Probabilistically Checkable Proofs of Proximity
with Zero-Knowledge*

Yuval Ishai and Mor Weiss

Department of Computer Science, Technion, Haifa
{yuvali ,morw}@cs .technion.ac.il

Abstract. A probabilistically Checkable Proof (PCP) allows a random-
ized verifier, with oracle access to a purported proof, to probabilistically
verify an input statement of the form “x € L” by querying only few
bits of the proof. A PCP of prozimity (PCPP) has the additional fea-
ture of allowing the verifier to query only few bits of the input x, where
if the input is accepted then the verifier is guaranteed that (with high
probability) the input is close to some x’ € L.

Motivated by their usefulness for sublinear-communication cryptogra-
phy, we initiate the study of a natural zero-knowledge variant of PCPP
(ZKPCPP), where the view of any verifier making a bounded number
of queries can be efficiently simulated by making the same number of
queries to the input oracle alone. This new notion provides a useful ex-
tension of the standard notion of zero-knowledge PCPs. We obtain two
types of results.

— Constructions. We obtain the first constructions of query-efficient
ZKPCPPs via a general transformation which combines standard
query-efficient PCPPs with protocols for secure multiparty compu-
tation. As a byproduct, our construction provides a conceptually
simpler alternative to a previous construction of honest-verifier zero-
knowledge PCPs due to Dwork et al. (Crypto ’92).

— Applications. We motivate the notion of ZKPCPPs by apply-
ing it towards sublinear-communication implementations of commit-
and-prove functionalities. Concretely, we present the first sublinear-
communication commit-and-prove protocols which make a black-box
use of a collision-resistant hash function, and the first such mul-
tiparty protocols which offer information-theoretic security in the
presence of an honest majority.

1 Introduction

In this work we initiate the study of probabilistically checkable proofs of prox-
imity with a zero-knowledge property, and use such proofs to design efficient
cryptographic protocols. Before describing our main results, we first give a short
overview of probabilistic proof systems.

* Research supported by the European Union’s Tenth Framework Programme (FP10/
2010-2016) under grant agreement no. 259426 ERC-CaC. The first author was ad-
ditionally supported by ISF grant 1361/10 and BSF grants 2008411 and 2012366.

Y. Lindell (Ed.): TCC 2014, LNCS 8349, pp. 121-145, 2014.
© International Association for Cryptologic Research 2014

122 Y. Ishai and M. Weiss

Probabilistically Checkable Proof (PCP) systems [1,2] are proof systems that
allow an efficient randomized verifier, with oracle access to a purported proof,
to probabilistically verify claims such as “x € L” (for some input z and an
NP-language L) by probing only few bits of the proof. The verifier accepts the
proof of a true claim with probability 1 (the completeness property), and rejects
false claims with high probability (the probability that the verifier accepts a
false claim is called the soundness error). The celebrated PCP theorem [1,2,11]
asserts that any NP language admits a PCP system with soundness error 1/2
in which the verifier reads only a constant number of bits from the proof. The
soundness error can be reduced to 277 by running the verifier o times.

Probabilistically Checkable Proofs of Proximity (PCPPs), also known as as-
signment testers, are proof systems that allow probabilistic verification of claims
by probing few bits of the input and a purported proof. Needless to say, the ver-
ifier of such a system cannot generally be expected to distinguish inputs in the
language from inputs that are not in the language, but rather it should accept
every x € L with probability 1 and reject (with high probability) every input
that is “far” from all 2/ € L. First introduced in [7,12,11] as building blocks
for the construction of more efficient PCPs, there are currently known PCPP
systems for NP with parameters comparable to those of the best known PCP
systems [8,23].

A seemingly unrelated concept is that of zero-knowledge (ZK) proofs [15],
namely proofs that carry no extra knowledge other than being convincing. Com-
bining the advantages of ZK proofs and PCPs, a zero-knowledge PCP (ZKPCP)
is defined similarly to a traditional PCP, with the additional guarantee that
the view of any (possibly malicious) verifier can be efficiently simulated up to a
small statistical distance. ZKPCPs were first constructed by Kilian et al. [21],
building on a previous weaker “honest-verifier” notion of ZKPCPs implicitly
constructed by Dwork et al. [13]. More concretely, the work of [21] combines
the weaker variant of ZKPCPs from [13] with an unconditionally secure oracle-
based commitment primitive called a “locking scheme” to obtain ZKPCPs for
NP that guarantee statistical zero-knowledge against query-bounded malicious
verifiers, namely ones who are limited to asking at most p (|z|) queries for some
fized polynomial p. A simpler construction of locking schemes was recently given
in [17].

ZKPCPPs. In this work we put forward and study the new notion of zero-
knowledge PCPP (or ZKPCPP for short), which extends the previous notion of
ZKPCP and makes it more useful. A ZKPCPP is a PCPP with a probabilistic
choice of proof and the additional guarantee that the view of any (possibly-
malicious) verifier, making at most ¢* queries to his input and his proof oracle,
can be efficiently simulated by making the same number of queries to the input
alone. ZKPCPPs are a natural extension of ZKPCPs (indeed, the existence of a
ZKPCPP system implies the existence of a ZKPCP system with related param-
eters) and interesting objects on their own. As we explain next, they are also
motivated by cryptographic applications that involve sublinear-communication
zero-knowledge arguments on distributed or committed data.

Probabilistically Checkable Proofs of Proximity with Zero-Knowledge 123

To give the flavor of these applications, suppose that a database owner (prover)
commits to a large sensitive database D by robustly secret-sharing it among
a large number of potentially unreliable servers. At a later point in time, a
user (verifier) may want to learn the answer to a query ¢(D) on the commit-
ted database. ZKPCPPs provide the natural tool for efficiently verifying that
the answer a provided by the prover is indeed consistent with the committed
database, namely that a = ¢(D), without revealing any additional information
about the database to the verifier and a colluding set of servers. Concretely, the
prover distributes between the servers a ZKPCPP asserting that the shares of
D (the input) are indeed valid shares of some database D’ such that ¢(D’) = a.
The verifier, by probing only few entries in the input and the proof string, is
convinced that the shares held by the servers are indeed close to being consistent
with valid shares of some database D’ such that ¢(D’) = a. If not “too many”
servers are corrupted, the robustness of the underlying secret-sharing scheme
guarantees that D’ = D. (Unlike the ZKPCPP model, the answers provided
by malicious servers may depend on the identity of the verifier’s queries; this
difficulty can be overcome by ensuring that with sufficiently high probability the
verifier’s queries are answered by honest servers.) The above approach can also
be used for verifiable updates of a secret distributed database, where a ZKP-
PCPP is used to convince a verifier that the shares of the updated version of
the database are consistent with the original shares with respect to the update
relation.

A similar idea can be used to get a sublinear-communication implementa-
tion of a “commit-and-prove” functionality in the two-party setting. Here the
prover first succinctly commits, using a Merkle tree, to the shares of D. To later
prove that ¢(D) = a, the prover again uses a Merkle tree to succinctly com-
mit to a ZKPCPP asserting that the values it committed to in the previous
phase are valid shares of some database D’ such that ¢(D’) = a. This gives the
first sublinear-communication implementations of commit-and-prove which only
make a black-boz use of a collision-resistant hash function. (See Section 5.2 for
a non-black-box alternative using standard sublinear arguments.)

1.1 Summary of Results

We introduce the notion of ZKPCPPs and construct query-efficient ZKPCPPs
for any NP language L. More precisely, given an input = € L, a corresponding
witness w, and a zero-knowledge parameter ¢*, the prover can efficiently generate
a proof string 7 of length poly(|x|, ¢*) which is statistical zero-knowledge against
(possibly malicious) verifiers that make at most ¢* queries to (z,7); by making
only a polylogarithmic number of queries (in |z| and ¢*), an honest verifier can
get convinced that x is at most d-far from L, except with negligible soundness
error, where § can be any positive constant (or even inverse polylogarithmic).
We then present applications of this construction to sublinear commit-and-prove
protocols in both the two-party and the multiparty setting, as discussed above.

124 Y. Ishai and M. Weiss

1.2 Techniques

Our main ZKPCPP construction is obtained by combining an (efficient) PCPP
system without zero-knowledge with a protocol for secure multiparty compu-
tation (MPC), inheriting the efficiency from the PCPP component and the
zero-knowledge from the MPC component. The transformation has two parts.
The first consists of a general transformation from a PCPP and a secure MPC
protocol to a PCPP system with zero-knowledge against semi-honest verifiers
(HVZKPCPP, for honest-verifier ZKPCPP). The transformation can also be
applied to PCPs, yielding an HVZKPCP comparable to that of [13] that is con-
ceptually simpler. (Thus, our construction also simplifies the ZKPCP of Kilian
et al. [21] which uses the HVZKPCP of [13] as a building block.)

The second part strengthens the zero-knowledge property to hold against ar-
bitrary (query-bounded) malicious verifiers, by forcing the queries of any such
verifier to be distributed (almost) as the queries of the honest verifier of the
HVZKPCPP system. This part follows the approach of [21] of using a locking
scheme. Concretely, we use the combinatorial construction of locking schemes
from [17], except that to achieve negligible soundness error and negligible simu-
lation error simultaneously we need to apply a natural amplification technique
for reducing the error of the previous construction.

Organization. We first give the necessary preliminaries in Section 2. In Section 3
we describe the construction of a ZKPCPP from MPC protocols, and in Sec-
tion 4 we state and prove our result regarding the existence of efficient ZKPCPP
systems for NP. We describe our cryptographic applications in Section 5. Due to
space limitations, we defer several definitions, constructions, and proofs, as well
as the discussion regarding amplification of locking schemes, to the full version.

2 Preliminaries

We consider efficient probabilistic proof system for NP relations. (We refer to
a relation rather than a language because we require the prover to be com-
putationally efficient given an NP-witness.) Recall that an NP relation R is a
polynomial-time recognizable binary relation which is polynomially bounded in
the sense that there is a polynomial p such that if (x,w) € R then |w| < p(|z]).
We refer to x as an input and to w as a witness.

We denote by Lz the NP language corresponding to R, namely Lr =
{z : Jw, (z,w) € R}. We say that = is J-far from Lz (for some § € [0,1]) if
the relative hamming distance between x and every 2’ € L of the same length
is more than §.

We say that two distribution ensembles X,,,Y,, are computationally (resp.
statistically) indistinguishable if every computationally bounded (respectively,
computationally unbounded) distinguisher achieves only a negligible advantage
in distinguishing a sample drawn according to X, from a sample drawn according
to Y,.

Probabilistically Checkable Proofs of Proximity with Zero-Knowledge 125

A probabilistic proof system (P, V) for R consists of a PPT prover P, that on
input (x,w) outputs a proof 7, and a PPT verifier V that given input 11*! and
oracle access to z (the input oracle) and 7 (the proof oracle) outputs either accept
or reject. Intuitively, P tries to convince V of the claim “x € Li” using w such
that (z,w) € R. All the probabilistic proof systems studied in this work will have
perfect completeness (i.e. V accepts true claims with probability 1). The system
has soundness error € if every input « ¢ Lg is accepted by V' with probability at
most €, regardless of the proof oracle. Our systems are sometimes parameterized
by a statistical security parameter o and a zero-knowledge parameter ¢*. These
parameters are given as additional inputs to both P and V.

In the following sections, we define several classes consisting of NP relations
that have probabilistic proof systems with additional properties, and discuss the
containment relations between these classes. (We associate each class of relations
with the corresponding class of proof systems.) Every containment stated in
this paper follows from constructive transformations, namely if we claim that
Class; C Classs, then the proof also shows an efficient transformation from a
pair (P, V) € Class; to a pair (P',V’) € Classs.

PCPs. A standard probabilistically checkable proof (PCP) is a probabilistic
proof system (P, V) in which V can query his input oracle x freely (that is,
his queries to z are not counted towards the query complexity). We write R €
PCPx [r,q,¢€,£] if R admits a PCP with verifier randomness complexity r, query
complexity ¢, soundness error €, and a proof 7 of length ¢ over the alphabet .

PCPPs. Intuitively, the verifier of a PCPP system tries to validate the claim
“r € Lg”, while reading only few bits of . Of course, V' cannot generally be
expected to distinguish the case that 2 € Lg from the case that x ¢ Lz but is
very “close” to it. Instead, V is only expected to reject when x is “far” from L.
Concretely, A probabilistically checkable proof of proximity (PCPP) system with
soundness error 0 < € < 1 and proximity parameter 0 < § < 1 is a probabilistic
proof system (P, V') for which the following holds. For every x that is J-far from
Ly, V accepts x with probability at most €, regardless of his proof oracle. In
this case we write R € PCPPx [r, q, 6, €, £] where r, g, £ are as above. We refer to
a PCPP system with proximity parameter 6 = 0 (i.e., in which soundness holds
for every x ¢ Lg) as an exact PCPP.

We also consider systems with the following notion of strong soundness, where
every ¥ ¢ Ly is rejected with probability that is proportional to its distance
from Lg. That is, there exists a function eg = €g (4, |z|) : [0,1] x N — [0, 1] such
that for every ¢ € [0,1], every x that is d-far from Ly is accepted by V with
probability at most eg (0, |z|). Such PCPPs are called strong PCPPs, see [8,22].
A strong PCPP system has rejection ratio [if every x that is d-far from Lg is
rejected with probability at least 3.

ZKPCPPs and ZKPCPs. We are interested in PCPs and PCPPs that reveal
(almost) no information to verifiers who do not make “too many” queries. Intu-
itively, a probabilistic proof system is g*-zero-knowledge if whatever a (possibly

126 Y. Ishai and M. Weiss

malicious) verifier learns by making ¢’ < ¢* queries to z,7 can be simulated
by making ¢’ queries to x alone. In particular, zero-knowledge of a PCP system
implies the witness is entirely hidden (the queries of the verifier to the input
oracle are not counted towards the query complexity, so the simulator can query
all of x, and consequently only the witness is hidden), while in a zero-knowledge
PCPP system not only is the witness hidden, but so is most of z. Notice that the
prover in a zero-knowledge proof system must be probabilistic (while the prover
in standard proof systems for NP can be deterministic).

More formally, let (P,V) be a probabilistic proof system, and let V* be
a (possibly malicious) g-bounded verifier (namely a verifier that never makes
more than ¢ queries). We compare the real-life interaction between P and V*
with an ideal-world interaction, in which a simulator Sim with oracle access
to V* interacts with a trusted third party (TTP) that knows only z. Denote
the distribution ensemble describing the view of V* with oracles x,m (where
m was honestly generated by P on input x,w) by Viewy«z.~, and let gy« de-
note the total number of queries V* sent to the input and proof oracles. Let
Realy~ p (z,w) = (Viewy =z, gy~). Similarly, for an ideal-world simulator Sim
let Sim (z) denote the distribution ensemble describing the output of Sim (after
making his queries to), and let gs denote the number of queries Sim made. We
define Idealsim (z) = (Sim () , ¢s).

We say that (P, V) is (e,q*)-zero knowledge with respect to R (for some
e € [0,1] and ¢* € N) if for every real-life ¢g*-bounded verifier V* there ex-
ists an ideal-world simulator Sim such that for every (x,w) € R, we have
Realy« p (z,w) =€ Idealsim (z), where ~¢ denotes statistical distance of e. If
(P, V) is (0, ¢*)-zero-knowledge we say that it has perfect g*-zero-knowledge,
and write Realy« p (x,w) = Idealsim (). We may choose ¢,¢* to be functions
of a security parameter o and the input size |z|. By default, we will make the
stronger requirement that there exist a single, PPT black-box simulator S such
that for every ¢*-bounded V*, the simulator Sim = SV satisfies the above re-
quirement. Moreover, S can only interact with V* in a straight-line fashion (i.e.,
it cannot rewind V*). The latter straight-line simulation requirement is useful
for one of our motivating applications.

Remark 1. The above notion of zero-knowledge requires that the number of in-
put bits read by the simulator be the same as the total number of bits read by
the verifier. One may consider stronger notions which require that the number of
input bits read by the simulator coincide with the number of input bits read by
the verifier, or even that the same input bits are read by the verifier and the sim-
ulator. The latter is captured by letting Real and Ideal, instead of including the
number of queries V* and Sim made (respectively), include the specific indices
V*,Sim queried in x. Our constructions do not satisfy these stronger notions.

Notation 1. If a system (P,V) € PCPPx[r,q,0,€s,¢] for relation R guar-
antees (ezk,q")-zero-knowledge, we say that (P,V) is a q*-zero-knowledge
PCPP and write (P,V) € ZKPCPPx[r,q,€ezK,9,€s,£]. Similarly, if (P,V) €
PCPx(r,q,€s,¢] for relation R guarantees (ezk,q*)-zero-knowledge, we write
(P, V) € ZKPCPx [T,q,GZK,Gs,e].

Probabilistically Checkable Proofs of Proximity with Zero-Knowledge 127

We also consider the following honest-verifier variant of zero-knowledge which
is used as a simpler building block and is also of independent interest. We say
that (P, V') has honest-verifier zero-knowledge (HVZK) with statistical distance
€ € [0,1] if for the honest verifier V' there exists a PPT simulator Sim such that
the previous zero-knowledge requirement holds, namely for every pair (z,w) € R,
Realy p (z,w) ~¢ Idealsim ().

Secure MPC. We follow the terminology and notation of [16]. Let P, ..., P, be n
parties, where every party P; holds a private input z; (we allow z; to be empty,
which we denote by z; =). We counsider protocols for securely realizing an
n-party functionality g, that maps the tuple of inputs (z1, ..., 2,,) to an output in
{0, 1}. All parties are expected to have the same output. The view of a party P;,
denoted V;, includes his private input z; and a random input r;, together with
all the messages that P; received during the protocol execution. (The messages
P; sends during the execution, as well as his local output, are determined by this
view.) A pair V;,V; of views are consistent with respect to z;,z; and II, if the
outgoing messages (from P; to P;) implicit in V; in an execution of IT on inputs
zi, zj, are identical to the incoming messages (from P; to P;) reported in V;, and
vice versa. Consistency between a view and one of its incident communication
channels is defined similarly.

We consider the execution of the protocol in the presence of an adversary A
who may corrupt up to t parties. A semi-honest adversary can only passively
corrupt parties (i.e., it does not modify their behavior but can learn their entire
view), whereas a malicious adversary can arbitrarily modify the behavior of
corrupted parties. A static adversary is restricted to pick the set of corrupted
parties in advance, whereas an adaptive adversaries may pick them one by one,
choosing the next party to corrupt based on its view so far.

A protocol IT realizes a deterministic n-party functionality g (z1, ..., z,) with
perfect correctness if for all inputs z1,...,2,, when no party is corrupted, all
parties output g (21, ..., zn). For a security threshold 1 < ¢ < n, we say that IT
realizes g with perfect t-privacy if for every semi-honest adversary A corrupting
aset T C [n],|T| <t of parties there exists a simulator Sim that can perfectly
simulate the view of A given only the inputs of corrupted parties and the output.
One can naturally define a variant of privacy that applies to adaptive adversaries.
(In the adaptive case, we require the existence of a PPT black-box straight-line
simulator.) We say that IT realizes g with perfect T-robustness (for some subset
T C [n]) if for every malicious adversary A corrupting the parties in T', and
for every tuple zg of inputs of uncorrupted parties, the following holds. If ¢
evaluates to 0 on all choices of inputs z consistent with 2z, then all uncorrupted
parties are guaranteed to output 0.! This property is implied by the standard
simulation-based notion of security against malicious adversaries.

! Notice that we only define robustness for the case that g evaluates to 0, which
suffices for our purposes since we only consider functions g representing relations
R. More specifically, robustness is used to construct sound proofs systems, where
the corrupted party is the party holding the witness (and the bits of the input are
partitioned between the honest parties). As soundness concerns the case © ¢ Lz,

128 Y. Ishai and M. Weiss

Locking schemes [21,17]. Informally, a locking scheme allows a sender S to com-
mit some secret to a receiver R, such that given a key the receiver can “open” the
lock and retrieve the secret, whereas without the key this is almost impossible
(for a query-bounded receiver). More formally, a locking scheme (5, R) for mes-
sage space W consists of a sender S and a receiver R that interact in two phases:
Commitment, during which S sends a locking oracle L,, to R, thus committing
to some w € W; and Decommitment, in which S decommits w by sending R a
key K, that “opens” the lock. The requirements from the locking scheme are
as follows. First, for every honestly-generated pair (L., K,,), R with key K,
and oracle access to L., outputs w at the end of the decommitment phase with
probability 1 (this is called perfect completeness). Second, the scheme is hiding,
namely without knowing the key, R learns nothing about w, even if he probes
many bit coordinates of the lock. Thirdly, we require binding, i.e. every (possi-
bly ill-formed) lock commits the sender to some value w'. (See [17] for formal
definitions.)

3 From MPC Protocols to (Inefficient) EZKPCPPs

We show a general connection between secure MPC protocols and (exact)
ZKPCPPs. More specifically, given an NP-relation R, we define the characteris-
tic function gr,, : {0,1}*x{0,1}™ — {0,1} of R,, = {(z,w) € R : |z| = m} (or
simply g, when R, m are clear from the context) as follows. gr,, (w, 1, ..., Tm) =
1 if and only if (21 o ... 0y, w) € R,y,. Following techniques of Ishai et al. [16],
we transform a protocol IT securely realizing gz,, into an EZKPCPP system for
Rum, with perfect zero-knowledge against malicious (query-bounded) verifiers.
Concretely, for any t = t(m), if the underlying n-party protocol is ¢-private
(for some n = n(m,t)), then the system has perfect zero-knowledge against
t-bounded verifiers.

Construction 2 (EZKPCPP from MPC.). The system is parameterized by
a length parameter m € N, a zero-knowledge parameter t = t (m), and employs
an n-party protocol II realizing gr,, with perfect adaptive t-privacy and perfect
static 1-robustness.?. We assume without loss of generality that the bits x1, ..., T,
are given as input to Py, ..., Py,.

Prover algorithm. On input (z,w), 1" the prover Pg emulates “in his head” a
random execution of II on inputs (w,x1,...,Tm). Let Vo, ...,V be the views of

ie., (z,w*) ¢ R for every “witness” w*, then g evaluates to 0 on every input of the
party holding the witness.

We could get the same results using secure protocols in the semi-honest model, by
sharing the witness w between ¢ 4 1 parties (similar to the construction of zero-
knowledge protocols from MPC of [16]). However, this solution requires a larger
number of parties than in our solution. We prefer to rely on robust protocols, since
it suffices to have {Py}-robustness, and such protocols can be instantiated by more
efficient protocols in the semi-honest model (e.g., [5]).

2

Probabilistically Checkable Proofs of Proximity with Zero-Knowledge 129

Py, ..., Py in this execution, and for every 0 < i < j < n, let Ch;; describe the
messages sent over the communication channel between i, j during the execution.
Pr outputs the proof m consisting of the concatenation of the views Vi, ...,V,
and the communication channels Ch;; for 0 <i < j < n, where every view and
communication channel constitutes a symbol of the proof. (Notice that the proof
does not include the view Vg, since Vo reveals the witness w.)

Verifier algorithm. The verifier Vg with input 1',m and oracles x,7m flips a
random coin to decide which test to perform. If the outcome was 0, Vg picks
a random view V;,i €g [m], and verifies that the input of P; in the protocol
execution was x; (this ensures the protocol execution is consistent with x). If the
outcome was 1, Vg picks i €g [n] and j €r {0,1,...,n},i # j and verifies that
V; is consistent with Ch; ; (this ensures the emulated execution is consistent). In
both cases Vg wverifies that the output of the protocol (implicit in V;) was 1.

Lemma 1 (From MPC to EZKPCPPs). For any NP-relation R =
R (x,w), Construction 2 is a perfectly t-zero-knowledge exact-PCPP for R, with
soundness error (1 - N (nlz)), where the honest verifier makes only 2 oracle
queries.

Proof (sketch). Set some m € N and let IT = II,,. The perfect completeness
follows from the perfect completeness of IT. As for soundness, if © ¢ Lz then a
malicious prover has three possible courses of action. First, he can emulate an
execution of IT on some x’ # x, which is detected by the verifier with probability
at least 21n > nlg. Second, he can provide a proof in which some view V; is
inconsistent with some incident communication channel (either Ch;;,0 < j <4
or Ch; ;,1 < i < j < n), which Vg detects with probability at least 2n(71+1)'
Thirdly, Pg can generate a proof in which every view V; is consistent with all
incident communication channels (with respect to I7,z). In this case, it can be
shown that there exists an execution of IT on z, in which all parties (except,
possibly, Py) are honest, such that the view of P; in the execution is V;, and
the messages exchanged between P;, P; are according to Ch; ;. Therefore, the
Py-robustness of II guarantees that the output implicit in V1, ...,V, is 0, so Vg
rejects (with probability 1). We note that the soundness error can be reduces by
repetition ([;1 iterations can be performed while preserving zero-knowledge).
The t-zero-knowledge follows from the privacy of II. Indeed, for every 4, j € [n],
the communication channel Ch; ; can be reconstructed from V; (and from V).
Therefore, the answers to the queries of every (possibly malicious) verifier V*
can be simulated given the views of (a specific subset of) ¢ parties P;,, ..., P;,.
By the privacy of II, these views can be perfectly simulated given x;,, ..., z;,.
Therefore, the view of V* can be simulated with only ¢ TTP-queries. a

Notice that if we only require honest-verifier zero-knowledge, then it suffices
for IT to be 1-private. (Pg, Vg) is weakly-sound in the sense that its soundness
error is large. (As noted above, the error can be reduced by repetition, but this
increases the query complexity and again requires IT to be private against larger
coalitions of parties.)

130 Y. Ishai and M. Weiss

We note that Construction 2 is inefficient in the sense that the alphabet
size may be exponential in m, ¢, since it contains symbols for all possible views
and communication channels in I7. This inefficiency will not pose a problem in
later constructions. Indeed, the construction of honest-verifier ZKPCPPs uses
EZKPCPPs only for constant sized claims, and the construction of a ZKPCPP
(with zero-knowledge against malicious verifiers) uses EZKPCPPs for claims of
size O (o), where o denotes the security parameter of the ZKPCPP. Moreover,
we will only use EZKPCPPs for relations in P.

Basing Construction 2 on efficient multiparty protocols that can withstand a
constant fraction of corrupted parties, we obtain the following result.

Corollary 1 (EZKPCPPs for NP). Let R = R(z,w) be an NP-
relation. Then for every zero-knowledge parameter t = t(|z|), R €
EZKPCPPx [r,q, ez, 0, €5, {], where ¥ = 2P°WEIzD - = O (logt + log |z|),
g=2,ezxk =0, €5 =1— p01y6t7‘$|), ¢ =poly (t, |x|), and the EZKPCPP system
is t-zero-knowledge. Furthermore, R has an EZKPCPP system over the binary
alphabet with ¢ = 3 (and r,ezk, €5, L are as above).

The existence of the EZKPCPP over a large alphabet follows from Contruc-
tion 2. The natural approach towards reducing the alphabet size, is to define
the proofs over X' and represent every view and communication channel using
several symbols, and have the verifier read all the bits corresponding to the sym-
bol he wishes to query. However, this solution does not preserve zero-knowledge.
Indeed, it increases the query complexity of the honest verifier, and consequently
a malicious (even query bounded) verifier may query many parts of views, thus
potentially breaking the privacy of the underlying protocol, and consequently
the zero-knowledge of the system.

Proof (sketch). The existence of an EZKPCPP system over a large alphabet
follows from Lemma 1, when Construction 2, based on an efficient multiparty
protocol (e.g., the protocols of [5]).

The EZKPCPP over a binary alphabet, denoted (Phin, Viin), is obtained using
techniques of Dwork et al. [13]. The general idea is to represent a proof generated
by Pg over the binary alphabet, but avoid increasing the query complexity of
the honest verifier by having Vii, probabilistically check that the oracles satisfy
the decision circuit of Vg. More specifically, Phin on input (z,w) uses Pg to
generate a proof mg. Then, for every random string r of Vg, Ppi, writes down the
assignment A, to the inner gates of the verification circuit of Vg (i.e., the circuit
Ve uses when he has randomness r). Py, outputs the proof g, concatenated
with the assignments A, for all random strings r of Vg. (The proof should
actually include, for every r, a proof that A, is consistent with the verification
circuit of Vg and the bits of z, 7g that Vg queries. We refer the reader to [20] or
the full version for additional details. We note that these “proofs” have length
O (A,) so they can be ignored when analyzing the efficiency properties of the
system.) To verify that © € Lg, Viin picks a random string r for Vg, and checks
that z, g, A, satisfy a random gate in the verification circuit of Vg.

Probabilistically Checkable Proofs of Proximity with Zero-Knowledge 131

Notice that Vg reads only poly (|z|,t) bits from his oracles (i.e., the symbols
he reads can be represented using poly (|z|,t) bits), and his verification circuit
has size poly (|z|,t) (since Vg is efficient in the number of bits he reads). There-
fore, the randomness complexity increases by only O (logt + log|z|) (Viin needs
to pick a random gate in the verification circuit of Vg), and the proof increases
by a factor of poly (|z|,t) (there are poly (|z|,t) random strings for Vg, and
every random string corresponds to a circuit of size poly (|z|,t)). Moreover, the
soundness error degrades only by a factor of poly([z],)? since in every verification
circuit of Vg which z, 7 do not satisfy, at least one gate (out of poly (|z]|,t))
is not satisfied. Regarding zero-knowledge, notice that every t-bounded verifier
algorithm V%, in the modified system induces a verifier algorithm V* in the
original system, whose queries correspond to the queries Vg makes in ¢ indepen-
dent invocations. Therefore, the view of V* can be simulated given the views
Vi, ..., Vi, which V* queries, and these views can be simulated given the inputs
of Py,...,P;, in II. As the view of V), can be reconstructed from the view of
V*, this implies the system is t-zero-knowledge. a

Remark 2 (Strong HVZK). Both of the EZKPCPP systems mentioned above
have a stronger honest-verifier zero-knowledge guarantee, which is formalized
next. For an integer parameter ¢ and a soundness parameter €, we say a proof
system has (e, ¢)-strong honest-verifier zero-knowledge, if there exists a straight-
line simulator Sim such that the following holds for every ¢’ < ¢ and every (z,) €
R. Sim interacts with V¢ (VC/ denotes ¢’ random and independent invocations of
the honest verifier V') without rewinding the verifier. During the simulation, Sim
makes only ¢ TTP queries, and generates a view which is statistically close (up
to distance €) to the real-world view of V¢, when V¢ has oracle access to and
a random honestly-generated proof for xz. Both our EZKPCPP systems have
perfect t-strong honest-verifier zero-knowledge (where ¢ is the zero-knowledge
parameter), i.e., the simulated view is indistinguishable from the real world view.
(This stronger zero-knowledge feature will be used in Section 4.1 to construct
an HVZKPCPP with similar properties, which in turn will be used to construct
a ZKPCPP in Section 4.2.)

4 From Efficient PCPPs to Efficient ZKPCPPs

We show a general transformation from PCPPs to ZKPCPPs, and construct
an efficient ZKPCPP system for any NP-relation R. (Using the same methods
one can transform a PCP into a ZKPCP.) First, we use proof-composition tech-
niques to transform a PCPP into an HVZKPCPP, using an EZKPCPP as the
inner proof system. Then, we show a transformation from an HVZKPCPP and
a locking scheme, into a ZKPCPP that guarantees zero-knowledge against ma-
licious query-bounded verifiers. Finally, by applying the first transformation
to an efficient PCPP, and the second to an efficient locking scheme and to
the HVZKPCPP obtained through the first transformation, we get an efficient
ZKPCPP.

132 Y. Ishai and M. Weiss

4.1 From PCPPs to HVZKPCPPs

In this section we present the general transformation from PCPPs to
HVZKPCPPs. We first describe a basic transformation (with weak parameters),
and then improve it. The high-level idea is to use proof composition (see, e.g.,
[7,12,11]). In the context of PCPs, proof composition is used to reduce the query
complexity of a PCP verifier: instead of making ¢ queries and applying some
predicate to the oracle answers, the verifier delegates the verification task to an
“inner verifier”, who probabilistically checks the oracle satisfies the decision cir-
cuit of the outer verifier (the query complexity is reduced since the inner verifier
makes less queries than the original verifier). Intuitively, as the verifier of the
composed system emulates the verification procedure of the inner verifier, then
the composed system should have a zero-knowledge guarantee if the inner sys-
tem does (even when the outer system has no zero-knowledge guarantee). The
advantage in using composition in this case is similar to the advantage achieved
by composition in standard PCP constructions: the inner system may be very
inefficient, but the composed system is efficient if the outer system is.

More specifically, let R be a relation, and let (Poyt, Vout) be a PCPP for R with
soundness error € and proximity parameter §, where V4 makes ¢ oracle queries
and uses 7 random bits. Then every random string rand of Vg4 corresponds
to a set of ¢ queries, and a predicate Ypang : {0,1}9 — {0,1} describing the
decision of Vi,¢. Denote the vector of the 2" predicates corresponding to all
random strings of Vout by (@1,...,02r), then the following holds. If z € Lg
and 7 was honestly-generated by P, for z, then (x,7) satisfies ¢; for every
1 <i<2" and if x is §-far from Ly then for any “proof” 7*, (x,7*) satisfies at
most an e-fraction of ¢, ..., por. In standard proof-composition constructions,
the prover concatenates with proofs 7. , ..., 72 | where 7% should convince the
inner verifier that (z,7) satisfies ;. The verifier then runs the outer verifier
to generate rand and @yand, and the inner verifier to check that (z,) satisfies
rand- However, the verification procedure of the inner verifier may query 7, and
is consequently not zero-knowledge (since m may reveal additional information
about x). Therefore, we need to use proof composition, together with a form
of secret-sharing which guarantees that 7 also remains hidden. Concretely, we
replace every proof bit m; (i.e., every predicate variable corresponding to a proof
bit) with a set of bits {m; ;} (i.e., with a set of new predicate variables) such
that m; is reconstructable given all the new bits 7; ;, but (any) subset of the new
bits {m; ;j} reveals no information about m;. We refer to a predicate obtained
thorough this “secret-sharing” transformation as a private predicate, since a
partial assignment to few predicate variables reveals no information about the
proof 7.

More specifically, given a predicate ¢ : {0,1}? — {0,1} over variables
1, ..., Vg, We partition its variables to a set Vinp of input variables (i.e., variables
corresponding to bits of the input oracle) and a set Vi of proof variables.
The k-private form of ¢ (for any k € N), denoted ¢ (k), is obtained from ¢
by replacing every proof variable v; € V¢ with the exclusive-or of k 4+ 1 new

Probabilistically Checkable Proofs of Proximity with Zero-Knowledge 133

k+1
variables y; 1, ..., ¥i,k+1 (i.e., every appearance of v; is replaced with & y; ;). The
j=1

private-predicates relation Ry, consists of all pairs of private predicates and
satisfying assignments for them, i.e.,

Rpriv = {((w, ¢ (k)),) : w satisfies ¢ (k)}.

We now describe the basic transformation from PCPPs to (weakly-sound)
HVZKPCPPs.

Construction 3 (HVZKPCPPs from PCPPs.). The basic HVZKPCPP
system, denoted (Pp,Vp), will be the composition of a PCPP system (Pout, Vout)
for R as the outer PCPP system, and the inner EZKPCPP system (P, Vin) for
the relation Rywiv. The system is parameterized by d € N which determines the

zero-knowledge requirement from the inner system. (Without loss of generality,
d>3.)

Prover algorithm. On input 1%, z,w such that (z,w) € R, Pp:

— Generates the verification predicates @1, ..., pm of Vous (for m := 27, where
r denotes the length of the randomness of Vous), and a proof m € Poyt (z,w).
— Generates the d-private form ¢; (d) of every predicate @;, and replaces ev-
ery proof variable v; € fo with the exclusive-or of d + 1 new wvariables

Yil, - Yjd+1, Such that @ (d)yJ . = Tu;. (As (z,m) is interpreted as an

assignment to the predzcates D1y ery Pm, this transforms (x,7) into an as-
signment to the private predicates. We denote this partial assignment to
@1 (d) Ao Ao (d) by 7 (d).)?

— “Proves” that (x,w(d)) satisfies the private predicates. Concretely,
let (z,m(d)); denote the restriction of (x,m(d)) to the wvariables of
the private predicate ;(d). Then Pp generates a proof =i, €
Py (14, ((z, 7 (d)),; , i (d)) , \) for the claim (((z, 7 (d)), , i (d)) ; A) € Rpriv.

— Outputs the proof g = m} o...om o7 (d).

Verifier algorithm. Vg on input 19, |x| and given oracle access to x and a proof
g =m o..omMon(d), picks an i €g [m], uses Vout to generate the predicate
@i, and transforms it into the d-private predicate p; (d). Then, V runs Vi, to
check that (z, 7 (d)), satisfies ¢; (d) ((x, 7 (d)), is used as the input oracle, and

7t as the proof oracle, of Vi).

1n

Lemma 2. Let R € PCPP[r,q,0, €out,] with the PCPP system (Pout, Vout)-
Let (P, Vin) be a perfectly d-zero-knowledge EZKPCPP system for Rpriy with
soundness error ey, (£,d) (where €y, is non-decreasing and € is the length of the
input to the EZKPCPP system), in which the honest verifier makes ¢ < d
queries. Then Construction 3, based on (Pout, Vout) and (P, Vin), is a PCPP

3 We say that 7 is a partial assignment to the predicates, since some of the variables
are assigned values by the input x.

134 Y. Ishai and M. Weiss

system for R with perfect completeness, perfect honest-verifier zero-knowledge,
and soundness error €ou (1 — €y (€ (d+ 1) ,d)) 4+ €n (€ (d+1),d). Moreover, Vg
makes only gin queries, and the prover generates proofs of length Og.q (¢ +27).

Proof (sketch). The completeness follows directly from the completeness of the
underlying proof systems. As for zero-knowledge, the zero-knowledge of the inner
EZKPCPP system guarantees there exists a simulator Sim;, that can perfectly
simulate the view of the honest verifier Vi, (since Vi, is d-query bounded), given
oracle access to the input oracle of V4, (through the TTP). Notice that the “input
oracle” of Vi, is of the form (z, (d)), for some i € [m], i.e., Sim;, may query
bits of 7 (d). However, in a random proof mp €r Pg (1%, z,w), (d) is a random
sharing of 7 (that is, every set of bits 7,1, ..., 7 .a+1 that correspond to a bit ;
of 7, is random such that 7,1 & ... ® 7, g+1 = 7;). Therefore, Sim can simulate
the view of Vg by running Sim;,, and answering his TTP queries with random
bits. These bits are distributed as the answers Sim;, would have been given by
its TTP, so it suffices to prove indistinguishability conditioned on the “input”
oracle 7 (d). In this case, indistinguishability follows from the zero-knowledge of
(Pina Vvin)-

Regarding soundness, if x is §-far from Ly then the soundness of (Pout, Vout)
guarantees that for every “proof” 7* at most an egy¢-fraction of the pred-
icates 1, ..., om are satisfied by (x,7*). Consequently, for every “proof”
7 (d), (x,7*(d)) satisfies at most an e,y-fraction of the private predicates
©1(d) ..., om (d). If Vg chooses to verify a predicate ¢; (d) that is not satis-
fied by = o 7* (d), then the soundness of (P, Vin) guarantees that he accepts
with probability at most €, (¢ (d+1),d). (Indeed, every predicate contains at
most ¢ proof variables, so Vi, has input of length at most ¢ (d + 1), and €, is
non-decreasing.) O

It is clear from Lemma 2 that the soundness error degrades through this
transformation (since the soundness error of the composed system depends not
only on the soundness error of the outer PCPP system, but also on that of the
inner EZKPCPP system). Therefore, our next goal is to reduce the soundness
erTor.

Reducing the soundness error. The main idea is to have the verifier repeat the
verification procedure of V. However, we must change the ZKPCPP itself since
repetition does not necessarily preserve zero-knowledge. (That is, if the verifier
simply repeats the verification procedure, then his queries may exceed the upper
bound for which zero-knowledge is guaranteed.) Intuitively, the prover can gener-
ate several independent copies of basic proofs (i.e., a proof generated by Pg), and
the verifier can repeat the basic verification scheme, using a “fresh” proof in ev-
ery iteration. This “assumption” that the verifier uses every proof at most once,
is the reason the system guarantees only honest-verifier zero-knowledge. Indeed,
we increase the query complexity of the verifier without increasing the zero-
knowledge guarantee of the basic system (since increasing the zero-knowledge
parameter will also increase the soundness error). Therefore, a malicious

Probabilistically Checkable Proofs of Proximity with Zero-Knowledge 135

verifier can potentially break the zero-knowledge by using the same proof in
several iterations.

Construction 4 (HVZKPCPP). The modified HVZKPCPP system
(Pu, Vi) uses the the system (Pp,Vp) as a building block, and is param-
eterized by 1, the number of basic proofs in a proof generated by Py ; t, the
number of runs (of V) that Vg emulates; and d, to be passed on to the
underlying HVZKPCPP system. We assume without loss of generality that
1>t

Prover algorithm. Py on input 1',1¢ and (z,w) € R, uses Pp to generate
independent (basic) proofs 7k, ...,y for the claim (z,w) € R, and outputs the

proof my =T o ...omh.

Verifier algorithm. Vg on input 1¢,1,1% |z|, and given access to oracles x,mg,
picks at random t different basic proofs 7k, ..., %, and for every 1 < i < t, runs
Vg with parameter d and oracles z, 7'y (all emulations of Vg are performed in
parallel). Vi accepts if Vg accepted in all t iterations, otherwise he rejects.

Theorem 5 (HVZKPCPPs from PCPPs). Let o be a security parameter.
Then for any q € N, es = €s (0,]z|), 6 = 0 (0,]z|), r =1 (0, |z|) and £ = £ (o, ||),

1
PCPP [r,q, s, 2,4] C HVZKPCPP [t ¢, ey = 0,8 = 6, eg, ']

where 1" = 0, (r-polylog 1), ' = O (log L) and ¢ = 0, ((t+27)10g 1).

Proof (sketch). We take d = O (1) and t = | = O, (log !) in Construction

€3
4, which increase the query complexity and proof length (of the basic system)
by a factor of log 615, and the randomness complexity by a factor of poly log 61
(since in every iteration the verifier needs to pick a new basic proof to use).
Completeness follows from the completeness of the basic HVZKPCPP system.
Regarding soundness, the soundness error of (Pg, Vg) is % (14 €n) (where €, <
1 is the soundness error of the EZKPCPP, and depends only on ¢ since d is
constant). As Vg emulates ¢ independent runs of Vg, and accepts only if all
iterations succeed, then Vg accepts an x that is §-far from L with probability
at most (; 1+ ein))t = €¢g (for an appropriate choice of the constant defining
t). As for zero-knowledge, every emulation of Vg can be perfectly simulated (by
some simulator Simpg) while making at most d = O (1) TTP queries, and as the
emulations are independent (and use independent basic proof), a simulator Sim
for Vi can run Simp t independent times, and forward the TTP queries of Simp
to his own TTP. O

Remark 3 (Strong HVZK). The strong honest-verifier zero-knowledge feature of
Construction 2 (see Section 3, Remark 2) implies that both the HVZKPCPP
systems described in this section also guarantee (ezk, ¢*)-strong honest-verifier

136 Y. Ishai and M. Weiss

zero-knowledge, as defined in Remark 2. More specifically, to get (ezxk,q*)-
strong HVZK it suffices to take I = poly (¢*) in Construction 4, and use
the EZKPCPP (over a binary alphabet) of Section 3 with zero-knowledge

parameter d = O(log 6Z1K). Consequently, the proof length increases by

a factor of poly <q*,log EZIK), the randomness complexity by a factor of

1
€zK

Moreover, if the original PCPP has strong soundness then so does the
HVZKPCPP. (To get soundness error eg on inputs that are o-far from the re-
lation for some ¢ € (0,1), the proof length, query complexity and randomness
complexity increase by a factor of O (é))

poly (log q*,loglog €Z1K), and the query complexity by a factor of poly log

It is evident from Theorem 5 that Construction 4 inherits many of its prop-
erties from the underlying PCPP system, so efficient PCPPs yield efficient
HVZKPCPPs. More specifically, we can use the following PCPP due to Dinur
[11], to obtain an efficient HVZKPCPP.

Theorem 6 (PCPP, implicit in [11]). Let R = R (z,w) C DTIME (¢ (n)),
then R has a strong PCPP system (P, V) with constant rejection ratio, such that
V' on inputs of length n tosses O (logt (n)) coins and reads O (1) bits from his
oracles.

Plugging the PCPP system of Theorem 6 into Theorem 5, we get the following
result.

Corollary 2 (Efficient HVZKPCPP). Let € be a soundness parameter
and let § be a proximily parameter. Then every relation R = R (z,w) €
DTIME (¢ (n)) has an HVZKPCPP system (Pg, Vi) with perfect completeness,
perfect honest-verifier zero-knowledge, and soundness error € with proximity pa-
rameter 8. On input x, Py generates a proof of size poly (t (|=]), log i, (15) and
Vg makes O ((15 log i) queries.

4.2 From HVZKPCPPs and Locking Schemes to ZKPCPPs

In this section we construct a ZKPCPP with zero-knowledge against arbi-
trary query-bounded verifiers, from a locking scheme and an HVZKPCPP with
strong honest-verifier zero-knowledge (see Remark 2 for a discussion of this zero-
knowledge property). We first give a high-level description of the transformation.
For ¢* € N, let (Py, Vi) be an HVZKPCPP with ¢*-strong honest-verifier zero-
knowledge (e.g., the system of Construction 4, see Remark 3). Intuitively, all we
need to do to achieve zero-knowledge against arbitrary (¢*-bounded) verifiers is
to force the queries of every (possibly malicious) verifier to be distributed as the
queries in ¢* random and independent invocations of V. Following techniques
of Kilian et al. [21], we achieve this by employing a locking scheme. Hiding
a few technical details, the high-level idea is as follows. The proof consists of

Probabilistically Checkable Proofs of Proximity with Zero-Knowledge 137

three sections: the PCPP section in which the prover P locks (using the locking
scheme) every bit of the HVZKPCPP; the PERM section which contains a locked
permutation of the random strings of the honest verifier Vg (namely, P picks
a random permutation 7 over the space of random strings of Vi, and for every
possible random string r of Vi, P lock the image 7(r) in the PERM section); and
the MIX section, where the location indexed by 7(r) contains r and the collection
of keys for the locks holding the HVZKPCPP bits Vi (with randomness r)
queries. To verify the proof, V' picks a random string r’, queries MIX,., and
retrieves some (other) random string r and a set of keys, which he uses to unlock
the corresponding locks. Then, V' verifies that the lock PERM,. holds the string
r" and that Vi would accept (if he was given the HVZKPCPP bits locked in the
PCPP section of the proof).

Applying this transformation to an efficient HVZKPCPP and an efficient
locking scheme, we get the following result (full details are deferred to the full
version).

Theorem 7 (Efficient ZKPCPP). Let € be a soundness parameter, let §
be a prozimity parameter and let ¢* € N. Then every relation R (z,w) €
DTIME (¢ (n)) has a ZKPCPP system (P,V) with soundness error €, proz-
imity parameter §, and straight-line (e,q*)-zero-knowledge. P on input x gen-
erates proofs of length poly (t(\x\),q*,log i, é) and V. on input |x| makes
poly (logt (|=]) ,log g*,log i, (1;) queries.

(P, V) inherits its properties from those of the HVZKPCPP and the locking

scheme combined. More specifically, perfect completeness follows from the per-
fect completeness of both building blocks. As for soundness, the binding of the
locking scheme guarantees the proof oracle V' uses to emulate Vi is consistent
with some proof oracle for Vi, and therefore (by the soundness of (Pg, Vir)) if
x is far from L then Vi rejects (with high probability). As for zero-knowledge,
the hiding of the locking scheme guarantees that by probing the locks, V' learns
almost nothing about the values locked within them. Therefore, V' can only
“hope” to gather some information by retrieving the keys and using them to
open the locks (i.e. by reading MIX entries and then the corresponding PCPP
entries). However, in this case the random permutation 7 guarantees that his
queries to my are distributed as in random and independent emulations of Vi,
so the oracle-answers to his queries can be simulated (by the strong honest-
verifier zero-knowledge of (P, Vir)).
THE ADAPTIVITY OF THE HONEST VERIFIER. Unlike our HVZKPCPP systems
(Section 4.1), the verifier in Theorem 7 is inherently adaptive. Indeed, to de-
commit the locks the verifier must first retrieve the corresponding keys from the
appropriate MIX entry, and therefore cannot make his queries non-adaptively.
However, all iterations of the verification procedure may be executed in parallel
(i.e. all MIX-queries are asked simultaneously, all locks are then simultaneously
unlocked etc.), giving a verifier with adaptivity kioek + 1, where kiock is the
adaptivity of the locking scheme receiver.

138 Y. Ishai and M. Weiss
5 Cryptographic Applications

In this section we describe several applications of ZKPCPPs. Concretely, we
construct two-party and multiparty protocols that allow a dealer to commit
to a secret and prove (with sublinear communication) that it satisfies an NP
predicate.

5.1 Certifiable VSS

Motivated by applications that require verification with no information leakage,
we focus on reducing the communication complexity of verifying the shares in
a verifiable secret sharing (VSS) protocol [10,14,5,9,6]. Roughly speaking, VSS
allows a dealer D to distribute a secret s among n servers in a way that prevents
a coalition of up to t servers from learning or modifying the secret, while on the
other hand guaranteeing unique reconstruction, even if D and up to t servers
can collude. We study a certifiable variant of VSS (which we call ¢VSS) which
is similar to traditional VSS, except that it provides the additional guarantee
that the secret satisfies some NP predicate. Similar to [18], to achieve sublinear
verification we consider networks that include an additional receiver entity R
who eventually receives the secret, and may assist in the verification. We now
provide more details about the model we consider.

We assume that the participating parties can interact over a synchronous net-
work of secure point-to-point channels. The parties also have access to a broadcast
channel, where a message sent over this channel is received by all other parties.
When measuring communication complexity, we count a message sent over a
broadcast channel only once towards the total communication. Alternatively,
our protocols can be implemented with similar communication complexity using
a public bulletin board, where every time a message is written to or read from
the board is counted towards the communication complexity.

The security of protocols is defined by considering their execution in the pres-
ence of a malicious, static adversary, who may corrupt and control a subset of
the parties. The adversary is capable of rushing, namely sending his messages
only after receiving all messages sent by honest parties in the same round.

A cVSS protocol for an NP-relation R consists of three phases. In the sharing
phase, the dealer D is give input (z,w) € R and sends a message to each server.
In the werification phase, the receiver R can freely interact with the servers,
possibly using a broadcast channel. Finally, in the reconstruction phase, each
server sends a single message to R, and R reconstructs the secret. We note that
R and the servers are given 1%l as input.

A protocol as above is said to be (¢, €)-secure if it satisfies the following re-
quirements:

— Correctness. For every adversary A corrupting t out of n servers and for
every (z,w) € R, in the end of the reconstruction phase R outputs z, except
with at most e probability.

Probabilistically Checkable Proofs of Proximity with Zero-Knowledge 139

— Secrecy. For every adversary A corrupting R and ¢ servers there exists a
PPT simulator Sim such that for every (x,w) € R, View 4 (x,w) =€ Sim (|z|),
where View 4 (z,w) denotes the view of A during the sharing and verification
phases.

— Commitment. For every adversary A corrupting R and ¢ servers and for every
(z,w) € R, the following holds except with at most e failure probability
over the randomness of the sharing and verification phases. In the end of
the verification phase, either R outputs L, or there is a unique secret z*
(determined by the messages exchanged up to this point), such that z* € Lg,
|z*| = |z|, and R will output z* regardless of the messages sent by the
adversary during the reconstruction phase.

We note that traditional VSS is stronger than our certifiable VSS in that the

verification phase does not involve the receiver R. Thus, when there are multiple
receivers, traditional VSS can guarantee that the same secret x* is reconstructed
by all receivers. However, traditional VSS protocols do not guarantee that the
reconstructed secret possess any specific properties, as guaranteed by certifiable
VSS, and also do not achieve sublinear verification. (We note that certifiable
VSS can be implemented using general MPC protocols, but the communication
complexity required to verify the shares will not be sublinear.)
CERTIFIABLE VSS FROM ZKPCPPSs. The protocol uses a ZKPCPP system
(P, V), and a robust secret sharing scheme. (A robust secret sharing scheme
maps a secret x into a vector (1, ..., S,) of shares such that “few” shares reveal
no information on x, but x can be reconstructed from the shares even if “few”
of them are replaced with incorrect values.) We note that for the protocol to
be efficient, P,V should be efficient, as well as the sharing and reconstruction
algorithms of the secret sharing scheme.

In the sharing phase, the dealer D secret shares x € Lg using the secret
sharing scheme, generates a ZKPCPP for the claim ‘the secret shares are “close”
to a vector of “legal” secret shares and x € Lg’, and partitions the shares and
the proof between the servers. In the verification phase, the receiver R verifies
that the shares D distributed are close to a sharing of some z’ € Ly by emulating
a the verifier V, where R broadcasts the queries of V' and the servers answer.
(The use of broadcast prevents R from contacting too many servers, which would
violate the secrecy requirement.) If the verification fails, R outputs L and ignores
further messages. For reconstruction, the servers holding the secret shares send
them to R, who reconstructs the secret z.

This description is in fact an over-simplification of the actual protocol.
Indeed, the verification procedure of the ZKPCPP cannot be used as-is since
in the context of VSS, verification is executed in the presence of an adversary
that can determine the answers of the corrupted servers after seeing the queries
of the wverifier, while ZKPCPPs guarantee completeness and soundness when
the verification is performed with oracles (in particular, the oracle answers are
independent of the queries). Intuitively, to restrict the influence the adversary has

140 Y. Ishai and M. Weiss

on the verification procedure, it suffices to guarantee that symbols held by cor-
rupted servers are queried with low probability, which can be done as follows.
The dealer distributes several copies of the secret shares and the proof, and
the value of every specific symbol V' queries is determined by the majority vote
over the corresponding symbols in several randomly selected copies. (This can
be thought of as applying a sort of “error correction” to the symbols of the
secret shares and the proof.) In addition, the verification procedure is repeated
several times, and the verification phase passes (i.e., R does not abort) only if V'
accepted in most of the iterations. Further details are differed to the full version.

The secrecy property follows from the secrecy of the secret sharing scheme
and from the straight-line zero-knowledge property of (P, V). Indeed, the zero
knowledge implies R learns only few shares, and the secrecy of the secret sharing
scheme guarantees that these shares reveal no information on x. (Straight-line
zero-knowledge is required to guarantee that the view of the adversary can be
simulated.) The “error correction” applied to the secret shares and the proof
guarantees that with high probability, corrupted servers are queried only in few
of the emulations of V. Therefore, in most emulations we can think of the verifi-
cation as being performed with oracles, which is useful both for correctness and
for binding. Indeed, for correctness, if D is honest then with high probability
V' accepts in most iterations (by the completeness of the ZKPCPP), and the
robustness of the secret sharing guarantees that R will reconstruct #* = x € Lg
in the end of the reconstruction phase, even if ¢ servers are corrupted. As for
binding, a corrupted D has 2 possible courses of actions. First, if he distributes
a shares vector that is far from every “legal” shares-vector, or close to a shares
vector of some z* ¢ Lg, then the soundness of the ZKPCPP implies that V
rejects in most of the emulations (since corrupted servers are queried only in
few of these emulations), so R outputs L with high probability. Second, if he
distributes a shares vector that is close to a legal shares vector of some z* € L,
then either R outputs L at the end of the verification phase, or * will be re-
constructed (due to the robustness of the secret sharing). Thus, we obtain the
following result.

Theorem 8 (verification-efficient certifiable VSS). Let R = R(z,w) be
an NP-relation. Then for every corruption threshold t € N and every sound-
ness parameter €, there exists a (t,¢€)-secure cVSS protocol for R, with n =
poly (|x| ,t,log 1) servers, total communication complexity poly (\x\ ,t,log i),
and a verification phase that uses poly (log ||, logt, log 1) bits of communica-
tion.

Our certified VSS protocol has non-interactive single-round sharing and re-
construction phases, and a 6-round verification phase. During the sharing phase
D sends a single bit to each server, and during the reconstruction phase every
server sends a single bit to R. The servers are deterministic and the communi-
cation complexity of every server (throughout the protocol) is O(1). Moreover,
there is no direct communication between the servers.

Probabilistically Checkable Proofs of Proximity with Zero-Knowledge 141
5.2 Two-Party Commit-and-Prove

We use ZKPCPPs to construct a “2-party analog” of ¢VSS, or alternatively, a
“certifiable” generalization of a commitment scheme, which we call Commit-and-
Prove. A commitment scheme is a two-phase protocol between a sender S and
a receiver R. In the first phase, called the commit phase, the server on input x
freely interacts with R (who has input 11*!). The messages exchanged between
S, R during the phase are called the commitment. In the second phase, called
the reveal pahse, S sends x, together with a decommitment string dec to R, and
R decides whether to accept of reject x, based on dec and the commitment.

A commitment scheme should have the following properties. First, it should
be hiding, in the sense that a (possibly malicious) receiver interacting with the
honest sender learns nothing about the secret x during the commit phase. Sec-
ond, it should be binding, namely there exists no efficient malicious sender that,
after the interaction with R during the commit phase, can find distinct x, 2" of
the same length, and two decommitment strings dec,dec’, such that R would
have accepted z, 2’ with decommitment dec, dec’, respectively.

A commit-and-prove protocol is certifiable in the sense that S not only com-
mits to x, but also proves it satisfies some predicate. (The relation between
commitment schemes and commit-and-prove protocols is similar to the relation
between VSS and c¢VSS.) Specifically, it is similar to a commitment scheme, but
at the end of the reveal phase R either outputs x and « € Lz (for some relation
R), or aborts. As R, S are both efficient algorithms, the sender cannot generally
be expected to find on its own a “witness” to the fact that = satisfies the predi-
cate (think, for example, of an NP predicate). Therefore, S is given a witness w
(in addition to the input z).

We say a commit-and-prove protocol for a relation R is secure if it satisfies
the following requirements:

— Correctness. For every (z,w) € R, if S, R are honest then R outputs x at
the end of the reveal phase.

— Binding. Every eflicient (possibly malicious) sender algorithm S* wins the
following game with only negligible probability. First, S* interacts with R
in the commit phase, with common input 1. Then, S* outputs two pairs
(z,dec), (2, dec’) such that |z = |2/| = n. S* wins if R would have accepted
x, 2’ given the decommitments dec, dec’ (respectively), and in addition either
x#2 orxé Lg.

— Hiding. There exists a PPT oracle machine Sim such that for every (possibly
malicious) PPT receiver algorithm R* and for every sender input (z,w) € R,
Sim®" (|#|) is computationally indistinguishable from the view of R* during
the commitment phase, when interacting with S (z, w).

— Zero-knowledge after reveal. There exists a PPT oracle machine Sim such
that for every (possibly malicious) PPT receiver algorithm R* and for every
sender input (z,w) € R, Sim™ (z) is computationally indistinguishable from
the view of R* during the entire interaction with S (z,w).

142 Y. Ishai and M. Weiss

Similar to standard commitments, one can also consider stronger variants in
which the binding or the hiding property is statistical. Our construction in fact
satisfies the statistical variant of hiding and zero-knowledge after reveal.

Using techniques similar to those employed by [17] to construct sublinear

ZK arguments, we construct a commit-and-prove protocol with polylogarithmic
communication during the commit phase, and the protocol makes a black-box
use of an exponentially-hard collision-resistant hash function. (By relaxing the
communication requirements such that the communication during commit is
sublinear, instead of polylogarithmic, the protocol can be based on a super-
polynomially hard hash function.)
COMMIT-AND-PROVE FROM ZKPCPPSs. As in the ¢VSS protocol described in
Section 5.1, the protocol is based on a robust secret sharing scheme, and an
HVZKPCPP system (P,V), e.g., the HVZKPCPP system of Construction 3.
(Notice that honest-verifier zero-knowledge suffices in this case, since the sender
can refuse to answer queries the honest ZKPCPP verifier would not make.) In
addition, the protocol employs a family H of collision resistent hash functions. In
the commit phase, R chooses a function h € H and sends (the index of) h to S.
S secret-shares x € Ly into shares sy, ..., s, and, using P, generates a proof 7 for
the claim that the secret shares are “close” to the shares of some z* € L. Next,
S commits to 7 using a computationally-binding and statistically-hiding com-
mitment scheme Comy,*, and “compresses” the commitments, using a “Merkle
Hash Tree” [19]. (That is, the commitments are compressed by repeatedly apply-
ing the hash function h to pairs of adjacent strings, where every application of h
shrinks the input. Thus, a “tree” of hash values is generated, and its root is used
as the compressed commitment.) S commits to (s1,...,$,) in a similar manner.
Then, S sends the compressed commitments C (of 7) and C;, (of (s1, ..., s,)) to
R, and R verifies the commitments as follows. R picks a randomness r for V' and
sends it to S. S determines the set @ of queries V', with randomness r, would
have made, and answers every query g € @ by decommitting the corresponding
bit of 7, s1, ..., $» (using the reveal phase of Comy,) and sending the pre-images
of all the hash values computed along the path in the Merkle hash tree leading
from that bit to the root. R verifies that the values on the paths are consistent
with C,C, and h, that V makes the queries () when using randomness r, and
that V would accept given these oracle answers. In the reveal phase, S sends
R the entire hash tree used to compress the commitments to si, ..., S,, together
with the random strings used to generates the commitments (through Comy,) of
81, ...,8n. R verifies that the commitments and the Merkle tree are consistent
with s1, ..., Sn, and if so reconstructs x from the shares, and outputs it.

The properties of the protocol follow from a combination of the properties
of the HVZKPCPP, the secret sharing scheme, and the collision-resistent hash
function. More specifically, hiding follows from the secrecy of the secret shar-
ing scheme and from the zero-knowledge property of (P, V'), and holds even if

4 Such a scheme can be constructed from a collision-resistant hash function, with no
additional assumptions. Moreover, if the hash function has exponential hardness
then the resultant commitments can be polylogarithmic (in the length of the input).

Probabilistically Checkable Proofs of Proximity with Zero-Knowledge 143

the commitments to si, ..., $p, 7 are not compressed (the compression is required
to “save” on communication during commit). Indeed, by the zero-knowledge of
(P, V) even a malicious R* learns only few shares, which reveal no information
on z. Zero-knowledge after reveal follows in a similar manner, since a simulator
for the entire view of a (possibly malicious) receiver R* receives x, and can there-
fore emulate a simulation of a malicious verifier in the underlying HVZKPCPP
system. As for binding, the collision-resistance of h and the binding of Comy,
guarantee that except with negligible probability, S is committed to some shares
vector (s7,...,s%). (If Cy is inconsistent with all possible Merkle hash tree com-
mitments to all vectors (s}, ...,s)) then R necessarily aborts during the reveal
phase.) Therefore, if (s7,...,s%) is far from every “legal” shares-vector, or close
to a shares vector of some z* ¢ Lz, then R detects this during the commit phase
with high probability (even when interacting with a malicious sender S*). Oth-
erwise, (s7,...,s5) is “close” to a legal shares-vector of some z* € Lg, meaning
the only value a (possibly malicious) S* can successfully decommit during the
reveal phase, is z*.

We note that the protocol as described above achieves a constant error, which
can be reduced (while preserving hiding and zero-knowledge after reveal) by
sequential repetition of the commit phase (further details are differed to the full
version). Consequently, we obtain the following result.

Theorem 9 (Sublinear Commit-and-Prove). Let H be any family of
exponentially-hard collision-resistant hash functions. Then there exists a
computationally-binding and statistically-hiding Commit-and-Prove protocol with
negligible soundness error and polylogarithmic communication complexity during
the Commit phase. Moreover, the protocol makes only black-box use of H.

We note that if H only satisfies the usual notion of super-polynomial hardness,
the communication complexity (during commit) of the resulting Commit-and-
Prove protocol can be O(n¢), for an arbitrarily small € > 0.

A NON-BLACK-BOX ALTERNATIVE. We have shown how to apply ZKPCPPs
towards obtaining sublinear-communication commit-and-prove protocols that
make a black-box use of any collision-resistant hash function. Settling for a
non-black-box use of the hash function, one could avoid the use of ZKPCPPs
by combining a sublinear commitment Com with sublinear zero-knowledge argu-
ments of knowledge [3,4]. Concretely, during the commit phase S first commits
to x using Com, and then proves to R that he knows a witness w and random-
ness r such that (z,r) are consistent with the transcript of Com and (x,w) € R.
For the reveal phase, S sends (x,r) to R. Both of the above primitives can be
based on a collision-resistant hash function. However, the commit phase of the
protocol is inherently non-black-box because the sublinear argument applies to
an NP-relation which depends on the hash function (since Com depends on the
hash function).

144

Y. Ishai and M. Weiss

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

Arora, S., Lund, C., Motwani, R., Sudan, M., Szegedy, M.: Proof verification and
the hardness of approximation problems. Electronic Colloquium on Computational
Complexity (ECCC) 5(8) (1998)

Arora, S., Safra, S.: Probabilistic checking of proofs: A new characterization of NP.
J. ACM 45(1), 70-122 (1998)

Barak, B.: How to go beyond the black-box simulation barrier. In: FOCS,
pp. 106-115 (2001)

Barak, B., Goldreich, O.: Universal arguments and their applications. SIAM J.
Comput. 38(5), 1661-1694 (2008)

Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-
cryptographic fault-tolerant distributed computation (extended abstract). In:
STOC, pp. 1-10 (1988)

Ben-Or, M., Rabin, T.: Verifiable secret sharing and multiparty protocols with
honest majority. In: Proceedings of the 21st Annual ACM Symposium on Theory
of Computing (STOC), Seattle, Washigton, USA, May 14-17, pp. 73-85. ACM
(1989)

Ben-Sasson, E., Goldreich, O., Harsha, P., Sudan, M., Vadhan, S.P.: Robust PCPs
of proximity, shorter PCPs, and applications to coding. SIAM J. Comput. 36(4),
889-974 (2006)

Ben-Sasson, E., Sudan, M.: Short PCPs with polylog query complexity. STAM J.
Comput. 38(2), 551-607 (2008)

. Chaum, D., Crépeau, C., Damgard, I.: Multiparty unconditionally secure protocols

(extended abstract). In: STOC, pp. 11-19 (1988)

Chor, B., Goldwasser, S., Micali, S., Awerbuch, B.: Verifiable secret sharing and
achieving simultaneity in the presence of faults (extended abstract). In: FOCS,
pp. 383-395 (1985)

Dinur, I.: The PCP theorem by gap amplification. In: STOC, pp. 241-250 (2006)
Dinur, I., Reingold, O.: Assignment testers: Towards a combinatorial proof of the
PCP-theorem. In: FOCS, pp. 155-164 (2004)

Dwork, C., Feige, U., Kilian, J., Naor, M., Safra, S.: Low communication 2-prover
zero-knowledge proofs for NP. In: Brickell, E.F. (ed.) Advances in Cryptology -
CRYPTO 1992. LNCS, vol. 740, pp. 215-227. Springer, Heidelberg (1993)
Feldman, P.: A practical scheme for non-interactive verifiable secret sharing. In:
FOCS, pp. 427-437. IEEE Computer Society (1987)

Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive
proof systems. STAM J. Comput. 18(1), 186-208 (1989)

Ishai, Y., Kushilevitz, E., Ostrovsky, R., Sahai, A.: Zero-knowledge from secure
multiparty computation. In: STOC, pp. 21-30 (2007)

Ishai, Y., Mahmoody, M., Sahai, A.: On efficient zero-knowledge PCPs. In: Cramer,
R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 151-168. Springer, Heidelberg (2012)
Ishai, Y., Sahai, A., Viderman, M., Weiss, M.: Zero knowledge LTCs and their
applications. In: APPROX-RANDOM, pp. 607-622 (2013)

Kilian, J.: Uses of randomness in algorithms and protocols. MIT Press (1990)

20.

21.

22.

23.

Probabilistically Checkable Proofs of Proximity with Zero-Knowledge 145

Kilian, J., Naor, M.: On the complexity of statistical reasoning. In: Proceed-
ings of the Third Israel Symposium on the Theory of Computing and Systems,
pp. 209-217. IEEE (1995)

Kilian, J., Petrank, E., Tardos, G.: Probabilistically checkable proofs with zero
knowledge. In: STOC, pp. 496-505 (1997)

Meir, O.: Combinatorial construction of locally testable codes. SIAM J. Com-
put. 39(2), 491-544 (2009)

Mie, T.: Short PCPPs verifiable in polylogarithmic time with O(1) queries. Ann.
Math. Artif. Intell. 56(3-4), 313-338 (2009)

	Probabilistically Checkable Proofs of Proximity
with Zero-Knowledge
	1 Introduction
	1.1 Summary of Results
	1.2 Techniques

	2 Preliminaries
	3 From MPC Protocols to (Inefficient) EZKPCPPs
	4 From Efficient PCPPs to Efficient ZKPCPPs
	4.1 From PCPPs to HVZKPCPPs
	4.2 From HVZKPCPPs and Locking Schemes to ZKPCPPs

	5 Cryptographic Applications
	5.1 Certifiable VSS
	5.2 Two-Party Commit-and-Prove

	References

