Asset Allocation in a

Downside Risk Framework

Executive Summary. The traditional Markowitz port-
folio optimization has two serious drawbacks. First,
mean-variance poritfolio optimization is inadequate
when asset returns are skewed. Second, investor risk
aversion is ignored. A more efficient measure of risk that
focuses only on the deviation below a pre-specified target
rate of return is defined in a generalized lower partial
moment (LPM) framework. The concepts of LPM and co-
LPM, a downside measure of the covariance of return,
are extended to Markowitz’s model to provide a more ef-
ficient and robust optimization process. This article dem-
onstrates that downside risk models can be easily imple-
mented using spreadsheet programs and illustrates how
investor risk aversion can be incorporated into a down-
side risk asset optimization model.
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Introduction

Optimizing asset allocation is simply defined as
the process of mixing asset weights of a portfolio
within the constraints of an investor’s capital re-
sources to yield the most favorable risk-return
trade-off. For typical risk-averse investors, an op-
timal combination of investment assets that gives
a lower risk and a higher return is always pre-
ferred (Markowitz, 1959). In a complete market
without riskless lending and borrowing, a whole
range of efficient asset portfolios having the sto-
chastic dominance features could be determined,
which collectively delineates a convex mean-
variance frontier.

In practice, a wide range of portfolio “optimizers,”
from a simple rule of thumb to a full-scale quad-
ratic programming technique, have been proposed
to delineate the boundary of the mean-variance ef-
ficient frontier. Most, if not all, of the optimization
algorithms are developed strictly based on the
standard mean-variance concepts. The mean-
variance approach has two important limitations
nonetheless. First, bounded by the strict assump-
tion that asset returns follow a symmetric bell-
shaped distribution, the application of the mean-
variance model is limited when asset returns are
skewed. It tends to include only an insignificant
proportion of stochastically dominant assets into
the efficient frontier on one hand, and prematurely
precludes assets having negatively skewed return
on another hand, because a high threshold return
is imposed. Second, investor risk aversion is
ignored.
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Markowitz (1959) recognized the “asymmetrical”
inefficiencies inherited in the traditional mean-
variance models, and suggested a semi-variance
measure of asset risk that focuses only on the risks
below a target rate of return, an intuitively more
appealing alternative. However, the alternative
measure of risk focusing on the downside of asset
returns has not gained much attention. The rela-
tive unfamiliarity and the intractability of the
semi-variance measure are believed to be the main
causes for resistance amongst portfolio managers
against the downside risk concept.

The semi-variance measure is adopted in a pro-
posed downside risk asset optimization framework
of Harlow and Rao (1989) and Harlow (1991). In
their optimization model, the objective is to mini-
mize the lower partial moment (LPM), a proxy for
semi-variance, of the portfolio subject to the con-
straints on the portfolio return and the weight
composition. The proposed model does not take
into account the correlation between the LPMs of
individual assets, which is the most important con-
dition for diversification in the Markowitz’s con-
cept. Therefore, the optimization of the asset allo-
cation based on the Harlow and Rao (1989) and
Harlow (1991) framework is restrictive in cases
where the LPMs of individual assets are highly
correlated. Bearing in mind the limitations in the
earlier downside risk optimization model, we gen-
eralize the model by incorporating the downside
covariance of correlated asset returns into the min-
imization algorithm via two different co-LPM mea-
sures. Further, we extend the downside risk asset
allocation model to include real estate as an asset
class in addition to stocks and bonds.

This study demonstrates the application of the pro-
posed downside risk models using spreadsheet pro-
grams with stocks, bonds and real estate data from
Singapore as a case in point. It also illustrates how
investor risk aversion can be incorporated into the
downside risk asset optimization model. The re-
sults of the analysis showed that a downside op-
timal portfolio is always preferred over a mean-
variance portfolio because of the higher downside
risk protection for a same level of return. At a
given portfolio return of 1.00% on the efficient fron-
tiers, the downside risks are estimated at 1.26%

and 1.50%, compared to 2.74% in the traditional
mean-variance estimation. By asset type alloca-
tion, real estate assets appeared to be the most
important composition in the portfolio when the
portfolio return exceeds 1.00%. In terms of risk
aversion, the results are consistent with the ex-
pected utility hypothesis that a comparatively
more risk-averse investor prefers a lower downside
risk compared to one with higher risk preference,
given that both investors are indifferent with the
levels of portfolio return.

This article is organized into five sections. The
next section presents the underlying concepts of
the downside risk. The following section first dis-
cusses the standard Markowitz’'s quadratic-
programming algorithm and then extends the al-
gorithm to incorporate downside risk measures.
Next, the computations of the standard and the
downside optimization algorithms are illustrated
in a three-asset portfolio using empirical inputs
from Singapore capital markets. The final section
is the conclusion.

Concepts of Downside Risk

The concept of downside risk is not new, its exis-
tence dates back to 1952 (Roy, 1952), The earlier
concern of the downside deviation was addressed
by Roy (1952) in the form of a “safety first” rule
that measures the probability of outcomes falling
below a target return. Kataocka (1963) and Telser
(1956) extended the rule in a single period setting,
which was further developed by Tse, Uppal and
White (1993) in a dynamic framework.

The safety first rule, together with other measures
of risk, namely the expected value of loss, the ex-
pected absolute deviation, the maximum expected
loss, the semi-variance and the variance, were
evaluated when Markowitz (1959) formalized his
seminal portfolio theory. The semi-variance, de-
fined as the squared deviation of return below a
target return, was found to be a theoretically more
robust measure of risk, though the variance was
subsequently chosen for technical reasons, Mar-
kowitz argued for the importance of the tailed-end
return distribution over the upside potential of the
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investment because he believed that investors’ risk
perception should be heuristically asymmetric.
Mao (1970) also found support for the semi-
variance measure among business executives who
were more sensitive to losses below some bench-
mark returns compared with the likelihood of the
project return going above the benchmarks.

Bawa (1975) generalized the semi-variance mea-
sure of risk to reflect a less restrictive class of de-
creasing absolute risk-averse (DARA) utility func-
tion.! The generalized concept of downside risk is
called lower partial variance or LPM. The measure
of the co-variance of the below target returns dis-
persion as proposed by Bawa and Linderberg
(1977) is another important downside risk mea-
sure required for the downside portfolio optimiza-
tion algorithms.

Lower Partial Moment

Bawa (1975) shows that the second order mean-
LPM (MLPM,), for a class of DARA utility func-
tions, is a preferred approximation for the optimal
third order stochastic dominance selection rule?
compared to the mean-variance criteria. The defi-
nition of the second order LPM function by Bawa
could be generalized into n-order LPMs to cover a
range of risk measures as:

LM R) = [ - RyaF®), @

where 7is “target return,” R, is the return of asset
i, dF(R)) is the probability density function of re-
turn on asset i and n is the order of moment that
characterizes an investor’s preference of return
dispersion below the target rate. The common clas-
ses of LPM are the probability of loss (n = 0), the
target shortfall (n = 1), the target semi-variance
(n = 2) and the target skewness (n = 3). The vari-
able n can also be viewed as a measure of risk
aversion where risk aversion increases with n.
Risk as measured by the n-LPM reflects explicitly
the asymmetry and skewness of the probability
distribution of asset returns. For computational
reasons, if we assume that there are T number of

return observations for asset i, then the n-LPM
can be described as a discrete distribution:

T
LPMn(T’ Rz) = —L 2 [Max((), (T - Rit))]n-

T-12 (2)

Co-Lower Partial Moment

In extending the semi-variance measure of risk to
the capital asset pricing model (CAPM), Hogan
and Warren (1974) introduced the co-semivariance
concept, an asymmetric measure of the relative
risk between a risky asset and an efficient market
portfolio. Bawa and Lindenberg (1977) generalized
the co-semivariance measure into an n-degree
LPM structure, which is called a generalized or
asymmetric co-LPM (GCLPM) and defined as:

GCLPM,(7, R, R)

= J'; f_: (r— Ry M7 — R)dF(R,, R), (3)

GCLPM,(r, R, R) # GCLPM,(7, R, R), (4)

GCLPM,(7, R;, R)

= LPM (7, R), when R, =R, (5)
where dF(R;, R;) in Equation (3) is the joint prob-
ability density function of the returns of assets i
and j. A discrete form of the GCLPM can be writ-
ten as:

GCLPM,(r, R, R)

T
= 5,1—1 > [Max(0, (r — R )" v — Ry).  (6)
- t=1

Nantell and Price (1979) and Harlow and Rao
(1989) proposed an unrestricted version of the
Bawa-Lindenberg’s generalized CLPM, where the
target rate (7) is not equal to the risk-free interest
rate (R)), i.e.,, 7 # R, Another variation of the
CLPM measure assumes symmetry between the
returns of assets { and j, given as:

GCLPM,(r, R, R,) = GCLPM,(r, R, R). (T)

Nawrocki (1991) found that the symmetric co-LPM
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(SCLPM) provides a more consistent estimation for
a shorter period. The SCLPM is defined as:

SCLPM,(r, R, R) = SCLPM,(, R;, R))

= [LPM, (7, R)V" [LPM, (7, R)I*"(p; ), (8)

where p; ; is the correlation coefficient between the
returns of assets i and j.

Portfolio Optimization Algorithms

Portfolio optimization as defined is to determine
the most favorable combination of assets such that
the portfolio is stochastically dominant with a min-
imum risk at all levels of expected return. There
are many optimization algorithms that are capable
of ascertaining the most efficient mix of asset port-
folio. Based on the assumptions of no short selling
and no riskless lending and borrowing, Marko-
witz’s quadratic programming model, which is the
most commonly used optimization models, is illus-
trated for a N-asset case. The N-asset Markowitz’s
model is then generalized in the LPM framework.

Markowitz’s Quadratic Programming
Optimization Model

In the Markowitzian’s risk-return trade-off condi-
tions, the efficient portfolio is constructed by a con-
vex combination of risky assets that give the risk-
averse investor the lowest risk for an expected
return. The optimization of asset portfolio can be
modeled as a quadratic programming function con-
sisting of a risk minimization objective (G) and
three constraints (C):

I
M=

Minimize G(x) X,X,0;;
i=1j=1
Subject to
N —_— —_
Cylx) = E xR, — Rp 9)
=1
CQ(xi) = 2 xi - 1

where:
x; = The proportion of portfolio allocated to asset
L
I_iP = The expected portfolio return;
R; = The expected return on asset i; and
o,; = The covariance between asset i returns and

asset j returns, where o, is the variance of
asset 1.

The model implies that an investor aims to obtain
an efficient combination of assets at the lowest
level of risk (G(x)), subject to three conditions.
C,(x) requires the weighted returns of the assets
to be higher than the expected portfolio return,
Cy(x) eliminates idle investment capitals by equat-
ing the total portfolio weight to one. The third
constraint restricts any short selling of assets.
Equation (9) can be solved mathematically as a
standard constrained optimization problem.

Downside Risk Optimization Model

Asset allocation in a downside risk framework de-
termines an optimal investment opportunity set
for downside risk-averse investors. In the down-
side risk asset allocation framework proposed by
Harlow and Rao (1989) and Harlow (1991), the op-
timization problem involves essentially the selec-
tion of an optimal asset mix such that the proba-
bility of the portfolio return (R,) falling below the
target rate of return (7) is minimized. The three
constraints as in Markowitz’s model (Equation (9))
are retained in the downside risk minimization
process.

Formally, the downside risk asset allocation model
of Harlow and Rao (1989) and Harlow (1991) can
be represented as:

Minimize x; in LPM (7, x;)

1 T N n
Subject to
n=1or?2

N
Cix) = E xR, — Rp (13)
i=1

N
i=1
i=1,2,...,N.

x; = 0,
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The minimization of the target deviation of the
portfolio return as in Equation (13) implicitly as-
sumes that the aggregate downside effects are ex-
ante efficient. There are two major limitations in
the above downside asset allocation algorithm.
First, the downside distributions of the ex-post re-
turns of individual assets are taken to be irrele-
vant as long as the return of the portfolio compos-
ing individual assets is a downside efficient
portfolio with minimum target shortfalls. Second,
by only evaluating the downside deviation of the
portfolio return in aggregate terms, the model also
neglects the co-movement between individual as-
set returns that fall below the target return. It may
violate the fundamental rule of diversification if
two assets with perfectly correlated downside
shortfalls are included in the portfolio composition.

Taking into account the two critical limitations in
the Harlow and Rao (1989) and Harlow (1991) op-
timization model, we further generalize the down-
side risk measure in CLPM framework. In this ex-
tended optimization model, the ex-post downside
risks and the co-variances of individual assets with
respect to the target return are explicitly reflected
in the minimization function. Based on the same
set, of constraints adopted in Markowitz’s quad-
ratic model, the risk minimization algorithm of the
extended n-degree Mean-Co-LPM (M-CLPM,)) is
defined as:

N N
Minimize G(x) =D, > x;x; CLPM, (7, x;, x;)
i=1j=1

Subject to
N p— —_
Cix) = 2 x;R; — Rp (14)
i=1
N
i=1
x,= 0, i=1,2,...,N

L

Empirical Analysis

We apply the extended downside risk asset allo-
cation algorithm (Equation (14)) to the capital
markets of Singapore and test the performance of
the model with a three-asset case. A comparison of

the optimization outcomes is made with respect to
the classical mean-variance models. All models are
computed using Microsoft Excel spreadsheets.’

Data

The returns of the three assets, namely real estate,
stocks and bonds, are collected and estimated on
a quarterly basis for the period from 1983:2 to
1997:2 for the country under study. In Singapore,
the Urban Redevelopment Authority (URA) all-
property index is a reliable transaction based
indicator of the real estate market performance.
The stock and bond data are respectively repre-
sented by the Stock Exchange of Singapore (SES)
all-share and the short-term government bond
indices, both of which are available from the
TREND database.

The historical statistics of the asset markets are
summarized in Exhibit 1. The results show that
real estate assets are the most attractive invest-
ment generating the highest quarterly return of
2.01%. Short-term government bonds as a proxy of
a safe investment yield a negative return of 0.02%
on average from 1983 to 1999. The fluctuation of
the rate of change of Singapore’s bond yields is rel-
atively small and within a standard deviation of
2.19% per quarter. Singapore stocks with an ex-
post standard deviation of returns of 9.03% per
quarter appear to be the most risky investment
over the sample period.

Exhibit 1

Historical Statistics of Singapore Asset Markets
Asset Type Real Estate Stock Bond
Abbreviation SProp SStk SBond
Mean (%) 2.01 1.24 —-0.02
Median {%) 2.00 0.29 0.02
Std. Dev. (%) 4.73 9.03 2.19
Sample Variance (%] 0.22 0.82 0.05
Kurtosis -0.23 0.71 1.90
Skewness 0.02 -0.43 ~0.44
Range (%) 21.03 4591 12.02
Min. (%) -8.03 -27.97 —6.65
Max. (%) 13.01 17.94 537
Number 57 57 57
Correlation Matrix
Real Estate 1.000
Stocks 0.513 1.000
Bonds 0.121 0.046 1.000
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In term of the third moment of expected returns
(skewness), stocks and bonds have considerable
negative skews. The real estate returns, however,
are approximately normal in the distribution. For
the fourth moment of expected returns, the fat-
tailed distribution is not significantly observed.
With a kurtosis of less than 3, the return distri-
butions of the three assets contain a large propor-
tion of medium-sized deviations. They have a flat-
topped distribution that is known technically as
platykurtic distribution,

Analysis of Results

Downside-risk vs. mean variance efficient frontiers.
The convex efficient frontiers computed based on
the classical mean-variance optimization and the
downside risk optimization algorithms are shown
in Exhibit 2. For the downside risk optimization
models, the order of moment is set at n = 2 and
the target rate or return is fixed at zero (ie., 7 =
0.00%). For an efficient portfolio with a return
ranging from 0.00% to 2.00%, the standard devia-
tion of the classical Markowitz’s portfolio is a con-
vex function varying within a range of 2.63%.

The downside standard deviations, on the other
hand, have a smaller range of 0.80% for the non-
symmetric downside risk model and 0,92% for the
symmetric version of the mean-LLPM model.

It is also apparent from the graphical comparison
in Exhibit 2 that the downside risk models push
the efficient frontiers outward to the left of the
classical Markowitz’s mean-variance curve to pro-
duce efficient portfolios that are stochastically
dominant. At a quarterly portfolio return of 1%,
the optimal portfolios of real estate, stocks and
bonds determined by the mean-LPM models pro-
vide a larger downside risk protection with stan-
dard deviations of 1.26% (asymmetric model) and
1.50% (symmetric model), compared to 2.73% for
the Markowitz’s portfolio mix. The results imply
that for the same level of portfolio return, it is pos-
sible to further reduce the threshold of the risk
frontier by as much as 1.23% by focusing only on
the shortfalls below the target rate of returns. The
portfolio target semi-deviation is further reduced
by 0.24% if the co-LPM matrix is assumed to be
asymmetric across its diagonal.

Exhibit 2

Efficient Frontiers of Downside Risk and Mean-Variance Portfolios

2.00%
Mean-Asymmetric
Lower Partial Moment
Efficient Frontier ™S Mean-Symmetric Lower Partial
1.50% Moment Efficient Frontier
§
E
2
ﬁ Mean-Variance Efficient Frontier
2 1.00% -
£
t . -
£ Risk difference
0of 0.24% Risk difference of
attributable to 1.23% attributable
| the asymmetry to the downside
0.50% in the co -LPM variation
0.00% T T T T g T T T T
0.00% 0.50% 1.00% 150% 2.00% 250% 3.00% 3.50% 4.00% 4.50% 5.00%

Portfolio Standard Deviation (%)



F Nl en e § W Al P PR R W TR TR AR T e e e e m e e

In terms of asset weight allocation, there are some
interesting observations to be made by comparing
the results from different optimization algorithms.
Based on selective portfolio returns, the standard
deviations and asset weights for the three assets
included in the portfolio are summarized in Ex-
hibit 3. It is shown that with the exception of the
portfolio composition that yields a low quarterly
return of 0.1%, the three asset allocation models—
the classical Markowitz’s mean-variance, the
mean-SCLPM and the mean-LPM (Equation
(13))—allocate the same asset weights to the three
asset classes. In terms of the minimum downside
standard deviations of portfolio returns, the esti-
mated values for the three models with same asset
weight allocation vary with the changes in the
portfolio returns. The results, however, indicate
that the downside return deviations for portfolio
optimized by the mean-GCLPM model are the low-
est vis-a-vis other models.

For the type of assets included in the risk-
minimizing portfolio, real estate appears to be the

most important composition in the portfolio when
the portfolio return in excess of 1.00% is to be at-
tained (Exhibit 3). It is also interesting to note that
except for the asymmetric co-LPM model, all three
other models actually drop the most risky asset,
i.e., stocks that have a historical average standard
deviation of 9.083% (refer to Exhibit 1), from the
portfolio. In contrast, the optimization rules pro-
posed by the asymmetric co-LPM (mean-GCLPM)
framework favor more stocks when the expected
portfolio return increases. For a range of portfolio
returns between 0.10% and 1.80%, the weight of
stock in the mean-GCLPM portfolio increases from
5.11% to 17.47%. The negative downside co-
variances between real estate and stock that were
asymmetrically different over the sample period
are deemed to be the factor that explains the
diversification strategy adopted by the mean-
GCLPM model.

Effects of investor’s downside risk preference (n).
The risk aversion of investor increases when n is
adjusted from 1 to 3 correspondingly. Exhibit 4

Exhibit 3
Asset Weights for Optimal Portfolios from Different Optimization Models

Optimization Portfolio Portfolio Real Estate Stock Bond Weight
Models Return {%) std. Dev. {%) Weight (%) Weight (%) {%)

[ 0.10 2.10 5.04 1.76 93.20
Il 0.10 1.50 2.97 5.11 91.93
i 0.10 1.54 4.88 2.03 93.09
v 0.10 1.49 6.14 0.00 93.86
l 0.50 2.15 25.79 0.00 74.21
i 0.50 1.29 20.80 8.01 71.18
il 0.50 1.41 25.79 0.00 74.21
v 0.50 1.29 25.79 0.00 74.21
i 1.00 2.74 50.36 0.00 49.64
I 1.00 1.26 43.11 11.65 45.24
1} 1.00 1.50 50.36 0.00 49.64
v 1.00 1.44 50.36 0.00 49.64
! 1.50 3.65 74.93 0.00 25.07
] 1.50 1.52 65.42 15.29 19.30
1 1.50 1.84 74.93 0.00 25.07
v 1.50 1.83 74.93 0.00 25.07
I 1.80 4.28 89.67 0.00 10.33
I 1.80 1.77 78.80 17.47 3.74
n 1.80 2.12 89.67 0.00 10.33
I\ 1.80 212 89.67 0.00 10.33
Notes:

| = Classical Markowitz Quadratic Programming model.

1l Generalized [Asymmetric) Mean-Co-Lower Partial Moment model.
Il = Symmetric Mean-Co-Lower Partial Moment model.

V=

Mean-Lower Partial Moment model by Harlow and Rao (1989) and Harlow (1991) {Equation {13])}.
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Exhibit 4
Effects of Risk Aversion in a Mean-GCLPM Optimization Framework

2.00%

1.50%

1.00%

Portfolio Return (%)

0.50%

0.00%

0.00% 2.00% 4.00%

6.00% 8.00% 10.00% 12.00%

Portfolio Standard Deviation (%)

shows that the efficient frontiers lie further to the
left when the risk aversion of investors declines. In
other words, a risk-averse investor who prefers
less downside risk would choose the right-most ef-
ficient portfolio compared to those on the left. At a
given portfolio return of 0.5%, the downside risks
on the efficient mean-GCLPM curve are estimated
at 5.96%, 1.28% and 0.31% for models withn = 1,
2 and 3, respectively. The results are consistent
with the expected utility hypothesis that a more
risk-averse investor (n = 3), prefers less risk than
a less risk-averse investor (n = 1) for a same level
of return. The less risk-averse investor has a
higher risk preference threshold in the optimiza-
tion process.

Effects of target rate of return (7). For the effects of
the target rate of return, we vary 7 from 0.0% to
2.0% and plot the efficient convex combinations of
the asset portfolio based on the asymmetric CLPM
optimization model (Exhibit 5). There is no strict
second order stochastic dominance® among the
three efficient frontiers with different target rates

of return (7). At both extreme ranges of the port-
folio returns, approximately for B, < 0.85% and
R, > 1.45%, the optimal portfolio of the mean-
GCLPM model with 7 = 0 dominates those with
higher target rates of return (= = 1 and 2). The
downside standard deviations of the mean-
GCLPM.__, portfolio are the smallest at every level
of portfolio return below 0.85% or exceeding 1.45%.
However, for the mid-range portfolio returns (Rp)
between approximately 0.85% and 1.45%, the
mean-GCLPM __,,, efficient portfolio is stochasti-
cally dominant over the mean-GCLPM,_,,, and the
mean-GCLPM__,, portfolios (i.e., the mean-
GCLPM portfolio is preferred for its lowest down-
side risks at a given range of returns approxi-
mately 0.85% < R, < 1.45%). The change in the
target rate of returns also has a significant effect
on the convexity of the efficient curves. When 7 in-
creases, the spread of the portfolio returns be-
comes narrower at any given level of portfolio
downside risk. From another perspective, the con-
vexity of the lower and upper tails of the curves
are stretched rightward along the downside risk
axis.



Exhibit 5
Effects of Target Rate of Return in a Mean-GCLPM Optimization Framework
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Conclusion optimization model. Their model is designed to di-

In practice, Markowitz’s mean-variance optimiza-
tion is one of the most commonly used algorithms
for estimating optimal portfolio weights. However,
built on the strict assumption that asset returns
are normally and independently distributed, Mar-
kowitz’s algorithm is ineffective in optimizing port-
folios that comprise assets with skewed returns.
The traditional mean-variance model, which treats
both the above and the below target returns
equally, tends to over-estimate the risks and im-
poses unnecessary conditions that rule out portfo-
lios that are downside efficient.

Intuitively, investors are more concerned about the
probability of investment returns that fall below
the target return. Bawa (1975) conceptualized an
alternative risk measure in a generalized LPM
framework that focuses only on deviations below a
pre-specified target rate of return. Harlow and Rao
(1989) and Harlow (1989) then incorporated the
downside risk concept to a downside risk portfolio

rectly minimize the target semi-deviation of port-
folio returns, as measured by the LPM. However,
the model is subject to two limitations. First, the
model ignores the downside distributions of indi-
vidual asset ex-post returns. Second, the model ne-
glects the co-movement between individual asset
returns that fall below the target return, which is
an important criterion for risk diversification. We
extend their model by applying the co-LPM con-
cept (Hogan and Warren, 1974; and Bawa and Lin-
denberg, 1977), a downside measure of the covar-
iance of asset returns, to the classical Markowitz
quadratic algorithm to improve the robustness of
the optimization process.

The proposed downside risk versions of Marko-
witz’s optimization model were applied to deter-
mine the optimal weights for a three-asset portfo-
lio in Singapore using Microsoft Excel. For a range
of efficient portfolio returns between 0.00% and
2.00%, the results show that the portfolio risks es-
timated in the downside risk models vary by a
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smaller range of 0.80% for the mean-GCLPM
model and 0.92% for the mean-SCLPM vis-a-vis
the 2.63% range for the classical mean-variance
model. In absolute terms, at a given portfolio re-
turn of 1.00% on the efficient frontiers, the down-
side risks for the asymmetric and the symmetric
CLPM models are estimated at 1.26% and 1.50%
respectively, compared to 2.74% for the classical
Markowitz model. The results imply that a risk-
averse investor would always prefer the downside
optimal portfolio compared to the mean-variance
portfolio because the CLPM models offer a larger
buffer below the threshold risk preference for the
same level of return.

In terms of asset weight allocation, the optimiza-
tion rules of the asymmetric CLLPM framework fa-
vor a higher allocation to stock in comparison with
the Markowitz mean-variance and the mean-
symmetric CLPM models. It can thus be expected
that a higher proportion of stocks that are rela-
tively more risky would be included in a downside
efficient portfolio to trade-off for a higher expected
return.

The effects of the risk aversion of an investor as
captured by the variable n in the CLPM formulae
are also examined. The results suggest that a com-
paratively more risk-averse investor as indicated
by a higher n obtains a lower downside risk com-
pared to one with higher risk preference, i.e., for
n = 1, given that both investors are indifferent to
the levels of portfolio return. It is also found that
by varying the target rate of return from 0.00% to
2.00%, the convexity of the efficient frontiers is
adjusted such that both the lower and upper tails
of the curves are stretched rightward along the
downside risk axis. However, there is no strict sto-
chastic dominance among the three efficient fron-
tiers with different target rates of return (7).

Endnotes

1. In a decreasing absolute risk aversion (DARA) function, a
risky asset is a normal good that implies that the demand
for such risky asset increases with an increase in individual
wealth (Arrow, 1970).

2. The Third Order Stochastic Dominance is a complex optimal
selection rule that compares the means and the lower partial

variance function of the probability distributions of alter-
native asset returns (refer to Bawa (1975) for detailed deri-
vations of the rules).

3. These programs are available from the authors on request.

4. The URA property price index is computed from information
obtained in caveats lodged with the Singapore Land Regis-
try. It is a quarterly index that is derived by dividing the
current median price per square meter with the median
price in the base year 1990. The composition of the index
includes five major types of private propertics—residential,
office, shop, flatted factory and warchouse. It differs from
the Russell-NCREIF Index, the benchmark institutional real
estate index in the United States, which is based on the
appraised values of the properties held in portfolios of the
member firms of the National Council of Real Estate In-
vestment Fiduciaries. Given the size of the fund that in-
cludes over 1500 properties with an appraised value of above
$22 billion, a policy that staggers the period of re-
assessment of the propertics was adopted. In contrast, the
URA index is updated quarterly based on all the caveats
that have been lodged for that particular quarter, which may
comprise cases of repeated sale caveats during the quarter.

5. In the absence of information on the entire distribution func-
tions for the three optimal portfolio frontiers, the comparison
of their performances under the second order stochastic
dominance condition, in our context, is a more restrictive
representation based solely on the mean and variance of the
portfolio returns that are assumed to have the same distri-
bution functions.
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