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I. Introduction

The specification of the stochastic process for
stock prices is an important assumption underly-
ing most equilibrium and option-pricing models
in modern finance. This is particularly true of the
continuous-time capital asset pricing models
where it is assumed that asset prices follow diffu-
sion processes with continuous sample paths
(see Merton 1973a; Breeden 1979; Grossman and
Shiller 1982). The extent to which the implica-
tions of these models generalize to discontinuous
sample paths is an unanswered question in
theoretical finance. However, the answer to this
question is of more than just theoretical interest
since accumulated empirical evidence appears to
be inconsistent with the continuous sample path
assumption (see Rosenberg 1972; Oldfield, Ro-
galski, and Jarrow 1977; Rosenfeld 1982).

One purpose of this paper is to provide some
answers to this question. We do this by extend-
ing Merton’s (1973q) intertemporal asset pricing
model, in the special case of a constant invest-
ment opportunity set, to include discontinuous
sample paths for asset prices. The constant in-
vestment opportunity set assumption is imposed
because we are interested in obtaining sufficient
conditions under which an instantaneous capital
asset pricing model (CAPM) results. The exten-
sion of our model to a stochastic opportunity set
is discussed briefly in the text.
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This paper investigates
an economy where
stock prices follow a
jump-diffusion process.
The first part of the
analysis derives a
sufficient condition
under which an instan-
taneous CAPM will
characterize equilib-
rium expected returns.
The sufficient condition
is that the jump com-
ponent of a stock’s
return must be ‘‘unsys-
tematic’’ and diversifi-
able in the market port-
folio. The second part
of the paper is an em-
pirical investigation of
the satisfaction of this
condition. The evi-
dence is seen to be in-
consistent with the
satisfaction of this hy-
pothesis, that is, the
market portfolio ap-
pears to contain a jump
component.
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A sufficient condition which implies an instantaneous CAPM is de-
rived under discontinuous sample paths. Loosely speaking, this
sufficient condition is that the jump component of an asset’s return is
diversifiable in the market portfolio. This sufficient condition is similar
to that obtained by Merton (1976) using Ross’s (1976) arbitrage pricing
model. Our analysis differs from his in that we consider an economy
with a finite number of assets. Under this sufficient condition, jump
risk does not receive ‘‘compensation’’ in terms of expected return in
equilibrium since it is diversifiable. The second part of our paper is an
empirical test designed to determine whether jump risk is ‘‘diversifi-
able.”” We do this by testing whether the market portfolio contains a
jump component.

The remainder of our paper is organized as follows. The next sec-
tion, Section 11, generalizes the instantaneous CAPM to include dis-
continuous sample paths. Section III empirically tests for the existence
of jump components in the market portfolio, and Section IV presents a
conclusion.

II. Theory

The following economy is similar to that contained in Merton (1973a4).
It is a pure exchange model with a finite number of assets and traders.
There is one consumption good which serves as numeraire. The basic
assumptions are:

1. No transaction costs, no taxes, unrestricted short sales, and
infinitely divisible asset shares (frictionless markets).

2. Traders act as price takers (competitive markets).

3. Trading takes place continuously at equilibrium prices.

4. There is a market for instantaneous borrowing and lending at a
risk-free rate r.

5. There are n risky assets whose prices satisfy'

i;!'— = qdt + 0,dZ; + (—-NKidt + wdY) j=1,...,n, (1)
J
where Si(7) is the price of asset j at time ¢; a;, 0y, \;, and K; are con-
stants; dZ; is a Wiener process; dY; is a Poisson process with parameter
\;; m; is the jump amplitude with expected value equal to K;; and dZ;,
dY;, and ; are independent.
6. Traders have homogeneous beliefs over {a;, oj, N;, K;, j = 1,
., nh
7. Traders’ preferences are represented by Eo{fI Ulc(t), tldt +
B[W(T), T1}, where c¢(¢) is consumption at time ¢, U is a von Neumann—

1. The random variable m; must satisfy certain technical restrictions in order that a
solution to (1) exists, see Kushner (1967).
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Morgenstern utility function which is strictly increasing and strictly
concave in c(¢f) and twice differentiable, B is strictly increasing and
strictly concave in W(T), W(T) is wealth at time T, and Ey(-) is the
expectation operator conditional upon the information available at time
0.

Assumptions 1-4, 6, and 7 are standard in the literature; see Merton
(1973a) for a detailed discussion. Assumption 5 is the key assumption
in our analysis.

It is convenient at this time to rewrite assumption 5 in an alternative
but equivalent form which isolates systematic and unsystematic risk
components. Consider the diffusion part of assumption 3,

dDj = (det + O'dej, J = 1, [P (N (2)
Using an analogous argument to Ross (1978, p. 272), expression (2)

implies that there exists {¢;, f;, g, d¥, dn;}j = 1, ..., n, such that
dDj = (det + f,d\l} + gjd"f]j, (33)
where f? + g? = o7; ds, dm; are Wiener processes; E(dydn;) = 0,j = 1,

., n; and '
D=1 dfgdn) =0, doy > (3b)
Jj=1 Jj=1 Jj=1

It is always possible to decompose a finite number of normal random
variables into a common factor, di, and residuals, dv;, which them-
selves are normally distributed. The key property of normal returns
utilized is that a covariance of zero implies statistical independence.
This same argument is contained in Fama (1973). Note that dis, dm; will
be independent of dY; and =; by assumption 5. This decomposition
gives dis the interpretation of being the systematic risk factor and dn;
the interpretation of being the unsystematic risk factor. Substitution of
expression (3) into (1) gives assumption Sa: There are n risky assets
whose prices satisfy

ds;
S;

= odt + f,dY + gidn; + (—\Kdt + wdY), j=1,...,n,
)

where S(?) is the price of asset j at time ¢; o, f;, gj, N;, K; are constants;
d{, dn; are Wiener processes; dY; is a Poisson process with parameter
Nj; m; is the jump amplitude with expected value equal to Kj; and dis,
dnj, dY;, m; are independent.

The jump component in expression (4), (—\;Kdt + mdY;), implies
that asset returns can have discontinuous sample paths. This general-
izes existing models. However, we also assume a constant (determin-
istic) investment opportunity set. This part of the assumption can be
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slightly weakened to any condition which implies that the derived util-
ity of wealth function is state independent. This is discussed later in the
text.
Under assumptions 1-7, the trader’s consumption/portfolio decision
is given by
T

max  E, {J Ule(?), fldt + BIW(T), T]}
{c(2),wj(r) forallj} 0

subject to

Wt + 8) = W) + j

t

e {z W, () WOOLS, (/S (x) — r(x)dx]}
r+3 ! ®)
+ L [r(x)W(x) — c(x)]dx

and W(0) = W,, where wj(x) is the percentage of the risky asset port-
folio held in asset jat time x,j =1, ..., n.

The main theorem of this section gives a sufficient condition for two-
fund separation and therefore an instantaneous CAPM.? The sufficient
condition is that the jump component is ‘‘nonsystematic’’ risk and
diversifiable. Although not done here, this theorem could be general-
ized to consider multiple fund separation. Let the market portfolio’s
weights be given by (my, . . . , m,), where Z}_; m; = 1.

THEOREM: Given assumptions 1-7, if

> migdn: — NKdt + mdY) = 0 )
i=1
and X7_; ma; > r, then a; — r = B{a,, — r), where a,,dt = E(Z/_,
deSJ/Sj) and n n
Bi = COVt(dS,'/Si, z midS,'/S,')/Var(z m,dS,/S,)
i=1 i=1

Proor: Let us solve the dynamic stochastic programming problem
given in expression (5). It is convenient to define an indirect utility (or
Bellman) function, J, by

T
JIW(), 1] = max E, { j Ule(s), 11dt + BIW(T), T]}. %
[e(®,wi (O] U

2. We define two-fund separation as follows (see Ross 1978): (r, dS,/S, . . . , dS,/S,)
exhibits two-fund separation if there exist two mutual funds: (8o, . . . , B.), =f-0 Bo = 1
and (Yo, . . . , ¥,), Zf=o ¥; = 1 such that for all other portfolios (yo, - . . , V), Zr=1y; = 1
and for all von Neumann-Morgenstern utility functions, v, which are increasing and
concave, there exists (cy, ¢;) such that §; = ¢, + ¢,B8;, wherei =0, ...,n,¢; +c, = 1,

and

E{v(&or + ; 3jds,-/sj)} > E{v(yor + ; y,ds,/sj)}.
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We assume the existence of both the optimal controls satisfying (5) and
the existence of an indirect utility function which is twice continuously
differentiable (see Kushner [1967, chap. 4] for more details). It is rigor-
ously proven in Kushner (1967, chap. 4) that necessary conditions for
the optimal controls are obtainable by solving

0 = max {Ulc@®), ] + AJ[W(), t]} ®
Le@®,wx0)]

where AJ[W(¢), 1] is defined by>
lsimo(Et{J[W(t + 3),t + 8] — JIW(®, t1}/d — AJ[W(®), t]) = 0.

This optimization problem can be solved sequentially as in

0 = max {U[c(®), t] + max AJ[W(®), t]} )
{c@®} {wit

where maxg, ) AJ[W(2), t] represents the trader’s portfolio decision at

time ¢ given c(z).

It can be shown that J[W(¢), ] is strictly increasing and strictly
concave in W(7).* Given this fact, AJ is analogous to an expected utility
function which is strictly increasing and concave in W(¢ + 8) as 8—0 or
dW (see n. 3). Consequently, given that AJ[W(¢), ¢] is state independent
(except wealth),> we can apply Ross’s (1978, theorem 2, n. 10) mutual
fund theorem to the portfolio decision in (9).

The condition given in the hypothesis of the theorem guarantees
that (r, dS\/S1, . . . , dS,/S,) exhibits two-fund separation. Given that
(r, dSi/Sy, . . ., dS,/S,) exhibits two-fund separation, the risky mutual
fund is the market portfolio. The proof of this statement is straight-
forward. Given homogeneous beliefs, assumption 6, everyone holds
the same risky asset portfolio. In equilibrium, assumption 3, the only
way this can happen is if this portfolio is the market portfolio.

3. For the stochastic process given in assumption 5,

8] 8 %
A = D o _
B0 = 2+ = [Z. WAOW(@ ey — 1) + rW) c(r)]

o [z > wiow W) UJ] + > NELIWO)

J=1i=1 j=1
+ w;(OW()m;, 11 — JIW(Q), 1}

See Kushner (1967, p. 18) or Dreyfus (1965, p. 224).

4. The proof of this assertion is identical to a proof contained in Cox, Ingersoll, and
Ross (1978) for an analogous proposition.

5. The necessary condition to apply Ross (1978) is that A(J) is state independent. If {c;,
o;, N, W} is dependent on a state vector I(£), then A{J[W(?), t, I(#)]} would depend on I(¢) (in
general). Other sufficient conditions which give state independence are (i) logarithmic
utility (see Kraus and Litzenberger 1975) and (ii) w; = 0 and di(¢f) independent of dZ; (see
Merton 1973a, Fama 1970). i
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Finally, an argument adapted from Ross (1978, p. 275) combined
with the above completes the proof. Q.E.D.

The theorem gives a sufficient condition for the instantaneous CAPM
even with asset prices having discontinuous sample paths. Using as-
sumption Sa, the interpretation that the random component (g:dm; —
NKdt + wdY;) represents unsystematic risk is justified. The hy-
pothesis guarantees that the risk is diversified away in the market
portfolio.®

The above analysis is for a finite asset economy. Analogous results
can be obtained using Ross’s (1976) arbitrage pricing theory.” Merton
(1976, p. 136) has shown the sufficiency of the analogous condition.
However, under the APT a mutual fund theorem does not obtain be-
cause one does not need state-independent indirect utility functions.

Examining the sample path of the market portfolio can determine
whether the hypothesis of the theorem is satisfied. This is the purpose
of the next section of the paper.

III. Empirical Methodology and Results

This section examines the market portfolio’s sample path to see if it
contains a jump component. If no jump component is present, then this
would be consistent with the hypothesis of the previous theorem and
the satisfaction of an instantaneous CAPM. This section performs the
following hypothesis test: Hy, jump risk diversifiable as in condition
(6); H4, jump risk nondiversifiable.

To perform this hypothesis test, we will examine the sample path of
the market portfolio’s return. To develop the testing methodology,
note that under expression (4) the market portfolio’s return dynamics
are given by

AL > gt + (Z mif)db + 2 migdn, ~ MKdi + wdY),
Jj=1 j=1

=1
(10

where M = 37—, m;S;. Under the null hypothesis, expression (10) re-
duces to ‘

aM
- adt + odb (11)

6. Two other sufficient conditions which will yield an instantaneous CAPM are (i) m;
=0or\; =0, forall i, and (i) mdY; = fndY, for all i. Condition i is the condition givenin
Merton (19734), and condition ii is where the jump component itself represents system-
atic movements across all stocks.

7. Under Ross’s (1976) standard assumptions and our assumptions 1-7, with assump-
tion 5 generalized to make {o;, o;, \;, K;} dependent on a state vector I(f) it can be shown
that if m,dY; = fmdY, for all i, and E(g;dn)(gdn,) = 0, where i # j, then the APT holds
and jump risk is compensated. If w,dY; > frdY and E(gidn; + dp;)(gdn; + dp) = 0,i #,
where dp; = —\Kdt + mdYi, then the APT holds and jump risk is diversifiable. The
independence of the unsystematic risk is the key condition.
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where a = 37| m;a; and o = 27_1 mf;. Under the alternative hy-
pothesis, expression (10) reduces to

M

W dt + ody + dq, (12)

where dg = wdY represents a Poisson process with parameter \, 7w =
jump amplitude with expected value equal to K, and o’ = o — \K.

To complete the methodology, another hypothesis is added to (12),
that is, (w) has a lognormal distribution with parameters (a, b%). This
assumption is added in order that the maximum likelihood estimation
technique as developed in Rosenfeld (1982) can be used to estimate the
parameters of equations (11) and (12).

For ease of reference, we repeat the hypothesis to be tested:

Hy, jump risk diversifiable,

dTM = adt + ody; (13)

Hy, jump risk not diversifiable,

M dt + ody + dg: (14)
M
and (m) is distributed lognormal (a, 5?).
The likelihood function corresponding to equation (15) is given by

—N\h

N
L, = ;,n_N/z HZO
iz

i=1;

_ M; _ an2
S Iy Sral A Y
@k + b2 P 20%h b5 T

where N is the number of observations, 4 is the increment of time
between observations, p = o — 0%2,and 0 = a — b2, Alternatively,
the likelihood function corresponding to equation (13) is given by

i

_ _ 2
L. = ﬁ 1 exp (n M;-, w)
S (2ma’h)» 20%h '

To formally test the null versus the alternative hypothesis, a likelihood
ratio test can be used: A = —2 (In L. —InL,), where L. represents the
likelihood value for the constrained density function (i.e., the null hy-
pothesis, eq. [13]) and L, represents the likelihood function for the
unconstrained density function (i.e., the alternative hypothesis, eq.
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[14]). The likelihood ratio statistic, A, is distributed asymptotically X2
with 3 df.®

The empirical tests were performed on two market indices. The first
index consists of daily observations for a value weighted portfolio of all
stocks on the New Year Stock Exchange and the American Stock
Exchange from July 1962 to December 1978. Both of these market
indices were taken from the CRSP tapes and include the reinvestment
of all dividends.

Table 1 presents estimates of the parameters of the diffusion-only
process for different observation intervals and time periods. The
asymptotic standard errors of the estimates are in parentheses below
the point estimates. The results suggest that the ex post average return
and volatility of the market are not constant over time. The overall
standard deviation of return on the market as measured by the New
York Stock Exchange value-weighted index over a 50-year period is on
the order of 20% (V.04), while over the last 20 years the volatility has
decreased to 14% (V.019).

Some evidence relating to whether the market portfolio contains a
jump component is given by the empirical distributions in table 2. For
the daily market index, there are 2 out of 4,133 observations that ex-
hibit a daily return of greater than 5%. This is a movement of approxi-
mately 5 S.D., which makes these two observations prime candidates
for jumps. For the monthly observation NYSE index, there are 14 out
of 633 observations which have larger than 15% movements (1.2 S.D.)
in a given month. This in itself does not indicate a significant jump
component for this market index.

In table 3 estimates are given for the combined diffusion and jump
process. A simple -test of the jump parameter indicates that for some
of the daily sample periods a statistically significant jump component
exists. This is confirmed by the likelihood ratio test. All of the daily
sample periods rejected the null hypothesis of a continuous sample
path process at a 99% significance level.

It is interesting to observe that when daily data are aggregated to
either weekly or monthly data, the jump process appears to disappear.
It may be that measurement errors associated with daily data induce

8. The significance levels for this distribution are given below:

Probability of Rejecting

the Null Hypothesis x2 Value
S 2.37
75 4.11
9 6.25
.95 7.81

.99 11.35
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TABLE 1 Diffusion Process Market Indices
No. of

Index Observations fi é? InL,

MKT 4,133 .0009 .019 14324.6
(.039) (.0004)

MKT1 800 226 .0087 3082.9
(.06) (.0004)

MKT2 800 .166 012 2962.9
.07 (.0006)

MKT3 800 .02 .019 2758.8
(.09) (.001)

MKT4 800 —.056 .035 2528.9
(.12) (.0017)

MKTS5 933 .003 .083 3275.1
(.145) (.019)

MKTM 198 .076 .02 347.6
(.035) (.002)

MKTW 860 .076 .02 2109.4
(.036) (.001)

MKTW1 430 .084 .018 1104.5
(.047) (.001)

MKTW2 430 .068 .027 1014.5
(.057) (.002)

NYSE 633 .078 .04 896.6
(.028) (.002)

NYSEI1 317 .068 .064 380.3
(.049) (.005)

NYSE2 316 .088 .019 571.9
(.027) (.001)

Note.—Value-weighted indices including all stocks on the New York Stock Exchange and the
American Stock Exchange: MKT = daily observations from July 1962 to December 1978; MKT1 =
daily observations from July 1962 to August 1965; MKT2 = daily observations from September 1965
to October 1968; MKT3 = daily observations from November 1968 to December 1971; MKT4 =
daily observations from January 1972 to March 1975; MKTS = daily observations from April 1975 to
December 1978; MKTM = monthly observations from July 1962 to December 1978; MKTW =
weekly observations from July 1962 to December 1978; MKTW1 = weekly observations from July
1962 to September 1970; MKTW2 = weekly observations from October 1970 to December 1978.

Value-weighted indices including all stocks on the New York Stock Exchange: NYSE = monthly
observations from January 1927 to December 1978; NYSE1 = monthly observations from January
1927 to December 1952; NYSE2 = monthly observations from January 1953 to December 1978.

Standard errors are in parentheses below the point estimates.

“‘jumps’’ in the market return. In daily data the failure to adjust for
weekends and holidays could lead to a false determination of the exis-
tence of a jump process. The variance of return associated with these
observations (i.e., weekends and holidays) is greater than average,
thereby causing movements on these days to appear like jumps. Since
we know the length of time between successive observations, h;, we
could simply normalize the actual return data by dividing each obser-
vation by k;. However, empirical evidence concerning the behavior of
market returns when the stock exchange is closed (see Granger and
Morgenstern 1970) indicates that during this period the volatility is
decreased. As such, only a partial adjustment is required for the num-
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TABLE 2 Market Indices Empirical Distributions
No. of Observations Range (%) Number Percentage
Market index: value weighted including all stocks on the New York Stock Exchange and
the American Stock Exchange (maximum = 9.3%, minimum = —3.5%)
4,133 daily observations:
July 1962—-December 1978 >5 2 0
4t05 3 .1
3to4 7 2
2to3 38 9
1to2 221 5.3
Oto1l 1,963 47.5
—1t00 1,583 38.3
—2to —1 279 6.8
—3to -2 32 .8
—4to -3 4 .1
—5to —4 0 0
< -5 0 0

Value weighted including all stocks on the New York Stock Exchange (maximum =
38.5%, minimum = —29.1%)
633 monthly observations:

January 1927-December 1978 >15 7 1.1
12 to 15 8 1.3
9to 12 8 1.3
6t09 46 7.3
3to6 139 22
0to3 181 28.5
-3to0 125 19.7
—-6to —3 65 10.3
—9to —6 25 3.9
—12to -9 14 2.2
—15to —12 8 1.3
<-15 7 1.1

ber of days during which the exchange is closed. We have arbitrarily
chosen a square root adjustment (i.e., from Friday to Monday is 3
days, so h; = V3/360).°

In table 4 new estimates are presented for the daily market returns
corrected for the measurement errors. The results indicate that there
are measurement errors and they do tend to induce jumps. Even after
the correction procedure, however, there still appears to be a signifi-
cant jump component in all of the daily subperiods, except (MKT3).

Since our correction procedure is dependent on the type of adjust-
ment used (i.e., square root) an alternative test would be to eliminate
all observations which span weekends and/or holidays. The results for
this test are presented in table 5. Again, a significant jump component
still persists in the daily subperiods. Although there appears to be
measurement error associated with weekends and holidays, after ad-

9. A square root adjustment seemed to fit the empirical results in Granger and
Morgenstern (1970). For a formal treatment of the problem, the adjustment factor could
be estimated along with the other parameters of the stochastic process.
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justment the data are still inconsistent with the null hypothesis. There
appears to be a jump process operating, but the magnitudes of the
jumps are very small. In fact, for (MKT2, MKT4, MKTY) the es-
timated X is insignificant from zero.

In summary, after adjusting for weekends and holidays, the null
hypothesis is rejected for daily data. However, the magnitudes of the
jumps are small. In the weekly and monthly data, the null hypothesis
cannot be rejected. A plausible reason for that is that with the weekly
and monthly observation intervals, the inclusion of weekends and holi-
days within the interval tends to cover up (hide) the small jump compo-
nents. With daily observations, when one includes weekend and holi-
day returns just the reverse occurs (i.e., jumps are accentuated). This
is consistent with the reduction of the likelihood ratios in tables 4 and 5
after adjusting for weekends and holidays.

IV. Conclusion

This paper both develops and tests sufficient conditions for an instanta-
neous CAPM when stock returns follow a jump-diffusion process.
Based on daily returns, our conclusions are that the market portfolio
contains a jump component although its magnitude is small. When
measured over larger intervals in time (weekly or monthly intervals),
the presence of weekends and holidays tends to cover up the small
jump component. The economic implication is that jump risk is not
diversifiable and an instantaneous CAPM (as given by the theorem in
Sec. II) will not hold.

References

Breeden, D. 1979. An intertemporal asset pricing model with stochastic consumption and
investment opportunities. Journal of Financial Economics 7:265-96.

Cox, J.; Ingersoll, J.; and Ross, S. 1978. A theory of the term structure of interest rates.
Working paper. Stanford, Calif.: Stanford University, Graduate School of Business.

Dreyfus, S. E. 1965. Dynamic Programming and the Calculus of Variations. New York:
Academic Press.

Fama, E. F. 1970. Multiperiod consumption-investment decisions. American Economic
Review 60 (March): 163-74.

Fama, E. F. 1973. A note on the market model and the two-parameter model. Journal of
Finance 48:1181-85.

Granger, L., and Morgenstern, O. 1970. Predictability of Stock Market Prices. Lexing-
ton, Mass.: Heath.

Grossman, S., and Shiller, R. 1982. Consumption correlatedness and risk measurement
in economies with non-traded assets and heterogeneous information. Journal of Finan-
cial Economics 10:195-210.

Jensen, M. C. 1972. Capital markets: Theory and evidence. Bell Journal of Economics
and Management Science 3:357-98.

Kraus, A., and Litzenberger, R. H. 1975. Market equilibrium in a multiperiod state
preference model with logarithmic utility. Journal of Finance 30 (5): 1213-27.

Kushner, H. J. 1967. Stochastic Stability and Control. New York: Academic Press.



Jump Risks 351

Merton, R. C. 1971. Optimum consumption and portfolio rules in a continuous-time
model. Journal of Economic Theory 3:373-413.

Merton, R. C. 1973a. An intertemporal capital asset pricing model. Econometrica 41 (5):
867-87.

Merton, R. C. 1973b. Theory of rational option pricing. Bell Journal of Economics 4:141—
83.

Merton, R. C. 1976. Option pricing when underlying stock returns are discontinuous.
Journal of Financial Economics 3:125-44.

Oldfield, G.; Rogalski, R.; and Jarrow, R. 1977. An autoregressive jump process for
common stock returns. Journal of Financial Economics 5:389-418.

Rosenberg, B. 1972. The behavior of random variables with nonstationary variance and
the distribution of security prices. Working Paper 2. Berkeley: University of Califor-
nia, Berkeley, Research Program in Finance.

Rosenfeld, E. 1982. Stochastic processes of common stock returns: An empirical exami-
nation. Working paper. Boston: Harvard Business School.

Ross, S. A. 1976. The arbitrage theory of capital asset pricing. Journal of Economic
Theory 13:341-60. ‘

Ross, S. A. 1978. Mutual fund separation in financial theory: The separating distribu-
tions. Journal of Economic Theory 17:254—86.





