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Abstract. We study the 3-dimensional Strip Packing problem: Given a list of n
boxes b1, . . . , bn of the width wi ≤ 1, depth di ≤ 1 and an arbitrary length �i.
The objective is to pack all boxes into a strip of the width and depth 1 and infinite
length, so that the packing length is minimized. The boxes may not overlap or be
rotated. We present an improvement of the current best asymptotic approximation
ratio of 1.692 by Bansal et al. [2] with an asymptotic 3/2 + ε-approximation for
any ε > 0.
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1 Introduction

We study the 3-dimensional Strip Packing problem: Given a list of n boxes b1, . . . , bn
of the width wi ≤ 1, depth di ≤ 1 and an arbitrary length �i. The objective is to pack
all boxes into a strip of the width and depth 1 and infinite length, so that the packing
length is minimized. The boxes may not overlap or be rotated.

3-dimensional Strip Packing is known to be NP-hard as it is the 2-dimensional
counterpart. Thus, unless P = NP , there will be no polynomial time approximation
algorithm that computes a packing with the optimal packing length. Therefore, we study
approximation algorithms that have polynomial running time. An asymptotic approx-
imation algorithm A for a minimization problem X with approximation ratio α and
additive constant β is a polynomial-time algorithm, that computes for any instance I of
the problem X a solution with A(I) ≤ α ·OPT(I) + β, where OPT(I) is the optimal
value of the instance and A(I) is the value of the output. If β = 0, we call α also abso-
lute approximation ratio. A family of asymptotic approximation algorithms with ratio
1 + ε, for any ε > 0 is called an APTAS .

Known results 3-dimensional Strip Packing is a generalization of the 2-dimensional
Bin Packing Problem: Given is a list of rectangles r1, . . . , rn of the widths wi and the
heights hi and an infinite set of 2-dimensional unit-squares, called bins. The objec-
tive is to pack all rectangles axis-parallel and non-overlapping into the bins in order
to minimize the bins used. Rotations of the rectangles are not allowed. This problem
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is a special case of the 3-dimensional Strip Packing problem, where the lengths of all
boxes are 1. Thus, the lower bounds for 2-dimensional Bin Packing hold also for our
problem. In the non-asymptotic setting, there is no approximation algorithm strictly
better than 2, otherwise the problem Partition can be solved in polynomial time. In
the asymptotic setting it is proven that there is no APTAS for this problem, unless
P = NP by Bansal et al. [1]. This lower bound was further improved by Chlebík &
Chlebíková [3] to the value 1 + 1/2196. On the positive side there is an asymptotic
3.25 [9], 2.89 [10], and 2.67 [11] approximation for our problem. More recently an
asymptotic 2-approximation was given by Jansen and Solis-Oba [6] that was improved
by Bansal et al. [2] to an asymptotic 1.692-approximation.

New results We present a significant improvement of the current best asymptotic ap-
proximation ratio:

Theorem 1. For any ε > 0 and any instance I of the 3-dimensional Strip Packing
problem that fits into a strip of length OPT3D(I), we produce a packing of the length
A(I) such that

A(I) ≤ (3/2 + ε) ·OPT3D(I) + ε+ f(ε, �max),

where �max is the length of the largest box in I and f(ε, �max) is a function in ε and
�max. The running time is polynomial in the input length.

Techniques In our work, we use a new result of the 2-dimensional Bin Packing Problem.
In [5,12], there is the following result given:

Theorem 2. For any ε > 0, there is an approximation algorithm A which produces a
packing of a list I of n rectangles in A(I) bins such that

A(I) ≤ (3/2 + ε) ·OPT2D(I) + 69,

where OPT2D(I) is the optimal number of bins. The running time of A is polynomial
in n.

There it is proven, that it is possible to round/enlarge some rectangles, so that there
are only a constant number of different types and an optimal packing of the enlarged
rectangles fit into roughly (3/2 + ε) · OPT2D(I) bins. Since there are only a constant
number of different types of rectangles, a solution of them can be computed by solving
an (Integer) Linear Program. In our work we present a non-trivial method to use these
results for the 3-dimensional Strip Packing problem. Therefore, we adopt also some
techniques from [6] to transform an instance of the 3-dimensional Strip Packing prob-
lem to an instance of the 2-dimensional Bin Packing problem. The main difficulty is to
obtain a solution of our problem from the solution of the 2-dimensional Bin Packing
problem.

2 2-Dimensional Bin Packing

As mentioned above, we use the results of the work [5,12] of the 2-dimensional Bin
Packing problem. Thus, we give here a brief overview over the results obtained in this
work.
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2.1 Modifying Packings

We assume that we have an optimal solution in OPT2D bins of an arbitrary instance
of the 2-dimensional Bin Packing problem given. We denote by a(X), w(X) and h(X)
the total area, width and height of a set X of rectangles. In the first step we find a value
δ and divide the instance into big, wide, long, small and medium rectangles. We use
therefore the following result given in [5,12], where ε′ is in dependency of the precision
of the algorithm specified later. A formal proof is given in the full version.

Lemma 1. We find a value δ, so that ε′2
2/ε′

< δ ≤ ε′ and 1/δ is a multiple of 24 holds
and all rectangles ri of the width wi ∈ [δ4, δ) or the height hi ∈ [δ4, δ] have a total
area of at most ε′ ·OPT2D.

The value 1/δ has to be a multiple of 24 for technical reasons, which we will not discuss
further. A rectangle is big when the width wi ≥ δ and height hi ≥ δ holds, it is wide
when the width wi ≥ δ and the height hi < δ4 holds, when the width wi < δ4 and the
height hi ≥ δ holds it is long, when the width wi < δ4 and height hi < δ4 holds it
is small. If none of these conditions holds, i.e. at least one side is within [δ4, δ) it is a
medium rectangle. These medium rectangles are packed separately.

Our optimal solution can be transformed so that the widths and the heights of the big
rectangles are rounded up to at most 2/δ4 different types of rectangles (cf. Figure 1(a)).
We denote the types by B1, . . . , B2/δ4 . The wide rectangles are cut in the height. The
widths of the resulting slices of the wide rectangles are rounded up to at most 4/δ2

values. The set of the slices of the wide rectangles of the different widths are denoted
by W1, . . . ,W4/δ2 . Vice versa, the long rectangles are cut in the width and the heights
of the resulting slices are rounded up to at most 4/δ2 different values. The sets of these
slices of different heights are denoted by L1, . . . , L4/δ2 . The slices are packed into
wide and long containers. There are at most 6/δ3 wide and long containers in each
bin. The wide containers have at most 4/δ2 different widths and the containers of one
certain width have at most 1/δ4 different heights. Thus, there are at most 4/δ6 different
types. The same holds vice versa for the long containers. We denote the sets of wide
containers of the different widths by CW1, . . . , CW4/δ2 , each set CWi is separated
in sets CWi,1, . . . , CWi,1/δ4 of containers of different heights. The sets for the long
containers of the different heights are denoted by CL1, . . . , CL4/δ2 and each set CLi

is also separated into sets CLi,1, . . . , CLi,1/δ4 of different widths. The small rectangles
are cut in the width and height and are packed into the wide and long containers. The
total number of bins without the medium rectangles is increased with these steps to at
most (3/2 + 22δ)OPT2D + 53 bins.

2.2 2-Dimensional Bin Packing Algorithm

After showing the above described modification steps of any optimal solution, it is pos-
sible to compute a solution with only a small increased number of bins. Therefore, all
necessary values are guessed via an enumeration step. It is possible to find the value
OPT2D, the widths and the heights of the different types of big rectangles and long and
wide containers, the different widths of the wide rectangles and the different heights
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2/δ4different types
of big rectangles

wide rectangles are packed fractional in
wide containers; there are 4/δ2 different widths

4/δ6different types
of wide containers

long rectangles are packed fractional in
long containers; there are 4/δ2 different heights

small rectangles are packed fractional
in long and wide containers

4/δ6different types of long containers

(a) Packing in one bin

δ4

W2
cut rectangles have
height at mostδ4

h(W1)

W1

h(W2)

(b) Greedy assignment of wide rectangles.
Grey rectangles are packed separately.

Fig. 1. Structure of a packing in one bin and assignment of wide rectangles

of the long rectangles in polynomial time in the input length. Note that it is not be-
forehand clear to which values a rectangle is rounded, i.e. to which set it belongs. We
only know that it is possible to enlarge/round it to one of the types. Thus, we have to
assign each big, wide and long rectangle to one of the sets. The cardinality of the sets
of big rectangles and containers are also guessed via an enumeration step. Whereas we
guess approximately with an error of δ4 the total heights of each set of wide rectangles
h(Wi) and the total width of each set of long rectangles w(Li). Since there are only
fractions of these rectangles in these sets, it is not possible to enumerate the cardinality
of them. In the following we assume that we are in the iteration of the right guess of
all above described values. The big rectangles are assigned via a network flow algo-
rithm to the sets. The wide rectangles are sorted by their widths and greedily assigned
to one of these groups, beginning with the widest group, so that the total heights h(Wi)
of each set is strictly exceeded (cf. Figure 1(b)). With the right approximate guess of
the total heights of each group, we can ensure that all rectangles are assigned to one
group. While removing the rectangles of the total height at most 3δ4, we secure that the
total height of the wide rectangles is below h(Wi) and thus they fit fractionally into the
containers. We denote the set of rectangles that are rounded to the ith width by Wi. We
need 1 additional bin for the removed rectangles of all sets. We do the analogous steps
for assigning the long rectangles to the groups. At this moment, the big, long and wide
rectangles are assigned to one group and are rounded. The wide rectangles are packed
into the wide containers via a linear program, that is similar to the linear program in
[7]. We pack the wide rectangles fractionally into the containers of a certain width.
Here C

(�)
j represents a configuration of wide rectangles that fit into a wide container of

the set CW�. The configurations are all possible multi-sets of wide rectangles that have
a total width of at most the width of the container. There is only a bounded number q
of possible configurations. a(i,C(�)

j ) represents the number of wide rectangles in the

set Wi that are in configuration C
(�)
j . The variable x

(�)
j gives the total height of one
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configuration in the container. LP (1) :

q(�)∑

j=1

x
(�)
j = h(CW�) � ∈ {1, . . . , 4/δ2}

t∑

�=1

q(�)∑

j=1

a(i,C
(�)
j ) · x(�)

j ≥ h(Wi) i ∈ {1, . . . , 4/δ2}

x
(�)
j ≥ 0 j ∈ {1, . . . , q(�)}, � ∈ {1, . . . , 4/δ2}

The first line secures, that the total height of the containers of a certain width is not
exceeded by the configurations, while the second line secures, that there is enough area
to occupy all wide rectangles. Since we have at most 2·4/δ2 conditions, a basic solution
has also at most 8/δ2 non-zero variables, i.e. there are only 8/δ2 different configurations
in the solution. This and the fact that there is a bounded number of containers allows
us to generate a non-fractional packing of the wide rectangles into the containers. The
same is done with the long rectangles that are packed in the long containers. The small
rectangles are packed with Next-Fit-Decreasing-Height by Coffman et al. [4] in the
remaining gaps, by losing only a small amount of additional bins.

Finally, the big rectangles and wide and long containers are packed with an Integer
Linear Program ILP (1):

min

q∑

k=1

xk

s.t.

q∑

k=1

b(i, Ck) · xk ≥ nb
i i ∈ {1, . . . , 2/δ4}

q∑

k=1

w(i, j, Ck) · xk ≥ nw
i,j i ∈ {1, . . . , 4/δ2}, j ∈ {1, . . . , 4/δ6}

q∑

k=1

�(i, j, Ck) · xk ≥ n�
i,j i ∈ {1, . . . , 4/δ2}, j ∈ {1, . . . , 4/δ6}

xk ∈ N k ∈ {1, . . . , q}

Therefore, we build also configurations Ck of rectangles that fit into one sole bin.
Since we have a constant number of rectangles/containers in one bin and only a constant
number of different types, the number of configurations q is also only a constant. nb

i

represents the total number of big rectangles in the set Bi, and b(i, Ck) gives the number
of big rectangles in the set Bi that are in configuration Ck. The analogous values for
the containers are represented by nw

i,j and w(i, j, Ck) for the wide containers of type
CWi,j and n�

i,j and �(i, j, Ck) for the long containers of the type CLi,j . This Integer
Linear Program computes a value of at most (3/2 + 22δ)OPT2D + 53 bins.
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3 3-Dimensional Strip Packing

After giving the overview of the 2-dimensional Bin Packing algorithm we start with
the presentation of our 3-dimensional Strip Packing algorithm. We start also with an
optimal solution of an arbitrary given instance and show how to modify this. Some of
the techniques used here are also used in [6]. Afterwards, we present our algorithm.
We denote by vol(X) the total volume of a set X of boxes. Furthermore, we call the
rectangle of the width wi and height di of a box bi by the base of bi.

3.1 Modifying Packings

We first modify an optimal solution of an instance for our problem that fits into a strip
of the length OPT3D. We scale the lengths of the whole instance by the value OPT3D,
the total length of the optimal packing is thus 1. Afterwards, we extend the lengths
of the boxes to the next multiple of ε′/n for a given ε′ > 0. This enlarges the strip
by at most ε′, since each box is enlarged by at most ε′/n and there are at most n
boxes on top of each other. The length of the strip is 1 + ε′. Furthermore, this allows
us to place the boxes on z-coordinates that are multiples of ε′/n. A formal proof of
this fact is already given in [6]. In the next step, we cut the strip horizontally on each
z-coordinate that is a multiple of ε′/n. Each slice of length ε′/n of the packing is
treated as one 2-dimensional bin. Note that each box intersects a slice of the solution
completely, or not at all. Each slice of a box bi is a copy of its base, i.e. a rectangle of
the width wi and height di. It follows that we obtain from the optimal solution of the 3-
dimensional Strip Packing problem a solution of a 2-dimensional Bin Packing instance
in (1 + ε′) · n/ε′ = n/ε′ + n bins. We denote by OPT2D ≤ n/ε′ + n the minimal
number of bins used in an optimal packing of this 2-dimensional Bin Packing instance.

We use the modification steps of the 2-dimensional Bin Packing as described above.
The medium rectangles/boxes are discarded. Thus we have a packing into one strip of
the total length:

((3/2 + 22δ)OPT2D + 53) · ε′/n ≤ (3/2 + 22δ) · (n/ε′ + n) + 53) · ε′/n
≤ (3/2 + 22δ) · (1 + ε′) + 53ε′/n
≤ 3/2 + 22δ + 3/2ε′ + 22δε′ + 53ε′

After rescaling the lengths of the boxes by OPT3D , we obtain a packing length of
(3/2 + 22δ + 3/2ε′ + 22δε′ + 53ε′)OPT3D.

3.2 Algorithm

In the first step we set ε′ as the largest value so that 1/ε′ is a multiple of 24 and ε′ ≤
min{ε/236, 1/48} holds. Thus, ε′ ≥ ε/260.

For dual approximation we approximately guess the optimal length LOPT3D
so that

OPT3D ≤ LOPT3D < OPT3D + ε′ holds. To do this we use a naïve approach. It holds
OPT3D ∈ [�max, n·�max]. Thus, we test less than n·�max/ε

′ values with binary search.
This takes time at most O(log(n · �max/ε

′)) and is thus polynomial in the encoding
length of the input. In the following we assume that we are in the iteration where we
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9 · ε′/n

Fig. 2. Transform a box into rectangles

found the correct value LOPT3D
. We scale the lengths of the boxes in the input by the

value LOPT3D . An optimal packing fits now into a strip of length 1.
Our algorithm rounds afterwards the lengths of the boxes to the next multiple of

ε′/n and we cut each box at each multiple of ε′/n. Each slice of a box bi is treated
as a 2-dimensional rectangle of the width wi and the height di. There are now at most
n · n/ε′ = n2/ε′ rectangles that fit in an optimal packing into at most OPT2D ≤
(1 + ε′) · n/ε′ bins.

Gap-Creation and Medium Boxes. We find a value δ with Lemma 1, and partition the
instance into big, wide, long, small and medium rectangles. We also guess all necessary
values that are needed to run the 2-dimensional Bin Packing algorithm. We assume that
we are in the iteration, where all values are guessed correctly (cf. also Algorithm 1).

The medium rectangles are divided into two sets Mwδ and Mhδ of rectangles of the
width within [δ4, δ) and the remaining rectangles of the height within [δ4, δ). The total
area a(Mwδ ∪ Mhδ) is bounded by ε′OPT2D ≤ ε′(n/ε′ + n) = n + ε′n. Thus, the
total volume of the corresponding 3-dimensional (medium, scaled) boxes is bounded by
ε′/n·(n+ε′n) = ε′(1+ε′). After rescaling by LOPT3D

, the total volume is increased to
vol(Mwδ∪Mhδ) ≤ LOPT3Dε

′(1+ε′) ≤ (OPT3D+ε′)ε′(1+ε′) ≤ 2ε′(OPT3D+ε′).
We pack the medium boxes into a strip S0 with the following Lemma. Furthermore, we
assign the wide and long rectangles non-fractional to the groups W1, . . . ,W4/δ2 and
L1, . . . , L4/δ2 , so that all slices of one box belong to one group. This is done similarly
as assigning the wide and long rectangles in the 2-dimensional Bin Packing algorithm
(cf. Figure 1(b)). Therefore, we have to pack some wide and long boxes that cannot be
assigned into S0. The proof of the following Lemma is given in the full version.

Lemma 2. We need a strip S0 of the total length 6ε′OPT3D + ε′ + 6�max to

1. pack the medium boxes and
2. assign the wide and long rectangles into the groups W1, . . . ,W4/δ2 and

L1, . . . , L4/δ2 so that all slices of one box belong to one group.

Packing the Containers and Big-Slices In the end of the 2-dimensional Bin Packing
algorithm, an Integer Linear Programs (ILP (1)) is solved to pack the 2-dimensional
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containers and the slices of the big boxes into the bins. In our case it is an advantage
to use the relaxation of the Integer Linear Program, since the basic solution consists
of at most m ≤ 2/δ4 + 4/δ6 + 4/δ6 ≤ 9/δ6 configurations. W.l.o.g. we denote these
non-zero configurations by C1, . . . , Cm. We treat each 2-dimensional object in the non-
zero configurations as 3-dimensional object of length ε′/n and pack the objects of each
configuration Ck on top of each other. Thus, we obtain at most m 3-dimensional strips.
The length of the strip Sk, for k ∈ {1, . . . ,m} is the value of the configuration xk

multiplied with ε′/n. The total length of these strips is at most ε′/n · ((3/2 + 24δ) ·
OPT2D+53) ≤ ε′/n ·((3/2+24δ)·(1+ε′)·n/ε′+53) ≤ (3/2+24δ)·(1+ε′)+53ε′.

After rescaling the boxes by the lengthLOPT3D
we obtain the following total packing

length:

L ≤ LOPT3D ((3/2 + 24δ) · (1 + ε′) + 53ε′)
≤ (OPT3D + ε′)((3/2 + 24δ) · (1 + ε′) + 53ε′)

≤ (3/2 + 24δ) · (OPT3D + ε′ + ε′OPT3D + ε′2) + 53ε′OPT3D + 53ε′2

= (3/2 + 24δ + 3/2ε′ + 24δε′ + 53ε′)OPT3D + (3/2 + 24δ) · (ε′ + ε′2) + 53ε′2

≤ (3/2 + 80ε′)OPT3D + 6ε′,

since δ ≤ ε′ ≤ 1/48. It is left to pack the big boxes into the strip at the places of their
placeholders and to pack the wide, long and small boxes into the containers. Remember
that we assume that we have guessed all values correctly, so there is a fractional packing
of the big boxes into the strips. We show in the full version how to use a result by Lenstra
et al. [8] for scheduling jobs on unrelated machines to pack the big boxes into the strips.

3.3 3-Dimensional Containers

We describe in this section how to pack the wide and long boxes into the corresponding
containers. We will focus on the wide boxes, since the steps for the long boxes are
analogous.

Packing the Wide and Long Boxes into the Containers We remain in the 2-dimensional
representation to pack the slices into the 2-dimensional containers. We use the linear
program LP (1) to select at most 8/δ2 configurations in the containers so that all wide
slices are fractionally covered.

Afterwards, we transform the slices of the containers to 3-dimensional objects by
adding lengths of the value ε′/n · LOPT3D

. We keep the configurations of the lin-
ear program, that forms slots in the 3-dimensional containers (cf. Figure 3). Each 3-
dimensional container is divided into slots and possibly an empty space on the right
side for the small boxes. If a 3-dimensional container consists of different configura-
tions, we split the entire strip at this length. This increases the number of strips by less
than 8/δ2. By doing the analogous steps for the long slices, the number of strips grows
to at most m ≤ m + 16/δ2 = 9/δ6 + 16/δ2 strips. At this moment there is only one
configuration in each strip and each container. Furthermore, all wide boxes fit fraction-
ally (cut in the depth and length) into the 3-dimensional slots inside the wide containers.
We increase all strips by the length �max. The total length of all m strips is

L ≤ L+m · �max ≤ (3/2 + 80ε′)OPT3D + 6ε′ + (9/δ6 + 16/δ2) · �max.
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Fig. 3. Configurations of the linear program build slots in the wide container

We pack the wide boxes into the 3-dimensional wide containers, therefore we focus
one 3-dimensional wide container C of the width wC , depth dC and length �C . We
increased the length by �max, thus the length is �C + �max. Since all wide boxes fit frac-
tionally into the slots inside the wide containers (when all values are guessed correctly)
it holds that the total volume of the wide boxes is at most the total volume of these slots.
The same holds with the long boxes and the slots in the long containers. All small boxes
fit also fractionally into the wide and long containers in the remaining gaps. Thus, if we
find a packing of the boxes that occupies the total volume of the containers, then we
know that all boxes are packed. We prove that we either occupy the total volume of one
container, or we are running out of boxes. Therefore, we have to extend the side-lengths
of each container. We already increased the length of each container by �max. Now we
extend also the depth by δ4 (cf. Figure 4) and the width by δ4. The side-lengths of C is
now wC + δ4, dC + δ4 and �C + �max.

Fig. 4. Next-Fit heuristic

The left side of the container is parted by the slots of the linear program LP (1). We
focus one of these slots S of the width wS , depth dS = dC + δ4 and length �C + �max.
In this slot we pack only boxes bi of the (rounded) width wi = wS . We sort the boxes
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by their lengths and pack them with a Next-Fit heuristic into the slots. When the next
box does not fit into the slot we form a new level on top of the first box and continue
to pack the boxes until the length of the container is exceeded. Each box has a depth of
at most δ4, thus we exceed the depth dC in each level (cf. Figure 4). It follows that the
area covered by the bases of the boxes is at least a := wS · dC in each level. With the
following Lemma 3 we cover a total volume ofwS ·dC ·(�C+�max−�max) = wS ·dC ·�C .

Lemma 3. Given a target region X of the width wX , depth dX and length �X and
k levels L1, . . . ,Lk, where the bases of the boxes in each level covers a total area of
at least a. Let w.l.o.g. bi be the largest box in level Li and bi′ be the smallest box. If
�i′ ≥ �i+1 for all i ∈ {1, . . . , k− 1}, then we are able to pack boxes into X with a total
volume of at least a · (�X − �max).

Proof. We pack the levels on top of each other until the next level does not fit into the
target region. Let �k+1 := �X −

∑k
i=1 �i be the length on top of the uppermost target

region. It holds �i′ ≥ �i+1 for all i ∈ {1, . . . , k}. Furthermore, we have vol(Li) ≥ a·�i′ .
Thus,

∑k
i=1 vol(Li) ≥

∑k
i=1 a ·�i′ ≥

∑k
i=1 a ·�i+1 = a · (

∑k+1
i=2 �i) ≥ a · (�X− �max)

��

We do this with all slots in all configurations. Since the total volume of the boxes
of one width w is at most the total volume of all slots of the same width w, we are
able to pack all boxes. It happens for each slot of one specified width exactly once that
the boxes running out and that there is some free space in the slot that we have to use
for the small boxes. In this case, we change the order of the slots and exchange this
slot with the rightmost slot. If there are several slots in one strip where this happens,
then we sort the slots by non-increasing packing lengths (cf. Figure 4). Each time when
this happens, we split the entire strip into two strips. The length of the lower part is
extended by the length �max, so that the cut boxes still fit in the lower strip. There are
2δ2 different widths of wide and 2/δ2 different depths of long boxes. Therefore, the
number of strips increases to m ≤ m + 4δ2 ≤ 9/δ6 + 20δ2. The total length of all
strips is increased to

L ≤ L+ 4/δ2 · �max ≤ (3/2 + 80ε′)OPT3D + 6ε′ + (9/δ6 + 20/δ2) · �max.

The advantage is, that we have containers with some slots and some cubic free space
at the right side. In this free space we pack the small boxes with the 2-dimensional
Next-Fit-Decreasing-Height algorithm [4]. We describe in the full version how to pack
the small boxes into the remaining free space and how to remove the extensions of the
boxes with the following Lemma:

Lemma 4. We are able to remove the extensions of the containers and to pack the

intersecting boxes into a strip Sm+1 of the length 48δL ≤ 152ε′OPT3D + 6ε′ +
(9/δ6 + 20/δ2) · �max.
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3.4 Summary

To summarize our results, we state the entire algorithm in Algorithm 1.

Algorithm 1. Algorithm for 3-dimensional Strip Packing

1: Set ε′ := min{ε/236, 1/48}, so that 1/ε′ is a multiple of 24
2: Find LOPT3D , so that OPT3D ≤ LOPT3D < OPT3D + ε′ holds with binary

search for each guess do
3: Scale length of boxes by 1/LOPT3D

and round them to next multiple of ε′/n
4: Split boxes at multiple of ε′/n and obtain instance for 2-dim. Bin Packing
5: \\begin 2-dim. Bin Packing algorithm
6: Find OPT2D for each guess do
7: Compute δ and partition the rectangles
8: Find widths and heights and number of 2/δ4 different types of big rect-

angles;
widths and approx. total height of 4/δ2 different types of wide rectangles;
heights and approx. total width of 4/δ2 different types of long rectangles;
widths and heights and number of 4/δ6 different types of long and wide
containers for each guess do

9: Greedy assignment of wide and long rectangles to different types
10: Solve LP (1) to find fractional packing of wide rectangles in wide

containers and long rectangles in long containers
11: Solve relaxation of ILP (1) to find fractional packing of big rectan-

gles and wide and long containers
12: \\end 2-dim. Bin Packing algorithm
13: Add lengths of value ε′LOPT3D/n to 2-dim. bins and build strip for

each configuration in the basic solution of relaxation of ILP (1)
14: Extend each strip by �max

15: Pack big boxes into strip with result by Lenstra et al. [8]
16: Pack wide, long and small boxes into extended 3-dimensional con-

tainers and remove the extensions
17: Pack medium boxes with use of Steinbergs algorithm [13]

We have packed the boxes into the strips S0, . . . , Sm+1. We simply stack them on
top of each other and obtain one strip of the total length:

4ε′OPT3D + ε′ + 6�max + L+ 48δL

≤ (3/2 + 84ε′)OPT3D + 7ε′ + (6/δ6 + 20/δ2 + 6) · �max + 48δL

≤ (3/2 + 236ε′)OPT3D + 13ε′ + (15/δ6 + 40/δ2 + 6) · �max

≤ (3/2 + 236ε′)OPT3D + 13ε′ + (16/δ6) · �max

≤ (3/2 + ε)OPT3D + ε+ 16/ε′12/ε
′
�max

≤ (3/2 + ε)OPT3D + ε+ 4160/ε3120/ε�max.
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By stacking the strips on top of each other it follows Theorem 1 with f(ε, �max) =
4160/ε3120/ε�max.

4 Conclusion

We presented an asymptotic 3/2+ε-approximation for the 3-dimensional Strip Packing
problem. This is a significant improvement over the previous best known asymptotic
approximation ratio of 1.692 by Bansal et al. [2]. It is of interest, if it is possible to
improve our new upper bound or to show that the lower bound of 1+1/2196 by Chlebík
& Chlebíková [3] can be lifted.
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