, P0 sends out its

request and directory notification so that it can be added to the list of sharers. How-

ever, at time 2, an upgrade request arrives from P2 and is ordered before the directory

notification is received at time 3. P1 responds to the P0’s request with the shared data
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Table 5.2: Comparison between Baseline Protocol and Prediction Protocol

Baseline Protocol - Read Request Prediction Protocol - Read Request
RdReq RdReq
1. RdReq goes across network to 1a. RdReq goes across network to

home directory cache predicted sharer
1b. Directory update goes across network
to home node

Directory Actions Decoupled Directory Actions
(cont. from 1 b)

2. Directory cache performs look up 2. Directory cache performs lookup
if Directory state is Unowned then if Directory state is Unowned then

initiate memory request Prediction is incorrect →
initiate memory request

When memory request completes When memory request completes
send data to requester send data to requester

if Directory state is Exclusive then if Directory state is Exclusive then
Transition to Busy if Prediction is correct then
Send intervention to owner Transition to Busy (wait for ack from
Add requester to sharing list predicted node)
Transition to Shared when cache Send ACK to requester
response is received else Prediction is incorrect

Transition to Busy &
send intervention to owner
Transition to Shared when cache
response received
Add requester to sharing list

if Directory state is Shared then if Directory state is Shared then
Forward request to owner if Prediction is correct then
Add sharer to sharing list Add sharer to sharing list

& send ACK to requester
if Prediction is incorrect then

if Directory state is Busy Forward request to owner
& send NACK to requester

then Send NACK to requester if Directory state is Busy
then Send NACK to requester

Cache Response to Directory request Decoupled Cache Actions
(cont. from 1a)

3. Owning cache receives intervention 3. Owning cache receive predicted request
Send data to requester & transition if Prediction is correct then

to Owned Send Data to Requester
Send ACK to directory if Block is Exclusive or Modified then

Send Ack to directory
else if Prediction is incorrect then

Send NACK to Requester
Cont. on next page
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Table 5.3: Table 5.2 (cont from previous page)

Baseline Protocol - Read Request Prediction Protocol - Read Request
RdReq RdReq
Requesting Node Requesting Node
4. Receives Data from either Directory 4. if Data received from Predicted Cache then

or Owning Cache if Directory NACK received then
Transitions to Shared & forward data Discard data (stale copy)

to L1 & wait for valid response
RdReq Complete else if Directory ACK received then

Forward Data to L1 & RdReq Complete
else if NACK received from Predicted Cache
then Re-initiate RdReq without prediction
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Figure 5.1: Protocol Race Example

at time 4 and subsequently sees an invalidate message from the directory at time 5. P0

will not receive an invalidate from the directory since it has not yet been added to the

sharing list at the time of P2’s request. P1 invalidates its copy of the block and sends

an invalidation response to P2 at time 6. P2 now believes it has the only copy of the

block and can complete its write to the block. In response to P0’s directory notification,

the directory sends a downgrade message which P2 sees at time 7. Now, both P0 and

P2 believe they have shared copies of the block, but P0’s copy is stale.

An acknowledgment has been added to the example in Figure 5.1b. At time 3,

when the directory receives the notification from P0, it knows that P1 is no longer

sharing the data (due to the upgrade) and that P0 will receive stale data from P1. The

directory responds to the notification with a negative acknowledgment so that P0 will

know not to use the data it receives at time 4 from P1.
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5.4 Overhead

RegionTracker [147] has been proposed as a framework to efficiently track coarse-

grained region information for various optimization purposes. Figure 5.2 illustrates the

region vector structure that is used to track the presence of regions in the cache and

provide location information for those blocks in the data array. RegionTracker also

requires an evicted region buffer which minimizes the cost of region evictions. Since not

all cache blocks within a region are going to reside in the cache, the block status table

tracks per-block information such as LRU status and coherence state, for those blocks

that are present.

Figure 5.3 illustrates how a 50-bit address indexes into the region vector array.

Here we assume 1KB regions. We’ve augmented each Region Vector Entry to include

a prediction field. The prediction mechanism in Circuit-Switched Coherence tracks the

most recent sharer for each region. This requires an additional log2(N) bits per region

vector entry (where N is the number of cores).

The resulting overhead for adding this information is calculated using Equation
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Figure 5.3: RegionTracker indexing

5.1. Rather than utilize a separate structure with a separate set of tags to store the

region predictions, RegionTracker requires a single set of tags for both the L2 data array

and the region information. This results in smaller overhead relative to the conventional

L2 cache design. Assuming the L2 cache size of 512KB (same as in Table 3.1 in Section

3.5 on page 54) and 1024 region sets and 4 region ways, we calculate the overhead for

predictions to be 36% compared to the conventional tag array. A separately tagged pre-

diction structure (rather than RegionTracker) would result in 47% overhead compared

to the baseline. When placed in the context of total on-chip cache storage (8 MB), the

additional storage for RegionTracker represents only a 2% increase in bits required for

cache storage.

RegionArraySize = (Tag + 1 + log2(N) + (RegionSize/CacheLineSize)× 4)

×RegionSets×RegionWays

(5.1)

5.5 Evaluation

Here we evaluate the circuit-switched coherence protocol with the hybrid circuit-

switched interconnection network. The same methodology and machine configuration



133

0.8

0.85

0.9

0.95

1

1.05

B
ar

ne
s

O
ce

an

R
ad

io
si

ty

R
ay

tra
ce

SP
E

C
jb

b 
 

S
PE

C
w

eb

TP
C

-H

TP
C

-W

N
or

m
al

iz
ed

 C
yc

le
 C

ou
nt

s

PS + Protocol Opt HCS, 4 Circuits + Protocol Opt

Figure 5.4: Performance of Protocol Optimization + Hybrid Circuit Switching

are used as in Chapter 3 (found on page 54). The baseline protocol is a directory

protocol modeled after the SGI Origin protocol [80].

Overall system performance when hybrid circuit switching with four circuit planes

is combined with the protocol optimization is shown in Figure 5.4. Since the protocol

optimizations are largely independent from the interconnect design, we compare against

the baseline packet-switched network augmented with the protocol optimizations with

results normalized to the packet-switched baseline. The HCS results are given for four

circuit planes and the always setup policy described in Section 3.4.3.

We see up to 15% improvement in overall system performance with an average

improvement of 12% for commercial workloads and 4% for scientific workloads. The

commercial workloads see greater benefit due to their higher miss rates and greater

sensitivity to miss latency. Looking at the results for the packet-switched network with

the protocol optimization, we see small improvements over the baseline. Commercial

workloads see an average improvement of 5%; scientific workloads again see less benefit

due to less sensitivity to miss latency. TPC-H derives most of its benefit as a result

of 82% of misses being satisfied on-chip coupled with a very low contribution of store

misses to the overall miss rate. As our protocol optimization only targets load and
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Figure 5.5: Region-Based Prediction Accuracy

instructions misses, TPC-H will see more benefit than those benchmarks that have a

larger contribution of store misses. Ocean’s performance is dominated by off-chip misses;

the injection of additional traffic due to the protocol optimization further delays these

misses resulting in a slight performance degradation.

Prediction accuracy is shown in Figure 5.5. The average accuracy of our region

based prediction is 60%. Incorrect predictions result in extra interconnect traffic but do

not add latency over the baseline protocol performance. The decoupled ordering request

to the directory includes the prediction made by the requesting processor. When the

directory detects this prediction is incorrect, it forwards the request to the owner of the

cache line. This forwarded request will have the same latency as the baseline indirection

through the directory.

Comparing Figures 3.14 (page 62) and 5.4, we see that in many cases, the improve-

ment of HCS with the protocol optimization given four circuit planes is greater than

the sum of HCS alone and the protocol optimization with packet switching. Given our

co-design of both the coherence protocol and the interconnect, hybrid circuit-switching

has more opportunities for circuit reuse when the protocol optimization is added, re-

sulting in superior performance; circuit reuse increases by up to 64% (with an average

increase of 16%) when HCS is combined with the protocol optimizations (shown in Fig-
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Figure 5.6: Circuit reuse with protocol optimization (relative to no protocol optimiza-
tion)

ure 5.6). The protocol optimization reduces on-chip cache miss latency by 50% when

using the packet-switched network. Using hybrid circuit switching, those miss latencies

are further reduced by an additional 10%.

5.6 Related Work

Here we discuss several prior works studying directory protocol optimizations.

Mukherjee and Hill [101] propose using prediction to accelerate directory coherence

protocols using a predictor based on a Pap-style branch predictor. They predict the

upcoming coherence actions based on the recent history of coherence requests. The

Memory Sharing Predictor [77] improves on the accuracy of coherence predictors by

limiting predictions to memory requests (reads, stores and upgrades) rather than all

coherence messages (acknowledgment and invalidations are eliminated). Remote access

latency can be reduced by having the directory initiate these coherence requests specu-

latively. Circuit-Switched Coherence focuses on predicting who will source the data for

a given request to accelerate that transfer via a circuit-switched connection. With the

HCS interconnect, we also explored the benefit of only establishing connections based on
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coherence requests (not responses), believing that those message are more indicative of

sharing patterns. For HCS, limiting path construction based on coherence message types

resulted in reduced coverage; for coherence predictors this limiting results in increased

accuracy. Instruction-based prediction has been used to accelerate coherence [66, 67].

Work by Acacio et al. [3] also looks at taking the directory access off the critical path

for distributed shared memory designs. In their work, only lines held in the exclusive

or modified state can be accelerated through prediction; Circuit-Switched Coherence is

extended to include shared cache lines and complements the HCS interconnect design.

These other prediction schemes could also be coupled with the HCS interconnect to

improve overall performance. PATCH [111] uses direct requests as performance hints

to improve performance, while token counting and directory actions ensure correctness

and forward progress. Their direct requests can be either pair-wise or multicast based

on destination set prediction mechanism [91]. Additionally, their direct requests can be

dropped due to interconnect congestion; the dropping of these messages will not impede

forward progress.

To reduce the cost of coherence predictors, the Coherence Predictor Cache has

been proposed [105]. This work builds on existing but expensive coherence predictors

but leverages the reuse of a small fraction of cache blocks and coherence actions. This

temporal locality is exploited to associate only a small number of predictors with these

highly reused blocks. In this dissertation, we attempt to reduce storage overhead but

consider memory behavior on a coarser granularity than single cache lines, through

region based optimizations.

To eliminate the latency of the directory indirection, Cheng et al. [27] propose

relocating the home node to be the producer-node in the presence of producer-consumer

relationships. Now consumers of this data will receive the data directly from the new

home node rather than experience the extra indirection of the baseline protocol. We

believe this protocol would also make good use of our hybrid circuit-switched intercon-
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nection network.

5.7 Conclusion

In this chapter, we explore a coherence protocol that uses prediction coupled

with fast interconnect paths to improve the latency of cache-to-cache transfers. This

protocol places the directory ordering request in parallel with the data request to an

on-chip cache. One of the limitations of Circuit-Switched Coherence is that it focuses

solely on read-shared misses and does not provide optimizations for stores or upgrade

requests.

Circuit-Switched Coherence places low bandwidth requirements on the intercon-

nection network due to the point-to-point nature of requests. Traffic may increase

slightly due to incorrect predictions but overall the traffic is still low and compara-

ble to the baseline directory protocol. The bandwidth requirements of circuit-switched

coherence are low due to the unicast nature of messages lending itself to bandwidth

scalability.

Circuit-switched coherence relies on the reuse of circuit-switched paths between

frequent sharers to reduce cache-to-cache transfer latency. As systems grow, additional

pressure may be placed on these links resulting in more frequent reconfiguration and

bandwidth stealing; however, if virtual machines and operating systems are able to

maintain physical locality among sharing cores, circuit-switched paths will likely con-

tinue to be effective.

If the average hop count to the directory begins to far exceed the hop count to a

pair-wise sharer, this protocol will suffer as it waits for the directory acknowledgment

before it can consume the data from a sharer. Optimizing the path between the requester

and the directory will become increasingly important. Modifications could be made to

partially overlap this latency by consuming the data before the acknowledgment and

relying on speculation support in an out-of-order core to roll back in the event of a
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negative acknowledgment. Another downside to this protocol is that it is predictive

in nature which can lead to additional latency on mispredictions. Circuit-switched

coherence also requires additional storage to track predictions as well as directory storage

overheads which may limit its scalability for large systems.

In Chapter 2, we describe four desirable properties for on-chip cache coherence

protocols. The first three are partially addressed by Circuit-Switched Coherence. First,

Circuit-Switched Coherence communicates in a pair-wise fashion which limits the cores

involved in coherence requests. Second, cache-to-cache transfer latencies are reduced

by avoiding directory indirections and leveraging fast circuit-switched paths. Third,

bandwidth requirements are low due to the point-to-point nature of requests. The final

property, low storage overhead, is not addressed by this protocol, however, Region-

Tracker is leveraged to minimize the additional storage overhead that is needed. A

second protocol, Virtual Tree Coherence, that addresses these four characteristics will

be discussed in the next chapter.
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Chapter 6

Virtual Tree Coherence

To fully realize the massive computation power of many-core architectures, the

communication substrate must be carefully examined and streamlined. There is tension

between the need for an ordered interconnect to simplify coherence and the need for an

unordered interconnect to provide scalable communication. In this chapter, we propose a

second co-designed coherence protocol, Virtual Tree Coherence, that relies on a virtually

ordered interconnect.

As discussed in Chapter 2, most cache coherence protocols rely on an ordering

point to maintain correctness. In directory-based protocols, the directories serve as

an ordering point for requests. With bus-based schemes (broadcast protocols), the

bus serves as the ordering point for requests. While a bus is able to provide a total

order, recently several proposals have leveraged the partial ordering properties of a ring

to facilitate cache coherence [96, 126, 127]. Exploiting the partial ordering properties

of a ring eliminates some of the disadvantages of a bus; however there are still some

downsides. A ring represents a significantly less scalable topology than a mesh or a torus.

Logically embedding a ring into a mesh topology [127] provides a higher bandwidth

communication substrate for data transfers but still suffers from large hop counts to

order requests and lower bandwidth for coherence requests as they must all traverse the

same embedded ring.
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6.1 Overview

Virtual Tree Coherence demonstrates that ordering can be achieved through struc-

tures other than a ring or a bus, in particular through a tree. Specifically, rather than

realizing ordering through a physical tree interconnect [49], Virtual Tree Coherence

maintains coherence through virtual trees. These trees are embedded into a physical

network of arbitrary topology by VCTM, with a virtual tree connecting the sharers of a

region. The root of this virtual tree now serves as the ordering point in place of a direc-

tory protocol’s home node. To prevent a single tree from becoming a bottleneck, trees

are assigned to coarse grained regions giving VTC a high bandwidth ordering substrate.

To improve scalability and performance, Virtual Tree Coherence is implemented

as a hierarchical protocol. At the first level, multicast snooping is achieved through

logical trees. At the second level of the protocol, the global protocol provides the caches

with information about which processors must be involved in the first level snooping.

In a nutshell, every request is first sent to its virtual tree root node (obtained

from the local region tracking structure explained in Section 6.8). This root node

orders the requests in order of receipt, then multicasts requests to all sharers of the

region through a VCTM virtual tree for that region. The above works for all current

sharers. New sharers, however need to take a two-level approach: first they have to go

to the directory home node to obtain the identity of the tree root or broadcast to all

cores to find the root node. This new sharer will then be updated into the local region

tracking structure and added onto the virtual tree.

Virtual Tree Coherence results in several benefits due to our first level multicast

protocol. First, the root node can be strategically selected to be one of the sharers to

cut down on latency. In a conventional directory protocol, the home node for an address

is statically defined for a given address, and is thus not necessarily a sharer. Second,

latency is low, comparable to a broadcast-based protocol, since we do not need to collect
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acknowledgments nor wait for a directory lookup; messages that reach the root node

begin their tree traversal immediately. Third, bandwidth demand is low compared to

a broadcast-based protocol, as only the current sharers are involved in the multicast,

rather than all nodes; meanwhile, with an unordered interconnect offered bandwidth

remains high.

6.2 Hierarchical Coherence

With the anticipated prevalence of many-core architectures, cache coherence can

potentially become a significant system bottleneck. For these large systems, providing

global coherence across all cores will become very expensive. For directories, the expense

lies in increasing hop counts to order requests. For broadcasts, the expense comes in the

dynamic power and high bandwidth requirements associated with frequent system-wide

broadcasts.

Leveraging hierarchies is one technique to combat these problems. Having a local

level that can reduce the latency of coherence requests among a subset of cores (be it

cores participating in the same virtual machine or cores accessing the same regions of

memory) coupled with a global tier that can coordinate memory accesses across the

entire system as needed, offers substantial opportunities for improvement in many-core

architectures.

As a recent example, Virtual Hierarchies [97] has been proposed as a hierarchi-

cal protocol to improve performance for server consolidation workloads on many-core

architectures. Two different hierarchies are evaluated in this work, a first level (local) di-

rectory with a second level (global) broadcast (VH-Dir-Bcast) and a first level directory

with a second level directory (VH-Dir-Dir).

Virtual Tree Coherence looks at exploiting the same properties as Virtual Hier-

archies for performance improvement but with different hierarchies than VH-Dir-Bcast

and VH-Dir-Dir. Specifically, we examine a first level multicast with a second level
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directory (VTC-Mcast-Dir) and a first level multicast with a second level broadcast

(VTC-Mcast-Bcast).

6.2.1 Local Coherence

For the local tier of the hierarchy, we propose using a multicast. Multicasting can

achieve cache-to-cache transfer latencies similar to those of broadcast-based protocols.

Additionally, by multicasting, the bandwidth requirements are significantly reduced over

the broadcast protocol. At the local level, we track sharers on a region granularity and

then multicast coherence requests to those sharers rather than the entire system.

6.2.2 Multicast Directory Coherence

When local information is not available, global coherence actions are required.

In the case of VTC, a region miss indicates that the local processor has no coherence

information about the larger region to which the requested cache line belongs. Two

coherence mechanisms are considered for the global portion of the hierarchy. For the

first, global coarse-grained directories maintain this sharing information.

When a second level operation is required due to a region miss by a processor, the

directory supplies the sharing list and the identity of the root node to the requesting

processor. Once the directory response is received, the processor will send its coherence

request to the root node. The root adds the requester to its region sharing list. The root

node in turn performs the first-level coherence actions by sending the coherence request

to all leaf nodes (current sharers). A region miss results in two levels of indirection;

the first indirection goes to the directory and the second indirection goes to the root

node. Cache requests that result in region misses incur significantly higher latency

than those that result in a region hit and can go directly to the root node. Some of

the latency associated with this two layer indirection could be removed by allowing

the directory to forward the cache request directly to the root node while responding
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to the requester with the root information in parallel. As a second benefit of this

optimization, this would also refetch the sharing information to the root node which may

evicted the information. Eviction of sharing information by the root is rare; however,

if the cache request arrived at the root node with no sharing information available, it

would be delayed by a third indirection to reobtain that information from the directory.

However, as global operations are infrequent, we do not evaluate the potential benefit

of this optimization.

The coarse-grained global directories in VTC are very simple compared to the

baseline directories and to other global directories in hierarchical protocols. The VTC

directories are non-blocking; these directories do not order coherence requests as con-

ventional directories do. They are simply responsible for providing sharing vector in-

formation and the identity of a region’s root node. First level operations are then used

to provide the ordering. This extra indirection consumes additional latency (but is not

the common case) but results in a much simpler global layer. Fortunately, we find this

extra indirection is infrequent.

An example of the two level coherence actions are illustrated in Figure 6.1. Steps

1-3 represent actions of the global coherence mechanism in Figure 6.1a, while steps 4-7

in Figure 6.1b represent local coherence actions. These actions will be described in

more detail later in this chapter. At a high level, on a region miss, Core 0, queries the

home node to obtain the identity of the root node. The directory responds; then core

0 initiates local actions by sending its read request to the root (Core 1). The sharing

cores receive the multicast and Core 4 responds with the data.

6.2.3 Multicast Broadcast Coherence

The most significant downside of using directories to maintain global coherence

in the multicast-directory protocol is the on-chip storage required to maintain the direc-

tories themselves. To reduce the coherence storage requirements, we propose a second
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(a) Steps 1-3
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Rd A[0] to 

Root 1

5. Add 0 to sharing list, 

send RdReq to 

sharers (0,2,4)

6. A[0], Owned, 

respond with data

7. Observe own 

snoop and 

receive data 

A[0], shared

(b) Steps 4-7

Figure 6.1: Example of Hierarchical Coherence with a Global Directory Protocol.

variety of virtual tree coherence, the multicast-broadcast protocol. With multicast-

broadcast, local coherence is still maintained via a multicast along a virtual tree.

Rather than rely on global coarse-grained directories for the second level of co-

herence, on a region miss, the core broadcasts its request to all cores to collect region

information. All cores must acknowledge the region miss request; this way, the request-

ing core will receive information about the root node and the current sharers. If all

cores send a region invalid response, the requesting core will become the region root

as it is the only core caching any lines in the region. Multiple cores can broadcast for

region information simultaneously; if there are no current sharers of the region, these

simultaneous broadcasts will not find a root node. When this occurs, the root node is

determined by a static assignment based on the region address. This is done in the same

manner that a static home node is determined for the address. Unfortunately, this may

result in a sub-optimal root selection.

When the root node observes the broadcast for region information, it can imme-

diately forward the individual cache line request to the leaves of the region tree. This

represents a slight performance optimization over the multicast-directory protocol. On

a region miss, in the multicast-directory protocol, a core must wait until it receives the

region information from the directory before forwarding the request to the tree root. As



145

4 /
GE Title or job number /

9/27/2008

0 1 2

3 4 5

1.Global: Rd A[0], 

Region Miss, 

Broadcast

A, Valid

A, ValidA, Valid, Root

A, invalidA, invalid

A, invalid

(a) Step 1

5 /
GE Title or job number /

9/27/2008

0 1 2

3 4 5

2. Region Valid 

Response

2. Region Valid 

Root Response

2. Region Valid 

Response

2. Region invalid 

Response

2. Region invalid 

Response

3. Collect responses, 

store Root 1

(b) Step 2

6 /
GE Title or job number /
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3. Add 0 to sharing list, 
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sharers (0,2,4)

4. A[0], Owned, 

respond with data

5. Observe own 

snoop and 

receive data 

A[0], shared

(c) Steps 3-5

Figure 6.2: Example of Hierarchical Coherence with a Global Broadcast Protocol.

such, it experiences two indirections to order its request.

An example of the hierarchical protocol using a global broadcast protocol is de-

picted in Figure 6.2. Steps in Figure 6.2a and b represent global coherence actions,

while the steps in Figure 6.2c represent local coherence actions. On a region miss, Core

0 broadcasts to all cores to obtain region information. All cores must send region valid,

region invalid responses; additionally Core 1 includes its status as the root node in its

region valid response. Core 1 initiates the appropriate local coherence actions which

are the same as depicted in Figure 6.1b. Further details on these coherence actions are

discussed in subsequent sections in this chapter.

The potential downside to using a global broadcast is the extra traffic it will in-

ject into the network. Comparing Figure 6.1 and Figure 6.2, this extra traffic is quite

apparent from the number of arrows which indicate communication. A virtual tree can

be used by this request to reduce the traffic pressure and network power consumption.

However, as RegionTracker should be sized to make region misses infrequent, it is un-

likely that either of these differences from the multicast-directory protocol will have a

significant impact on performance and power.

In the next section we discuss the ordering invariants associated with the first

level multicast protocol.
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6.3 Ordering Invariants

Virtual Tree Coherence provides the following ordering invariants:

• Ordering Point: Each memory region is mapped to a single ordering point so

all requests to the same address will go to the same ordering point. This is

achieved by assigning a single virtual tree per region, and having the root of

that virtual tree serve as the ordering point. Requests are then unicast to the

tree root. This is similar to the use of a directory as an ordering point.

• Sharers observe the same ordering of requests: requests multicast from the

root node must arrive at leaf nodes in the same order. Logically, the tree

needs to maintain the ordering of a bus: sending a request to the root node

of the tree is equivalent to arbitrating for the bus. All requests sent out from

the root of the tree will then be ordered with respect to each other. In other

words, requests to the same virtual tree must not be reordered by the underlying

physical interconnect. This is achieved by modifying VCTM to ensure that each

virtual tree is tied to a single virtual channel.

• Cores caching a block must see all coherence requests to that block: a multicast

must contain all current sharers. Additional non-sharing cores can be included

but never fewer. This is achieved either with the second-level directory always

having a complete list of sharers or a full broadcast to obtain sharing informa-

tion. When a non-sharer requests a block, it must first get the sharing list from

the directory and be added to the sharing list at that time. Then when the

Tree Root multicasts the new sharer’s request to all sharers, the current sharers

will add the requester to their sharing list so that the region sharing lists at

the L2 cache are kept up-to-date. Strictly speaking, only the root node needs

to maintain the sharing list and non-root sharers need to maintain the identity
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of the root node. In Section 6.9, we examine the storage overhead of having

all sharers maintain the sharing list versus just having the root maintain the

sharing list.

• Write serialization: Ordering through the root node serializes all writes to the

same address region. Requests to the same virtual tree maintain a total order

in the network. Since write order is maintained from the ordering point to the

leaf nodes, invalidation acknowledgments are not required

• Write propagation: A write can complete once it sees its ordered request re-

turned from the root node; this guarantees that any subsequent request to that

cache block by any processor will receive the new value written. It is essential

that all cores caching the region be included in the virtual tree; stale values are

invalidated when the root forwards the write request to all leaf nodes (sharers).

6.3.1 Acknowledgments

Broadcasting can be performed on arbitrary (e.g. unordered topologies); AMD’s

Opteron protocol is one example of such a system [30]. Requests are sent to the ordering

point (a memory controller) and then broadcast to all nodes; to maintain a total order,

the ordering point then blocks on the address so that subsequent requests for this address

do not race with the outstanding requests. Acknowledgment messages are then sent from

all processors to the requester; once the requester has collected all acknowledgments

and the data it sends a completion message to the ordering point. Once the completion

message is received, the ordering point unblocks and can process the next buffered

request. The ordering point must block since the interconnect provides no ordering

guarantees.

In contrast, VTC does not require the interconnect to block or wait for a com-

pletion acknowledgment since we maintain a total order within a virtual tree in the
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network. Conceptually, multicasts to the same tree can be numbered (when they are

forwarded by the root node) so that each destinations receives multicasts in an increas-

ing order. They cannot be renumbered between when they pass through the root and

when they reach any leaf node. A logical total order is maintained among multicasts to

the same region; they do not need to arrive and be processed at leaf caches at the same

physical time but in the same logical order. If we assume that memory is encompassed

by a single region, this would be correct; however, regions are much smaller and we

consider ordering across regions with limited acknowledgments in the next section.

6.4 Enforcing Consistency Models on VTC

As discussed in the previous section, coherence ordering is maintained via tree

order; however, this is not sufficient to maintain consistency across region boundaries.

This section will be devoted to a discussion of ordering relationships maintained between

multiple regions.

Before we discuss the enforcement of various consistency models in VTC, we

first define a new communication operation: tree fence. A tree fence specifies a region

address and is sent to the tree root associated with that region address; the tree root

then forwards the tree fence to all leaves of the tree for that region. The root also supplies

the requestor with the number of sharers so it knows how many acknowledgments to

wait for. When each leaf receives the tree fence it responds to the requesting processor

with an acknowledgment. Given that a total tree order is maintained as explained in

the previous section, previous invalidations sent on the tree must have been sunk when

the cache processes and responds to the tree fence. When acknowledgments have been

collected from all tree leaves, the tree fence is complete. All memory operations issued

from the root node prior to the tree fence must now be complete. Next, these tree fences

are employed to enforce different consistency models starting with weak ordering.
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6.4.1 Weak Ordering

Weak ordering was first defined by Dubois, Scheurich and Briggs [39]. They define

weak ordering as follows:

In a multiprocessor system, storage accesses are weakly ordered if (1) accesses

to global synchronizing variables are strongly ordered, (2) no access to a

synchronizing variable is issued by a processor before all previous global

accesses have been performed, and if (3) no access to global data is issued

by a processor before a previous access to a synchronizing variable has been

globally performed.

PowerPC, a weakly ordered consistency model enforces memory ordering with

sync instructions. When a sync is encountered, all prior (older) memory operations

must be complete before the sync can be committed. This enforces an order between

memory operations (both reads and writes) before the sync and after the sync.

VTC uses the tree fence coherence primitive to achieve the sync functionality.

Tree fences are used to determine that no prior (older) memory operations are still

incomplete. The tree fence operation cannot be reordered on the tree with respect to

older operations. Collecting acknowledgments on the tree fence indicates that older

memory operations are complete.

A single tree fence is not sufficient since that tree fence only indicates completion

of memory requests that used that tree (references to a single region). To enforce

ordering between all operations (regardless of region) before and after a sync, regions

accessed in an externally visible manner must be tracked by each cache. A region is

considered accessed and externally visible if a cache miss occurs to the region or if an

upgrade miss occurs to the region. When a sync is encountered in the program, one

tree fence per accessed region must be executed and completed before the sync can be

committed. Since regions encompass multiple cache lines, the number of tree fences will



150

likely be significantly less than the number of cache lines accessed.

With infrequent sync operations, the number of accessed regions can grow large.

Tracking a large number of regions incurs both storage overhead and increases the cost

of the sync operation. To lessen this impact, we track a small number of unfenced

regions in a FIFO buffer; when a new entry needs to be inserted into the buffer, a tree

fence is executed for the oldest entry. By eagerly executing tree fences prior to the sync,

only a small number of tree fences will need to be issued when the sync is encountered.

6.4.2 Stronger Consistency Models

VTC can also be adapted to stronger consistency models as discussed in this

section. To explain how VTC supports stronger consistency models, we start with

a baseline directory protocol. A directory protocol is a well establish coherence and

consistency solution; we modify the protocol step by step to resemble the VTC protocol.

First consider a region to be composed of a single cache line (we will relax this

constraint later in the discussion). In a directory protocol, store misses are ordered by

collecting invalidation acknowledgments from all processors caching the block. A store

miss cannot complete until all acknowledgments have been received. This has been

shown to produce a sequentially consistent execution.

Next, we relax the criterion for completion of the store. Again, the store miss

sends its request to the directory, the directory forwards the invalidation requests to

all sharers and responds to the store miss with the number of acknowledgments that

the store must receive. However, we allow the store to complete prior to collecting

the invalidation acknowledgments. The store has completed but we prevent the new

value from being observed by the system until all acknowledgments have been received.

(Observing the new value from the store occurs when a remote processor issues a read

to that cache line.)

When a new value written by a store is due to be observed by the occurrence of
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a remote load, that remote load cannot be satisfied until all acknowledgments are col-

lected. In this slightly modified directory-based protocol, those acknowledgments would

be in-flight in the network since a store miss requires invalidation acknowledgments.

The cache must now wait for those acknowledgments to finish propagating to it through

the network before allowing the new value to be observed. In VTC, remote caches do

not send acknowledgments on invalidation requests. As such, further action must be

taken over the directory-based protocol. On a remote load (the observing action), the

processor who stored the data must send out a request and collect acknowledgments on

its last store to that address using a tree fence.

Delayed collection of acknowledgments for the store enforces the store to load

order; however, we need to enforce write ordering across multiple stores. When a store

is observed by a remote load, we must ensure that all previous stores executed by the

processor responding to the current remote load have been observed. We must delay

allowing the remote load to observe our store until we have collected acknowledgments

on all previous store misses that have yet to collect acknowledgments. This write order

violation is illustrated by an example in Figure 6.3a. This example uses the constraint

graph model originally proposed by Landin et al. [79] and extended by Cain [19]. The

edges in the constraint graph are labeled by the ordering relationship; po indicated

the program order of a single thread. Dyn-raw and dyn-war indicate dynamic ordering

relationships between threads (dynamic read after write and dynamic write after read).

Executing tree fences on regions A and B (as shown in Figure 6.3b) when P0 receives

P1’s remote load of B correctly enforces store ordering.

An example of a write atomicity violation is shown in Figure 6.4a. In this example,

we see that store invalidates can be delayed on the tree enroute to some but not all

leaves. The resulting execution violates write atomicity since P1 reads the new value of

A while P2 reads the stale value of A after reading the new value of B. In Figure 6.4b,

inserting a tree fence when P0 observes P1’s dynamic read after write to A forces the
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P0 P1

St A

St B

Ld B

Ld A

dyn-war

dyn-raw

po

po

(a) Consistency Violation: This dynamic or-
dering of operations violates sequential con-
sistency (illustrated by the presence of a cy-
cle in the constraint graph). P1 reads the
new value of B but reads the stale/old value
of A. This occurs because St A and St B have
not been ordered on the same tree.

P0 P1

St A

St B

Ld B

Ld A

dyn-raw

dyn-raw

po

po

(b) No Consistency Violation: To break this
cycle, when P0 observes P1’s read request to
B (dynamic read after write) it must ensure
that all previous stores have completed. A
tree fence on Region A and Region B will be
executed by P0 and the remote read will be
deferred until the tree fences have completed.

Figure 6.3: Store Ordering. Addresses A and B are in different regions.

store to A to complete with respect to all processors before P1’s remote read is satisfied.

Likewise, when P1 observes the dynamic read after write to B from P2, a tree fence will

be executed on Region B. As a result, now both P1 and P2 will read the new value of

A.

In addition to executing a tree fence when a remote load is going to observe the

new value, the VTC protocol must also initiate a tree fence when a block in a dirty

region is written back to memory. Without a tree fence prior to a writeback, a remote

processor could load the written back (up to date) value from memory before other

remote processors have sunk the previous store.

At first glance, the distinction between performing the store and observing the

store does not provide us with any benefit. Each store miss now requires two actions:

first a request is issued in the network to order the store with respect to other refer-

ences on the same tree and then a second request is issued to the network to collect

acknowledgments before allowing the store to be observed. This second request is the

tree fence described above.

Given the other properties of our VTC protocol, we do not require two actions for

every store miss as we will demonstrate. If we expand the size of a region to encompass
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P0 P1 P2

St A

Ld A

St B

Ld B

Ld A

dyn-raw

dyn-raw
po

po
dyn-war

(a) Write Atomicity Violation: This dynamic
ordering of operations violates write atomic-
ity (required by stronger consistency models).
Again, the violation is detected by a cycle in
the constraint graph. P1 reads the new value
of A but the propagation of the store is de-
layed along the tree enroute to P2. P2 reads
the new value of B but reads the old value of
A. Again this occurs when accesses to A and
B are ordered on different trees (since they
are not in the same region).

P0 P1 P2

St A

Ld A

St B

Ld B

Ld A

dyn-raw

dyn-raw
po

po
dyn-raw

(b) No Write Atomicity Violation: To break
this cycle, when P0 observes P1’s read request
(dynamic read after write) it must ensure that
the store to A (and any previous stores have
completed). A tree fence on Region A will be
executed by P0 and the remote read of A will
be deferred until the tree fence has completed.
Likewise, P1 will initiate a tree fence on Re-
gion B when P2’s remote read is detected.

Figure 6.4: Write Atomicity. Addresses A and B are in different regions.

multiple cache lines, we can coalesce acknowledgment collection for multiple stores to

different lines in the same region. Assume one processor performs multiple stores to the

same region (including to different cache lines within that region); then when a remote

load needs to observe the new value to one of those stores, a single tree fence will collect

outstanding acknowledgments for all of the previous stores to that region.

We further lessen the potential performance impact of delaying remote reads by

performing eager tree fences. Again, a small FIFO can be used to track unfenced regions;

when a new region is stored to, the oldest region in the FIFO will be fenced to reduce

the penalty imposed by a remote read. At one extreme, a FIFO size of one can be

employed; when a processor transitions from storing in region A to storing in region B,

it eagerly executes a tree fence on region A. Due to the eager fencing, when a remote

read occurs there can be at most one dirty region that needs to initiate a tree fence.

In Figure 6.5, Dekker’s algorithm is shown to illustrate how sequential consistency

can be supported with VTC and tree fences. If both processors hold shared copies

of regions A and B initially, P0 and P1 will experience upgrade misses to A and B
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(a) Sequential Consistency Violation: with-
out a mechanism to enforce store to load or-
der a cycle will be created where both pro-
cessors load stale values of A and B.

P0 P1

St A St B

Fence A Fence B

Ld B Ld A

dyn-raw

dyn-raw

wrrd

wrrd

(b) Sequential Consistency: by inserting a
tree fence between the store and load sequen-
tial consistency is maintained.

Figure 6.5: Sequential Consistency Example: Dekker’s algorithm.

respectively. For a sequentially consistent execution, P0’s load of B cannot retire until

P0’s store of A has been observed by all processors. For example, P0 could load the

stale value of B and P1 could load the stale value of A due to delays on the virtual

trees as illustrated in Figure 6.5a by a cycle in the constraint graph. To enforce store

to load program order between different addresses a tree fence on previously stored

regions must be executed and completed before the local load can retire. Executing tree

fences to maintain store to load program order across different addresses would decrease

the ability to coalesce multiple stores to the same region into a single tree fence. As a

result, it seems unlikely that the use of tree fences would provide any benefit over simply

acknowledging every store. One exception would be the execution of many consecutive

stores, such as during initialization phases; these code segments would see benefit from

coalescing stores into fewer tree fences.

As such, we assume that our system does not enforce store to load program or-

der between different addresses. As a result, the above tree fence ordering constraints

achieve a weaker consistency model than sequential consistency such as processor con-

sistency or SPARC TSO consistency.
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6.5 Coherence Actions

Coherence information is maintained at the processor at two granularities. The

local last-level cache (L2) maintains coherence state information on a cache block gran-

ularity. Coherence information is then maintained by RegionTracker on a region gran-

ularity encompassing multiple contiguous cache blocks. On a per-region granularity we

track which external cores are caching the region and the location of the root node for

this region.

Coarse grain coherence tracking (CGCT) was first proposed for SMP systems;

on clean-shared misses a request would go directly to the memory controller rather

than waste precious bus bandwidth. Since VTC focuses on many-core architectures,

we want requests to stay on-chip to save miss latency and conserve off-chip bandwidth.

Additionally, VTC is implemented on a much higher bandwidth substrate than a bus-

based SMP system. Therefore, clean-shared misses are multicast to other cores caching

the region. Tables 6.1, 6.2 and 6.3 give an overview of the steps taken based on the

region state for loads, stores and upgrades.

When there is no region state available, two levels of indirection must be per-

formed. First a global operation is required to gather region information (Table 6.1).

This global operation can be either a directory access or a system-wide broadcast; with

the trade-offs previously discussed in Section 6.2. Once region information is obtained,

local coherence operations are performed based on Tables 6.2 and 6.3. If valid copies of

blocks in the region exist in remote caches, coherence requests must be ordered via the

tree order mechanism. These steps are illustrated in Table 6.2. If no valid copies of the

region exist, a subsequent load or store miss goes directly to main memory and upgrade

requests are immediately satisfied by the local cache since there are no processors that

need to be invalidated. These actions are shown in Table 6.3.

When a core replaces a region, it notifies the root node for that region to remove
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it from the sharing list to reduce false sharing (shown in Table 6.4). The root node

will then construct a new tree for that region with one fewer leaf node. The other

cores caching the region do not need to be notified since only the root is responsible for

sending coherence requests to all sharers.

When the root receives a remote region eviction notification, it can upgrade its

region to modified if no other cores are caching the region. By upgrading the region,

unnecessary broadcasts are eliminated and individual lines can be immediately upgraded

when the local processor issues a store request.

Table 6.1: Virtual Tree Coherence - Region Invalid: Local cache has no information
about remote copies of the region

Cache Miss VTC Coherence Actions
Load/Store 1. Request Region Destination Set Information from Directory

2. Directory responds with region sharing list
3. Region state set to Exclusive/Modified if sharing list is null

else Region State is set to shared
4. Load/Store actions performed according to steps in

Tables 6.2 and 6.3

6.5.1 Data responses

The directory maintains an owner bit for each line in the region. If set, the owner

bit indicates that memory will supply the data for the coherence request; if not set,

one of the cores on chip will be responsible for supplying the data. If multiple cores

are caching one block, the most recent core to receive the block is designated as the

next supplier. The supplier state migrates with the block to reduce the possibility that

the supplier will be evicted from the cache. Somewhat similar, the SL state in the

IBM Power 4 [133] indicates that a cache can source the data to a requester on the

same chip. The Forward (F) state [58] has also been proposed to allow one shared copy

to be responsible for responding to a cache request. The cache block in F state then
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Table 6.2: Virtual Tree Coherence - Region Shared: Remote cores are caching
clean/dirty lines in this region

Cache Miss VTC Coherence Actions
Load 1a. Send Read Request to Root Node

1b. Request data from memory: speculative memory request
Partially overlaps memory latency with ordering

2. Request is ordered by Root Node and forwarded to region sharers
3. Observe own request - ordered w.r.t. other requests to this address
4. Multicast sharers caching data, respond to Read Request with Data
5. If data not on chip, wait for memory response.

Store 1a. Send Store Request to Root Node
1b. Request data from memory: speculative memory request
2. Request is ordered by Root Node and forwarded to region sharers
3. Observe own request
4. Region sharers caching data, response to Store Req. w/ Data

and invalidate own copy
5. Receive data from multicast sharer or wait for memory response

if not cached on chip
Once observed own request and received cache line,
is safe to perform store

Upgrade 1. Sent Upgrade Request to Root Node
2. Root Node Forward Upgrade to all sharers
3. Region sharers caching data observe upgrade request and
invalidate cache block
4. If Observe other store/upgrade request, another request

ordered before own
Invalidate cache line, now request that was ordered
prior to mine will supply fresh data

5. else if Observe own request, Upgrade complete

Table 6.3: Virtual Tree Coherence - Region Modified: No remote cores are caching any
lines in this region

Cache Miss VTC Coherence Actions
Load 1. No other cores caching region - request does not need to be ordered

2. Send Read Request to Memory
Store 1. No other cores caching region - request does not need to be ordered

2. Send Store Request to Memory
Upgrade 1. Can upgrade without sending message
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Table 6.4: Virtual Tree Coherence - Region Eviction

VTC Coherence Actions
1. Invalidate all copies cached in region
2a. Send Region Invalidate Acknowledgment to Directory
2b. Notify root of invalidation
3. Directory removes sharer from sharing list for region

transitions to the shared state and the new sharer is placed in F state.

6.6 Walk-through Example

An example of Virtual Tree Coherence’s handling of two racing store requests is

illustrated in Figure 6.6 with the corresponding step descriptions presented in Table

6.5. In this example, Node E is the root of this region’s tree; as such, all requests to

addresses within that region must be ordered through Node E.

In the example, A and F are initially caching the block in question (A has the

block in shared state and F has the block in owned state). Both invalidate their blocks

when they see B’s request from the root node. This prevents A from reading a stale copy

of the block after B has written it. Invalidation acknowledgments are unnecessary with

VTC for writes to complete since the virtual trees are snoop-based. This is analogous

to the lack of acknowledgments in a snooping bus protocol. With VTC, a write can

complete when it sees its own request returned from the root node.

6.7 Relationship between trees and regions

To maintain coherence, all cores caching a region must see coherence requests to

that region. A single tree is maintained at the root node for that region. Remember, an

address maps to only one region; so that address participates in a single tree connecting

all sharers. All requests use this tree; it is not possible for a single region to map to
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Figure 6.6: Virtual Tree Coherence Example: This example illustrates two exclusive
requesters to the same address in the tree-order protocol. Dashed and curved arrows
represent messages originating at or intended for B, solid and straight arrows represent
messages originating at or intended for A. E is the root node for the region being
accessed.

Table 6.5: Steps Corresponding to Figure 6.6

(1) Both A and B issue requests to the root to modify a block owned by F
A,B,E,F are caching this region, E is the root node for this region

(2a) E receives B’s root request and it becomes ordered.
(2b) E receives A’s root request, it becomes ordered after B
(3) E forwards B’s request to all leaf nodes of the region tree

A sees B’s request has been ordered prior to its own request
A knows it will receive data from B after B has completed
A must invalidate its existing copy so as not to read stale data

(4) E forwards A’s request to all leaf nodes of the region tree
B sees its own request forwarded from E. B knows its request
has been ordered
B does not need to wait for acknowledgments
F sees B’s request and responds with the Data

(5) B receives the Data response from F and completes its transition
to Modified State
A,B,F see A’s ordered request

(6) B invalidates its Modified copy and sends the data to A
(7) A receives the data from B and completes its transition to Modified State
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multiple trees. If this were allowed, it would mean that different cores had different

sharing lists for that region and incoherence would result. Multiple regions can map to

the same tree; this simply means that multiple regions are being shared by the same set

of processors with the same root node. If all cores are caching a region (for example, a

lock variable), a single tree will be constructed at the root node with all cores as leaf

nodes.

Recall from Chapter 4 (on page 95), VCTM restricts each tree to one virtual

channel throughout its traversal of the network. This virtual channel restriction is

sufficient to maintain a total order within a single virtual tree, and since all requests

to the same cache line will use the same virtual tree this provides a total order among

requests to the same cache line. Messages bound from the same source to the same

destination in an unordered network can pass each other in two ways. If these messages

are assigned to different virtual channels they can be reordered within the network. The

other way messages can pass each other is if they are assigned to different routes. To

take care of the first case, we restrict a tree to a single virtual channel. The second

case is not permissible in our system as adaptive routing is disallowed and trees follow

a fixed, static route from source to destination.

Virtual channels are assigned to new trees in a round robin fashion; this distributes

the virtual trees among all available virtual channels. When a new sharer is added to

a tree, the tree maintains the same virtual channel mapping as the old tree. This

restriction prevents messages on the new tree from passing in-flight messages on the old

tree.

6.8 Coarse-Grain Regions

Virtual Tree Coherence utilizes coarse grained regions for determining the desti-

nation sets for multicasting coherence actions. Further distinguishing VTC from pre-

vious proposals that used region tracking structures to filter away unnecessary broad-
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Figure 6.7: Characterization of Sharers by Region Size

casts [20, 99], perform DRAM speculation [8], and prefetching [21], Virtual Tree Co-

herence leverages these structures to keep track of the current set of sharers and root

node of a region. Additional bits are thus added to the Region Vector Array (RVA) of

RegionTracker [147] to track the current region sharers and the region root node. The

low-overhead design of RegionTracker allows us to optimize for region based sharing

with only a modest area increase over a conventional L2 cache design.

In Figure 6.7, we present the sharing patterns for a variety of scientific and com-

mercial workloads based on various region sizes. Similar to what has been previously

observed [15, 91], the number of sharers for a cache block (cache block size = 64B) is

small. As the region size increases (16 and 64 cache lines per region), the number of

sharers increases slightly; this increase is the result of false sharing. Sending multicasts

to an increased number of cores will utilize additional bandwidth but at a substantial

area savings for tracking this information. Previous work leveraging regions has used a

1KB region size; similarly we believe this is a good trade-off between area overhead and

unnecessary multicasting of coherence requests. Further evaluation of different region

sizes will be presented in Section 6.13.

The original CGCT protocol specifies three remote region states: Invalid, Clean
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and Dirty. For regions that are externally invalid or externally clean, a local read request

can go directly to memory without snooping any other processors. From a coherence

perspective, these broadcasts are unnecessary since memory has a clean copy of the

block. When a region is externally dirty, a broadcast must be sent to all processors

for the read request so that the local core will obtain an up-to-date copy of the line

as memory may contain a stale copy. Store and upgrade requests must be broadcast

to remote cores with regions that are clean or dirty so that invalidations are properly

handled.

For the purposes of VTC, we seek to satisfy as many requests as possible from

other on-chip caches (rather than accessing memory). As such, we do not need to dis-

tinguish between remote clean and remote dirty. Remote region state in VTC is simply

tracked as remote valid and remote invalid. Multicasts are initiated on loads, stores

and upgrades whenever the region is in a remote valid state. In CGCT, requests that

were cached in remote clean regions could also go directly to memory without requir-

ing a broadcast. VTC does not leverage this optimization; since VTC is designed for

a many-core architecture, cache-to-cache transfers will experiences substantially lower

latency than accessing main memory. As a result, VTC does multicast for clean-shared

data. Since VTC leverages a high bandwidth, scalable interconnect this traffic does not

cause a performance problem.

Coarse Grain Coherence Tracking removes unnecessary broadcasts to improve

the scalability of broadcast-based systems. By eliminating a substantial percentage of

broadcast requests, less pressure is placed on the bus which is a considerable bottleneck

for scaling broadcast systems. Likewise, VTC experiences benefit from the removal of

some broadcasts. Regions that are held exclusively by one processor do not need to

broadcast on a cache misses and can go directly to memory. VTC also derives benefit

from fast upgrades to lines that are in exclusive regions (remote invalid).
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6.9 Overhead

The storage overheads of Virtual Tree Coherence stem largely from three com-

ponents (1) the RegionTracker structure in each core, (2) the global coarse-grained

directory cache (distributed across all cores) and (3) the VCTM overheads discussed in

Chapter 4. But as RegionTracker obviates the need for L2 tags, L2 tag array storage

overhead is saved. Additionally, the global coarse-grain directory caches replace the

fine-grained directory caches required in the baseline protocol. The sizes of the first two

components clearly depend on the size of a region R. Here we use a region size of 1KB.

The original RegionTracker proposal consumes area comparable to a conventional

L2 tag array assuming 1KB regions and 8MB data array. We’ve added additional bits of

information, specifically n bits for the multicast sharing vector, where N is the number

of cores in the system and log2(N) bits to track the multicast root node. The region

size per core is determined by Equation 6.1 in terms of N and region geometry (e.g.

RegionSets, number of sets in region, RegionSize, size of each region, RegionWays,

associativity of the region array). Each entry consists of the Region Tag, 3 bits of state,

N bits for the multicast sharing vector, log2(N) bits to identify the root node and 4

bits of state per cache line (validbit + way) in the region.

RegionArraySize = (Tag + 3 + N + log2(N) + (RegionSize/CacheLineSize)× 4)

×RegionSets×RegionWays

(6.1)

For example, assuming a 50 bit address, 1KB regions, 1024 region sets, 8 region

ways and 16 cores in the system, we find the region array size to be 116KB. Our

evaluation assumes a L2 cache of 1MB where the size of the conventional tags would be

74KB.

Only the root node needs to cache the sharing vector for a given region; as a re-
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Figure 6.8: Region Vector Entry with Sharing Vector (a) and without (b) and Region
Vector Array with Root Ways

sult, our baseline RegionTracker implementation wastes storage by associating a sharing

vector with each region. To reduce the storage impact, we propose limiting the number

of ways that can cache sharing vector information. This modified storage arrangement is

depicted in Figure 6.8 and the overhead is calculated using Equation 6.2. For a 16-core

system, the savings is modest, storage of the RegionTracker is reduced by 5% with four

Root Ways and by 9% with two root Ways per set. However, as the sharing vector size

increases with the number of nodes in the system, the savings become more pronounced

for 64 cores; here, this modification saves 18% and 28% with four and two root ways

respectively.

RegionArraySize = ((Tag + 3 + log2(RootWays) + log2(N)+

(RegionSize/CacheLineSize)× 4)×RegionSets×RegionWays)+

(N ×RootWays×RegionSets)

(6.2)

The global coarse-grained directories (used only in VTC-Mcast-Dir) also consume

area; however, compared to a conventional fine-grained directory, a coarse-grained di-
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rectory has significantly greater memory reach which improves performance by reducing

the directory miss rate. Computing the directory size (in bits) is done using Equation

6.3, assuming each directory entry contains N bits for the sharing vector and log2(N)

bits to identify the owner node (in a conventional directory) or the root node (for VTC).

The sharing vector is maintained in the directory to reduce the cost of a root eviction. If

an ordering request arrives at the root and experiences a region miss, the root requests

the sharing vector from the directory to reinstall its region state. If sharing vectors were

not backed up by the coarse-grained directory, a root eviction would force all caches to

evict that region. Directory sizes assuming 2048 directory sets and 16 directory ways

are presented in Table 6.6.

DirectorySize = (Tag + N + log2(N) + 3)×DirectorySets×DirectoryWays (6.3)

Bit requirements for the baseline configuration (a conventional L2 + fine-grained

directory cache) are compared against the VTC overheads in Table 6.6, with the pa-

rameters detailed above. We see VTC-Mcast-Dir has a 11% storage overhead over the

baseline directory protocol.

However, this storage overhead can be tuned by reducing the number of entries

in the coarse-grained directories, since a single entry covers 16x more memory than a

corresponding entry in a fine-grained directory, with a region size that is 16x a cache

line size. So, we can reduce the coarse-grained storage to trade off the storage over-

head of the RegionTrackers, while still being able to cache and cover more memory

than the conventional fine-grained directories. Setting the number of bits of the fine

grained directory + conventional L2 tag array equal to the coarse grained directory +

RegionTracker, we have enough bits for a smaller coarse-grained directory composed of

1678 sets and 16 ways. With 1678 sets and 16 ways, the small (area-equivalent) coarse-

grained directory can cache 27MB of memory versus 2MB of memory that is cache-able
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with the fine-grained directory.

Replacing the global directory protocol with a broadcast protocol eliminates the

need for directory storage. In this case, the RegionTracker has 53% more overhead than

the conventional tag array but we have reduced storage 62% over the baseline directory

protocol.

Table 6.6: Storage Comparison in KBits

Conventional Directory-Based Protocol
Conventional L2 Tag Array 592
Fine-Grained Directory 1760
Virtual Tree Coherence
RegionTracker 936
Coarse-Grained Directory 1696
Area-equivalent Coarse-Grained Directory 1448

(a) Storage Breakdown

Conventional L2 Tag Array + Fine-Grained Directory 2352
RegionTracker + Coarse-Grained Directory 2632
RegionTracker + Area-equivalent Coarse-Grained Directory 2352

(b) KBit Totals

6.10 Design Optimization

Virtual Tree Coherence reduces ordering latency of the directory by assigning the

tree root node as a sharer of the cache line. As VTC is designed to improve performance

through reduced cache-to-cache transfer latency, the selection of the root node is a key

element in the protocol design. In this section, we explore options for selecting the root

nodes.
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6.10.1 Root Selection Policies

The indirection required in directory-based protocols is expensive in terms of

performance. Virtual Hierarchies [97] remaps the directory home node to be a local

node within the virtual machine accessing that memory address. Similarly, we migrate

the ordering point for each region to one of the sharers of the region.

In order for VTC to demonstrate performance improvements over a directory

protocol, the choice of root node becomes very important. Ideally, the root node should

be in the sharing list for the region. It would also be beneficial to choose a sharer that

is centrally located with respect to other sharers. Several policies are considered for

determining the root node.

First touch. The first policy considered is to assign as the root node, the first

cache to access that region. The benefit of this approach is that the root is a sharer and

will be able to very quickly order its own requests as additional sharers are added to the

tree. There are several downsides to this approach. If one core performs initialization

operations for the application, one core will become the root of many trees irrespective of

future access patterns within that application. This will also result in a network hotspot

at that core and will put significant pressure on the virtual circuit trees available to that

root.

Limited Migration. If a region held in the exclusive or modified state is evicted,

the directory resets its root entry allowing the next cache accessing the line to become

the new owner. In this manner, the root can migrate without additional complexity

since migration occurs when no core is actively caching the region. When a region is

evicted, and only the one sharer remains, the region can be upgraded and the root can

be migrated without additional complexity. Evaluations in Section 6.13 use a baseline

policy of first touch plus limited migration.

Migration to Reduce Hop Count. The root is assigned to the first core to
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cache any line in the region. As additional cores are added as sharers of the region, a

more optimal root node can be selected. We propose selecting as the new root node the

sharer with the minimal hop count to all other sharers of the region. Also, as regions

are evicted, the root can again migrate to select an optimal root node for the remaining

sharers. Ties among root node candidates can be broken arbitrarily or based on the

number of lines in the region that each candidate is caching; the candidate with the

most lines wins. The impact on ordering hop counts of this policy are considered in

Section 6.13.5.

Root selection can have a significant impact on network load; policies may need

to be modified with additional migration to offset network load (balance root nodes

among all network nodes). With the first touch policy and the migration to reduce hop

count, we observe an imbalance in the frequency of network nodes being selected as

root nodes. Migrating to reduce hop count is going to drive more root nodes toward the

center nodes of the network. This migration can potentially create network hotspots

and place too much pressure on the VCTM mechanisms (this is illustrated in Section

6.13.5). Network hotspots can create quality of service issues within the network but

we leave the exploration of this and techniques to migrate roots to offset this to future

work.

When the root is migrated, cores caching the region need to be notified of the

new root node. The coarse directory also needs to be updated. Additionally, in-flight

requests to the old root node need to be redirected. A small root victim cache at the

old root node is used redirect these in-flight requests until all sharers have received the

root update message.

6.11 Scalability

In Chapter 4, we discussed a TCAM technique to improve the scalability of VCTM

for larger systems. For the other added hardware required for VTC, we consider scala-
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bility issues as the system grows. First, we expect that much larger regions will provide

benefit for systems running server consolidation workloads. Coarser address regions will

include more false sharing but will keep virtual machines isolated from one another pro-

viding performance benefits and scalability. Region granularity could be configurable to

adapt the chip to different workloads; multiple region sizes could be supported in much

the same way that systems support multiple page sizes. We leave the exploration of the

necessary hardware modifications for configurable region granularity for future work.

A concentrated mesh (CMESH) [11] has been proposed for large systems. A

CMESH groups four cores to one single router; so a 64-core system would require a 4x4

mesh. This clustering can be applied to our storage structures as well: four cores can

share a region array, last level caches and a coarse grain directory to reduce the amount

of storage required. A CMESH will also reduce pressure on the VCTM hardware; a

multicast can be routed to network nodes and then broadcast to the four tiles connects

to each router. Essentially, to scale the system, we propose adding a layer of physical

hierarchy to the virtual hierarchy that is created with VTC.

6.12 Discussion

Looking back the desirable properties of a scalable on-chip protocol, VTC targets

and achieves these in the following manner:

• Limit coherence actions to the necessary subset of nodes: We use

virtual trees to connect and order sharers, with requests multicast through

these virtual trees so that coherence actions are usually limited to true sharers

and not broadcast to all nodes. These virtual trees are the virtual circuit trees

from VCTM and as such support efficient on-chip multicasting; VCTM trees

can be mapped to onto any unordered interconnect, thus enabling scaling to

many-core chips.
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• Fast cache-to-cache transfers: The root of each virtual tree is used as the

ordering point where all requests are first sent to and ordered, much like the

home node of a vanilla directory protocol. However, as the root is one of the

sharers and not a statically mapped home node that may be far away, the cost

of indirection can be reduced considerably.

• Limited bandwidth overhead: By multicasting coherence only to current

sharers, VTC avoids the bandwidth overhead of broadcast-based coherence pro-

tocols, while approaching their benefit of fast cache-to-cache transfers.

• Limited storage overhead: VTC allocates virtual trees for sharers of coarse-

grained regions, rather than per cache line. The sharers of each region are

tracked in local structures which are guaranteed to completely capture all cur-

rent sharers of a region. Tracking on a coarse granularity allows VTC to reduce

the state that needs to be maintained. Coherence state can be further reduced

by relying on a global broadcast rather than global directories when local infor-

mation is insufficient for coherence.

6.13 Evaluation

The following sections present the evaluation methodology, two baseline protocols

and results for Virtual Tree Coherence.

6.13.1 Methodology

We use the same benchmarks to evaluate VTC as used in Chapters 3 and 5,

specifically: TPC-H and TPC-W [134], SPECweb99 and SPECjbb2000 [124] and several

Splash2 workloads [146]. We compare Virtual Tree Coherence against two baselines,

a directory protocol and a greedy-order protocol, which are explained below. The

machine model used in this portion of the evaluation is detailed in Table 6.7. Statistical
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Table 6.7: Simulation Parameters

Cores 16 in-order & 64 in-order cores
Memory System

L1 I/D Caches (lat) 32 KB 2 way set assoc. (1 cycle)
Private L2 Caches 1 MB (16 MB total) 8-way set assoc.

(6 cycles), 64 Byte lines
RegionTracker 1024 sets, 8 ways, 1KB regions
(associated with each L2)
Memory Latency 500 cycles
Interconnect

Packet Switched Mesh 3 Pipeline Stages
8 VCs w/4 Buffers per VC

VCTM 64 Trees per source node (1024 total)

simulation is used to quantify overall performance with 95% confidence intervals [9].

In addition to the single server workloads, we have configured our simulation

environment to support server consolidation workloads [45, 97] for up to 64 cores. For

the server consolidation workloads, we create homogeneous combinations of each of the

commercial workloads listed in Table 3.2; e.g. we run 4 copies of SPECjbb to create

a 64-core workload. Each virtual machine is scheduled to maintain affinity among the

threads of its workload.

For the server consolidation workloads, applications are isolated from one another

through virtual machines; each virtual machine runs a private copy of the AIX 4.3.1

operating system. Each virtual machine is statically assigned its own portion of physical

memory and has a completely private address space; no data is shared across virtual

machines.

6.13.2 Baselines

Two protocol baselines are used to compare against VTC. The first baseline, a

directory protocol, was also used for the evaluation of Circuit-Switched Coherence. The

second, a greedy-order protocol provides another comparison point for Virtual Tree
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Coherence.

6.13.2.1 BaselineI: Directory

Directory protocols are commonly used in many-core architecture proposals due to

their perceived scalability. Our first baseline is a standard directory protocol modeled

after the SGI Origin protocol [80]. This protocol suffers from the latency overheads

associated with an indirection through a directory on each cache miss. Additionally,

to make this protocol amenable to a many-core architecture, directory caches are used.

A directory cache maintains recently accessed directory entries from main memory on

chip. Misses to these directory caches suffer the latency overhead of going off chip to

memory and can be quite frequent for server workloads and even more frequent for

server consolidation workloads. For a set of commercial workloads, miss rates between

22% and 74% have been observed [94].

6.13.2.2 BaselineII: Greedy Order Region Coherence

Greedy order protocols have been proposed for ring interconnects [12, 96, 120]

and overlaid atop unordered interconnection networks [127]. Here, as a second baseline

for comparison against VTC, we map and optimize a greedy order protocol that can

leverage the region tracking structures and throughput benefits of the VCTM network

that VTC also uses. The key difference is that VTC relies on the virtual trees for

ordering, while greedy order does not.

Ordering. In greedy order protocols, requests are ordered by the current owner.

Requests are live as soon as they leave the requester; in other words, they do not need

to arbitrate for a shared resource such as a bus or pass through a central ordering point

such as a directory. A request becomes ordered when it reaches the owner of the cache

block (another cache or memory). In the common case when no race occurs, these

requests are serviced very quickly because they do not require the additional latency
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of an indirection through a directory. In [96], requests complete after they have ob-

served the combined snoop response that trails the request on a ring. Based on the

combined response, a request is either successful or must retry. Mapping and extend-

ing Greedy-Order protocols onto an unordered interconnect such as a mesh requires

acknowledgments to be collected from all relevant processors. However, extending to

regions rather than individual cache lines, reduces the number of acknowledgments that

have to be collected from all cores to only cores that are caching that particular address

region. Therefore, the number of acknowledgments that are expected is derived from

the sharing vector in the RegionTracker. The collection of acknowledgments is similar

to the combined response on the ring but requires more messages. This is also similar to

the process of collecting invalidates in a directory protocol. The owner sends an owner

acknowledgment signifying the transfer of ownership. If no owner acknowledgment is

received, then another request was ordered before this one and this request must retry.

Greedy-Order can be applied in a broadcast fashion as well, where no sharers are tracked

and acknowledgments are gathered from all processors.

Example. An example of Greedy-Order is depicted in Figure 6.9 with the cor-

responding step descriptions presented in Table 6.8.

6.13.3 Performance Results

In the following sections, we present quantitative performance results comparing

Virtual Tree Coherence against our two baselines. Additionally, we present a comparison

between Virtual Tree Coherence-Multicast-Directory (VTC-Mcast-Dir), Virtual Tree

Coherence-Multicast-Broadcast (VTC-Mcast-Bcast) and a Broadcast using virtual trees

(VTC-Bcast). With VTC-Bcast, a virtual tree connects all nodes; however, regions are

used to designate and distribute root nodes around the network so that there is not

a single root bottleneck. Significant network bandwidth and dynamic power can be

saved by limiting coherence actions to multicasts instead of broadcasts, as we do in
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Figure 6.9: Greedy Order Example: This example illustrates two exclusive requesters
in the greedy-order region protocol. Dashed and curved arrows represent messages
originating at or intended for B, Solid and straight arrows represent messages originating
at or intended for A. Time is progressing from left to right in the figure.

Table 6.8: Steps Corresponding to Figure 6.9

(1) Both A and B issue requests to all processors caching region to modify a
block owned by F. A,B,E,F are caching this region

(2) A’s request reaches B and is replicated and forwarded to E and F
B’s request reaches E and F

(3) A’s request reaches F
B’s request reached F (Owner) first, so B’s request will win

(4) E and F respond with acknowledgments to A and B’s request. B gets an
owner acknowledgment from F and F transitions from owned to invalid

(5) A receives E’s acknowledgment, B receives E’s acknowledgment
(6) A receives F’s acknowledgment, B receives F’s owner acknowledgment
(7) B knows its Modified request will succeed, it sends a negative acknowledgment

to A
(8) A receives a negative acknowledgment from B, it has now collected all

acknowledgments and did not succeed so it will acknowledge B’s request and it
must retry its own request

(9) B collects its final acknowledgment from A and successfully transitions to
Modified State.
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Figure 6.10: Performance Comparison for VTC against various coherence protocols with
16 cores. Results are normalized to the baseline directory protocol.

VTC-Mcast-Dir and VTC-Mcast-Bcast.

In Figure 6.10, results are presented for Greedy-Order Multicasting, Virtual Tree

Coherence Broadcast and Virtual Tree Multicast Coherence with both a global direc-

tory (VTC-Mcast-Dir) and a global broadcast (VTC-Mcast-Bcast) protocol layer. All

results are normalized to BaselineI: Directory Coherence. Overall, significant perfor-

mance gains are achieved by VTC-Bcast and VTC-Mcast-Dir, up to 39% and 38%

respectively (19% and 25% on average) when compared to the directory protocol. Vir-

tual Tree Coherence (VTC-Mcast-Dir) outperforms Greedy-Order by up to 31% with

an average improvement of 11%. In a 4x4 system, the differences between VTC-Bcast

and VTC-Mcast-Dir are minor; however, as systems scale, the difference between these

two becomes much more pronounced with favorable results for VTC-Mcast-Dir (Figure

6.11.)

In a couple of instances, notably, TPC-H and SPECjbb, VTC-Bcast outperforms

VTC-Mcast-Dir. With larger memory footprints and irregular access patterns, these

workloads experience much larger region miss rates which incur additional overhead to

re-fetch region information from the second-level directory. For SPECjbb and TPC-

H, 21% and 18% of L2 misses also result in region misses; the rest of the workloads
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Figure 6.11: Performance Comparison for VTC against various coherence protocols with
64 cores

experience region miss rates of less than 10%. SPECweb sees only a small performance

improvement from VTC-Mcast-Dir (5%); SPECweb sees the sharpest increase in traffic

which limits the performance improvement. Techniques to improve the region hit rate

and lower the number of false-sharers will lead to further performance improvements

for SPECweb.

In Figure 6.11, the difference between VTC-Bcast and VTC-Mcast-Dir becomes

more pronounced, VTC-Mcast-Dir outperforms VTC-Bcast by an average of 11% and

up to 16%. With a 64-core system, broadcasting becomes more expensive (both in per-

formance and power). VTC-Mcast-Dir provides more isolation for the virtual machines;

coherence requests are only sent to nodes involved in sharing. VTC-Bcast unnecessarily

broadcasts to all nodes (across multiple virtual machines).

6.13.3.1 Impact of Global Level Coherence

Figure 6.10 also compares the VTC-Mcast-Dir and VTC-Mcast-Bcast proto-

cols. VTC-Mcast-Bcast offers similar performance with substantially lower overheads

than the VTC-Mcast-Dir protocol by eliminating the coarse-grained directories, instead

broadcasting for region information on a region miss. Some performance is lost with
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Figure 6.12: Hop Count Compared to Directory Baseline

the longer latency to obtain root and sharing information for regions with VTC-Mcast-

Bcast. VTC-Mcast-Dir improves performance by an average of 25% over the baseline

directory protocol; that improvement shrinks slightly to 21% with a global broadcast

protocol. This small loss in performance comes at significant area savings.

6.13.4 With and Without VCTM

In Figures 6.10 and 6.11, Greedy-Order, VTC-Bcast, VTC-Mcast-Dir and VTC-

Mcast-Bcast, all leverage the benefits of VCTM. On a non-VCTM packet-switched mesh,

the performance of VTC-Mcast-Dir degrades by an average of 15%. Without VCTM,

no ordering guarantees can be made for VTC-Bcast, VTC-Mcast-Dir and VTC-Mcast-

Bcast. VCTM maintains a total order for multicast requests within the network and

is also essential for performance improvements and scalability. Without VCTM, in a

64-core system, VTC-Bcast sends out 63 coherence packets for each cache miss which

would likely saturate the network. Greedy-Order, which places significant pressure on

the interconnection network due to retries sees performance degradations up to 48%

when VCTM is removed; Greedy-Order does not rely on VCTM for ordering.
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Figure 6.13: Root Hotspot for SPECjbb

6.13.5 Tree Root Selection Policies

Both VTC and the directory baseline require the indirection to the ordering point

for coherence requests. VTC derives performance benefit in part from reducing the cost

of these indirections. With VTC-Mcast-Dir, the hop count to the ordering point is

reduced by 19% for 16 cores and 50% for 64 cores since the root node is a region sharer.

Furthermore, on average, 4.2x more coherence requests are ordered in zero hops with

VTC-Mcast-Dir than with the directory protocol.

In Section 6.10.1, we discuss migration of the root node to achieve minimal or-

dering hop counts. Despite impressive ordering hop count reductions (shown in Figure

6.12), migration of the root does not result in noticeable performance improvements

over the first touch with no migration policy. In some cases (e.g. SPECjbb), perfor-

mance degradation is observed. This migration optimization concentrates 72% of root

accesses at the four nodes in the center of the 4x4 mesh network resulting in network

congestion and additional pressure on the VCTM entries for these four nodes. This 72%

of root accesses is compared to just 20% for the first touch policy with limited migration

policy. This root distribution is depicted in Figure 6.13. It is clear from this analysis

that network congestion and hot spots need to be factored into the root selection policy.
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Figure 6.14: Hit Rates for Limited Caching for Sharing Vectors

6.13.6 Limited Caching of Sharing Vector

In Section 6.9, we propose limiting the number of region vector entries that can

cache the sharing vector to reduce the overhead of the RegionTracker structures. This

reduces the RegionTracker storage by 18% and 28% for four and two root ways in a

64-core system. The downside of limiting the number of entries per set that can cache

sharing vectors, is that an ordering request to the root node might experience a sharing

vector miss. Figure 6.14 shows the hit rates for caching sharing vectors for two and four

roots per set. An average sharing vector hit rate of 97% is observed with two root ways

per set; 3% of ordering messages would require an indirection to the global directory to

reobtain the sharing information. In the case of a global broadcast layer, a broadcast

would be initiated to recollect the sharing vector information.

6.13.7 Activity/Power

In addition to the performance of VTC, we consider the power (in terms of net-

work activity) that each protocol consumes. Figure 6.15 shows the network activity

(based on link traversals by flits) for each coherence protocol relative to the directory

protocol. As expected, directory coherence has the lowest interconnect traffic since
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Figure 6.15: Interconnect Traffic Comparison Normalized to Directory for 16 cores
(measured in link traversals by flits)

nearly all of the messages are unicasts (invalidation requests from the directory are

the exception). Data traffic is similar for each protocol; the main difference lies in

the required coherence traffic. Greedy-Order requires the most interconnection network

bandwidth of all the protocols; on average 3.8 times the number of link traversals as

the directory protocol. VTC-Mcast-Dir consumes less network bandwidth than VTC-

Bcast, 35% activity reduction on average, with the most significant reduction of 68%

for SPECjbb and 40% for Ocean. A large fraction of Ocean’s references are memory

misses; VTC-Mcast-Dir will optimize and go directly to memory if no other cores are

caching the region. These memory misses are broadcast to all cores in VTC-Bcast re-

sulting in a bandwidth spike when compared with VTC-Mcast-Dir and Greedy-Order.

VTC-Mcast-Bcast requires slightly more traffic than VTC-Mcast-Dir resulting in only

a 21% activity reduction over VTC-Bcast. The interconnect traffic difference between

VTC-Bcast and VTC-Mcast-Dir grows from 35% with 16 cores to 68% with 64 cores

as shown in Figure 6.16. VTC-Mcast-Dir requires 1.6x more traffic than a directory

protocol for 64 cores.

In some cases, the traffic requirements of VTC-Bcast, VTC-Mcast-Dir, VTC-

Mcast-Bcast are very similar. We attribute this to the robustness of the underlying
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Figure 6.16: Interconnect Traffic Comparison Normalized to Directory for 64 cores
(measured in link traversals by flits)

VCTM network. If you refer back to Figure 4.26 on page 116, the TokenB protocol

(a broadcast-based protocol) sees a 50% reduction in interconnect bandwith with in-

troduction of VCTM. Removing the VCTM interconnect network would drive up the

interconnection utilization significantly for VTC-Bcast (as well as break one of our or-

dering invariants).

Network activity is only part of the story for power consumption differences in

VTC-Bcast, VTC-Mcast-Dir and VTC-Mcast-Bcast. VTC-Bcast will consume signif-

icantly more power since all caches will snoop all coherence requests; VTC-Mcast-Dir

and VTC-Mcast-Bcast eliminate a significant fraction of cache accesses required with

VTC-Bcast (VTC-Mcast-Bcast does require more cache accesses on global coherence

actions than VTC-Mcast-Dir). The retries in Greedy-Order also increase the number

of cache accesses required.

6.13.8 Interaction between VCTM and VTC

The interplay between region size and the efficiency of a VCTM network is an

interesting motivation for the need to co-design the coherence protocol and the inter-

connect. Choosing small regions results in a much larger number of unique trees that
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Figure 6.17: Impact of Region Size on Virtual Circuit Tree Hit Rate (16 cores)

are needed; this large number of unique trees causes the virtual circuit trees to thrash

in the network. The virtual circuit tree hit rate in the interconnect ranges from 78%

to 99% for 1KB regions; the hit rate drops to 65% to 95% for 64B regions as depicted

in Figure 6.17. With a lower hit rate there are more tree setups in the network; recall

from Chapter 4 in the VCTM design, tree setup requires replication of the multicast

message into many unicasts resulting in a short burst of traffic during the setup phase;

this impacts interconnection network latency and throughput.

As a result, 1KB regions, which suffer from a modest amount of false sharing

compared to 64B regions, actually have 3% less interconnection network traffic by mak-

ing better use of virtual circuit trees. With 4KB regions, performance is similar to 1KB

regions, with slight degradations observed for SPECweb and Ocean.

For our 16-core system, we found that varying the region size had only a small

impact on performance. In a system with constrained bandwidth, one would expect that

increasing the number of multicast sharers would significantly degrade the performance

of VCTM; we did not find this to be the case with VTC. The VCTM design is found to

be very efficient for both broadcasting and multicasting (as demonstrated in Chapter

4). As a result, network performance is not impacted by false sharing except for the

impact on tree hit rates noted above. The increase of false sharing with increased region

size will affect the power consumed due to unnecessary cache snoops. We believe the
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impact of region size will become more pronounced as system size grows.

6.13.9 Discussion

Largely, the performance results for Virtual Tree Coherence with a local Broadcast

and a local Multicast are very similar. We attribute this similarity to the robust nature

of the underlying virtual circuit tree multicast network. The power consumption of the

two protocols is different and the broadcast protocol results in a significant number of

unnecessary cache lookups for snoops though.

6.14 Related Work

Cache coherence research has been of significant interest in both single and multi-

chip multiprocessor systems. A variety of protocols have been proposed/implemented

to achieve performance and scalability on both ordered and unordered interconnects.

Additionally, we discuss various systems that have employed hierarchical protocols. We

contrast these prior works with Virtual Tree Coherence in the following sections.

6.14.1 Ordered Interconnect

Multicast snooping and destination set prediction [15, 91] use prediction mecha-

nisms to determine which processors will likely need to see a coherence request. In con-

trast, VTC determines exactly who must be included in a multicast. Extra cores might

be contained in the destination set but never fewer cores than necessary. These proto-

cols rely on a totally ordered physical interconnect for sending out multicast requests.

Our design relaxes this constraint, permitting a higher performance interconnect. With

the virtual channel restriction in place for VCTM, it is our belief that multicast snoop-

ing and destination set prediction could leverage the VCTM network and achieve the

required total order for multicasts (the requirements for VTC are the same). Requests

to the same address region use the same virtual tree and are restricted to using the
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same virtual channel as prior requests to the same address region. This virtual channel

restriction prevent messages from becoming reordered with respect to each other in the

network.

Bandwidth Adaptive Snooping [93] employs a hybrid protocol that achieves the

latency of broadcasting when bandwidth is plentiful but converts to a directory style

protocol when bandwidth is limited. This work relies on a totally ordered intercon-

nect but overcomes some of the pressure that large snooping systems can place on the

interconnect.

6.14.2 Unordered Interconnect

Token coherence provides the token abstraction to decouple performance from

correctness [92]. Several variants of Token Coherence have been proposed including

one based on broadcasts and one on directories. TokenB, the broadcast Token protocol

requires more bandwidth than multicasting with Virtual Tree Coherence. Extensions

have been proposed for multi-chip CMP-based systems in [95].

In-Network Coherence [40] replaces directories by embedding sharing information

in tree structures within the network. These virtual trees (different from VTC’s virtual

circuit trees) are used to locate data on-chip. When a request is en-route to the home

node, it can bump into a tree which will redirect the request to the appropriate core that

is sharing the cache block. This optimization targets the directory indirection latency

and can lead to fewer interconnect hops to find a valid cache line.

However, with In-Network Coherence, depending on the route taken by a request,

a sharer may be nearby, but the request may miss it and still have to make its way several

hops to the directory. In such scenarios, VTC will perform better since the tree root is

a region sharer. Cache misses that do bump into a tree in In-Network Coherence will

be satisfied more quickly than requests that have to travel a significant distance to the

root node in VTC. It should be noted though that in VTC, it is always the case that
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the root node is a sharer of the region, which may be closer than the statically-mapped

home node in In-Network Coherence. Also, VTC utilizes coarse-grained tracking which

requires less storage overhead than the per-line, per-hop storage needed in In-Network

Coherence.

PATCH [111] reduces cache-to-cache transfer latency over a directory protocol by

leveraging direct requests. It presents a more elegant solution than persistent requests

which require a full broadcast in Token Coherence [90] through the token tenure mech-

anism. Token tenure causes requests that have not been activated to return tokens to

the home node after a bounded time. They leverage the prediction mechanisms from

destination set prediction [91] to issue direct requests as performance hints; however,

they rely on a best-effort multicast (predictive requests are given low priority) rather

than the guaranteed throughput of VCTM. Stale direct requests can be dropped in the

network; in their evaluation, they assume that requests in the network longer than 100

cycles are stale. A best-effort, low-priority multicast prevents these predictive requests

from interfering with critical traffic; however, the network resources (specifically buffers)

to support such a long time-out would be very costly but is not considered by their work.

VTC leverages VCTM to keep the bandwidth demands low and allows ordered snoop

delivery with low latency in our protocol.

UnCorq [127] broadcasts coherence requests on an unordered interconnect (e.g.

a mesh) and then orders snoop responses via a logical ring. Similarly, we utilize the

ordering implied by logical trees to maintain coherence; however, we order requests via

virtual trees rather than responses. And additional difference is the use of multicasting

instead of the full broadcast used by UnCorq. Greedy-Order bears some similarity to

UnCorq; requests are sent to sharers quickly without regard to order. UnCorq then or-

ders response via a logical ring, whereas Greedy-Order uses the owner to order requests.

Embedded ring protocols [125] leverage ring ordering properties but with a higher

bandwidth substrate (e.g. a mesh). With such protocols, modifications to the network
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must be made to ensure that coherence order is maintained. These protocols require that

a FIFO order on network links is maintained among coherence requests (or responses,

in the case of UnCorq) to the same address. This FIFO ordering could be enforced

through virtual channel restrictions or some other mechanisms; the router details are

missing from this work.

Trees have also been leveraged in previous proposals to build more scalable di-

rectories for large distributed shared memory machines [22, 104]. These trees are used

to reduce storage overhead but the directories still serve as the ordering points.

6.14.3 Hierarchical Coherence

Virtual Hierarchies [97] propose cache coherence variations targeting server con-

solidation workloads running on chip multiprocessors. One proposal utilizes two levels of

directories to provide fast local coherence and correct (and substantially slower) global

coherence (with the observation that global coherence is rare). The other proposal also

utilizes local directories for fast coherence within a server application, and a backing

broadcast protocol for global coherence. The alternative of utilizing a local broadcast

backed by a global directory protocol is mentioned but not explored. The VTC-Mcast-

Dir coherence mechanism in this work is similar to the latter case. Since VTC examines

a different hierarchy than what is proposed in Virtual Hierarchies, we do not provide

a direct quantitative comparison; however, we do highlight some features that further

distinguish VTC.

Some of the performance improvements of Virtual Hierarchies are predicated on

the ability of the scheduler to provide locality between communicating and sharing cores

or threads. Virtual Hierarchies will work when locality is not preserved; however, we

believe that the coupling of multicast coherence with a fast multicast substrate (VCTM)

results in superior performance. Virtual Tree Coherence will support flexible placement

and scheduling of communicating threads, whereas the benefits achieved with Virtual
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Hierarchies are predicated on physical proximity.

The actions of the second level directories in Virtual Tree Coherence are very

simple unlike directories in the virtual hierarchies protocols. Virtual Hierarchies requires

a very large number of states and transitions in the coherence protocol to accommodate

two levels of directories; this is not the case for Virtual Tree Coherence. The directories

contain the sharing list of each region that is cached anywhere on-chip, the identity of

the tree root for that region, and whether a block is owned on-chip or if memory is the

owner.

Many traditional multiprocessor systems have been built by aggregating small

bus-based SMP nodes [57,80,81,86]. These systems employ first level broadcast proto-

cols (on-node) and directory protocols for node-to-node coherence. The key difference

between VTC and these systems is the dynamic nature of the snooping layer of the

hierarchy for VTC. Also, with these physically hierarchical systems composed of mul-

tiple SMPs, the cost of utilizing the directory level of the coherence protocols is much

more expensive than local actions that remain on-chip. The Sun Wildfire [57] provides

a hierarchical affinity scheduler to optimize the snooping level of coherence; maintaining

physical locality is important given the cost of migration to another board. With VTC,

a node can be involved in virtual multicast layer with various sets of nodes rather than

a fixed set of processors.

Hierarchical coherence schemes that employ multiple levels of snooping protocols

such as the Encore Gigamax [144] have also been explored. In this system, the levels of

hierarchy are joined to form a tree, with each node having inclusive knowledge of the

cache blocks in all processors below it. Coherence requests are filtered so that lower

levels not caching blocks need not experience extra coherence traffic.

The Hierarchical DDM system [56] was a cache-only memory architecture that

employed snooping coherence for a set of processors, caches and attraction memories

and built a physical hierarchy of directories to maintain coherence. These directories



188

form a tree and racing requests are ordered at the lowest level directory that they have in

common. In this system, the directories maintain information about data that is stored

in attraction memories below it; the processors in this hierarchy are fixed whereas with

VTC, the set of processors connected via a virtual snooping tree is dynamic. As with

VTC, as requests traverse the interconnect toward the top node (root in our case),

bandwidth can become a bottleneck.

Pruning caches have been proposed by Scott and Goodman [116] as a means to

filter invalidation requests and combine acknowledgments at various levels of hierarchy.

They note that these messages can cause interconnect and performance bottlenecks so

they use pruning caches to only propagate necessary requests; the use of pruning caches

improves the scalability of both the protocol and the interconnect for large multipro-

cessor systems. The VCTM router targets this same problem by preventing redundant

messages from traversing the interconnect.

6.14.4 Network Designs Cognizant of Cache Coherence

In addition to relevant work in the domain of cache coherence, VTC also exam-

ines requirements that are placed on the interconnect to maintain correctness. These

requirements have also been examined in prior work. The Rotary Router [1,2] provides

mechanisms to maintain the ordering of coherence requests in the network and prevent

coherence deadlock within the interconnect. Buffer resource allocation is divided up

between dependent messages to prevent dependent messages from deadlocking in the

network due to unavailable resources. In-order delivery is guaranteed by forcing ordered

messages to traverse the same path.

Another common solution to avoiding deadlock and preventing message reordering

is to dedicate a separate virtual network to each class of coherence message (e.g. requests

vs. responses), where each virtual network has distinct virtual channels. This technique

is employed by the Alpha 21364 [100]. VTC forces the underlying network to deliver
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coherence requests in order by restricting a virtual tree to use a single virtual channel.

Isotach networks [112] are a class of networks that provide very stringent guar-

antees on message ordering and timing; this includes providing totally ordered mul-

ticasting. These networks can enforce atomicity and sequential consistency for cache

coherence protocols. Isotach networks provide ordering properties independent of any

particular topology.

6.15 Conclusion

This chapter proposes Virtual Tree Coherence which multicasts requests to shar-

ers to lower cache-to-cache transfer latency. The indirection to the directory is replaced

with an indirection to the tree root to order requests. The tree root is selected based

on sharing rather than statically assigned; as a result, the latency to order requests

may be reduced. The bandwidth of broadcasting or multicasting on-chip is prohibitive

as we move to large systems; to combat this problem, we couple VTC with VCTM

to reduce the bandwidth overheads and provide a high performance interconnect sub-

strate. To reduce the storage requirement, the global directories can be eliminated

and replaced with a global broadcasting mechanism. This enhances the likely scalabil-

ity of the VTC protocol. VTC improves not only read-shared misses (as is the case

with Circuit-Switched Coherence) but also improves stores and upgrades resulting in

significantly higher performance.

Both Circuit-Switched Coherence and Virtual Tree Coherence aim to improve

the performance of on-chip cache misses. Their ability to do so is tightly coupled with

the optimized interconnection network architectures described in Chapters 3 and 4.

Circuit-Switched Coherence relies on the hybrid circuit-switched network for perfor-

mance improvements; Virtual Tree Coherence relies on the virtual circuit tree multicas-

ting interconnect for both performance and correctness.

Interconnection network architectures offer substantial opportunity for perfor-
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mance improvement. However, when coupled with coherence protocols that leverage the

particular properties of the network, further opportunities are available as evidenced in

this dissertation with both Circuit-Switched Coherence and Virtual Tree Coherence.
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Chapter 7

Conclusion

In this chapter, we review the primary findings of this dissertation (Section 7.1).

Next we present future directions for interconnect and coherence protocol design based

on the work done in this dissertation (Section 7.2).

7.1 Contributions and Summary of Results

This dissertation explores the efficacy of interconnection network and cache co-

herence co-design. We proposed two designs that optimize for different communication

behavior while maintaining a general and flexible substrate that works well under a

variety of communication demands. The properties of the two interconnection networks

are then leveraged in the design of two coherence protocols.

This dissertation addresses two problems in the area of existing on-chip network

architectures. Router latency contributes significant overheads to communication as

designers move from dedicated wires to networks. Network latency has a large impact

on system performance. Furthermore, we observe frequent pair-wise sharing between

cores. Here, we contribute the Hybrid Circuit-Switched router architecture that removes

a significant portion of this latency for frequent pair-wise sharers.

Our second contribution is motivated by the observations that the multiple uni-

cast approach to multicasting results in significant throughput degradations in on-chip

networks. Furthermore, we present a comprehensive characterization of a variety of sce-
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narios that could benefit from on-chip multicast support. To address this problem, we

propose VCTM, low-cost multicast router solution that both reduces power consump-

tion and improves network performance and throughput.

With the two optimized interconnection networks described, we then go on to

design coherence protocols that leverage the characteristics of these networks. The third

contribution of this dissertation leverages the pair-wise circuits to improve coherence

latency. Circuit-Switched Coherence removes the directory indirection from the critical

path. The directory indirection interrupts the pair-wise relationship between cores.

By decoupling the data request from the ordering request, we are able to take further

advantage of our network circuits for performance improvements.

A significant challenge facing coherence protocol design is the tension between the

need for an ordered interconnect to simplify coherence and the need for an unordered

interconnect to provide scalable communication. To this area, we contribute a high

bandwidth ordering substrate by overlaying an ordering constraint on the trees of the

VCTM network in order to build a snooping-based multicast coherence protocol. Virtual

Tree Coherence multicasts requests to sharers to lower cache-to-cache transfer latency;

requests are ordered at a tree root rather than a directory home node.

7.2 Future Research Directions

The many-core evolution will continue to present researchers with opportunities

and challenges for many years to come. Throughout the course of this research, I have

explored various facets of both the interconnection network and the cache coherence

protocol for these many-core architectures. These are rich fields of research with many

areas yet to be explored. Specifically, we focus future research on scalability of both

the interconnect and cache coherence protocols, the potential for network hotspots due

to coherence traffic, and the further exploration of multicast and reduction network

designs.
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7.2.1 Scalability of the proposals in this dissertation

As larger scale systems are built and parallel applications emerge to run on them,

communication demands will continue to be a central component to providing perfor-

mance and scalability in these systems. The mechanisms proposed in this dissertation

will hold for a variety of communication scenarios but need to be evaluated against

these new applications to highlight further opportunities for improvement. Scalable

and tractable simulation infrastructures are of paramount importance to drive this re-

search forward; many of the results here are presented for only 16-core systems which

is a limitation of this research.

As mentioned in Chapters 3 and 4, both interconnect proposals are agnostic to

topology choice. These designs can be applied to more scalable topologies to improve

their scalability to the first order. VCTM currently relies on tree reuse to achieve

benefit; the number of possible trees will grow as 2n for systems with n nodes. Exploring

multicast routing techniques that do not rely on hardware tables is necessary to support

a large number of concurrent trees.

7.2.2 How to deal with network hotspots?

In both Circuit-Switched Coherence and Virtual Tree Coherence, there is the

potential to develop network hot spots. All cores could have the same pair-wise sharer

or all regions could have the same tree root node; more research is needed in routing

and resource allocation to deal with these hot spots as they arise. Selecting root nodes

that result in the smallest hop count forces many root nodes to the cores at the center

of the chip resulting in hot spots. Despite lower hop counts, these coherence ordering

actions experience longer latency to access the root and be forwarded to sharers in

turn. Root migration to reduce hot spots may improve overall network performance

and reduce ordering latency at the expense of additional complexity in the protocol.
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Quality of service mechanisms can be explored to improve latency and throughput to

these hotspots.

7.2.3 Further design of multicast and reduction networks

Through this dissertation research, support for on-chip multicasting has proven

quite promising in terms of both performance and power. In Chapter 4, we discuss a con-

tinuum of approaches to solving the multicast problem ranging from multiple unicasts

to a single multicast. Overall, we found that VCTM provides the most performance im-

provement and activity savings for designs that utilizes multicasts with large destination

sets. Exploring multicast network designs along this continuum may prove promising

for designs with small multicast destination sets.

The inverse type of communication, many-to-one communication also has signif-

icant applications for on-chip networks. This potential has not yet been explored and

hardware support is lacking; off-chip designs [115] have considered reduction and barrier

networks and there is reason to believe that they will be useful in on-chip environments.

Pruning caches [116] have been proposed in traditional multiprocessors to limit the

propagation of invalidation messages and to collect acknowledgments to alleviate the

pressure that many-to-one communication places on the network. The collection of

acknowledgment messages in directory protocols and the AMD Opteron protocols are

two examples. Reduction networks have other applications to cache coherence protocols

as well as applications to higher level programming constructs such as barrier imple-

mentations and map-reduce programs [36], making them an important area of future

study.
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