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Abstract

We consider the problem of computing a k-sparse approximation to the discrete Fourier trans-
form of an n-dimensional signal. Our main result is a randomized algorithm that computes such an
approximation using O(k log n(log log n)O(1)) signal samples in time O(k log2 n(log log n)O(1)), as-
suming that the entries of the signal are polynomially bounded. The sampling complexity improves
over the recent bound of O(k log n log(n/k)) given in [HIKP12b], and matches the lower bound of
Ω(k log(n/k)/ log log n) from the same paper up to poly(log log n) factors when k = O(n1−δ) for a
constant δ > 0.
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1 Introduction

The discrete Fourier transform (DFT) is a ubiquitous computational problem. Its applications are broad
and include signal processing, communications, and audio/image/video compression. The fastest algorithm
for this problem is the Fast Fourier Transform (FFT), which computes DFT of an n-dimensional signal in
O(n log n) time. The existence of DFT algorithms that are faster than FFT is among the central algorithmic
questions that still remain open.

A general algorithm for computing the exact DFT must take at least linear time. In many applications,
however, most of the Fourier coefficients of a signal are small or equal to zero, i.e., the output of the DFT is
(approximately) sparse. This includes audio, image and video compression, where the sparsity provides the
rationale underlying compression schemes such as MPEG and JPEG. Other applications involving sparse
signals include MRI [Nis10], NMR [MEH09] and ultrasound imaging [KS01]. For sparse signals, the Ω(n)
lower bound for the complexity of DFT no longer applies.

The goal of designing efficient DFT algorithms for (approximately) sparse signals has been a subject of
a large body of research [Man92, GGI+02, AGS03, GMS05, Iwe10, Aka10, HIKP12a, HIKP12b, LWC12,
BCG+12, HAKI12, PR13, HKPV13]. These works show that, for a wide range of signals, both the time
complexity and the number of signal samples taken can be significantly sub-linear in n. From a different
perspective, minimizing the sampling complexity for signals that are approximate sparse in the Fourier
domain was also a focus of an extensive research in the area of compressive sensing [Don06, CT06].

The best known results obtained in those areas are summarized in the following table. For the sake of
uniformity, we focus on results for signals that are not necessarily exactly sparse, and provide the so-called
`2/`2 approximation guarantee1. In this case, the goal of an algorithm is as follows: given the signal x and
the sparsity parameter k, output x̂′ satisfying

‖x̂− x̂′‖2 ≤ C min
k-sparse y

‖x̂− y‖2, (1)

where x̂ denotes the complex DFT of x. The algorithms are randomized and succeed with constant proba-
bility.

Reference Time Samples Approximation Signal model
[CT06, RV08, CGV12] Ω(n) O(k log3(k) log(n)) C = O(1) worst case

[CP10] Ω(n) O(k log n) C = (log n)O(1) worst case
[HIKP12b] O(k log(n) log(n/k)) O(k log(n) log(n/k)) any C > 1 worst case
[GHI+13] O(k log2 n) O(k log n) C = O(1) average case,

k = Θ(
√
n)

This paper O∗(k log2 n) O∗(k log n) any C > 1 worst case

Figure 1: Bounds for the algorithms that recover k-sparse Fourier approximations . All algorithms produce
an output satisfying Equation 1 with probability of success that is at least constant. We use O∗(f(n)) to
denote a function bounded by f(n)(log logn)O(1).

In summary, it has been known how to either perform the sparse recovery in sub-linear time, or achieve
O(k log n) sampling complexity, or obtain a constant-factor approximation guarantee, or make the algorithm

1Some of the algorithms [CT06, RV08, CGV12] can in fact be made deterministic, but at the cost of satisfying a somewhat
weaker `2/`1 guarantee. Also, additional results that hold for exactly sparse signals are known, see e.g., [BCG+12] and references
therein.

1



work for arbitrary (i.e., worst case) signals. However, it was not known how to obtain all of these guarantees
simultaneously, or even how to satisfy various subsets of those guarantees.

1.1 Our results

Our main result is an algorithm that, given an arbitrary signal x, computes a k-sparse approximation for any
factor C > 1 using O∗(k log n) signal samples in time O∗(k log2 n). This assumes that n is a power of
2 and has additional additive error ‖x‖2/nΘ(1); both restrictions are common in previous work. Thus, the
algorithm essentially provides the “best of all worlds” guarantees, modulo the poly(log log n) factors and
assuming k < n1−δ for any constant δ > 0. The sampling complexity of the algorithm essentially matches
the lower bound of Ω(k log(n/k)/ log log n) from [HIKP12b], again up to the same restrictions.

1.2 Our Techniques

For the rest of this paper, we will consider the inverse discrete Fourier transform problem of estimating a
sparse x from samples of x̂. This is an equivalent problem modulo some conjugation, and lets the notation
be simpler because the analysis almost always works with the sparse vector.

Our algorithm follows a similar approach to [GMS05, HIKP12b], which try to adapt the methods
of [CCF02, GLPS10] from arbitrary linear measurements to Fourier ones. We use a “filter” that lets us
“hash” the k large frequencies to B = O(k) buckets. This lets us “locate” – i.e., find the indices of – many
of the large frequencies. We then “estimate” the value of x at these frequencies, giving a sparse estimate χ
of x. To improve this estimate, we can repeat the process on x− χ by subtracting the influence of χ during
hashing. This repetition will yield a good sparse approximation χ of x.

The methods of [CCF02, GLPS10] will, multiple times, take a set of B linear measurements of the form

ũj =
∑

i:h(i)=j

sixi

for random hash functions h : [n] → [B] and random sign changes si with |si| = 1. This denotes hashing
to B buckets. With such ideal linear measurements, O(log(n/k)) hashes suffice for sparse recovery, giving
an O(k log(n/k)) sample complexity.

To perform sparse Fourier transforms, [GMS05] and [HIKP12b] approximate ũ using linear combina-
tions of Fourier samples. They use filters to compute u ≈ ũ using somewhat more than B Fourier measure-
ments. Choosing a filter involves a tradeoff between the approximation quality and increase in number of
samples. As described in Section 3, for any parameter R > 2, using O(B logR) Fourier measurements we
can get (very roughly) that ‖u− ũ‖2 ≤ ‖x‖2/R. We refer to this error (u− ũ), which is mostly caused by
elements xi contributing to buckets other than h(i), as “leakage.”

The difference between [GMS05] and [HIKP12b] is largely driven by a different choice of filters.
[GMS05] uses a filter with R = O(1), which gives efficient sample complexity per hashing but involves
lots of leakage. Dealing with this leakage requires multiple logarithmic factors of overhead in the number
of hashes. By contrast, [HIKP12b] uses a filter with R = nO(1). This filter loses one logarithmic factor
in sample complexity, but makes leakage negligible for polynomially bounded inputs. The rest of the algo-
rithm then can proceed somewhat similarly to [GLPS10] and be optimal, givingO(k log n log(n/k)) sample
complexity.

In this paper we observe that setting R = nO(1) is often overkill: in many cases the post-filtering
parts of [HIKP12b] can tolerate a larger amount of leakage (and hence use a filter that performs fewer
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measurements). Moreover, the situations where R must be large are precisely the situations where the post-
filtering parts of [HIKP12b] can be made more efficient and use o(log(n/k)) hashings. We give a broad
outline of our analysis, starting with a special case.

Similar magnitude heavy hitters. Even with the “ideal” hashing ũ, we expect an average of around µ2 =
Err2

k(x)/B “noise” from the tail in each of theB = O(k) buckets, where Errk(x) denotes mink-sparse y‖x−
y‖2. This means that the post-filtering steps of the algorithm must already tolerate average noise of order
µ2.

For intuition, it is useful to consider recovery of a signal where the largest k coordinates are all between√
Rµ and Rµ for a parameter R ≥ 2. Then choosing the filter with O(logR) overhead, i.e. performing

O(B logR) Fourier measurements, the average leakage will be

1

B
‖ũ− u‖22 ≤

1

R2B
‖x‖22 ≤

k · (Rµ)2 + Err2
k(x)

R2B
< µ2.

This means that the post-filtering steps of the algorithm will succeed, giving a sample complexity of
O(k logR log(n/k)). This is a great improvement over the O(k log n log(n/k)) sampling complexity of
[HIKP12b] when R is small, but if R is polynomially large we have not gained anything.

The next insight is that we can use fewer than log(n/k) hashings if the smallest heavy hitter has value√
Rµ2 � µ2. Indeed, the bottleneck in [GMS05, HIKP12b] is the location phase, where we need to recover

log(n/k) bits about each large frequency (in order to identify it among the n/k different frequencies in the
bucket). While [GMS05, HIKP12b] recover these bits one at a time, their methods can actually recover
Ω(logR) bits per hashing in this case because the expected signal to noise ratio in each bucket is Ω(R).
This gives a sample complexity of O(k logR logR(n/k)) = O(k log(Rn/k)).

Our algorithm uses the approach we just outlined, but also needs to cope with additional difficulties that
we ignored in the sketch above. First, in the general case we cannot expect all heavy hitters to be in the
range [

√
Rµ2, Rµ2], and the argument above does not give any guarantees on recovery of smaller elements.

Additionally, the sketch above ignores collisions during hashing, which cause us to only recover a constant
fraction of the heavy hitters in each round. We now give an outline of our approach to the general problem.

General vectors. The above algorithm finds most of the large frequencies if they all have value between√
Rµ2 and Rµ2 for a known R. More generally, if ‖x‖22 ≤ Rkµ2, the same techniques can recover most

of the frequencies of magnitude larger than Rδµ2 with sample complexity O(1
δk log(Rn/k)), for a param-

eter δ > 0: we perform O(logRδ(n/k)) hashings that each take O(k logR) samples. Call this algorithm
A(R, δ).

Our algorithm will repeat A(R, δ) multiple times for some δ. After enough repetitions, we will recover
almost every coordinate larger than

√
Rµ2. The residual will then have norm bounded by O(

√
Rkµ2). Our

algorithm takes the following form: we repeat A(
√
R, δ) multiple times, then A(R1/4, δ), and so on. After

log logR rounds of this, the residual will have norm O(kµ2) and we can perform recovery directly. For this
technique to work with (log log(Rn))c overhead, we will show that log logR repetitions of A(R, δ) suffice
to reduce the residual norm to

√
Rkµ2, for some δ = Ω(1/ log logR).

A first attempt might be to set δ = 1/2, thus recovering most of the coordinates larger than
√
Rkµ2

in each stage. This leads to problems if, for example, the vector has k/2 elements of value R.4µ2 and k/2
elements of value R.6µ2. Then A(R, 1/2) will never recover the first k/2 coordinates, and collisions with
those coordinates mean it will only recover a constant fraction of the second k/2 coordinates. So it takes
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Ω(logR)� log logR repetitions to reduce the residual from R.6kµ2 to
√
Rkµ2. This is too slow; we need

to make the number of elements above
√
Rµ2 decay doubly exponentially.

This suggests that we need a more delicate characterization of A(r, δ). We show in our analysis that
coordinates are recovered with high probability if they are “well-hashed,” meaning that the total noise in
the bucket is Rδ smaller than the value of the coordinate. Coordinates of magnitude Rδµ2 have a constant
chance of being well-hashed (leading to singly exponential decay), and coordinates that are much larger
than Rδµ2 have a higher chance of being well-hashed (ultimately yielding the required doubly exponential
decay). Our analysis follows this outline, but has to handle further complications that arise from imperfect
estimation phase. For simplicity, we first present the analysis assuming perfect estimation, and then give the
proof without any assumptions.

General vectors: perfect estimation. We classify the elements of the signal into 1/δ “levels” of elements
between [Rδjµ2, Rδ(j+1)µ2] for j = 0, . . . , 1/δ − 1, as opposed to a single range like [

√
Rµ2, Rµ2]. We

then bound the success rate of recovery at each level in terms of the number of elements in various levels
above and below it.

To first approximation, coordinates are recovered and eliminated from the residual if they are well-
hashed, and are not recovered if they are not well-hashed. And in most cases the probability that a large
coordinate j is not well-hashed is dominated by the probability that it collides with a coordinate of magnitude
at least R−δ|xj |2. In this approximation, if we set m`(t) to be the number of |xj |2 larger than R`δµ2 after t
rounds of the algorithm, then E[m`(t+ 1)] ≤ m`(t)m`−1(t)/B. Then m0 doesn’t decay—coordinates less
than Rδµ2 will not be recovered by A(R, δ)—but m1 decays exponentially, m2 will then decay as 2−t

2
,

and in general m` will decay as 2−(t`). With δ = 1/ log logR, we find that m1/δ−1 (which contains all
coordinates larger than

√
Rµ2) will decay to 1/Rc in O(log logR) rounds. As a result, the squared norm of

the residual will be at most O(
√
Rµ2). The details of this part of the analysis are presented in Section 6.

General vectors: actual behavior. In the actual algorithm, coordinates do not just disappear if they are
located, but are estimated with some error. This means large components can appear in the residual where
no component was before, if lots of small components were hashed to a certain bucket. This causes the
m` to not obey the nice recurrence in the previous paragraph. To deal with this, we introduce the notion of
splittings of the residual. For analysis purposes, we split each component of the residual into multiple terms
whose total magnitude is the same. We define the m` in terms of the number of components in the splitting,
not the actual residual.

The intuition is that the residual error when estimating an element xi is approximately ‖xC‖2, where
C ⊂ [n] is the set that “collides” with i. Rather than thinking of the residual as a single coordinate with
value ‖xC‖2, we “split” it and imagine duplicating xj for each j ∈ C. Because j ∈ C was not recovered
from the bucket, j was (most likely) not well-hashed. So the contribution of the duplicated xj to m` is
comparable to the contribution of the xj that remain after not being well-hashed. Hence the m` obey almost
the same recurrence as in the perfect estimation setting above.

As a result, O(log logR) repetitions of A(R, 1/ log logR) reduce the residual norm to
√
Rkµ2. Re-

peating for log logn rounds decreases R from nc to O(1), and we can finish off by accepting a logR loss.
The details of this part of the analysis are presented in Section 7.
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2 Notation and definitions

We use the notation [n] = {0, 1, . . . , n− 1}. For x ∈ Rn the Fourier transform of x is given by

x̂j =
1√
n

∑
i∈[n]

ωijxi, (2)

where ω is a root of unity of order n. We may also denote the Fourier transform x̂ of x by F(x). The inverse
transform is given by

xj =
1√
n

∑
i∈[n]

ω−ij x̂i. (3)

By the convolution theorem, x̂ ∗ y =
√
nx̂ · ŷ.

We assume that n is a power of 2.

2.1 Notation

We use f & g to denote f = Ω(g) and f . g to denote f = O(g).
We will use (pseudorandom) spectrum permutations [HIKP12b, GMS05], which we now define.

Definition 2.1. Suppose that σ−1 exists mod n. We define the permutationPσ,a,b by (Pσ,a,bx̂)i = x̂σ(i+a)ω
−σbi.

We also define πσ,b(i) = σ(i− b) mod n.

This has the following useful property, proven in Section 11.

Claim 2.2. (Claim 2.2 of [HIKP12b]). Let F−1(x) denote the inverse Fourier transform of x. Then

(F−1(Pσ,a,bx̂))π(i) = xiω
aσi.

Also, define

• hσ,b(i) = round(πσ,b(i)n/B) to be an [n]→ [B] “hash function” .

• oi(j) = π(j)− (n/B)h(i) to be the “offset” of j relative to i.

This “hashing” h is approximately pairwise independent in the following sense:

Lemma 2.3 (Lemma 3.6 of [HIKP12a]). If j 6= 0, n is a power of two, and σ is a uniformly random odd
number in [n], then Pr[σj ∈ [−C,C] (mod n)] ≤ 4C/n for all C.

In much of the paper, we use |i| for i ∈ [n] to denote minz∈Z |i+ zn|; this is the “absolute value modulo
n.” So the above lemma, for example, bounds Pr[|σj| ≤ C].

Define
Errk(x) = min

k-sparse y
||x− y||2.

Our algorithm will start with an input x̂∗ and find progressively better approximations χ to x∗. Most of
the analysis will depend only on x := x∗ − χ. Our algorithm will involve decreasing the “signal to noise
ratio” R ≈ ‖x‖22/Err2

k(x
∗).

We give the pseudocode for our algorithm below (the pseudocode for the function LOCATESIGNAL,
which follows the location function in [HIKP12b] quite closely, appears in Section 10 together with its
analysis).
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The main algorithm is Algorithm 1. Its performance analysis, which builds upon the analysis of primi-
tives REDUCESNR and RECOVERATCONSTANTSNR, is provided in Section 8.

Algorithm 1 Overall algorithm: perform Sparse Fourier Transform
1: procedure SPARSEFFT(x̂, k, ε, R, p)
2: χ(0) ← 0 . in Cn.
3: R0 ← R
4: r ← Θ(log logR)
5: for i = 0, 1, . . . , r − 1 do
6: χ′ ← REDUCESNR(x̂, χ(i), 3k,Ri, p/(2r))
7: χ(i+1) ← SPARSIFY(χ(i) + χ′, 2k) . Zero out all but top 2k entries
8: Ri+1 ← c

√
Ri . For some constant c

9: end for
10: χ′ ← RECOVERATCONSTANTSNR(x̂, χ(r), 3k, ε, p/2)
11: return χ(r) + χ′

12: end procedure

Our SNR reduction primitive is given by Algorithm 2. Its analysis is the most technical part of the paper
and is given in Sections 6 and Section 7.

Algorithm 2 Reduce the SNR ‖x‖22/ξ2 from R to O(
√
R)

1: procedure REDUCESNR(x̂, χ, k,R, p)
2: B ← 1

αk for sufficiently small α > 0.
3: χ(1) ← χ
4: N ← Θ(log2 log2R)
5: for t = 0, 1, . . . , N − 1 do
6: kt ← O(k4−t)
7: L← LOCATESIGNAL(x̂, χ(i), B, σ, b, R, αR−20)
8: x̃← ESTIMATEVALUES(x̂, χ(i), L,B, 3kt, 13, R)
9: χ(i+1) ← χ(i) + x̃

10: end for
11: return χN − χ
12: end procedure

The SNR reduction primitive given by Algorithm 2 allows us to reduce the problem to the constant SNR
case. The recovery primitive for that case is given by Algorithm 3. Its analysis is presented in Section 5.
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Algorithm 3 Recovery when ‖x− χ‖2 . Err2
k(x)

1: procedure RECOVERATCONSTANTSNR(x̂, χ, k, ε, p)
2: R← 20
3: B ← Rk/(εαp) for a sufficiently small constant α > 0
4: Choose σ, b uniformly at random in [n], σ odd.
5: L← LOCATESIGNAL(x̂, χ,B, σ, b, R, αεp)
6: χ′ ← ESTIMATEVALUES(x̂, χ, L,B, 3k, log(B/(4k)), R)
7: return χ′
8: end procedure

The ESTIMATEVALUES and HASHTOBINS primitives are similar to the ones in [HIKP12b], but differ
in that in HASHTOBINS the signal recovered so far is subtracted from the samples as opposed to buckets:

Algorithm 4 Estimation: estimate (x− χ)L using T rounds of B-bucket, contrast R hashing.
1: procedure ESTIMATEVALUES(x̂, χ, L,B, k, T,R)
2: for t = 1 to T do
3: Choose σ, b, a ∈ [n] uniformly at random, σ odd
4: u← HASHTOBINS(x, χ, Pσ,a,b, B,R)

5: x̃
(t)
i ← G−1

oi(i)
uhσ,b(i)ω

−aσi for all i ∈ L. . Note that Goi(i) depends on σ, b, a
6: end for
7: x̃i ← mediant(x̃

(t)
i ) for all i ∈ L. . Median in real and imaginary axis separately

8: return SPARSIFY(x̃, k).
9: end procedure

Algorithm 5 Hashing using Fourier samples (analyzed in Lemma 11.3)
1: procedure HASHTOBINS(x̂, χ, Pσ,a,b, B,R)
2: G← flat window function with B buckets and contrast R.
3: Compute y′ = Ĝ · Pσ,a,b(x̂− χ̂′), for some χ′ with ‖χ̂− χ̂′‖∞ < ‖χ‖2

R∗n13 . Have ‖y′‖0 . B logR
4: Compute uj =

√
nF−1(y′)jn/B for j ∈ [B]

5: return u
6: end procedure

2.2 Glossary of Terms in REDUCESNR and RECOVERATCONSTANTSNR

In REDUCESNR and RECOVERATCONSTANTSNR, there are a lot of variables with common names and
similar purposes. This section provides a glossary, which may be useful for reference. We have globally:

• x̂∗ ∈ Cn is the original input, where we want to recover an approximation to x∗.
• k∗ is the original value of k, for which we expect x̂∗ to be approximately k∗-sparse.
• R∗ ≥ ‖x∗‖22/Err2

k(x
∗) is an upper bound on the SNR for the original signal. We have R∗ =

O(poly(n)) by the input assumption.

and for each different call to REDUCESNR and RECOVERATCONSTANTSNR, we have
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• χ ∈ Cn is our current best guess at x, which will (in all calls) be 2k∗-sparse.
• x = x∗ − χ is the “residual” signal that we want to recover in this call. (When analyzing RE-

DUCESNR, we set x = x∗ − χ(i) in each inner loop.)
• k = 3k∗ is the approximate sparsity of x.
• α > 0 is sufficiently small, but at least 1/(log log n)c.
• B > k/α to be the number of buckets in each hashing.
• T to be the number of hashings done inside ESTIMATEVALUES.
• x̃(t) ∈ Cn is the estimation of x in ESTIMATEVALUES for each t ∈ [T ].
• x̃ ∈ Cn is the median of x̃(t) over t.
• Rwill is a parameter (in REDUCESNR) and sufficiently large constant (in RECOVERATCONSTANTSNR).

It roughly represents the “signal-to-noise ratio”.
• δ = 1/(40 log2 log2R).
• γ = R−δ to be the “contrast” our LOCATESIGNAL requires.

3 Properties of the bucketing scheme

Our algorithm uses filters and various choices of σ, b, a to “hash” the coordinates of x into buckets. For each
(σ, b, a) and each bucket j ∈ [B] we recover an estimate i∗ of the heavy coordinate in that bucket. Also, for
each i ∈ [n] we can recover an estimate x̃i of xi.

3.1 Filter properties

Our main tool is a generalization of filters from [HIKP12b] that allows the noise in a single bucket depends
on both the energy of the signal as well as the number of elements that hashed into it.

Definition 3.1 (Flat Window Functions). A flat window function G over Cn has B buckets and contrast R
if, for |i| ≤ n/2, we have

• Gi ≥ 1/3 for |i| ≤ n/(2B).

• 0 ≤ Gi ≤ 1 for all i.

• Gi ≤ ( cn
|i|B )logR for all i for some constant c

The filters of [HIKP12b] were essentially the case of R = nO(1). We will prove in Section 11 that

Lemma 3.2. There exist flat window functions where | supp(Ĝ)| . B logR. Moreover, supp(Ĝ) ⊂
[−O(B logR), O(B logR)].

The analysis in this paper will assume we have precomputed Ĝ and G and may access them with unit
cost. This is unnecessary: in Section 12.1 we describe how to compute them on the fly to 1/nc precision
without affecting our overall running time. This precision is sufficient for our purposes.

Lemma 3.3. Let (σ, a, b) ∈ [n] be uniform subject to σ being odd. Let u ∈ CB denote the result of
HASHTOBINS(x̂∗, χ, Pσ,a,b, B,R). Fix a coordinate i ∈ [n] and define x = x∗ − χ. For each (σ, b), we
can define variables C ⊂ [n] and w > 0 (and in particular, C = {j 6= i : |σ(i − j) mod n| ≤ cn/B} for
some constant c,) so that
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• For all j, as a distribution over (σ, b),

Pr[j ∈ C] . 1/B.

• As a distribution over (σ, b),

E[w2] .
‖x‖22
R2B

+
‖x∗‖22
R∗n11

• Conditioned on (σ, b) and as a distribution over a,

E
a
[|G−1

oi(i)
ω−aσiuh(i) − xi|2] . w2 + ‖xC‖22.

Intuitively, C denotes the elements of x that collide with i, and w denotes the rest of the noise. The
two terms of w correspond to leakage of x from other hash locations and to errors in the subtraction of χ,
respectively. This latter term should be thought of as negligible.

We also define the notion of being “well-hashed,” which depends on another parameter γ = Rδ from
the glossary:

Definition 3.4. Let σ, b ∈ [n], σ odd. An element i is well-hashed for a particular σ, b and filter G if over
uniformly random a ∈ [n],

E
a
[|G−1

oi(i)
ω−aσiuh(i) − x′i|2] ≤ γ1/2|x′i|2.

Intuitively, a well-hashed element contains little noise in the bucket that it hashed to, relative to its own
energy, and will hence be likely to be recovered in LOCATESIGNAL. This is formalized in Lemma 10.2.

4 Proof Overview

This section gives the key lemmas that are proven in later sections. Our procedures try to reduce the `2 norm
of the residual to the “noise level” ξ2 := Err2

k∗(x
∗)+‖x∗‖22/(R∗n10). The polynomial n10 can be arbitrary,

and only affects the running time of the algorithm; we choose a specific constant for simplicity of notation.
The ‖x∗‖22/(R∗n10) term is essentially irrelevant to the behavior of the algorithm, and will be ignored when
discussing intuition.

First, we give an algorithm RECOVERATCONSTANTSNR that is efficient when ‖x‖22 . Err2
k(x).

Lemma 5.1. For x∗, χ ∈ Cn define x = x∗ − χ. Then RECOVERATCONSTANTSNR(x̂, χ, k, ε, p) returns
χ′ such that

‖x− χ′‖22 ≤ Err2
k(x) + ε‖x‖22 +

‖x∗‖22
n10

with probability 1−p, usingO( 1
pεk log(n/k) log log(n/k) log(1/(εp))) measurements and (assuming ‖χ‖0 .

k) a log n factor more time.

This is relatively straightforward. To see why it is useful, for k = 3k∗ we have Err2
k(x) ≤ Errk∗(x

∗).
Therefore, once χ is close enough to x∗ that x = x∗−χ has ‖x‖22 . Err2

k∗(x
∗), this lemma gives that χ+χ′

is within (1+ε) Err2
k∗(x

∗) of x∗ using onlyO∗( 1
pεk log(n/k) log(1/(εp))) measurements. (As stated above,

for intuition we are ignoring the negligible ‖x
∗‖22
n10 term.)

We then show how to quickly reduce ‖x‖22 to O(Err2
k∗(x

∗)):

9



Lemma 7.11. For x∗, χ ∈ Cn define x = x∗ − χ and

ξ2 = Err2
k(x) +

‖x‖22
R

+
‖x∗‖22
R∗n10

.

Suppose ‖χ‖0 ≤ k. Then REDUCESNR(x̂∗, χ, k,R, p) returns χ′ such that

‖x− χ′‖22 .
√
Rξ2

with probability 1−p, usingO( 1
p2
k log(Rn/k)(log log(Rn/k))c) measurements and a log(Rn) factor more

time.

This is the most technical part of our paper. By iterating it log logR times and finishing off with
Lemma 5.1, we get the final result:

Theorem 8.1. Let x ∈ Cn satisfy ‖x‖22 ≤ RErr2
k(x). Then SPARSEFFT(x̂, k, R, p) returns a χ′ such that

‖x− χ′‖22 ≤ (1 + ε) Err2
k(x) + ‖x‖22/(R∗n10)

with probability 1−p and usingO( 1
p2ε
k log(Rn/k)(log log(Rn/k))c log(1/ε)) measurements and a log(Rn)

factor more time.

We now summarize the proof of Lemma 7.11. Let x = x∗ − χ, and define

µ2 =
1

k
ξ2 ≥

(
Err2

k(x) +
‖x‖22
R

)
/k.

If we hash to B = k/α buckets with flat window functions of contrast R, then the expected magnitude of
the contribution of the tail of x to any bucket is O(αµ2).

REDUCESNR involves O(log logR) stages. In each stage, we hash to B bins and call LOCATESIGNAL

to get a set L of candidate locations for heavy hitters. We then estimate xi for each i ∈ L as the median x̃i
of O(1) random hashings to B bins. We then subtract off x̃L′ , where L′ contains the largest k′ coordinatse
of x̃ and k′ starts out Θ(k) in the first stage and decreases exponentially. So the recurrence in each stage is
x→ x− x̃L′ .

This process is somewhat complicated, so we start by analyzing a simpler process in each stage. Let S
denote the set of “well-hashed” coordinates i ∈ [n], i.e. coordinates that are hashed to bins with noise less
than γ1/2|xi|2. In Section 6 we analyze the recurrence x→ x−xS . Generally, we expect larger elements to
be more likely to be well-hashed, and so the number of them to decay more quickly. We analyze the number
m`(t) of iwith |xi| > µ2γ−` that remain at each stage t, for each level `. We show that these quantities obey
a nice system of equations, causing the m`(t) to decay doubly exponentially for the first ` rounds. Then
after t = O(log logR) rounds, an R−10 fraction of the coordinates larger than µ2

√
R remain. This means

that the recurrence x→ x− xS would leave a remainder of norm O(kµ2
√
R) as desired.

In Section 7, we relate this to the true recurrence x→ x− x̃L′ . We study recurrences that are admissible,
meaning that they satisfy a similar system of equations to that in Section 6. Admissible recurrences satisfy
composition rules that let us find them sequentially, and using Section 6 we can show the remainder after
log logR iterations of any admissible recurrence has small norm. In a series of results, we show that x →
x− x̃S , x→ x− xL′ , and finally x→ x− x̃L′ are admissible. This then proves Lemma 7.11.
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5 Constant SNR

Our procedure for recovery at constant SNR is given by Algorithm 3. In this section we prove

Lemma 5.1. For x∗, χ ∈ Cn define x = x∗ − χ. Then RECOVERATCONSTANTSNR(x̂, χ, k, ε, p) returns
χ′ such that

‖x− χ′‖22 ≤ Err2
k(x) + ε‖x‖22 +

‖x∗‖22
n10

with probability 1−p, usingO( 1
pεk log(n/k) log log(n/k) log(1/(εp))) measurements and (assuming ‖χ‖0 .

k) a log n factor more time.

In what follows we define
ξ2 = ‖x‖22 + ‖x∗‖22/(R∗n11).

and µ2 = ξ2/k. By definition of the algorithm, B = Rk/(εαp) for some constants R,α. We will show that,
if R is a sufficiently large constant, then with probability 1− p,

‖x− χ′‖22 − Err2
k(x) . αεξ2.

For sufficiently small α this gives the result.
A simple consequence of Lemma 3.3 is that for each i, and for random (σ, a, b), we have

E
a,σ,b

[|G−1
oi(i)

ω−aσiuh(i) − xi|2] . ‖x‖22/B + ‖x∗‖22/(R∗n11) ≤ ξ2/B = εαpµ2/R. (4)

There are two sources of error in RECOVERATCONSTANTSNR, coming from location and estimation
respectively. The proof of Lemma 5.1 proceeds in two stages, bounding the error introduced in both steps.

5.1 Energy lost from LOCATESIGNAL

Let S contain the largest k coordinates of x and L be the list of locations output by LOCATESIGNAL. In this
section we bound the energy of the vector xS\L. Define

Alarge = {i ∈ S : |xi|2 ≥ αεµ2/R}
Asmall = {i ∈ S : |xi|2 ≤ αεµ2/R},

so that
||xAsmall ||

2 ≤ αεµ2k/R ≤ αεξ2. (5)

For each i ∈ [n] by (4) we have

E
a,σ,b

[|G−1
oi(i)

ω−aσiuh(i) − xi|2] . αεpµ2/R.

Consider i ∈ Alarge, and recall Definition 3.4 of being well-hashed. By Markov’s inequality applied to (4)
and R > γ−1/2, the probability that i ∈ Alarge is not well-hashed is bounded by

εαpµ2/R

γ1/2|xi|2
≤ εαpµ2

|xi|2
. (6)

11



Each well-hashed element is then located in LOCATESIGNAL with probability at least 1 − αεp by our
choice of parameters. Thus, for i ∈ Alarge one has

Pr[i 6∈ L] ≤ εαpµ2

|xi|2
+O(αεp).

It then follows that

E[||xS\L||2 − ||xAsmall ||
2] = E[||xAlarge\L||

2]

≤
∑

i∈Alarge

εαpµ2

|xi|2
|xi|2 + αεp‖x‖22 ≤ αεpξ2

≤ 2αεpξ2.

(7)

Combined with (5) one has

||xS\L||2 . αεξ2 (8)

with probability at least 1 − p/2 by Markov’s inequality. It remains to consider the effect of pruning in
ESTIMATEVALUES.

5.2 Energy of x− χ′

We now analyze the errors introduced in the estimation step. These errors come from two sources: esti-
mation noise and the pruning step in ESTIMATEVALUES. Let x̃(t) denote the estimate in each hashing in
ESTIMATEVALUES (defined to be zero outside L), and x̃ denote the coordinate-wise median over t of x̃(t).
By definition, χ′ = x̃L′ where L′ denotes the largest 3k elements of x̃. By (4), for each i ∈ L and t ∈ [T ]
during estimation we have

E[|x̃(t)
i − xi|

2] . εαpµ2/R ≤ εαpµ2,

and so by properties of the median (Lemma 9.5),

E[|x̃i − xi|2] ≤ 4E[|x̃(t)
i − xi|

2] . εαpµ2 (9)

for all i. Now, by Lemma 9.1,

‖x− χ′‖22 = ‖x− x̃L′‖22 ≤ Err2
k(x) + 4‖(x− x̃)S∪L′‖22. (10)

The first term appears in our output, so it is sufficient to upper bound the last term by O(αεξ2) with proba-
bility 1− p. We write

‖(x− x̃)S∪L′‖22 ≤ ‖(x− x̃)S\L‖22 + ‖(x− x̃)(S∩L)∪L′‖22. (11)

The first term is bounded by (8). It remains to bound this last bit, which is entirely the effect of estimation
error since (S ∩ L) ∪ L′ ⊆ L. By the fact that |(S ∩ L) ∪ L′| ≤ 4k, Lemma 9.4 with T = O(log(B/4k)),
and (9),

E[‖(x− x̃)(S∩L)∪L′‖22] ≤ max
A⊆L,|A|=4k

‖(x− x̃)A‖22

. 4k · (B/4k)Θ(1/T ) ·max
i

E[|xi − x̃(t)
i |

2]

. k · 1 · εαpµ2

= εαpξ2.
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Hence by Markov’s inequality, with probability at least 1 − p/2 one has ‖(x − x̃)(S∩L)∪L′‖22 . αεξ2, and
putting this together with (10) and (11), we get

‖x− χ′‖22 ≤ Err2
k(x) +O(αε)ξ2

≤ Err2
k(x) + εξ2

(12)

with probability at least 1− p, for sufficiently small constant α.

Proof of Lemma 5.1. The guarantee on the residual error is provided by (12), so it remains to verify sampling
complexity. The call to LOCATESIGNAL takes order

B log(Rn/B) log logR log log(n/B) log(1/(αεp)) .
1

pε
k log(n/k) log log(n/k) log(1/(εp))

samples by Lemma 10.2. The call to ESTIMATEVALUES takes order

log(B/4k)B logR .
1

εp
k log(1/(εp))

samples, giving the desired total sample complexity.

6 Reducing SNR: idealized analysis

6.1 Dynamics of the process with simplifying assumptions

The goal of this section and the next is to prove the following lemma:

Lemma 7.11. For x∗, χ ∈ Cn define x = x∗ − χ and

ξ2 = Err2
k(x) +

‖x‖22
R

+
‖x∗‖22
R∗n10

.

Suppose ‖χ‖0 ≤ k. Then REDUCESNR(x̂∗, χ, k,R, p) returns χ′ such that

‖x− χ′‖22 .
√
Rξ2

with probability 1−p, usingO( 1
p2
k log(Rn/k)(log log(Rn/k))c) measurements and a log(Rn) factor more

time.

In this section we give a description of iterative process in REDUCESNR under simplifying assumptions,
demonstrating the basic dynamics of the process. We will later give a general analysis.

Define µ2 = ξ2/k, and from the glossary (Section 2.2) recall the definitions

δ =
1

40 log2 log2R
, γ = R−δ.

We define the following energy levels. For each j = 1, . . . , 1/δ − 1 let

Lj = [µ2 · γ−j , µ2γ−(j+1)],

and let L0 := [0, µ2γ−(j+1)] and L1/δ := [µ2γ−1/δ,∞) = [µ2R,∞).
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Simplifying assumptions. Recall the notion of well-hashedness (Definition 3.4). The crucial property
of well-hashed elements is that if i ∈ [n] is well-hashed, then an invocation of LOCATESIGNAL locates it
with probability at least 1 − 1/poly(R). This property is proved in Lemma 10.2. In this section we make
the following simplifying assumption: we assume that each well-hashed element i ∈ [n] is estimated with
zero error and removed from the signal. The elements that are not well-hashed, on the other hand, we
assume simply remain in the system untouched. Let H denote the set of well-hashed elements (which is
close to the list of locations output by LOCATESIGNAL). In this section, therefore, we analyze the recursion
x→ x− xH .

For each xi ∈ Lj and each t ≥ 1 let 1i,t denote the indicator variable equal to 1 if xi survived up to the
t-th round of the process and 0 otherwise. For each j ∈ [1 : 1/δ] and t ≥ 1 let

mj(t) =
1

k

∑
j′≥j

∑
i∈[k]:(xi)2∈Lj′

1i,t.

Recall that by Definition 3.4 an element i ∈ [n] is well-hashed for a particular choice of σ, b ∈ [n], σ odd,
and filter G if over uniformly random a ∈ [n],

E
a
[|G−1

oi(i)
ω−aσiuh(i) − xi|2] ≤ γ1/2|xi|2.

Lemma 6.1. Let σ, b ∈ [n] be chosen uniformly at random, σ odd. Let i ∈ [n] denote an index such that
|xi|2 ∈ Lj . Then the probability that i is not well-hashed at time t is at most of order

α

γj−1/2 +
∑

j′<j−1

γj−j
′−3/2mj′(t)

+ αmj−1(t),

where the number of buckets B satisfies B ≥ k/α.

Proof. Let x(h) denote all elements of x in levels Lj−1 and above. Denote the set of such elements by S+.
Let x(t) denote all elements of x in Lj′ , j′ < j − 1. Since |xi|2 ∈ Lj , we have |xi|2 ≥ γ−jµ2.

Define C to be the indices that “collide with” i as in Lemma 3.3. We have that

Pr[C ∩ S+ 6= {}] . |S+|/B = αmj−1(t).

Condition on the event thatC∩S+ = {}; since this happens with more than 1/2 probability, the conditioning
only loses a constant factor in expectations and we may neglect this influence. We have by Lemma 3.3 that

E
σ,b,a

[|G−1
oi(i)

ω−aσiuh(i) − xi|2] . ‖x‖22/(R2B) + E
σ,b

[‖xC‖22] +
1

R∗n11
‖x∗‖22. (13)

(14)

Recall that by the definition of µ2 = ξ2/k,

‖x‖22/(R2B) +
1

R∗n11
‖x∗‖22 ≤ ‖x‖22/(RB) +

1

BR∗n10
‖x∗‖22 ≤ αµ2.

Furthermore, recall that by Lemma 3.3, (1) any given element belongs to C with probability O(1/B).
Since the energy of an element in Lj′ is bounded above by γ−(j′+1)µ2 by definition of Lj′ , we get that

E
σ,b

[‖xC‖22|C ∩ S+ = {}] ≤ αµ2
∑

j′<j−1

γ−(j′+1)mj′(t).
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Putting these two estimates together, we get that the rhs of (13) is bounded by

αµ2 + αµ2
∑

j′<j−1

γ−(j′+1)mj′(t),

Therefore, conditioned on C ∩ S+ = {}, we have

Pr[i not well-hashed] = Pr
σ,b

[E
a
[|G−1

oi(i)
ω−aσiuh(i) − xi|2] ≥ γ1/2|xi|2]

≤
Eσ,b,a[|G−1

oi(i)
ω−aσiuh(i) − xi|2]

γ1/2|xi|2

.
1

γ1/2−jµ2
αµ2

1 + µ2
∑

j′<j−1

γ−(j′+1)mj′(t)


= α

γj−1/2 +
∑

j′<j−1

γj−j
′−3/2mj′(t)

 .

Adding the αmj−1(1) chance that C ∩ S+ 6= {} in a union bound gives the result.

Let St denote the state of the system at time t. By Lemma 6.1 at each time step t we have

E[m1(t+ 1)|St] ≤ αm1(t) · (m0(t))

E[m2(t+ 1)|St] ≤ αm2(t) · (γ1/2m0(t) +m1(t) +R−20)

E[m3(t+ 1)|St] ≤ αm3(t) · (γ3/2m0(t) + γ1/2m1(t) +m2(t) +R−20)

...

E[mj(t+ 1)|St] ≤ αmj(t) · (γj−3/2m0(t) + . . .+ γ1/2mj−2(t) +mj−1(t) +R−20).

(15)

Note that Lemma 6.1 in fact yields the bound without the additive term of R−20. We analyze the weaker
recurrence (15) in what follows, since the additional term of R−20 will be useful later in section 7 for
handling location errors. Lemma 6.1 does not provide any guarantees on the evolution of m0(t). It will be
convenient to assume that m0(t) is chosen arbitrarily from the range [0, C] for a constant C > 0 and all
t ≥ 1. Note that the contribution of µ2 to the rhs in Lemma 6.1 disappeared since it is dominated by the
contribution of m0(t).

In what follows we first analyze a related deterministic process, and then show that the randomized
process closely follows its deterministic version with high probability.

6.2 Deterministic process

Let mj(1) ∈ [0, C] for a constant C > 0, and let mdet
0 (t) ∈ [0, C] be chosen arbitrarily for every t. Further,

let for each t ≥ 1 and j ∈ [1 : 1/δ]

mdet
1 (t+ 1) = αmdet

1 (t) · (mdet
0 (t))

mdet
2 (t+ 1) = αmdet

2 (t) · (γ1/2mdet
0 (t) +mdet

1 (t) +R−20)

mdet
3 (t+ 1) = αmdet

3 (t) · (γ3/2mdet
0 (t) + γ1/2mdet

1 (t) +mdet
2 (t) +R−20)

...

mdet
j (t+ 1) = αmdet

j (t) · (γj−1/2mdet
0 (t) + . . .+ γ1/2mdet

j−2(t) +mdet
j−1(t) +R−20).

(16)
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We now analyze the evolution of solutions to (16):

Lemma 6.2. For each j = 1, . . . , 1/δ and t ≤ j one has either mdet
j (t) ≤ 2−2t or mdet

j−1(t−1) = O(γ1/2).
The same conclusion holds if the equations for mdet

j (t) are modified to include a R−20 additive term to
obtain

mdet
j (t+ 1) = αmdet

j (t) · (γj−1/2mdet
0 (t) + . . .+ γ1/2mdet

j−2(t) +mdet
j−1(t) +R−20).

for j = 1, . . . , 1/δ.

Proof. Induction on j and t.

Base: j = 1, t = 1 Trivial by appropriate choice of α.

Inductive step:(j, t) Suppose that mdet
j′ (t′) ≤ 2−2t

′
for all j′ < j and t′ ≤ j′. Then we have

mdet
j (t+ 1) ≤ αmdet

j (t) · (γj−1/2mdet
0 (t) + . . .+ γ1/2mdet

j−2(t) +mdet
j−1(t))

≤ αmdet
j (t) · (O(γ1/2) +mdet

j−1(t) +R−20)

≤ αmdet
j (t) · (O(γ1/2) +mdet

j−1(t)),

where we used the fact that R−20 = O(γ1/2).

Thus, if t is the first index such thatmdet
j−1(t) = O(γ1/2), we are done sincemdet

j−1(t) is non-increasing
in t; Otherwise by the inductive hypothesis mdet

j (t) ≤ 2−2t , so

mdet
j (t+ 1) ≤ αmdet

j (t) · (γj−1/2mdet
0 (t) + . . .+ γ1/2mdet

j−2(t) +mdet
j−1(t))

≤ αmdet
j (t) · (O(γ1/2) +mdet

j−1(t))

≤ mdet
j (t) · 2−2t ≤ 2−2t+1

as long as α is smaller than an appropriate constant.

Thus, we obtain

Lemma 6.3. One has for all j ≥ 1/(4δ) and any t ≥ c log logR

mdet
j (t) ≤ R−10,

where c > 0 is a sufficiently large constant.

Proof. We use Lemma 6.2. First note that for t ≥ 1/(4δ) ≥ 10 log2 log2R one has 2−2t < 2−210 log2 log2 R <

2− log10
2 R < R−10. Thus, if the first case in Lemma 6.2 holds for mj(t), j = t = (1/(2δ)), we are done.

Otherwise if the second case holds, we have

mdet
j (t+ 1) ≤ αmdet

j (t) · (γj−1/2mdet
0 (t) + . . .+ γ1/2mdet

j−2(t) +mdet
j−1(t))

≤ αmdet
j (t) · (O(γ1/2) +mdet

j−1(t)) = αmdet
j (t) · (O(γ1/2) +mdet

j−1(t)),

and thenmdet
j (t+ t′) = γO(t′) = RO(t′/ log2 log2R), and hencemdet

j (t+ t′) ≤ R−10 for t′ = O(log2 log2R).
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We have proved

Lemma 6.4. Let γ = R−δ for some parameters R > 1 and δ = Θ(1/ log logR). Let m`(t) ∈ [0, C] be
defined for some constant C, integer ` ∈ [0, 1/δ − 1], and integer t > 0. Suppose it satisfies

m`+1(t+ 1) ≤ αm`+1(t)

(
m`(t) +

∑̀
i=1

γi−1/2m`−i(t) +R−20

)
for ` ≥ 0.

for some sufficiently small constant α. Then there exists a universal constant c such that for all t >
c log logR and ` ≥ 1/(4δ),

m`(t) ≤ R−10.

6.3 Bound in Expectation

In this section we show similar convergence if the decay is only in expectation, and using a continuous
version of the recurrence.

For all η ≥ 0, define the function fη : Cn → [0,∞) by

fη(x) =
1

k
|{i : |xi|2 ≥ η}|

to be roughly the “fraction” of heavy hitters that remain above η.

Lemma 6.5. Let k, R, µ2 be arbitrary with δ = Θ(log logR) and γ = Rδ. Consider a recursion x→ x′ of
vectors x ∈ Cn that is repeated N = Θ(log logR) times as x0 → x1 → · · · → xN , and for all ` ≥ 0 and
all inputs x satisfies

E[fη(x
′)] . αfη(x)

(
R−20 +

µ2

γη
+

1

γη

∫ γη

0
ft(x)dt

)
(17)

for some sufficiently small parameter α. Suppose that ‖x0‖22 . Rkµ2 and we know for all i ∈ [0, N ] that
f0(xi) . 1. Then

‖xN‖22 .
√
Rkµ2

with probability 1−O(αN2). Furthermore, with the same probability we also have for all i ≤ N that

‖xi‖22 . Rkµ2

fµ2/γ(xi) . 1/4i.

Proof. For simplicity of notation, we will prove the result about xN+1 rather than xN ; adjusting N gives
the lemma statement.

The only properties of f that we use are (17), fa(x) ≥ fb(x) for a ≤ b, and that

‖x‖22 = k

∫ ∞
0

fη(x)dη.

The desired claims are made more difficult by increasing the fη(x). Since we know that fη(x) ≤
f0(x) ≤ C for some constant C, we may set

fη(x) = C for η < µ2/γ
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for all x without loss of generality.
Then the µ2 term in (17) may be absorbed by the integral, giving for each x→ x′ that:

for any η ≥ µ2/γ, E[fη(x
′)] . αfη(x)

(
R−20 +

1

γη

∫ γη

0
ft(x)dt

)
(18)

. αfη(x) (19)

where the last step uses that ft(x) ≤ C . 1.
For i ≥ 1 we have

E[fµ2/γ(xi)] ≤ (O(α))ifµ2/γ(x0) . α/4i.

for sufficiently small α, so by Markov’s inequality and a union bound, with 1−O(αN) probability we have
fµ2/γ(xi) ≤ 1/4i for all i ≤ N + 1. This gives the last claim in the lemma statement.

Part 1: We know prove that ‖xi‖22 . Rkµ2 for all i. We have that

1

k
‖x′‖22 =

∫ ∞
0

fη(x
′)dη . µ2/γ +

∫ ∞
µ2/γ

fη(x
′)dη

and by (19),

E[

∫ ∞
µ2/γ

fη(x
′)dη] =

∫ ∞
µ2/γ

E[fη(x
′)]dη

. α

∫ ∞
µ2/γ

fη(x)dη

≤ α‖x‖22/k.

Hence with probability 1−O(αN2), in all N stages this is at most ‖x‖22/(Nk) and we have

1

k
‖x′‖22 . µ2/γ + ‖x‖22/(Nk).

Hence for all i ≤ N ,

‖xi‖22 . kµ2/γ + ‖x0‖22 . Rkµ2. (20)

Part 2: We now prove that

fR1/4µ2(xN ) . R−10 (21)

with the desired probability.
Define the functions m` : Cn → [0, C] for integer ` by

m0(x) = f0(x)

m`(x) = fγ−2`µ2(x) for ` > 0

We will show that they satisfy the recurrence in Lemma 6.4 with γ2 replacing γ. By (18), for ` ≥ 1 we have

E[m`(x)] . αm`(x)

(
R−20 +

γ2`−1

µ2

∫ γ1−2`µ2

0
ft(x)dt

)
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and we know that∫ γ1−2`µ2

0
ft(x)dt ≤ Cµ2/γ2 +

`−2∑
i=1

∫ µ2γ−2i−2

µ2γ−2i

ft(x)dt+

∫ µ2γ1−2`

µ2γ2−2`

ft(x)dt

≤ Cµ2/γ2 +
`−2∑
i=1

µ2γ−2i−2mi(x) + µ2γ1−2`m`−1(x)

= µ2γ1−2`m`−1(x) +

`−2∑
i=0

γ−2i−2µ2mi(x)

so

E[m`(x)] . αm`(x)(R−20 +m`−1(x) +
`−2∑
i=0

γ2`−2i−3mi(x))

= αm`(x)(R−20 +m`−1(x) +
∑̀
i=2

(γ2)i−3/2m`−i(x))

for ` ≥ 1. But for the expectation, this is precisely the recurrence of Lemma 6.4 after substituting γ2 for γ.
Since Lemma 6.4 only considers N/δ . N2 different ` and xi, by Markov’s inequality the recurrence will
hold in all instances for a sufficiently small constant α′ with probability 1−O(αN2). Assume this happens.
Since Lemma 6.4 is applied with γ → γ2, δ → δ/2, this implies

m1/8δ(x
N ) . R−10.

This gives (21), because

fR1/4µ2(xN ) = fγ2·1/(8δ)µ2(xN ) = m1/8δ(x
N ) . R−10.

Part 3: We now prove that ‖xN+1‖22 .
√
Rkµ2 with 1−O(α) probability conditioned on the above.

We have

1

k
‖xN+1‖22 =

∫ ∞
0

fη(x
N+1)dη . R1/4µ2 +

∫ ∞
R1/4µ2

fη(x
N+1)dη

Define V to be the latter term. We have by (18) and (21) that

E[V ] =

∫ ∞
R1/4µ2

E[fη(x
N+1)]dη

.
∫ ∞
R1/4µ2

αfη(x
N )(R−20 +

1

γη

∫ γη

0
ft(x

N )dt)dη

=

∫ ∞
R1/4µ2

αfη(x
N )(R−20 +

1

γη
(

∫ R1/4µ2

0
ft(x

N )dt+

∫ γη

R1/4µ2
ft(x

N )dt))dη

.
∫ ∞
R1/4µ2

αfη(x
N )(R−20 +

1

γη
(R1/4µ2 + γηR−10))dη

. αR−10‖xN‖22/k +

∫ ∞
R1/4µ2

αfη(x
N )
R1/4µ2

γη
dη
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In the latter term, for fixed
∫∞

0 fη(x
N )dη = ‖xN‖22/k this is maximized when the mass of fη is pushed

towards smaller η. Hence∫ ∞
R1/4µ2

αfη(x
N )
R1/4µ2

γη
dη ≤

∫ R1/4µ2+‖xN‖22/k

R1/4µ2
α · C · R

1/4µ2

γη
dη

= CαR1/4µ2γ−1 log(1 +
‖xN‖22/k
R1/4µ2

)

≤ CαR1/4+δµ2 logR

. α
√
Rµ2.

by (20). But then E[V ] . α
√
Rµ2, so with 1−O(α) probability V .

√
Rµ2 and

‖xN+1‖22 .
√
Rkµ2

as desired.

7 Reducing SNR: general analysis

Recall our goal:

Lemma 7.11. For x∗, χ ∈ Cn define x = x∗ − χ and

ξ2 = Err2
k(x) +

‖x‖22
R

+
‖x∗‖22
R∗n10

.

Suppose ‖χ‖0 ≤ k. Then REDUCESNR(x̂∗, χ, k,R, p) returns χ′ such that

‖x− χ′‖22 .
√
Rξ2

with probability 1−p, usingO( 1
p2
k log(Rn/k)(log log(Rn/k))c) measurements and a log(Rn) factor more

time.

We will show that each inner loop of REDUCESNR satisfies some nice properties (simiar to those of
Lemma 6.4) that cause the residual to reduce from signal-to-noise ratio R to

√
R. As in REDUCESNR

and 2.2, we define

• B = k/α to be the size of each hash table, where α = O(1/ log logc n)

• T = O(1) to be the number of hashings done in each ESTIMATEVALUES

• ξ2 = Err2
k(x
∗ − χ) +

‖x∗−χ‖22
R + ‖x∗‖22/(R∗n10).

• µ2 = ξ2/k ≥ 1
k (Err2

k(x
∗ − χ) + ‖x∗ − χ‖22/R) to be the “noise level.”

• δ = 1/(40 log2 log2R).
• γ = R−δ to be the “contrast” our LOCATESIGNAL requires.

In round t of the inner loop, we define the following variables:

• χ(t) ∈ Cn: the estimate of x∗ recovered so far.
• x = x∗ − χ(t) ∈ Cn: The vector we want to recover.
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• k′ = kt = Θ(k4−t): The number of coordinates to update this round.
• L ⊂ [n]: Indices located by LOCATESIGNAL (with |L| ≤ B)
• x̃(t) ∈ Cn for t ∈ T : The estimations of x in each inner loop of ESTIMATEVALUES.

• x̃ ∈ Cn: x̃i = mediant x̃
(t)
i is the estimation of x that would result from ESTIMATEVALUES (although

the algorithm only computes x̃L).
• S ⊆ L contains the largest k′/4 coordinates of xL.
• L′ ⊆ L: The indices of the largest k′ coordinates of x̃L

In the algorithm REDUCESNR, the inner loop replaces x with x − x̃L′ . This is then repeated N =
O(log logR) times. We say that this is a “recurrence” x→ x− x̃L′ , and will prove that the final result xN

has ‖xN‖22 .
√
Rξ2.

We will split our analysis of REDUCESNR into stages, where the earlier stages analyze the algorithm
with the inner loop giving a simpler recurrence. In subsequent sections, we will consider the following
different recurrences:

1. x→ x− xS

2. x→ x− x̃S

3. x→ x− xL′

4. x→ x− x̃L′

and show that each would reduce the noise level after O(log logR) repetitions.

7.1 Splittings and Admissibility

We introduce the notion of splittings. These allow us to show that the error introduced by the estimation
phase is of the same order as the error from coordinates that are not well hashed. Since that level of error is
tolerable according to Section 6, we get that the total error is also tolerable.

Definition 7.1. For x ∈ Cn, (z, ν) is a splitting of x if, for all i ∈ [n], zi is a vector and νi ∈ R with

‖zi‖22 + ν2
i ≥ |xi|2.

Analogously to the previous section, we can measure the number of elements of z above any value
η ≥ 0:

fη(z) =
1

k
|{(i, j) : |zij |2 ≥ η}|

We will want to deal with “nice” splittings that satisfy additional properties, as described below.

Definition 7.2. We say (z, ν) is a concise splitting of x if (z, ν) is a splitting of x and also

‖zi‖22 + ν2
i = |xi|2 for all i

f0(z) . 1

‖ν‖22 . kµ2

fµ2/γ(z) ≤ k′/(4k)∑
i

‖zi‖22 . R2kµ2
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Figure 2: A representation of a splitting of x. In each column, |xi|2 ≤ ‖zi‖22 + ν2
i .

For various recurrences x → x′ and any concise splitting (z, ν) of x, we would like to find methods of
assigning splittings (z′, ν ′) to x′ that satisfy some nice properties. In particular, we will want decay as in
Lemma 6.5:

E[fη(z
′)] . αfη(z)

(
R−20 +

µ2

γη
+

1

γη

∫ γη

0
ft(z)dt

)
(D)

and we will want relatively slow growth in the size of the splitting:

E[max

(
0, (
∑
i

‖(z′)i‖0)− (
∑
i

‖zi‖0)

)
] .
√
αk′k

E[max

(
0,
∑
i

(ν ′i)
2 −

∑
i

ν2
i .

)
] .
√
αk′kµ2

(G)

For some recurrences, we will get the stronger condition:

E[
∑
i

‖(z′)i‖0] .
√
αk′k

E[
∑
i

(ν ′i)
2] .

√
αk′kµ2.

(G’)

Definition 7.3. A recurrence x→ x′ is

• admissible if for any concise splitting (z, ν) of x, we can assign splittings (z′, ν ′) to x′ that satisfy (D)
and (G).

• fully admissible if (z′, ν ′) can also satisfy (G’).

Note that we require the input (z, ν) to be a concise splitting, but the result (z′, ν ′) may not be concise.
Analyzing repeated applications of (D) gives the following lemma:
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Lemma 7.4. Suppose x→ x′ is admissible. Then consider r = log logR repetitions of the recurrence, i.e.
x0 → x1 → · · · → xr, where the jth round is run with k′ = kj = k/4j and x0 has a concise splitting and
‖x0‖22 . Rkµ2. Then for any parameter p, as long as α = Θ(p2/(log logR)2) is sufficiently small, we get

‖xr‖22 .
√
Rkµ2

with 1− p probability.

Proof. Because x→ x′ is admissible, there is a corresponding recurrence

(z, ν)→ (z′, ν ′)

of splittings of x and x′ that satisfies (D) and (G) whenever (z, ν) is concise. For this analysis, we will
suppose that it satisfies (D) and (G) unconditionally, and bound the probability that (z, ν) is ever not concise.

The conditions (D) and (G) are only made more true by decreasing z′ and ν ′ in absolute value, so we
may also assume the (z′, ν ′) resulting from the recurrence satisfies the first requirement of concise splittings,

‖(z′)i‖22 + (ν ′i)
2 = |xi|2.

At each stage, with probability 1−O(
√
α) we have by Markov’s inequality and a union bound that

max

(
0, (
∑
i

‖(z′)i‖0)− (
∑
i

‖zi‖0)

)
≤
√
k′k

max

(
0,
∑
i

(ν ′i)
2 −

∑
i

ν2
i .

)
≤
√
k′kµ2

(22)

Hence with 1− O((log logR)
√
α) > 1− p/2 probability, equation set (22) holds for all r stages. Assume

this happens.
Then at any stage j, the resulting (z′, ν ′) has f0(z′) = 1

k

∑
i‖(z′)i‖0 ≤

1
k (k +

∑
t≤j
√
ktk) ≤ 3 and

‖ν ′‖22 ≤ kµ2 +
∑

t≤j
√
ktkµ

2 ≤ 3kµ2. Therefore the second and third requirements for conciseness are
satisfied in every stage.

Now, we apply Lemma 6.5 to observe that with 1−O(αN2) > 1− p/2 probability, the remaining two
requirements for conciseness are satisfied in all stages and the final splitting (z, ν) of xr satisfies∑

i

‖zi‖22 .
√
Rkµ2.

Therefore with probability 1 − p, our supposition of conciseness is correct in all stages and the final xr

satisfies
‖xr‖22 ≤

∑
i

‖zi‖22 + ν2
i . (

√
R+ 3)kµ2 .

√
Rkµ2

which is our result.

Given that admissibility is a sufficient condition, we construct tools to prove that recurrences are admis-
sible.

Lemma 7.5. If x → x′ is admissible, x → x# is fully admissible, and x′
supp(x#)

is identically zero then

x→ x′ + x# is admissible.
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Proof. For any splitting (z, ν) of x, we have splittings (z′, ν ′) and (z#, ν#) of x′ and x#. We would like to
combine them for a splitting of x′ + x#.

Let A = supp(x#). For i /∈ A, we use ((z′)i, ν ′i). For i ∈ A, we use ((z#)i, ν#
i ). This is a valid

splitting of x′ + x#.
By linearity it satisfies (D) and (G) with a minor loss in the constants.

Lemma 7.6. If x→ x′ and x→ x# are both fully admissible, then x→ x′ + x# is fully admissible.

Proof. For any splitting (z, ν) of x, we have splittings (z′, ν ′) and (z#, ν#) of x′ and x#. We would like to
combine them for a splitting of x′ + x#.

For each coordinate i, let u = (z′)i and v = (z#)i, and a = |x′i + x#
i |. We will find a vector w and

scalar g such that

‖w‖22 + g2 ≥ a2

‖w‖0 . ‖u‖0 + ‖v‖0
g2 . (ν ′i)

2 + (ν#
i )2

|{i | wi ≥ η}| . |{i | ui ≥ η}|+ |{i | vi ≥ η}|.

for all thresholds η. This will only lose a constant factor in (G’) and (D). In particular, we set w to be the
concatenation of two copies of u and two copies of v, and g2 = 2(ν ′i)

2 + 2(ν#
i )2. Then

‖w‖22 + g2 = 2(‖u‖22 + (ν ′i)
2) + 2(‖v‖22 + (ν#

i )2) ≥ 2|x′i|2 + 2|x#
i |

2 ≥ a2,

so (w, g) is a valid splitting for each coordinate, giving us that x′ + x# is fully admissible.

7.2 Recurrence x→ x− xS
Lemma 7.7. Let S contain the largest k′/4 coordinates of L. Then x→ x− xS is admissible.

Proof. Consider any concise splitting (z, ν) of x. Let S′ = {i ∈ L : ‖zi‖2∞ ≥ µ2γ−1}.
We have |S′| ≤ kfµ2/γ(z) ≤ k′/4 because (z, ν) is concise. Since x − xS′ can be permuted to be

coordinate-wise dominated by x− xS , it suffices to split x− xS′ .
For i ∈ S′, we set (z′)i = {} and ν ′i = 0; for i /∈ S′, we set ((z′)i, ν ′i) = (zi, νi). We must only

show (D) holds, because (G) is trivial (the growth is zero). That is, we must show that if |zij |2 ≥ η then

Pr[i /∈ S′] . α

(
R−20 +

µ2

γη
+

1

γη

∫ γη

0
ft(x)dt

)
=: M. (23)

Let M denote the right hand side of (23). For such an i, |xi|2 ≥ |zij |2 ≥ µ2γ−1, and

Pr[i /∈ S′] = Pr[i /∈ L] ≤ Pr[i not well-hashed] + Pr[i /∈ L|i well-hashed]

Define H = {i : ‖zi‖2∞ ≥ γη}. Then from Lemma 3.3 we get a subset C ⊂ [n] and variable w so that i is
well-hashed if

w2 + ‖xC‖22 ≤ cγ1/2|xi|2

for some constant c, which is implied by w2 + ‖xC‖22 ≤ γη. We have that

Pr[H ∩ C 6= {}] . |H|/B ≤ kfγη(z)/B = αfγη(z)
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and that

E[w2 + ‖xC\H‖22] .
‖x‖22
R2B

+
‖x∗‖22
R∗n11

+ ‖xH‖
2
2/B

. αµ2 + ‖xH‖
2
2/B

by the definition of µ2. We know that

‖xH‖
2
2 ≤

∑
(i,j):|zij |2≤γη

|zij |2 = k

∫ γη

0
(ft(z)− fγη(z))dt.

Therefore by Markov’s inequality,

Pr[i not well-hashed] ≤ Pr[C ∩H 6= {}] + Pr[w2 + ‖xC\H‖22 ≥ γη]

. αfγη(z) +
1

γη
(αµ2 + α

∫ γη

0
(ft(z)− fγη(z))dt)

=
1

γη
(αµ2 + α

∫ γη

0
ft(z)dt) < M.

Next, by Lemma 10.2, since we call LOCATESIGNAL with failure probability αR−20, we have

Pr[i /∈ L|i well-hashed] . αR−20 < M.

giving Pr[i /∈ S′] .M for each i, as desired.

7.3 Recurrence x→ x− x̃S
Lemma 7.8. Let L be independent of the estimation phase with |L| ≤ B, and A ⊆ L be possibly dependent
on the estimation phase with |A| . k′. Then x→ xA − x̃A is fully admissible.

Proof. Let (z, ν) be a concise splitting of x. For i ∈ L, we have

|x̃i − xi|2 = |median
t

x̃
(t)
i − xi|

2 ≤ 2 median
t
|x̃(t)
i − xi|

2 (24)

because we take the median in real and imaginary components separately. We have by x̃(t)
i = G−1

oi(i)
ω−aσiuh(i)

and Lemma 3.3 that

E
a
[|x̃(t)

i − xi|
2] . w2

i + ‖xCti ‖
2
2

for some C with Pr[j ∈ C] . 1/B for all j, and some w with

E[w2
i ] .

‖x‖22
R2B

+ ‖x∗‖22/(R∗n11) . αµ2, (25)

where the last step uses that ‖x‖22 . R2kµ2 because a concise splitting (z, ν) of x exists. Then

E
a
[|x̃(t)

i − xi|
2] . w2

i +
∑
j∈Cti

‖zj‖22 + ν2
j .
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Define

(yti)
2 := w2

i +
∑
j∈Cti

‖zj‖22 + ν2
j

τ ti := d2|x̃(t)
i − xi|

2/(yti)
2e

so

E
a
[τ ti ] . 1 (26)

even after conditioning on the hash function (σ, b).
For any t ∈ [T ] and i ∈ L, let U (t),i be the concatenation of τ ti copies of zj for each j ∈ Cti and

ν
(t)
i =

√
τ ti ((w

t
i)

2 +
∑

j∈Cti
ν2
j ). Then we have that

‖U (t),i‖22 + (ν
(t)
i )2 ≥ τ ti (yti)2 ≥ 2|x̃(t)

i − xi|
2

and so by (24), for at least 1 + bT/2c different t ∈ [T ] we have

|x̃i − xi| ≤ ‖U (t),i‖22 + (ν
(t)
i )2. (27)

For each i ∈ A, our (z̃i, ν̃i) will equal (U (t∗),i, ν
(t∗)
i ) for a t∗ satisfying (27) as well as

‖z̃i‖∞ ≤ quant/
t
‖U (t),i‖∞

‖z̃i‖0 ≤ quant/
t
‖U (t),i‖0

ν̃2
i ≤ quant/

t
(ν

(t)
i )2

(28)

where quant/ is the “quantile” defined in Section 9.1. This is always possible, because the number of t
excluded by these additional conditions is at most 3bT/6c ≤ bT/2c. Choosing such a t∗ for each i gives us
a splitting (z̃, ν̃) of xA − x̃A.

To show (D), for any i ∈ L and threshold η define

m = |{(`, j) : |z`j | ≥ η}|
m̃ = |{(`, j) : |z̃`j | ≥ η}|

mi
t = |{j : U

(t),i
j ≥ η}|

We bound E[mi
t∗ ] using Lemma 9.3. Since Pr[j ∈ Cti ] . 1/B and E[τ ti ] . 1 after conditioning on (σ, b)

and so fixing Cti , for fixed i and t we have

E[mi
t] = E[(|{(`, j) : |z`j | ≥ η, ` ∈ Cti}|)τ ti ]

= E[(|{(`, j) : |z`j | ≥ η, ` ∈ Cti}|)E[τ ti | (σ, b)]]
. E[|{(`, j) : |z`j | ≥ η, ` ∈ Cti}|]

=
∑

(`,j):|z`j |≥η

Pr[` ∈ Cti ]

.
∑

(`,j):|z`j |≥η

1/B

= m/B
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We also have mi
t∗ = 0 if quant/tm

i
t = 0 and mi

t∗ ≤
∑

tm
i
t always; hence for each fixed index i ∈ L, by

Lemma 9.3
E[mi

t∗ ] . (m/B)T/6.

But then for T ≥ 12 we have

E[m̃] = E[
∑
i∈A

mi
t∗ ] ≤

∑
i∈L

E[mi
t∗ ] . B(m/B)2 = m2/B

E[m̃/k] . α(m/k)2

which says that

E[fη(z
′)] . α(fη(z))

2 ≤ αfη(
1

γη

∫ γη

0
ft(z)dt)

for each η, implying (D).
We now show (G’). For any nonnegative random variable Xi,t (which will be either ‖U (t),i‖0 or (ν

(t)
i )2)

and Yi ≤ quant/tXi,t (which will be ‖z̃i‖0 or ν̃2
i ), for sufficiently large constant T we have by Lemma 9.4

with δ = 1/2 that
E[ max
|A′|.k′

∑
i∈A′

Yi] .
√
k′Bmax

i,t
E[Xi,t]

Plugging in that, for each fixed i, by (26) and conciseness we have

E
σ,b,a

[‖U (t),i‖0] = E
σ,b,a

∑
j∈Cti

‖zj‖0τ ti

 ≤ E
σ,b

∑
j∈Cti

‖zj‖0 max
σ,b

E[τ ti | (σ, b)]

 . E
σ,b

∑
j∈Cti

‖zj‖0

 . k/B = α

gives
E[ max
|A′|.k′

∑
i∈A′
‖z̃i‖0] .

√
k′Bα =

√
αk′k,

which is the first part of (G’). Similarly, plugging in

E[(ν
(t)
i )2] . (E

σ,b
[w2
i ] + ‖ν‖22/B) max

σ,b
E[τ ti |(σ, b)] . αµ2

gives
E[ max
|A′|.k′

∑
i∈A′

ν̃2
i ] .

√
k′Bαµ2 =

√
αk′kµ2,

which is the second part.
Therefore (z̃, ν̃) is a splitting of xA− x̃A that satisfies (D) and (G’), so x→ xA− x̃A is fully admissible.

7.4 Recurrence x→ x− x̃L′

The following lemma has a similar proof structure to Lemma 9.1.

Lemma 7.9. The recurrence x→ x− xL′ is admissible.
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Proof. Recall the set S from Lemma 7.7, which has |S| = k′/4 ≤ |L′|/4 and for which x−xS is admissible.
Let A = L′ \ S and B = S \ L′. We have |A| ≥ 4|B|. Furthermore mini∈A |x̃i| ≥ maxi∈B |x̃i| because
ESTIMATEVALUES chose A over B.

By Lemma 7.7, x→ x− xS is admissible. Let y = (x− x̃)A + 2(x̃− x)B . Using Lemma 7.8, x→ y
is admissible. Hence for every splitting (z, ν) of x there are splittings (zS , νS) of x − xS that satisfies (D)
and (G) and (zAB, νAB) of y that satisfies (D) and (G’).

For i /∈ A ∪ B, we set ((z′)i, ν ′i) = ((zS)i, νSi ). For i ∈ A, we set ((z′)i, ν ′i) = ({}, 0). Finally, we
want to fill ((z′)i, ν ′i) for i ∈ B. To do this, pair up each i ∈ B with a disjoint set Pi of four elements in A.
We know that

2|x̃i| ≤ ‖x̃Pi‖22
|2xi + yi| ≤ ‖xPi + yPi‖2

2|xi| ≤ |yi|+ ‖xPi‖2 + ‖yPi‖2
4|xi|2 ≤ 3(|yi|2 + ‖xPi‖22 + ‖yPi‖22)

|xi|2 ≤ |yi|2 + ‖xPi‖22 + ‖yPi‖22 (29)

Set (z′)i to the concatenation of (zAB)i and, for all j ∈ Pi, (zS)j and (zAB)j . Similarly, set (ν ′i)
2 =

(νABi )2 +
∑

j∈Pi(ν
S
j )2 + (νABj )2. By (29), this makes (z′, ν ′) be a valid splitting of x− xL′ .

Then each element of zS , zAB, νS , and νAB appears exactly once in (z′, ν ′); hence (z′, ν ′) satisfies (D)
and (G) so x→ x− xL′ is admissible.

Lemma 7.10. The recurrence x→ x− x̃L′ is admissible.

Proof. We have
x− x̃L′ = (x− xL′) + (xL′ − x̃L′).

The first term is admissible by Lemma 7.9 and zero over L′. The second is fully admissible by Lemma 7.8,
with support inside L′. Hence x→ x− x̃L′ is admissible by Lemma 7.5.

Lemma 7.11. For x∗, χ ∈ Cn define x = x∗ − χ and

ξ2 = Err2
k(x) +

‖x‖22
R

+
‖x∗‖22
R∗n10

.

Suppose ‖χ‖0 ≤ k. Then REDUCESNR(x̂∗, χ, k,R, p) returns χ′ such that

‖x− χ′‖22 .
√
Rξ2

with probability 1−p, usingO( 1
p2
k log(Rn/k)(log log(Rn/k))c) measurements and a log(Rn) factor more

time.

Proof. The following is a concise splitting (z, ν) of x = x∗−χ(0): place the largest k coordinates of x into
z, and the rest into ν. By Lemma 7.10, x∗ − χ(i) → x∗ − χ(i+1) is admissible. Therefore, by Lemma 7.4,
χN satisfies

‖x∗ − χ(N)‖22 .
√
Rξ2.

as desired for correctness.
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In each of O(log logR) rounds we call LOCATESIGNAL and ESTIMATEVALUES with B = k/α =
O(k(log logR)2/p2) and failure probability R−20. The sampling complexity of each LOCATESIGNAL is

O(B log(Rn/B) log logR log log(n/B) max(1, logR(1/p))) .
1

p2
k log(Rn/B)(log log(Rn/B))4

by Lemma 10.2. The complexity of ESTIMATEVALUES is bounded by O(B logR) = O(k logR) since we
perform O(1) bucketings using a filter with contrast R. The overall sampling complexity over O(log logR)
rounds is hence bounded by

O

(
1

p2
k log(Rn/B)(log log(Rn/B))c

)
for a constant c > 0.

8 Final Result

Repeating Lemma 7.11 log logR times and applying Lemma 5.1 gives the result:

Theorem 8.1. Let x ∈ Cn satisfy ‖x‖22 ≤ RErr2
k(x). Then SPARSEFFT(x̂, k, R, p) returns a χ′ such that

‖x− χ′‖22 ≤ (1 + ε) Err2
k(x) + ‖x‖22/(R∗n10)

with probability 1−p and usingO( 1
p2ε
k log(Rn/k)(log log(Rn/k))c log(1/ε)) measurements and a log(Rn)

factor more time.

Proof. During this proof, we define x∗ := x.
The algorithm performs r = O(log logR) rounds of REDUCESNR. We may assume that all the calls

succeed, as happens with 1− p/2 probability. We will show that at each stage i of the algorithm,

‖x∗ − χ(i)‖22 ≤ Riξ2

for ξ2 = Err2
k(x
∗) + ‖x∗‖22/(R∗n10). This is true by assumption at i = 0, and by Lemma 7.11, in each

iteration REDUCESNR causes

‖x∗ − χ(i) − χ′‖22 ≤ c
√
Ri(Err2

3k(x
∗ − χ(i)) + ξ2)

≤ c
√
Ri(Err2

k(x
∗) + ξ2)

≤ 2c
√
Riξ

2

for some constant c. By Lemma 9.1,

‖x∗ − Sparsify(χ(i) + χ′, 2k)‖22 ≤ Err2
k(x
∗) + 4‖x∗ − χ(i) − χ′‖22

≤ (1 + 8c
√
Ri)ξ

2

≤ Ri+1ξ
2

for sufficient constant in the recurrence for R. This proves the induction.
For some r = O(log logR), we have Rr = O(1) and so

‖x∗ − χ(r)‖22 . ξ2.
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Then Lemma 5.1 shows that the χ′ given by RECOVERATCONSTANTSNR satisfies

‖x∗ − χ(r) − χ′‖22 ≤ Err2
3k(x

∗ − χ(r)) + ε‖x− χ(r)‖22 + ‖x∗‖22/n10

≤ Err2
k(x
∗) +O(εξ2)

≤ (1 +O(ε)) Err2
k(x
∗) + ‖x∗‖22/n9

which is the desired bound after rescaling ε.

9 Utility Lemmas

This section proves a few standalone technical lemmas.

Lemma 9.1. Let x, z ∈ Cn and k ≤ n. Let S contain the largest k terms of x and T contain the largest 2k
terms of z. Then

‖x− zT ‖22 ≤ ‖x− xS‖22 + 4‖(x− z)S∪T ‖22.

Proof. Note that each term in S ∪ T and T appears exactly once on each side. Hence it suffices to show that

‖xS\T ‖22 ≤ ‖xT\S‖22 + 4‖(x− z)S\T ‖22 + 3‖(x− z)T ‖22.

Consider any i ∈ S \ T and j ∈ T \ S. Then |zj | ≥ |zi| by the choice of T , so by the triangle inequality

|xi| ≤ |xi − zi|+ |zi|
≤ |xi − zi|+ |zj |
≤ |xi − zi|+ |xj − zj |+ |xj |

and so by Cauchy-Schwarz inequality

|xi|2 ≤ 2|xj |2 + 4|xi − zi|2 + 4|xj − zj |2. (30)

Since |T | = 2|S|, we can match up each element i ∈ S \ T with a distinct pair Pi of two elements of
T \ S. Summing up (30) for j ∈ Pi and dividing by two,

|xi|2 ≤ ‖xPi‖22 + 4|xi − zi|2 + 2‖(x− z)Pi‖22.

Summing up over i ∈ S \ T , we have

‖xS\T ‖22 ≤ ‖xT\S‖22 + 4‖(x− z)S\T ‖22 + 2‖(x− z)T\S‖22

which gives the desired result.

9.1 Lemmas on Quantiles

This section proves some elementary lemmas on quantiles of random variables, which are a generalization
of the median.

Definition 9.2. For f ≥ 0, we define the 1 − f quantile quantf of any list x1, . . . , xn ∈ R to be the
d(1− f)neth smallest element in the list.
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Then median = quant/ for lists of odd length.

Lemma 9.3. Let f > 0 and T be constants. Let X1, . . . , XT be independent nonnegative integer random
variables with E[Xi] ≤ ε < 1 for all i. Let Y satisfy

Y ≤
{

0 if quantf Xi = 0∑
Xi otherwise

Then E[Y ] . εfT .

Proof. For each i, we have Pr[Xi = 0] ≥ 1 − ε. Let Bi be a {0, 1}-valued random variable with Pr[Bi =
1] = ε and jointly distributed with Xi such that Xi = 0 whenever Bi = 0. Then let X ′i be a random
variable distributed according to (Xi | Bi = 1) independent of Bi, so that Xi = BiX

′
i. Then E[X ′i] =

E[Xi]/E[Bi] ≤ 1, and we have

Y ≤
{

0 if quantf Bi = 0∑
X ′i otherwise.

Therefore

E[Y ] ≤ E[
∑

X ′i] Pr[quantf

i
Bi 6= 0]

≤ T Pr[
∑

Bi ≥ 1 + bfT c]

≤ T
(

T

1 + bfT c

)
εfT . εfT .

Lemma 9.4. Let f, δ > 0 be constants and T be a sufficiently large constant (depending on f and δ).
Let X1, . . . , XT ∈ Rn be independent random variables with nonnegative coordinates and E[Xt

i ] ≤ µ
independent of i and t. Then for any k ≤ n,

E[max
|A|=k

∑
i∈A

quantf
t

Xt
i ] . kµ(n/k)δ

Proof. Let Yi = quantf tX
t
i . We have for any threshold η that

Pr[Yi ≥ η] = Pr[|{t : Xt
i ≥ η}| ≥ 1 + bfT c]

≤
(

T

1 + bfT c

)
(µ/η)fT

. (µ/η)fT .

Therefore E[|{i : Yi ≥ η}|] ≤ n(µ/η)fT . But then

E[max
|A|=k

∑
i∈A

Yi] = E
∫ ∞

0
min(k, |{i : Yi ≥ η}|)dη

≤
∫ ∞

0
min(k, n(µ/η)fT )dη

= kµ(n/k)1/fT

∫ ∞
0

min(1, u−fT )du

= kµ(n/k)1/fT

(
1 +

1

fT − 1

)
.
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If T > 1/(δf) and T > 2/f this gives the result.

Lemma 9.5. For any x1, . . . , xn ∈ C with n odd we have

E[|median
t

xt|2] ≤ 4 max
t

E[|xt|2]

where the median is taken separately in the real and imaginary axes.

Proof. We will show that if xi ∈ R then

E[(median
t

xt)
2] ≤ 2 max

t
E[x2

t ].

applying this separately to the real and imaginary axes gives the result.
Let S be jointly distributed with x as a set of (n+ 1)/2 coordinates i with x2

i ≥ mediant x
2
t . This must

exist by choosing coordinates less than or greater than xi. Then

E[(median
t

xt)
2] ≤ mean

i∈S
x2
i ≤

2

n+ 1

∑
i

x2
i ≤ 2 mean

i∈[n]
x2
i ≤ 2 max

i
x2
i .
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10 Location

Algorithm 6 Location
1: procedure LOCATESIGNAL(x̂, χ,B, σ, b, R, p)
2: n← DIM(x̂). . Dimension of vector
3: γ ← R1/40 log2 log2R

4: c← O(log log(n/B) log(1/p)).
5: T ← LOCATE1SPARSESAMPLES(n, γ, c, n/B).
6: ua[B] ← HASHTOBINS(x̂, χ, Pσ,a,b, B,R) for a ∈ T .

7: v̂ja := uaj for a ∈ T and j ∈ [B].
8: L← {}
9: for j ∈ [B] do

10: L← L ∪ {σ−1(LOCATE1SPARSE(v̂j , T, γ, jn/B, n/B))}
11: end for
12: return L
13: end procedure
14: procedure LOCATE1SPARSESAMPLES(n, γ, c, w)
15: δ ← γ1/10

16: tmax ← O(log1/δ w).
17: gi,t ∈ [n] uniformly for i ∈ [c], t ∈ [tmax].
18: ft ∈ [δ1−t/8, δ1−t/4] an arbitrary integer, for all t ∈ [tmax].
19: return T = ∪t∈[tmax],i∈[c]{gi,t, gi,t + ft} for all i, t.
20: end procedure
21: procedure LOCATE1SPARSE(v̂T , T , γ, l, w)
22: δ ← γ1/10

23: wt defined to be wδt−1.
24: ft defined to be any integer in [(n/wt)/8, (n/wt)/4].
25: Expects T = ∪t∈[tmax],i∈[c]{(gi,t, gi,t + ft)} for tmax = O(log1/γ w)

26: Define m(i)
t = φ(v̂gi,t+ft/v̂gi,t). . Estimates of fti∗2π/n

27: Define mt = medianim
(i)
t .

28: l1 ← l, w1 ← w. . Location in l1 − w1/2, l1 + w1/2
29: for t = 1, . . . , tmax do
30: ot ← mtn/(2π)−(ftlt mod n)

ft
. Within [−n/2ft, n/2ft]

31: lt+1 ← lt + ot
32: end for
33: return ROUND(ltmax+1).
34: end procedure

We first show that LOCATE1SPARSE solves the 1-sparse recovery problem. This result is independent of the
rest of the machinery in this paper: if v has a single component with 1 − γ1/2 of the mass, we find it with
Õ(log1/γ n) samples of v̂.

Lemma 10.1. Let 1/γ, c be larger than a sufficiently large constant. Let v̂ ∈ Cn, and suppose that there
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exists an i∗ ∈ [l − w/2, l + w/2] such that

γ1/2|vi∗ |2 ≥
∑
j 6=i∗
|vj |2.

Then LOCATE1SPARSE(v̂T , T , γ, l1, l1 + w1) returns i∗ with all but γΩ(c) logw probability, where the set
T is the output of LOCATE1SPARSESAMPLES(n, γ, c, w) and has size |T | = O(c(1 + log1/γ w)). The time
taken is O(|T |) = O(c(1 + log1/γ w)).

Proof. Note that for uniformly random g ∈ [n], by Parseval’s theorem

E[|
√
nv̂g − ωgi

∗
vi∗ |2] =

∑
j 6=i∗
|vj |2 ≤ γ1/2|vi∗ |2

Set b = γ1/20. By Markov’s inequality, with 1− b probability

|
√
nv̂g − ωgi

∗
vi∗ | ≤

√
γ1/2/b|vi∗ |

and so

‖φ(v̂g)− (
2π

n
gi∗ + φ(vi∗))‖© = ‖φ(

√
nv̂g)− φωgi

∗
vi∗‖© ≤ sin−1(

√
γ1/2/b) ≤ 2

√
γ1/2/b

where ‖a− b‖© = mini∈Z(|a− b− 2πi|) denotes the “circular distance” between a and b. Hence for any
(gi,t, gi,t + ft), we have that

m
(i)
t = φ(v̂gi,t+ft/v̂gi,t)

satisfies

‖m(i)
t − fti∗2π/n‖© ≤ 4

√
γ1/2/b (31)

with probability 1− 2b as a distribution over gi,t. Because this is independent for different i, for any t by a
Chernoff bound we have that (31) holds for at least 3c/4 of the m(i)

t with probability at least

1−
(
c

c/4

)
(2b)c/4 ≥ 1− 2c(2b)c/4 = 1− (32b)c/4 = 1− γΩ(c).

If so, their median satisfies the same property2

‖mt − fti∗2π/n‖© ≤ 4
√
γ1/2/b ≤ 2πbδ. (32)

Since there are log1/γ1/2 w < logw different t, by a union bound (32) holds for all t with the desired
probability

1− γ−Ω(c) logw.

We will show that this implies that i∗ is recovered by the algorithm.

2To define a median over the circle, we need to cut the circle somewhere; we may do so at any position not within 4
√
γ1/2/b

of at least c/4 of the points.
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We will have by induction that, for all t, i∗ ∈ [lt−wt/2, lt+wt/2]. This certainly holds at t = 1. Recall
that 4wt ≤ n/ft ≤ 8wt by the construction of ft.

For any t, by (32) we have that otft lies within δbn of (fti
∗ − ftlt) (modulo n). Hence (i∗ − lt) lies

within δbn/ft of ot + zn/ft for |ot| < n/(2ft) and some integer z. But since |i∗ − lt| ≤ wt/2 ≤ n/(8ft)
and δbn/ft < n/(4ft), this means that z = 0 and we have that (i∗ − lt) lies within δbn/ft of ot. Since

δbn/ft ≤ δb8wt ≤ δwt/2 ≤ wt+1/2,

i∗ lies within wt+1/2 of lt+1 = lt + ot and the inductive step holds.
In the end, therefore, i∗ lies withinwtmax/2 = wδtmax−1/2 < 1/2 of l, so it is returned by the algorithm.

We now relate Lemma 10.1, which guarantees 1-sparse recovery, to k-sparse recovery of well-hashed
signals.

Lemma 10.2. Let x be a signal, and B and R larger than sufficiently large constants. An invocation of
LOCATESIGNAL returns a list L of size B such that each well-hashed (per Definition 3.4) i ∈ [n] is present
inLwith probability at least 1−p. The sample complexity isO(B log(Rn/B) log logR log log(n/B) max(1, logR(1/p)),
and the time complexity is O(logR) larger.

Proof. Consider any well-hashed i and j = h(i). We define the vector yj ∈ Cn by

yjσ` = x`Gπ(`)−jn/B = x`Goi(`).

Then
uaj =

∑
`

ωa`yj` =
√
nŷja,

i.e. v̂j = ŷj/
√
n, so vjσ` = x`Goi(`)/

√
n.

By the definition 3.4 of well-hashedness, over uniformly random a ∈ [n],

γ1/2x2
i ≥ E

a
[|G−1

oi(i)
ω−aσivja − xi|2]

If we define v−σi = v[n]\{σi}, we have after multiplying by G2
oi(i)

that

γ1/2|vjσi|
2/n = G2

oi(i)
γ1/2|xi|2 ≥ E

a
[|v̂ja − ωaσiGoi(i)xi|

2]

= E
a
[|v̂ja −

1√
n
ωaσivjσi|

2]

= E
a
[|(v̂j−σi)a|

2]

Therefore by Parseval’s inequality,
γ1/2|vjσi|

2 ≥ ‖vj−σi‖
2
2.

This is precisely the requirement of Lemma 10.1. Hence LOCATE1SPARSE will return σi with all but
γΩ(c) log(n/B) probability, in which case i will be in the output set L.

Recall that log1/γ R . log logR. Setting

c = Θ(max(1, logγ(log(n/B)/p)))

. max(1, (logR log(n/B) + logR(1/p)) log logR)

. log log(n/B) max(1, logR(1/p))
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gives the desired probability 1− p. , the number of samples is

|T |B logR = cB logRmax(1, log1/γ(n/B))

. B log(Rn/B) log logR log log(n/B) max(1, logR(1/p)).

The time taken is dominated by HASHTOBINS, which takes sample complexity times logR time.

11 Filter construction

Claim 2.2. (Claim 2.2 of [HIKP12b]). Let F−1(x) denote the inverse Fourier transform of x. Then

(F−1(Pσ,a,bx̂))π(i) = xiω
aσi.

Proof.

F−1(Pσ,a,bx̂)σ(i−b) =
1√
n

∑
j∈[n]

ω−σ(i−b)j(Pσ,a,bx̂)j

=
1√
n

∑
j∈[n]

ω−σ(i−b)j x̂σ(j+a)ω
−σbj

= ωaσi
1√
n

∑
j∈[n]

ω−iσ(j+a)x̂σ(j+a)

= xiω
aσi.

Lemma 11.1. If G is a flat window function with B buckets and contrast R > 2, then for some constant c,∑
|i|>cn/2B

G2
i .

n

R2B

Proof. Let c be the constant such that Gi ≤ ( cn
|i|B )t for t = logR. Then

∑
|i|>2cn/B

G2
i ≤ 2

∞∑
i=2cn/B

(
cn

|i|B
)2 logR

≤ 4cn

B

∞∑
i=1

(
1

2i
)2 logR

=
4cn

R2B

∞∑
i=1

i−2 logR

.
n

R2B

and rescaling c gives the result.
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Lemma 3.2. There exist flat window functions where | supp(Ĝ)| . B logR. Moreover, supp(Ĝ) ⊂
[−O(B logR), O(B logR)].

Proof. Suppose B is an odd integer; otherwise, replace B with B′ = B − 1. The properties for B′ will
imply the properties for B, albeit with a worse constant in the third property.

Define F̂ to be a rectangular filter of length B, scaled so F is the Dirichlet kernel

Fi =
sin(πBi/n)

B sin(πi/n)
.

Noting that 2|x| ≤ | sin(πx)| ≤ π|x| for |x| ≤ 1/2, we have for all i that

|Fi| ≤
| sin(πBi/n)|

2Bi/n
≤ n

2B|i|
(33)

and for i ∈ [−n/2B,n/2B] that

|Fi| ≥ |
2Bi/n

Bπi/n
| = 2

π
. (34)

Define F̂ ′ to be F̂ convolved with itself t = Θ(logR) times for an even integer t, so ‖F̂ ′‖0 . B logR and
F ′i = F ti , and by (33)

0 ≤ F ′i ≤
( n

2Bi

)t
. (35)

Now, define G to be F ′ convolved with a length ` = 2bn/(2B)c+ 1 rectangular filter, i.e.

Gi =
∑

|j−i|≤n/(2B)

F ′j ,

so Ĝ is F̂ ′ multiplied by a scaled Dirichlet kernel. By the last equation, it follows that ‖Ĝ‖0 ≤ ‖F̂ ′‖0 .
B logR. We would just like to show that G/‖G‖∞ satisfies the flat window function requirements.

Since F ′i ≥ 0 per (35), we have 0 ≤ Gi/‖G‖∞ ≤ 1 so G/‖G‖∞ passes the second property of a flat
window function.

For the first property of flat window functions, let a =
∑bn/(2B)c

i=0 F ′i . We have that Gi ≥ a for |i| ≤
n/(2B) because each of those terms (or their symmetries F ′−i) appear in the summation that forms Gi. So
it suffices to show that Gi ≤ 3a for all i.

Define Sk = Z ∩ [kn/(2B), (k + 1)n/(2B)] for k ∈ Z, so |Sk| ≤ dn/(2B)e for all k. For any i,
{j : |j − i| ≤ n/(2B)} has nonzero intersection with at most 3 different Sk. Hence it suffices to show for
all k that

a ≥
∑
j∈Sk

F ′j .

To do this, we extend the definition of F ′x to all x ∈ R. By symmetry, it suffices to consider k ≥ 0. We have
that sin(πx/n) is increasing on [0, n/2], so for 0 ≤ x ≤ n/2− n/B we have

F ′x+n/B/F
′
x =

(
sin(πx/n)

sin(π(x+ n/B)/n)

)t
< 1.
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Therefore, for each j ∈ Sk,
F ′j ≤ F ′j−dk/2e(n/B) = F ′|j−dk/2e(n/B)|.

Let Tk = {|j − dk/2e(n/B)| : j ∈ Sk}. By considering the even and odd cases for k, we conclude that
Tk ⊂ [0, n/(2B)] and that for some parameter θ ≥ 0 we have

Tk = {θ, θ + 1, . . . , θ + |T | − 1}.

Since F ′ is decreasing on [0, n/(2B)] we have that

∑
j∈Sk

F ′j ≤
∑
j∈Tk

F ′j =

|T |−1∑
j=0

F ′θ+j ≤
|T |−1∑
j=0

F ′j ≤
bn/(2B)c∑
j=0

F ′j = a.

Therefore G/‖G‖∞ satisfies the first property of a flat window function.
Lastly, the third property of flat window functions. Consider i = αn/2B with α ≥ 2 (for smaller i,

Gi ≤ 1 suffices as a bound). We have by (35) that

Gi ≤ ` max
|j−i|≤n/2B

F ′j ≤ `(
n

2B(|i| − n/(2B))
)t = `(

1

α− 1
)t.

We also have by (34) that
‖G‖∞ ≥ G0 ≥ ` min

|i|≤n/(2B)
F ′i ≥ `(2/π)t.

Hence
Gi/‖G‖∞ ≤ (

π

2(α− 1)
)t = (O(1/α))t = (O(

n

B|i|
))t

which is the third property of flat window functions. ThusG/‖G‖∞ is the desired flat window function.

For a bucketing (σ, b), each coordinate j is permuted to an index π(j) = σj − b, with nearest multiple
of (n/B) being (n/B)h(j). Define the offset of j relative to i to be oi(j) = π(j)− (n/B)h(i).

Given a bucketing (σ, b), for each bucket j ∈ [B] we define the associated “bucket vectors” v(j) given
by

v
(j)
σi := xiGπ(i)−(n/B)j .

This has the property that running the algorithm with offset a yields u ∈ RB given by

uj =
∑
i

v
(j)
i ωia = v̂(j)

a.

For any bucketing (σ, b), we say that a bucket j has noise at most µ2 if ‖v(j)‖22 ≤ µ2. We say that an
index i is hashed with noise at most µ2 if, for j = h(i), we have

‖v(j) − xiGπ(i)−(n/B)j‖22 ≤ µ2.

We show how to relate the pairwise independence property 2.3 to flat window functions:

Lemma 11.2. Let G be a flat window function with B buckets and contrast R. Then for i 6= j, there exists
a constant c such that

E[G2
oi(j)
· I[|oi(j)| > cn/B]] .

1

R2B
.

where I[a > b] is 1 when a > b and 0 otherwise.

38



Proof. Note that oi(j) = π(j)− (n/B)h(i) is within n/(2B) of π(j)− π(i) = σ(j − i). Let f ≥ 1 be the
constant such that

Goi(j) ≤
(

f

B|oi(j)|/n

)logR

.

Then

Goi(j) ≤ max
|a−σ(i−j)|<n/(2B)

Ga

≤ max
|a−σ(i−j)|<n/(2B)

(
f

B|a|/n

)logR

≤
∣∣∣∣ f

B|σ(i− j)|/n− 1/2

∣∣∣∣logR

as well as Goi(j) ≤ 1. Define

yb = min

(
1,

∣∣∣∣ f

B|b|/n− 1/2

∣∣∣∣logR
)
.

It suffices to show that, for any a 6= 0 and as a distribution over σ,

E[y2
σa · I[|σa| > cn/B]] .

1

R2B
.

Let D = 3fn/B . n/B. Note that, for d ≥ 1 and |b| ≥ dD > (2df + 1/2)n/B,

yb ≤
(

1

2d

)logR

=
1

R

1

Rlog d
.

Consider the “levels sets” Sl : {b | 2lD ≤ |b| < 2l+1D}, for l ≥ 0. Then by Lemma 2.3,

Pr[σa ∈ Sl] ≤ 4 · 2l+1D/n . 2lD/n

and
max
b∈Sl

yb ≤
1

Rl+1
.

Hence

E[y2
σa · I[|σa| ≥ D]] .

∞∑
l=0

(2lD/n)R−2l−2

. D/(R2n) . 1/(R2B)

because R2 > 2. Since D . n/B, this gives the result.

Lemma 11.3. HASHTOBINS(x̂, χ, Pσ,a,b, B,R) computes u such that for any i ∈ [n],

uh(i) = ∆h(i) +
∑
j

Goi(j)(x− χ)jω
aσj

whereG is the flat window function withB buckets and contrastR from Lemma 3.2, and ∆2
h(i) ≤ ‖χ‖

2
2/(R

∗n11)

is a negligible error term. It takes O(B logR) samples, and if ‖χ‖0 . B, it takes and O(B logR log(Rn)
time.
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Proof. Let S = supp(Ĝ), so |S| . B logR and in fact S ⊂ [−O(B logR), O(B logR)].
First, HASHTOBINS computes

y′ = Ĝ · Pσ,a,bx̂− χ′ = Ĝ · Pσ,a,bx̂− χ+ Ĝ · Pσ,a,bχ̂− χ′,

for an approximation χ̂′ to χ̂. This is efficient because one can compute (Pσ,a,bx̂)S with O(|S|) time
and samples, and Pσ,a,bχ̂

′
S is easily computed from χ̂′T for T = {σ(j − b) : j ∈ S}. Since T is an

arithmetic sequence and χ is B-sparse, by Corollary 12.2, an approximation χ̂′ to χ̂ can be computed in
O(B logR log(Rn)) time such that

|χ̂i − χ̂′i| <
‖χ‖2
R∗n13

for all i ∈ T . Since ‖Ĝ‖1 ≤
√
n‖Ĝ‖2 =

√
n‖G‖2 ≤ n‖G‖∞ ≤ n and Ĝ is 0 outside S, this implies that

‖Ĝ · Pσ,a,b(χ̂− χ′)‖2 ≤ ‖Ĝ‖1 max
i∈S
|(Pσ,a,b(χ̂− χ′))i| = ‖Ĝ‖1 max

i∈T
|(χ̂− χ′)i| ≤

‖χ‖2
R∗n12

. (36)

Define ∆ by ∆̂ =
√
nĜ · Pσ,a,b(χ̂− χ′). Then HASHTOBINS computes u ∈ CB such that for all i,

uh(i) =
√
nF−1(y′)h(i)n/B =

√
nF−1(y)h(i)n/B + ∆h(i)n/B,

for y = Ĝ · Pσ,a,bx̂− χ. This computation takes O(‖y′‖0 + B logB) . B log(Rn) time. We have by the
convolution theorem that

uh(i) =
√
nF−1(Ĝ · Pσ,a,b ̂(x− χ))h(i)n/B + ∆h(i)n/B

= (G ∗ F(Pσ,a,b ̂(x− χ)))h(i)n/B + ∆h(i)n/B

=
∑

π(j)∈[n]

Gh(i)n/B−π(j)F(Pσ,a,b ̂(x− χ))π(j) + ∆h(i)n/B

=
∑
i∈[n]

Goi(j)(x− χ)jω
aσj + ∆h(i)n/B

where the last step is the definition of oi(j) and Claim 2.2 of [HIKP12b] (reproduced here as Claim 2.2).
Finally, we note that

|∆h(i)n/B| ≤ ‖∆‖2 = ‖∆̂‖2 =
√
n‖Ĝ · Pσ,a,b(χ̂− χ′)‖2 ≤

‖χ‖2
R∗n11

,

where we used (36) in the last step. This completes the proof.

Lemma 3.3. Let (σ, a, b) ∈ [n] be uniform subject to σ being odd. Let u ∈ CB denote the result of
HASHTOBINS(x̂∗, χ, Pσ,a,b, B,R). Fix a coordinate i ∈ [n] and define x = x∗ − χ. For each (σ, b), we
can define variables C ⊂ [n] and w > 0 (and in particular, C = {j 6= i : |σ(i − j) mod n| ≤ cn/B} for
some constant c,) so that

• For all j, as a distribution over (σ, b),

Pr[j ∈ C] . 1/B.
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• As a distribution over (σ, b),

E[w2] .
‖x‖22
R2B

+
‖x∗‖22
R∗n11

• Conditioned on (σ, b) and as a distribution over a,

E
a
[|G−1

oi(i)
ω−aσiuh(i) − xi|2] . w2 + ‖xC‖22.

Proof. By Lemma 2.3, for any fixed i and j,

Pr[j ∈ C] = Pr[|σ(i− j)| ≤ cn/B] . 1/B

which gives the first part.
Define x′ = x− χ. Per Lemma 11.3, HASHTOBINS computes the vector u ∈ CB given by

uh(i) −∆h(i) =
∑
j

Goi(j)x
′
jω

aσj

for some ∆ with ‖∆‖2∞ ≤ ‖x‖22/(R∗n11). We define the vector v ∈ Cn by vσj = x′jGoi(j), so that

uh(i) −∆h(i) =
∑
j

ωajvj =
√
nv̂a

so
uh(i) − ωaσiGoi(i)x

′
i −∆h(i) =

√
n(v̂{σi})a.

By Parseval’s theorem, therefore,

E
a
[|G−1

oi(i)
ω−aσiuh(i) − x′i|2] ≤ 2G−2

oi(i)
(E
a
[|uh(i) − ωaσiGoi(i)x

′
i −∆h(i)|2] + E

a
[∆2

h(i)])

= 2G−2
oi(i)

(‖v{σi}‖
2
2 + ∆2

h(i))

.
‖χ‖22
R∗n11

+
∑
j 6=i
|x′jGoi(j)|

2

≤ ‖χ‖
2
2

R∗n11
+

∑
j /∈C∪{i}

|x′jGoi(j)|
2 +

∑
j∈C
|x′j |2

If we define w2 to be the first two terms, we satisfy the third part of the lemma statement. Next, we have
that

‖χ‖22
R∗n11

≤ 2(
‖x‖22 + ‖x− χ‖22

R∗n11
) .

‖x‖22
R∗n11

+
‖x− χ‖22
R2B

.

From the other term, for j /∈ C ∪ {i}, |σ(i − j)| > cn/B so oi(j) > (c − 1)n/B. Hence for sufficiently
large c, by Lemma 11.2,

E[
∑

j /∈C∪{i}

|x′jGoi(j)|
2] ≤

∑
j 6=i
|xj − χj |2 E[G2

oi(j)
· I[oi(j) > (c− 1)n/B]] ≤ ‖x− χ‖

2
2

R2B
.

Hence their sum has

E[w2] .
‖x‖22
R∗n11

+
‖x− χ‖22
R2B

.

This proves the second part of the lemma statement, completing the proof.
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12 Semi-equispaced Fourier Transform

Algorithm 7 Semi-equispaced Fourier Transform in O(ck log n) time
1: procedure SEMIEQUISPACEFFT(x, c) . x ∈ Cn is k-sparse
2: Round k up to a factor of n.
3: G, Ĝ′ ← FILTERS(n, k, c).
4: yi ← 1√

n
(x ∗G)in/2k for i ∈ [2k].

5: ŷ ← FFT(y) . 2k dimensional
6: x̂′i ← ŷi for |i| ≤ k/2.
7: return x̂′
8: end procedure

The following is similar to results of [DR93, PST01].

Lemma 12.1. Let n be a power of two and c ≥ 1. Suppose x ∈ Cn is k-sparse for some k. We can compute
x̂′i for all |i| ≤ k/2 in O(ck log n) time such that

|x̂′i − x̂i| ≤ ‖x‖2/nc.

Proof. Without loss of generality k is a power of two (round up), so 2k divides n.
Let G, Ĝ′ be the flat window functions of [HIKP12a], so that Gi = 0 for all |i| & (n/k)c log n, ‖G −

G′‖2 ≤ n−c,

Ĝ′i =

{
1 if |i| ≤ k/2
0 if |i| ≥ k ,

and Ĝ′i ∈ [0, 1] everywhere. The construction is that G approximates a Gaussian convolved with a rectan-
gular filter and G is a (truncated) Gaussian times a sinc function, and is efficiently computable.

Define
z =

1√
n
x ∗G.

We have that ẑi = x̂iĜi for all i. Furthermore, because subsampling and aliasing are dual under the Fourier
transform, since yi = zin/(2k) is a subsampling of z we have for |i| ≤ k/2 that

x̂′i = ŷi =

n/2k−1∑
j=0

ẑi+2kj

=

n/2k−1∑
j=0

x̂i+2kjĜi+2kj

=

n/2k−1∑
j=0

x̂i+2kjĜ′i+2kj +

n/2k−1∑
j=0

x̂i+2kj(Ĝi+2kj − Ĝ′i+2kj)

= x̂i +

n/2k−1∑
j=0

x̂i+2kj(Ĝi+2kj − Ĝ′i+2kj)
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and so
|x̂′i − x̂i| ≤ ‖x̂‖2‖Ĝ− Ĝ′‖2 ≤ ‖x‖2n−c

as desired.
The time complexity is O(k log k) for a 2k-dimensional FFT, plus the time to construct y. Because Gi

has a localized support, each nonzero coordinate i of x only contributes to O(c log n) entries of y. Hence
the time to construct y is O(ck log n) times the time to evaluate G at an arbitrary position. Because G is
a Gaussian times a sinc function, assuming we can evaluate exponentials in unit time this is O(ck log n)
total.

This can be easily generalized to arbitrary arithmetic sequences of length k:

Corollary 12.2. Let n be a power of two, c ≥ 1, and σ odd. Suppose x ∈ Cn is k-sparse for some k, and
S = {σ(i− b) : i ∈ Z, |i| ≤ k}. Then we can compute x̂′i for all i ∈ S in O(ck log n) time such that

|x̂′i − x̂i| ≤ ‖x‖2/nc.

Proof. Let σ−1 denote the inverse of σ modulo n. Define x∗j = ω−bjxσ−1j . Then for all i ∈ [n],

x̂σ(i−b) =
1√
n

∑
j∈[n]

ωσ(i−b)jxj

=
1√
n

∑
j∈[n]

ωiσjω−bσjxj

=
1√
n

∑
j′=σj∈[n]

ωij
′
ω−bj

′
xσ−1j′

= x̂∗i .

We can sample from x̂∗i with O(1) overhead, so by Lemma 12.1 we can approximate x̂σ(i−b) = x̂∗i for
|i| ≤ k in O(ck log n) time.

To compute Goi(i), we take the opposite semi-equispaced Fourier transform.

Algorithm 8 Converse semi-equispaced Fourier Transform in O(k log(n/δ)) time
1: procedure CONVERSESEMIEQUISPACEFFT(x̂, S, c) . supp(x) ∈ [−k/2, k/2]
2: Round k up to a factor of n.
3: G, Ĝ′ ← FILTERS(n, k, c).
4: u← INVFFT(x̂[−k,k]) . 2k dimensional
5: yin/(2k) ← ui for i ∈ [2k].
6: x′i ← 1√

n

∑
j∈supp(G):i+j≡0 mod n/(2k)Gjyi+j for i ∈ S.

7: return x′
8: end procedure

Lemma 12.3. Let n be a power of two and c ≥ 1. Suppose x̂ ∈ Cn has supp(x) ∈ [−k/2, k/2], and let
S ⊂ [n] have |S| = k. We can compute x′i for all i ∈ S in O(ck log n) time such that

|x′i − xi| ≤ ‖x‖2/nc.
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Proof. Without loss of generality k is a power of two (round up), so 2k divides n.
Let G, Ĝ′ be the flat window functions of [HIKP12a], so that Gi = 0 for all |i| & (n/k)c log n, ‖G −

G′‖2 ≤ n−c,

Ĝ′i =

{
1 if |i| ≤ k/2
0 if |i| ≥ k ,

and Ĝ′i ∈ [0, 1] everywhere. The construction is that G approximates a Gaussian convolved with a rectan-
gular filter and G is a (truncated) Gaussian times a sinc function, and is efficiently computable.

For the y defined in the algorithm, we have that yin/(2k) = xin/(2k)

√
n/(2k) by the definition of the

Fourier transform. Setting yj = 0 elsewhere, y is a scaled subsampling x. Since subsampling and aliasing
are dual under the Fourier transform, we have that ŷi =

∑∞
j=−∞ x̂i+2kj .

Therefore x̂ = ŷ · Ĝ′, so x = 1√
n
y ∗G′. Then for any i,

|x′i − xi| =
1√
n
|
∑
j

(Gj −G′j)yi+j |

≤ 1√
n
‖G−G′‖2‖y‖2

.
1√
n
n−c

√
n/(2k)‖x‖2.

Rescaling c gives the result.
The time complexity is O(k log k) for the Fourier transform and O(ck log n) for the summation to form

x′, giving O(ck log n) time total.

12.1 Computing G, Ĝ

Our algorithm needs to know, for each R, both Ĝi for |i| ≤ B logR and Goi(j) for various j. Here we show
how to compute these up to 1/nc precision for an arbitrary constant c with no additional time overhead
beyond the already existing log(Rn) factor.

Computing Ĝi for all i is possible in O(B log2R) time, because it is a sinc function times a degree
logR polynomial at each position i. Since we only need this once for each R, the total time is at most a
logR factor above the sample complexity.

For each hashing in estimation phases, we will need to computeGoi(j) for the setL ofO(B) coordinates.
We will already know Ĝ, which is O(B logR) sparse and dense around the origin. Hence Lemma 12.3 can
compute Goi(j) in O(B logR log n) time, which is only log n more than the sample complexity to perform
the hashing.
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