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An investor concerned with the downside risk of a black swan only needs a small

portfolio to reap the benefits from diversification. This matches actual portfolio sizes,

but does contrast with received wisdom from mean–variance analysis and intuition

regarding fat tailed distributed returns. The concern for downside risk and the fat tail

property of the distribution of returns can explain the low portfolio diversification.

A simulation and calibration study is used to demonstrate the relevance of the theory

and to disentangle the relative importance of the different effects.

& 2012 Elsevier B.V. All rights reserved.
1. Introduction

Early diversification studies, such as that of Evans and Archer (1968) and Elton and Gruber (1977) have focussed on the
benefits from portfolio diversification that can be measured by the volatility of portfolio returns. These studies consider
how many randomly selected stocks to include in a portfolio before most idiosyncratic risk is eliminated. Fama (1976), for
example, identified the portfolio size that generates a 95% reduction in portfolio variance. Evans and Archer (1968)
advocated a statistical criterion to determine the optimal portfolio size using the number of stocks at the point where no
further significant reduction in the portfolio dispersion can be obtained. More recently, Campbell et al. (2001, p. 25)
concluded that in more recent decades: ‘the increase in idiosyncratic volatility over time has increased the number of
randomly selected stocks needed to achieve relatively complete portfolio diversification’.1

Although it is clearly worthwhile and interesting to determine how much it would take to eliminate ‘almost all’
unsystematic risk through diversification, it is unsatisfactory in an economic sense when left to itself. An economic based
portfolio size not only assesses the benefits in terms of risk reduction, but also takes into account the associated costs of
diversification. Diversification should be increased as long as the marginal benefits exceed the marginal costs of adding
ll rights reserved.
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one extra security. Statman (1987) has contributed to the literature on diversification by proposing a framework in which
the costs and benefits can be balanced. However, even if the costs of diversification are adequately assessed, Statman
(1987, 2004) nevertheless conclude that the level of diversification in investor’s equity portfolios presents a puzzle
regarding the mean–variance based portfolio analysis. The level of diversification in the average investor’s portfolio found
empirically, which hovers at around three or four stocks, appears to be far less than the optimal theoretical level. Consider,
though, the Financial Times of August 1, 2011 weekly review of fund management, which opened with the headline: ‘New
research shows concentrated funds outperform diversified vehicles’. What should be made of this?

In this paper we investigate the benefits of diversification for an investor who has a concern over downside risk and
recognizes the fat tail feature in the distribution of asset returns, while retaining concern regarding the costs of
diversification. The concern for downside risk is captured by the value-at-risk (VaR), which has become a popular measure
of risk in the banking industry. One might think that fatter than normal tails, that give rise to more outliers, would require
even more diversification than in the case of the standard assumption of normally distributed returns. We show, though,
that at a given level of (downside) risk, the benefits from diversification come in more rapidly in the case of fat tails. The
apparent contradiction stems from the fact that in comparing the tails, one is comparing distributions as the risk level
changes. But diversification stems from cross-sectional aggregation at a constant risk level. Diversification at a constant
risk level reduces the VaR, but this occurs at a rate that is not necessarily equal to the rate if the risk level is reduced. As
long as the second moment is bounded, our simulations and derivations show that the Rate of Diversification for fat tailed
distributed returns in terms of reducing the VaR can be better than for normally distributed returns. Ibragimov (2009)
considers the case of infinite variance, wherein the effects go in the opposite direction (and diversification may not be a
good idea at all).

The downside risk concern is modeled within the safety first framework of Roy (1952) through a VaR constraint.2 Arzac
and Bawa (1977) provide an equilibrium analysis, like the CAPM, of the safety-first investor who maximizes expected
returns subject to a VaR constraint. Downside risk and the closely related safety-first principle are frequently employed in
models of finance and risk management, providing alternatives to the traditional expected utility framework. More
recently, the concern for downside risk has received renewed interest, see e.g. Gourieroux et al. (2000), Jansen et al. (2000),
and Campbell and Kraussl (2007).

To assess the diversification issue, we consider equally weighted randomly composed portfolios. Kan and Zhou (2007)
discuss the difficulties in estimating the parameters, such as the mean and variance, required to construct the optimal
portfolio weights. Dash and Loggie (2008) suggest that the equally weighted index turns out to be a powerful investment
idea after examining the performance of the S&P 500 Equal Weight Index. Equally weighted portfolios circumvent the
difficulty of having to estimate optimal portfolio weights. Moreover, this facilitates an easier comparison across different
risk measures, as different utility functions imply different optimal portfolio weights.

To compare the incremental benefits and costs from diversification for different risk measures, define the ‘Rate of
Diversification’ as the derivative of the benefits with regard to the number of assets. For independent risk drivers that are
either normally or fat tailed distributed, it is relatively straightforward to obtain the rates of diversification. In an
equilibrium setting, when stock returns are dependent, there can be multiple rates stemming from different contributing
factors. Since it can not be determined a priori which source dominates with a limited number of assets, we employ a
numerical calibration and simulation study. These calibrations and simulations complement the empirical work in our
companion paper, see Hyung and de Vries (2010).

We find that, in comparison to a mean–variance investor, the concern for extreme3 downside risk in combination with
the fat tail feature produces more focused portfolios. At first, this may seem counter-intuitive. However, as we show, the
normal distribution is conducive to high diversification, as this reduces the power by which the (exponential type) tail of
the loss distribution declines. Per contrast, diversification only affects the scale of fat tailed distributions, which is a more
limited effect.

In Section 2 we briefly review the analysis of Statman (2004) and Hyung and de Vries (2010). Section 3 presents
analytical expressions for the rates of the diversification benefits. Following this, we conduct a calibration and simulation
study in Sections 4 and 5, respectively. Conclusions are provided in the final section.
2. Risk measures and diversification cost benefit analysis

The costs of diversification are the transaction costs in buying and selling, holding costs and monitoring costs of assets.
Statman (2004) defines the concept of ‘additional net cost’ as the net cost of increasing diversification from any n-stock
portfolio to a fully diversified portfolio. In accordance with the work of Statman, we assume constant net additional costs.
The optimal portfolio size is the point at which the marginal cost of adding one extra security equals the benefit of the
reduction in risk. Adding the cost side reduces the amount of diversification.
2 We have also considered the expected-shortfall constraint, which provides similar results. For brevity of presentation we do not present these

results; however, they are available on request from the authors.
3 The terminology of ‘extreme risk’ refers to risk levels such as 0.1% at daily frequency. This corresponds to approximately one event per five years.

The non-extreme risk levels are the 5% or 1% levels used commonly in VaR exercises by banks.
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The benefit of diversification is the reduction of risk. Since the diversification costs are expressed in currency units, the
benefits have to be brought under the same numeraire in order to be able to determine the optimal level of diversification.
To this end, the benefits are translated into units of expected returns. In order to accomplish this, the risk reduction
benefits of diversification in units of expected return are determined by a simple comparison of two portfolios along the
‘Total Market Line’ as elucidated by Statman (2004).

2.1. Mean-variance diversification

Let the m-stock portfolio, P(m), denote the market or tangency portfolio from the two fund separation result. The
market portfolio has expected return E½rðmÞ� ¼ R and standard deviation sm. From the perspective of the uninformed
investor or random stock picker, all stocks and hence portfolios are assumed to have the same expected returns as the
market portfolio, R. Moreover, individual stocks are assumed to have identical a priori risk characteristics (variance,
correlation, VaR). The return R equals the sum of the risk-free rate, Rf, plus the equity premium (denoted as EP), i.e.
EP¼ R�Rf .

Let P(n) denote a portfolio with size n, nom, with standard deviation sn, sn4sm, and having expected return
E½rðnÞ� ¼ R by assumption. If investors can borrow and lend at the risk-free rate, the m-stock portfolio can be levered
through borrowing to form the levered portfolio PðnnÞ that lies higher up on the market line. The leverage linearly alters
the standard deviation sm of the market portfolio in accordance with the market line, say, to sn. The standard deviation of
the levered portfolio PðnnÞ thus equals the standard deviation of the less diversified (unlevered) n-stock portfolio, but has a
higher expected return as it is located on the market line

Rnn ¼ Rf þ
sn

sm
EP, ð1Þ

and where Rnn is the expected return of the levered portfolio PðnnÞ.
Eq. (1) defines the ‘Total (capital) Market Line’ and all the levered portfolios PðnnÞ are located on this line, see Fig. 1.

Consider the difference in expected returns between the n-stock portfolio P(n) and the levered m-stock portfolio PðnnÞ. This is
the difference between R and the expected return Rnn indicated by the market line. The incremental benefit of increased
diversification from n to m stocks can then be measured in the money metric as the difference Bn ¼ Rnn�R. Note that using (1)

Bn ¼ Rnn�R¼
sn

sm
�1

� �
� EP: ð2Þ

Since the benefit in this framework derives from the change in the standard deviation, we refer to the benefit as Bn
stdv

.

2.2. Downside risk measure

Investors considering the tradeoff between the mean and variance employ a global measure of risk. At the time
Markowitz conceived the mean–variance portfolio selection theory, Roy (1952) had already proposed the alternative
safety-first theory with a concern for downside risk. Interest in the safety-first criterion was rekindled by the practice in
the financial industry to employ the VaR concept. Behavioral finance has given this interest a further boost.
Expected Return

Standard Deviation

Rf Unlevered Portfolio P(m)

Levered Portfolio P(n*)

R

Rn*

σm σn

Portfolio P(n)

Fig. 1. Total Market Line in mean–variance theory (Source: Statman, 2004).
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The value-at-risk (VaR) is the most popular downside risk measure in the practice of risk management. The VaR is
simply a low probability high loss quantile. The VaR q at some desired probability level d is defined as follows:

Prfxr�qg ¼ d:

Consider the portfolio choice of a safety-first investor. From the equilibrium analysis of the safety-first investor in
Arzac and Bawa (1977), one obtains a relation similar to (1) in the mean-VaR context. If the m-stock portfolio P(m) is
levered with the risk-free asset with weight o, we obtain the levered portfolio PðnnÞ with the expected return of
Rnn ¼oRþð1�oÞRf located on the equivalent of the market line. The VaR of the levered portfolio then as follows:

VaRnn ¼o VaRm�ð1�oÞRf , ð3Þ

in which VaRi is the value-at-risk of portfolio P(i) at a given d level. Take PðnnÞ such that the VaRnn is equal to VaRn, the VaR
of a less well diversified n-stock portfolio P(n), nom.

The expected return of the levered portfolio can thus be expressed as

Rnn ¼ Rf þ
VaRnþRf

VaRmþRf
EP, ð4Þ

by substituting o from (3) into Rnn ¼ Rf þoðR�Rf Þ. Note that this equation corresponds to Eq. (14) from Arzac and Bawa’s
(1977) equilibrium analysis. The incremental benefit of increased diversification from n to m stocks on the basis of the
VaR measure thus reads as follows:

BVaR
n ¼

VaRnþRf

VaRmþRf
�1

� �
� EP, ð5Þ

where the superindex in Bn
VaR

refers to the downside risk measure. In conclusion, it is fairly straightforward to adapt
Statman’s incremental benefit of diversification measure (2) to the case of the VaR downside risk measure, as is shown in (5).

3. Normal versus fat-tailed distribution

We compare the benefits from diversification for different types of investors who alternatively employ the VaR and
standard deviation as measures of risk. The two measures imply quite different levels of diversification depending on
whether the returns follow a normal distribution or a distribution that exhibits fat tails.

3.1. Diversification in case of heavy tails

In this subsection, the diversification benefits on the basis of the VaR criterion are compared with the benefits derived
from the standard deviation criterion, under the assumption that the returns are heavy tail distributed. We demonstrate
that diversification under the mean-VaR criterion implies smaller portfolios than under the mean–variance criterion. First,
we consider the return of securities that are identically and independently distributed with heavy tails in the sense of
regular variation at infinity. In the next section, this counterfactual assumption is relaxed by allowing for common factors
and heterogeneous scales.

The fat tail property is modeled by assuming that the distribution in the tail areas behaves like a Pareto distribution;
see Jansen and de Vries (1991) for the empirical relevance. The tail of the Pareto distribution declines at a power rate. In
comparison to the normal distribution, the distribution of asset returns has more returns concentrated in the very center
and more returns in the tails of the distribution. Far from the origin, the Pareto term dominates

Prfrir�sg ¼ As�a½1þoð1Þ�, ð6Þ

as -1, where a40, A40 and ri denote the return of security i. This tail relation defines an entire class of distributions
such as the Student’s t, non-normal sum stable and the Frechet distributions. For symmetric distributions such as the
Student distribution, it holds that for large s

Prfri4sg ¼ Prfrir�sg ¼ As�a½1þoð1Þ�:

There is evidence, however, that asset return distributions are skewed and exhibit downside tails that are fatter than the
upside tail. In the following, we only require (6) as we focus on the downside risk and we can allow for distributions that
are not symmetric and may have thinner upper tails.

The class (6) satisfies a self-similarity property in the tail area. The Feller convolution theorem (1971, VIII.8) for the sum
of random variables satisfying (6) holds that one can sum the tail probabilities at a large quantile s. That is, for r1 and r2

independently distributed and satisfying (6), for the left tails

Prfr1þr2r�sg ¼ 2As�a½1þoð1Þ�,

as s-1. This additivity property gives these distributions the self scaling property in the tail areas first noted in
economics by Mandelbrot. The average return for an equally weighted portfolio then follows readily as

Prf12ðr1þr2Þr�sg ¼ Prfr1þr2r�2sg ¼ 2Að2sÞ�a½1þoð1Þ�:
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Hence, for the return of an equally weighted n-stock portfolio rðnÞ ¼ ð1=nÞ
Pn

i ¼ 1 ri, the probability PrfrðnÞr�sg for s large
reads

PrfrðnÞr�sgCn1�aAs�a½1þoð1Þ�: ð7Þ

Next, hold the probability level d constant but let the VaR level adapt as the number of assets n increases in
PrfrðnÞr�VaRng ¼ d. By first order inversion, one obtains the following: As d-0,

VaRn ¼ ðA=dÞ1=an1=a�1½1þoð1Þ�: ð8Þ

This result can now be used in (5) to obtain an explicit expression for the benefit of diversification for the mean-VaR
safety-first investors when asset returns are heavy tailed distributed and a low acceptable risk level d. Specifically define
the benefits again as Bn � Rnn�R. Then combining (5) and (8) gives (recall nom)

BVaR
n ¼

ðA=dÞ1=an1=a�1½1þoð1Þ�þRf

ðA=dÞ1=am1=a�1½1þoð1Þ�þRf

�1

( )
� EP: ð9Þ

Before we proceed to the mean–variance criterion, it is worth pointing out that the i.i.d. assumption concerning the
ri that satisfies (6) translate the equally weighted portfolio into the global minimum VaR portfolio after solving for the
optimal weights in the mean-VaR portfolio framework. This stems from the convexity of the VaR measure if a41.

In order to gauge the optimal level of diversification for mean–variance investors, we begin with the equation for the
standard deviation of the n stock portfolio. From the perspective of a random stockpicker, the returns ri of different assets
i are identically and independently distributed with mean R and variance s2 for all stocks (implicitly this requires a42 in
(6) to guarantee a finite second moment). Thus, we initially assume zero cross correlation Covðri,rjÞ ¼ 0, for iaj. Consider
an investor who composes an equally weighted n-stock portfolio by randomly selecting n different securities from this
universe of m securities. The standard deviation of an equally weighted portfolio of n stocks would then read

sn ¼ s=
ffiffiffi
n
p

:

Evidently, the standard deviation of the portfolio declines as the number of stocks in the portfolio increases. The benefit of
increased diversification from n to m stocks (recall nom) in the specific case of (2) can therefore be expressed as

Bstdv
n ¼

ffiffiffiffiffi
m

n

r
�1

� �
� EP: ð10Þ

From (9) and (10) we see that for very large values of n

Bstdv
n C0 and BVaR

n C0:

However, the rates at which the benefits decline towards this limit value vary. We study these rates more explicitly.
Define the instantaneous ‘Rate of Diversification’, abbreviated as RD, as the derivative of the excess benefit with regard

to the number of assets n. Write

Bstdv
n ¼ c1n�1=2�c2,

where c1 ¼m1=2EP and c2 ¼ EP. Hence, the RD of Bn
stdv

is

RDfBstdv
n g ¼�

1
2c1n�3=2: ð11Þ

From (10) one sees that Bstdv
n -0 as n increases, which is equivalent to the rate by which sn-sm as n increases. Note that

the factor �1=2 in this expression signifies the square root rule 1=
ffiffiffi
n
p

.
Analogously, from (9)

BVaR
n Cc01n�1þ1=a�c02,

where

c01 ¼
ðA=dÞ1=aEP

ðA=dÞ1=am1=a�1þRf

, c02 ¼
ðA=dÞ1=am1=a�1EP

ðA=dÞ1=am1=a�1þRf

:

Taking the derivative gives the RD of Bn
VaR

RDfBVaR
n g ¼� 1�

1

a

� �
c01n�2þ1=a: ð12Þ

We can now obtain an important conclusion by comparing the two rates (11) and (12). Assume that asset returns are
heavy tailed distributed. Provided that a42, implying that the variance is finite, the diversification rate of the downside
risk criterion VaR dominates the standard deviation based criterion at larger values of n, since

RDfBVaR
n g

RDfBstdv
n g
¼ 2 1�

1

a

� �
c01
c1

n�1=2þ1=a ð13Þ
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and

lim
n-1

n1=a�1=2 ¼ 0:

Thus, in the case of heavy tail distributed returns, the diversification benefits for investors concerned with downside
risk come in more rapidly than for a mean–variance type investor. This may appear counter-intuitive, since the heavy tail
feature implies higher tail risk at VaR levels deep enough into the tail (low d levels) in comparison to the risk under the
normal law; cf. the normal distribution case considered in the subsection below. But in comparing the effects of
diversification, one does not go deeper into the tail areas as the probability level d is held constant. Rather, one studies the
cross-sectional aggregation (convolution) effect. For the normal model, diversification reduces the variance and thereby
increases the rate by which the tail risk declines by the square root of the number of assets (through the power in the
exponent4). By way of contrast, diversification only affects the scale of heavy tailed distributed returns, not the power,
see the convolution (7). The rate effect of the normal distribution dominates over the scale effect for the heavy tailed
distributions, in the sense that it works too well and one likes to continue adding other assets.

3.2. Factor models with heavy tails

We now relax the counterfactual assumption that asset returns are i.i.d. by allowing for common factors and
heterogeneous scales. This covers the standard CAPM and linear factor models such as APT. Consider the single factor
model defined by the following relationship between an asset return ri, the return rmkt on the market portfolio and the
idiosyncratic noise qi

ri ¼ birmktþqi, ð14Þ

where bi signifies the amount of market risk. The idiosyncratic risk may be diversified away in large portfolios, but the
market risk reduces the benefits of diversification as it poses non-diversifiable risk.

The return of an equally weighted n-stock portfolio follows:

rðnÞ ¼ brmktþ
1

n

Xn

i ¼ 1

qi,

where b ¼ ð1=nÞ
Pn

i ¼ 1 bi. Assume that the market risk rmkt is distributed with mean R and variance s2
mkt and the beta

of stock i is also a random variable bi with mean b and variance s2
b. As in the previous section we assume that the

idiosyncratic risk qi is distributed independently but not necessarily identically with mean 0 and variance s2
qi

for all i. We
further assume that the idiosyncratic risks are independent, i.e. have zero cross correlation Covðqi,qjÞ ¼ 0 for iaj. Note that
due to the random stock selection the stockpicker also views the idiosyncratic risks as exhibiting equal variance
s2

q ¼ ð1=mÞ
Pm

i ¼ 1 s2
qi

, even though the variances of the various qi may differ.
To determine the optimal level of diversification, we begin with the standard deviation of an n stock portfolio to

determine the benefits of diversification for the mean–variance optimizing investor. Consider again an investor who
composes an equally weighted n-stock portfolio by randomly selecting n different securities from the universe of m

securities, nom. The expected standard deviation of the equally weighted portfolio of n stocks then reads as follows

sn ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2s2

mktþ
1

n
ðs2

mkts
2
bþR2s2

bþs
2
qÞ

r
: ð15Þ

The equivalent of (10) becomes

Bstdv
n ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2s2

mktþ
1
nðs2

mkts
2
bþR2s2

bþs
2
qÞ

b2s2
mktþ

1
mðs2

mkts
2
bþR2s2

bþs
2
qÞ

vuut �1

0
@

1
A� EP: ð16Þ

Note that without a market factor, i.e. if b¼ 0, (16) reduces to (10). The RD of Bn
stdv

follows from differentiating (16) with
respect to n

RDfBstdv
n g ¼�

1

2

EP

smsn
ðs2

mkts
2
bþR2s2

bþs
2
qÞn
�2: ð17Þ

Next we turn to the investors with a concern for downside risk. Suppose that the distributions of qi and rmkt in the single
index model (14) are regularly varying with the same tail index a, but have different scales Ai and C, respectively. We allow
for different assets to have different scales for the idiosyncratic noise; the differences in bi automatically imply differences
4 For the zero mean normal distribution, the first order approximation to the tail probability is

PrfXo�xgC
1

x

1

s
ffiffiffiffiffiffi
2p
p exp �

1

2

x2

s2

� �
:

Thus, changes in s affect both the scale and the power.



N. Hyung, C.G. de Vries / Journal of Economic Dynamics & Control 36 (2012) 1162–11751168
in scale for the market factor part. Thus, for large s

Prfqir�sg=Ai ¼ Prfrmkt r�sg=C ¼ s�a½1þoð1Þ�, ð18Þ

where a40, and Ai,C40 for all i. Furthermore, assume that the bi are uniformly distributed on the support ½a,b� and we
restrict the analysis to a40 for simplicity of presentation. By repeatedly using the Feller convolution result, the return of
an equally weighted n-stock portfolio r(n) satisfies

PrfrðnÞr�sg ¼ CE½b
a
�þn�a

Xn

i ¼ 1

Ai

 !
s�a½1þoð1Þ� ð19Þ

as s-1. Note that the assumption bi 2 ½a,b� implies that all moments are bounded. But the other random variables qi and
rmkt only have moments up to a. After inversion, we get in analogy with (8)

VaRn ¼ ðCE½b
a
�þn1�aAÞ1=ad�1=a

½1þoð1Þ� ð20Þ

as d-0 and where A ¼ ð1=nÞ
Pn

i ¼ 1 Ai.
The first term E½b

a
� can be expanded about the mean b to obtain5

VaRn ¼ ½v1þv2n�1þv3n1�aþOðn�2Þ�1=a½1þoð1Þ�: ð21Þ

Here v1 ¼ Cba=d, v2 ¼
1
2 Cba�2Ws2

b=d and v3 ¼ A=d, assuming that A does not diverge as n increases. The coefficient

W 2 ½a,kðk�1Þ� and where k is an integer closest to a such that kZa. The factor W stems from the lower and upper bound

of the Taylor expansion of the random variable bi (random from the viewpoint of the random stockpicker); the bounds

arise from the convexity of ðbÞa. Note that for a42 the idiosyncratic part v3n1�a is of smaller order than the market factor

term v2n�1. As n increases these two factors determine the diversification effect for the VaR.
We can now obtain an explicit expression for the benefit of diversification for the mean-VaR safety-first investors if

asset returns are heavy tailed distributed and when the acceptable risk level d is low. Specifically, for the benefits
Bn � Rnn�R, combining (5) and (21) gives

BVaR
n C

½v1þv2n�1þv3n1�a�1=aþRf

½v1þv2m�1þv3m1�a�1=aþRf

�1

 !
� EP: ð22Þ

The RD of Bn
VaR

follows as

RDfBVaR
n g ¼

EP

VaRmþRf

� �
1

a
VaR1�a

n ½�v2n�2þð1�aÞv3n�a�: ð23Þ

Note that there are two factors driving the RDfBVaR
n g at different rates.

Compare (23) to (17) as we did in (13). Substituting (21) in (23) for VaRn and (15) in (17) for sn, yields at larger values
of n

RDfBVaR
n g

RDfBstdv
n g

C
2sm

1
VaRmþRf

� �1

a
ðs2

mkts
2
bþR2s2

bþs
2
qÞ
bsmktðv1Þ

1=a�1
½v2þða�1Þv3n2�a� ¼ cm½v2þða�1Þv3n2�a�, ð24Þ

say. One can see from (24) that in the end the ratio is positive, since the market factor term v2n�1 in (21) disappears at a
slower rate than the part due to idiosyncratic v3n1�a in (21) and hence the result in (24) if we divide by the rate n�2

stemming from the RDfBstdv
n g. Note that the case of multiple factors follows analogously. The question of diversification,

though, is not what happens as n-1, but what happens at moderate to larger values of nom. In these cases not only the
powers �2 and �a from (23) and �2 from (17) play a role, but also the constants v2 and ð1�aÞv3 as well as the other
elements in the ratio (24). To arrive at an answer to this question we employ simulations and conduct a calibration
exercise.
3.3. The normal distribution case

We compare the diversification benefits of alternative risk measures under the assumption that returns are normally
distributed. The case of the mean–variance optimizing investor in the single factor model is already covered by (16) above.
Under the assumption that both the mean and variance exist, the analysis for the mean–variance investor is identical for
return distributions with heavy tails (as long as a42) and the normal distribution. However, the analysis for a safety-first
type investor is somewhat different.
5 For the detailed proof of the different scales Ai case, one need a minor changes of the proof in Hyung and de Vries (2010) where Ai ¼ A for all i is

considered.
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The standard deviation of the return on an equally weighted n-stock portfolio r(n) can be expressed as in (15). Under
normality, the normal based VaR level of r(n), denoted as VaRn

N
, is given by

VaRN
n ¼�Rþzdsn,

where PrfrðnÞr�VaRN
n g ¼ d, rðnÞ �NðR,s2

nÞ and zd is the quantile of standard normal distribution such that do0:5. From (5)
the incremental benefit of diversification to the safety-first investor who uses the VaR risk measure and given the normally
distributed returns, is (the superscript refers to the normal distribution based VaR)

BNVaR
n ¼

zdsn�EP

zdsm�EP
�1

� �
� EP: ð25Þ

Upon differentiation we obtain the RD of Bn
NVaR

RDfBNVaR
n g ¼�

1

2

zdEP

zdsm�EP

1

sn
ðs2

mkts
2
bþR2s2

bþs
2
qÞn
�2: ð26Þ

Compare this rate with the standard deviation based RD (17)

RDfBNVaR
n g

RDfBstdv
n g

¼
�1

2
zdEP

zdsm�EP
1
sn
ðs2

mkts
2
bþR2s2

bþs
2
qÞn
�2

�1
2

EP
smsn
ðs2

mkts
2
bþR2s2

bþs
2
qÞn
�2

¼
zdEP

zdsm�EP
sm: ð27Þ

As the ratio (27) is independent of n, this immediately shows that the two measures RDfBstdv
n g and RDfBNVaR

n g have the
same RD.
4. Numerical calibration study

In the previous section, we compared the incremental benefits from diversification for different risk measures and
under different assumptions regarding the distribution of returns. In the case of factor models, when returns are cross-
sectionally dependent, there is more than one rate driving the diversification benefits. In those cases it is not only the
power in the exponent (which determines the rate) that is important, but the scaling constants are important as well
for the determination of the diversification benefits at moderate portfolio sizes n. In this section we employ a numerical
calibration to gauge the relative importance of the factors contributing toward the benefits of diversification. We compare
the diversification rates by calibrating the theoretical expressions by means of estimates of the parameters available in the
relevant literature. In this section we consider only the case of identical distributions for the idiosyncratic risk. The
heterogeneous idiosyncratic risk case is more readily studied by simulation, which is the topic of the next section.

For the costs of diversification, we use Statman’s (2004) estimate of 0.06% additional net cost when moving from a
small n-stock portfolio to the fully diversified portfolio. These additional net costs are assumed to be constant. The cost of
holding the fully diversified portfolio is approximated by the expense ratio of the Vanguard Total Stock Market Index Fund,
which at the time amounted to 0.20% per annum. Furthermore, Statman used 0.14% as a conservative estimate of the
expected annual costs of buying and holding portfolios of individual stocks. The difference between these two estimates
then yields the imputed 0.06% incremental costs.

To calculate the benefit of diversification, we further employ the following estimates by Statman’s (2004) for
comparability. The equity premium EP is set at 3.44%, the imputed size of the universe of assets m is 3444 (which is
the number of stocks in the Vanguard Total Stock Market Index fund in March 2002), and the correlation between any pair
of stocks is taken to be 0.08.6 The risk-free rate is set at 2.19%, which is the estimate of Campbell et al. (2001). To calculate
the benefits in the mean-VaR framework for the heavy tail case, we set the tail parameter a in (6) equal to 3 on the basis of
Jansen and de Vries (1991). We equate all values for Ai ¼ A in (18) and set A¼48.5. This assumption of homogeneous scale
is relaxed in the following section. Since the scale of the market factor differs profoundly from the scale of the idiosyncratic
risk, we take C¼5.7; which is an estimate of the scale of the S&P 500 index as a representation for the market factor in the
dataset of Hyung and de Vries (2010).7 Furthermore, we used b¼ 1, s2

b ¼ 1=12 assuming that bi’s are spread evenly
between 0.5 and 1.5. Furthermore, we focus on the tail probability d¼ 0:001, which amounts to approximately one event
per five years.
6 As one of the referees has pointed out, the average correlation among securities typically increases during bear markets. This issue is most readily

addressed in the simulation study in the next section.
7 The estimate of the variance of market factor is 7.1, which is significantly lower than the median value of the variance of the 1313 individual return

series, i.e. 33.5, and the variance of the estimated idiosyncratic component, 29.9. We estimate the idiosyncratic components using the regression for the

single index model. In the case of scale estimates, we find that the scale of the market factor is 5.7. Again this scale is substantially lower than the median

values, respectively, 54.3 and 52.4, of the individual return series and the idiosyncratic components. One shows that these variances and scales are

broadly consistent in the case that the market and idiosyncratic factor are assumed to follow Student’s t distributions. The Appendix provides summary

statistics.
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Fig. 2. Benefits of diversification: numerical calibration.
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4.1. Risk measures

Fig. 2 shows the diversification benefits in terms of the VaR and the standard deviation sn under the assumption that
the tail of the return distribution has heavy tails but finite variance. Given that a¼ 3, which ensures the existence of the
second moment of the return distribution, the variance (15) is invariant to the assumption regarding the distribution.
Thus, we find that the dotted line (STDV) in Fig. 2, which gives the benefits from diversification for the mean–variance
investor (16), is a replication of Statman’s (2004) analysis, as we imputed exactly the same numerical calibrations.
Considering the costs, the optimal level of diversification for the mean–variance investor is to hold approximately 300
different stocks.

The solid lines (VaR_L, VaR_U) in Fig. 2 represent the benefits from the decline in the VaR, calculated from (22).
As shown in the previous section in (21), the VaR level is in between a lower and upper bound due to the variation in the
betas. For a¼ 3, the factor W in (21) turns out to lie within the interval [3, 6]. This implies that the optimal level of
diversification ranges between 16 and 21 stocks. This range is considerably lower than the optimal level for the mean–
variance type investor.

The benefits for the safety-first type investor come in two parts that have two different rates, see (22) and (23). The
slow part with rate n�1 is due to the variability in beta and is equal to the rate at which the benefits come for the mean–
variance investor, c.f. (16). The other part vanishes at rate n1�a, which implies a faster decline as long as a42. Thus, the
more rapid decline in the benefits from diversification for safety-first types stem from the differences in the rates due to
the fatness of the tails.

4.2. Equivalence under normality

Finally, we demonstrate that two different risk measures are almost equivalent in terms of diversification benefits if we
assume the asset returns to be normally distributed. The bold dotted line (STDV) in Fig. 2 representing (16) is again a
replication of Statman’s (2004) mean–variance analysis under the normality assumption. The benefits of diversification in
terms of mean-VaR under the normality assumption are provided in (25). The dashed line (VaR_N) in Fig. 2 illustrates the
incremental cost and benefit of increasing diversification for the mean-VaR investor. The risk reduction benefit of
increasing diversification beyond 300 stocks is less than the net cost of 0.06%, yielding approximately 300 different stocks
in the optimal portfolio. The VaR_N (dashed) line represents the decline in VaR calculated from (25) under the normality
assumption. The optimal level is to hold 369 stocks for the mean-VaR investor. We conclude that there is no substantive
qualitative difference between two different risk measures under the assumption of normality.

5. Simulation study

In this section we consider the case of heterogeneous idiosyncratic risk and varying correlation. The effects of
heterogeneity and varying correlation are most easily studied by simulation. The design of the simulations is as follows. In
this simulation study we use the same parameter values as in the calibration exercise of Section 4, except for the scale
parameters, c.f. (18). The returns ri derive from a factor model (14) in which the innovations are i.i.d. with a three
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parameter version of the Student’s t distribution so that the variances can differ, even though the degrees of freedom are
constant.

In particular we generate t-distributed random numbers with mean m, with a scale parameter x,

f ðy9m,x,nÞ ¼ Gððnþ1Þ=2Þ

xGð1=2ÞGðn=2Þn1=2
1þ
ðy�mÞ2

nx2

" #�ðnþ1Þ=2

,

where y¼ ð�1,þ1Þ, m¼ ð�1,þ1Þ, s40 and degrees of freedom n40. It has standard deviation

x½n=ðn�2Þ�1=2: ð28Þ

One shows in (6) that a¼ n, since by l’Hopital’s rule

lim
t-1

f ðtxÞ

f ðtÞ
¼ x�n�1:

The scale A can be isolated by

lim
y-1

f ðyÞ

ny�n�1
¼

Gððnþ1Þ=2Þ

Gð1=2ÞGðn=2Þ
nðn=2�1Þxn ¼ A: ð29Þ

So the variance factor xn indicates by how much A changes in comparison with the standard two parameter Student
distribution case.

As before, the stock beta’s, bi, are assumed to be evenly spread between 0.5 and 1.5. We assume that the (excess) return
on the market portfolio rmkt follows a Student’s t distribution with mean m¼ 0:0344 (i.e. amounting to 3.44% yearly return),
scale parameter x¼ 1, and has degrees of freedom n¼ 3. This means that the tail index of rmkt is a¼ 3.

The idiosyncratic term qi is independent with respect to rmkt, and is distributed with a Student’s t distribution with
location parameter m¼ 0 and the degree of freedom n¼ 3. Thus, the market part and the idiosyncratic noise have the same
tail index. We simulate both with a homogenous scale parameter for comparability with the previous section (i.e. Ai ¼ A for
all i) and with heterogenous scale parameters Ai, as in (18). The different scale values Ai are induced by selecting different
values for the scale parameter x of the Student distribution. More specifically, we use
(1)
 Homogeneous case: x¼ 3;

(2)
 Heterogeneous case: draw x from a Chi-square distribution with the degrees of freedom 4.5.
We simulate 1000 different artificial stock return series. Each series comes with 10,000 observations. Table A1 in the
Appendix shows that the properties of the simulated series come close to what is observed for the actual stock returns that
were used by Hyung and de Vries (2010). For example, the correlation coefficients of the ‘actual series’ column reported in
the row of ‘corr. coef.’ in Table A1 are the averaged values from all pairs of 1313 stock returns. Additionally, we find that
the value of 0.08 is exactly the same as Statman’s (2004) correlation between any pair of stocks.

We also simulated data to generate different values of correlation structure between the stocks. The expected
correlation of Statman (2004), which was based on five years of monthly data as elucidated by Campbell et al. (2001), was
0.08. However, Campbell et al. (2001) claimed that correlations based on one year of daily data decline from 0.12 in the
early 1960s to between 0.02 and 0.04 in the 1990s. The sample period in the study of Hyung and de Vries (2010) runs from
1985 to 2005, which covers a span of 30 years of daily data. For the IT bubble period following the year 2000, we estimated
the average correlation and find a higher correlation of around 0.11. As a robustness check, we also simulated using 0.04
for the low correlation situation and 0.11 for the high correlation case. To achieve this, we set different scale parameters
(x) for the idiosyncratic term qi, which leads to differences in the variances as in (28). For the given value of the variances
of rmkt , since the correlation between stocks is inversely related to the variances of qi, the larger (smaller) x of the
idiosyncratic term, the lower (higher) is the correlation. Furthermore, in the heterogeneous case, we draw x from the
Chi-square distribution. If we set a larger (smaller) degree of freedom for the Chi-square distribution, the induced
correlation between simulated series is lower (higher). In particular, we select
(3)
 For the homogeneous case take x¼ 2:5 and 4.5.

(4)
 For the distribution of x in the heterogeneous case we use, respectively, 4.0 and 6.0 degrees of freedom.
We construct equally weighted n-stock portfolio returns r(n) by randomly selecting n stocks from the 1000 assets. From
the empirical distribution of n-stock portfolio returns we calculate the standard deviation and empirical VaR. Each
experiment is conducted with 500 replications. Thus, the averages of the standard deviation, artificial historical VaR from
500 different naive-portfolios with n-stocks are calculated for each n¼ 1;2, . . .. Subsequently, we calculate the
corresponding incremental benefits from diversification as per formulas (2) and (5) at risk levels of d¼ 0:05, 0.01, 0.005
and 0.001 risk levels. Recall that an event with probability d¼ 0:001 at the daily frequency corresponds to an extreme
event that may occur about once every five years. The d-level 0.05 reflects events that occur approximately every month.
So for investors with a genuine concern for downside risk, only the d-levels below 5% are relevant. The optimal level of
diversification depends on where these incremental benefits equate with the incremental costs. To this end, we again use
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Statman’s (2004) estimate of 0.06% additional net cost when moving from a small n-stock portfolio to the fully diversified
portfolio. We use an equity premium of 3.44% and the risk-free rate is 2.19%, as before.

5.1. Homogeneous scale

We begin with the case of a homogenous scale parameter for the idiosyncratic noise with x¼ 3. The results in Table 1
demonstrate that, in the case of the mean–variance criterion, the optimal level of diversification is approximately 250
stocks, which is close to the level of 300 reported in Section 4. For the mean-VaR investor, the optimal level of
diversification is 200 stocks if the risk level is d¼ 0:05, while this declines to a mere 14 stocks at d¼ 0:001. The
STDV_homo and VaR01_homo lines in Fig. 3 represent the benefits from declines in standard deviations and VaR at
d¼ 0:001. Thus, one needs to assume that the downside risk concern is really about tail events to be able to replicate the
observed low levels of diversification in actual portfolios of individuals.

5.2. Heterogeneous scale

Next, consider the case of heterogenous scales for the idiosyncratic noise part. The results in Table 1 show that in the
case of the mean–variance investor the optimal level of diversification is about 800 stocks. This is larger than the optimal
level for the homogenous case, which is approximately 300 stocks. Thus, the incremental benefits of diversification come
rather slowly. For the mean-VaR investor, the optimal level of diversification is 700 stocks at the risk level of d¼ 0:05. This
declines to a mere 65 stocks at d¼ 0:001. Two lines (STDV_hetero, VaR01_hetero) in Fig. 3 demonstrate this graphically.
The simulation experiments demonstrate that heterogeneity considerably attenuates the speed of the diversification
benefits, for both the mean–variance investor and the safety-first type investors. Moreover one notices that at moderate
risk levels such as the 0.05 d-level, the portfolio size is considerable under all criteria. Third, deeper into the tails at the
Table 1
Excess benefits of diversification.

# Homogeneous case Heterogeneous case

STDV VaR5 VaR1 VaR05 VaR01 STDV VaR5 VaR1 VaR05 VaR01

2 4.76 2.69 2.95 2.78 2.49 9.32 4.96 5.93 5.76 6.11

4 2.82 1.72 1.66 1.44 0.98 6.09 3.44 3.79 3.49 3.42

6 2.04 1.30 1.15 0.93 0.47 4.64 2.70 2.82 2.50 2.26

8 1.59 1.03 0.85 0.66 0.24 3.77 2.25 2.25 1.93 1.66

10 1.32 0.88 0.68 0.51 0.14 3.20 1.94 1.88 1.57 1.20

12 1.10 0.74 0.53 0.38 0.06 2.77 1.71 1.61 1.29 0.93

14 0.96 0.65 0.46 0.31 0.03 2.59 1.62 1.50 1.19 0.82

16 0.84 0.57 0.38 0.24 0.00 2.23 1.41 1.26 0.97 0.57

18 0.76 0.53 0.33 0.21 �0.01 2.09 1.33 1.18 0.89 0.51

20 0.69 0.47 0.29 0.18 �0.02 1.85 1.19 1.02 0.75 0.39

25 0.55 0.38 0.21 0.11 �0.04 1.56 1.02 0.85 0.59 0.26

30 0.44 0.31 0.15 0.07 �0.07 1.33 0.89 0.70 0.46 0.16

35 0.39 0.27 0.12 0.05 �0.06 1.15 0.77 0.58 0.36 0.12

40 0.32 0.22 0.09 0.02 �0.07 1.02 0.69 0.51 0.30 0.07

45 0.29 0.20 0.08 0.02 �0.07 0.93 0.63 0.45 0.26 0.07

50 0.25 0.17 0.06 0.00 �0.08 0.82 0.56 0.39 0.20 0.03

55 0.21 0.15 0.04 �0.02 �0.09 0.74 0.51 0.34 0.16 0.02

60 0.19 0.13 0.03 �0.02 �0.08 0.68 0.47 0.31 0.14 0.00

65 0.19 0.13 0.03 �0.02 �0.08 0.64 0.45 0.28 0.12 0.00
70 0.16 0.11 0.02 �0.04 �0.08 0.60 0.42 0.26 0.10 �0.01

75 0.15 0.10 0.02 �0.04 �0.08 0.55 0.38 0.23 0.08 �0.01

100 0.09 0.06 �0.01 �0.06 �0.09 0.40 0.28 0.15 0.03 �0.04

125 0.08 0.05 �0.01 �0.05 �0.07 0.33 0.23 0.12 0.01 �0.02

150 0.04 0.02 �0.03 �0.06 �0.08 0.25 0.18 0.08 �0.02 �0.04

200 0.02 0.00 �0.03 �0.07 �0.08 0.18 0.13 0.04 �0.03 �0.04

250 0.01 �0.01 �0.04 �0.07 �0.08 0.14 0.10 0.03 �0.05 �0.05

300 0.00 �0.02 �0.05 �0.07 �0.08 0.10 0.07 0.01 �0.05 �0.05

350 �0.01 �0.02 �0.06 �0.07 �0.09 0.08 0.05 0.00 �0.06 �0.06

400 �0.02 �0.03 �0.05 �0.07 �0.08 0.07 0.04 0.00 �0.06 �0.06

500 �0.03 �0.03 �0.06 �0.07 �0.09 0.04 0.02 �0.02 �0.07 �0.06

600 �0.03 �0.04 �0.06 �0.07 �0.08 0.03 0.01 �0.02 �0.07 �0.06

700 �0.04 �0.04 �0.06 �0.07 �0.08 0.01 0.00 �0.03 �0.07 �0.07

800 �0.04 �0.04 �0.07 �0.07 �0.08 0.00 0.00 �0.03 �0.07 �0.06

1000 �0.06 �0.06 �0.06 �0.06 �0.06 �0.06 �0.06 �0.06 �0.06 �0.06

Note: STDV and VaR denote standard deviation and value-at-risk. VaR is calculated at the following probabilities: 0.05, 0.01, 0.005 and 0.001. We set an

equity premium 3.44%, the risk-free rate 2.19% and additional net cost 0.06%. Boldface figures emphasize the optimal level of selected risk-diversification

w.r.t. the number of stocks.
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Fig. 3. Benefits of diversification using simulated data.

Table 2
Optimal level of diversification (robustness check).

Corr. coef. STDV VaR5 VaR1 VaR05 VaR01

x of Student’s t Homogeneous case

2.5 0.128 175 175 55 35 10

4.5 0.044 600 500 250 100 35

dof of Chi-square Heterogeneous case

4.0 0.117 600 600 250 125 40

6.0 0.048 900 900 500 200 65

Note: For the homogeneous case the idiosyncratic noise is drawn from Student’s t distribution with scale parameter x¼ 2:5 and 4.5. In the heterogeneous

case, the scale parameters x come from a Chi-square distribution with the degree of freedom (dof) 4.0 and 6.0. Corr. coef. denotes the averaged value of

correlation coefficients from simulated series.

N. Hyung, C.G. de Vries / Journal of Economic Dynamics & Control 36 (2012) 1162–1175 1173
more extreme risk levels, there is once again a large difference in the amount of diversification between the mean–
variance investor and the safety-first investor who relies on the mean-VaR criterion.

5.3. Robustness check

Since the correlation between stocks varies across time we investigate the effects of different levels of correlation. This
also provides for a robustness check. The results of these simulations are shown in Table 2. First, consider the series with
low correlation. We set x¼ 4:5 for the homogeneous case; this induces an average value of correlation of 0.044, which is
equal to the ‘corr. coef.’ row of Table A1. We find that the optimal level of diversification by the mean–variance investor
entails holding 600 stocks, for the mean-VaR investor with d¼ 0:05 the number is 500 stocks, while it is only 35 stocks for
the mean-VaR investor with d¼ 0:001. In the case of heterogenous scales for the idiosyncratic noise part we draw x from a
Chi-square distribution with the degrees of freedom 6.0. The averaged value of correlation coefficients is 0.048. We find
that the optimal levels of diversification by the mean–variance, and by the mean-VaR with d¼ 0:05 are over 900, while it is
only 65 stocks for the mean-VaR at d¼ 0:001.

To induce a higher level of correlation, we set x¼ 2:5 for the homogeneous case; this induces an average value of
correlation of 0.128. For the heterogenous case with higher correlation, we draw x from a Chi-square distribution with the
degree of freedom 4.0, where the averaged value of correlation is 0.117. We find that the optimal level of diversification
by the mean-VaR with d¼ 0:001 entails holding 10 stocks in the homogeneous case, while it is 40 stocks in the
heterogenous case.

In the simulation the lower (higher) correlation for the heterogeneous case is induced by higher (lower) value of
the scale A, which determines the coefficient v3 of the part that vanishes at the rate n1�a in (23). The rate of decline in the
benefits from diversification is unaffected by changes in the scale A, as this does not affect the power. However, since the
coefficient v3 ¼ A=d becomes larger with increasing value of A, one selects more stocks to reach the optimal diversification
level at each desired d-level. This also applies in the case of homogeneous scale. As the correlation is reduced, the number
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of stocks in a well-diversified portfolio increases by any criterion such as mean–variance or mean-VaR (in the case of
perfect correlation, only a single stock would suffice).

6. Conclusion

The diversification puzzle is that actual portfolios of individuals contain a much smaller amount of different stocks than
mean–variance theory would prescribe. The calibration and simulation studies demonstrate that the concern over
downside risk at a sufficiently low probability level combined with the fat tail phenomenon can be used to replicate the
low diversification phenomenon. Our companion paper, Hyung and de Vries (2010), furnishes empirical evidence for this
finding. The fat tail phenomenon is now well recognized and popularized as the black swan. The concern for downside risk
is at least institutionalized in the financial industry through VaR restrictions; behavioral economics has shown the
importance of loss aversion. What we take away from the above investigation is that in some form the downside risk
criterion may be necessary to recognize the fat tail phenomenon. The combination leads to a relatively lower level of
optimal portfolio sizes.

It may sound counter-intuitive that a concern for downside leads to lower diversification, given the fat tail
phenomenon. This confusion arises from the fact that the fat tail phenomenon is a comparison of the normal distribution
based tail and the tails of distributions such as the Student distribution. This comparison is done as the probability level is
driven to zero. The diversification comparison is a cross-sectional comparison whereby the portfolio size is varied but the
probability level is held constant. Cross-sectional aggregation under normality just works just too well. Diversification
reduces the variance and thereby affects the power. But for fat tailed distributions, only the scale is affected, not the power.
The rate effect of the normal dominates over the scale effect for the heavy tailed distributions.

Our research calls for further investigation on optimal selection of n stocks among m. DeMiguel et al. (2009) for
example suggest the out-of-sample comparison between naive portfolio versus various asset allocation models.
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Appendix A. Details of the data

In this appendix we provide details of the actual data used by Hyung and de Vries (2010) and details about how to generate
simulated data. The dataset in Hyung and de Vries (2010) includes 888 stocks from the NYSE and 425 stocks from the NASDAQ
(a total 1313 stocks), close-to-close daily returns including cash dividends. The sample period is from January 1, 1985 to
Table A1
Actual and simulated series: summary of statistics.

Empirical statistics Actual series Heterogeneous case Homogeneous case

dof¼4.0 dof¼4.5 dof¼6.0 x¼ 2:5 x¼ 3:0 x¼ 4:5

Std. dev.

Min 1.82 1.03 1.03 1.43

25th percentile 4.49 3.71 4.30 6.23

Median 5.79 5.95 6.88 9.33 4.61 5.40 7.85

75th percentile 8.43 9.07 10.41 13.33

Max 38.10 34.44 35.97 35.85

A

Min 0.26 0.21 0.23 0.58

25th percentile 17.50 10.08 15.75 47.90

Median 54.20 41.53 64.25 160.54 19.35 31.20 95.66

75th percentile 252.70 147.64 223.05 468.10

Max 986,351.30 8070.87 9195.04 9104.67

Corr. coef. 0.080 0.117 0.086 0.048 0.128 0.093 0.044

Note: Std. dev., A, and corr. coef. denote, respectively, the standard deviation, the scale in the Pareto expansion of the distribution, and the averaged value

of correlation coefficients. The ‘actual series’ column reports empirical statistics for 1313 stock returns in Hyung and de Vries (2010); see the Appendix

for detailed information on the data. The columns with headings ‘heterogeneous case’ and ‘homogeneous case’ report empirical statistics for 1000

simulated series. The values in the column of std. dev. and A are quantiles. (We report median only in the ‘homogeneous case’.) The values in the row of

corr. coef. are averaged values. The value ‘dof’ in the columns of ‘heterogeneous case’ denotes the degrees of freedom of Chi-square distribution used to

generate scale parameters for the Student’s t-distribution. The ‘x’ in the columns of the ‘homogeneous case’ denotes the scale parameters for the

Student’s t-distribution.
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February 15, 2005 giving a sample size of 5251. We generate artificial stock return series to replicate the heterogeneous scale
properties of the actual series using the three parameter Student’s t distribution. For the comparison with the calibration
exercise, we also generate data with a homogeneous scale.

The summary of statistics of the 1313 stocks in Hyung and de Vries (2010) are quite closely replicated by the simulated
series, see the summary of statistics in Table A1. It turns out that the histogram of estimated standard errors of the 1313
stocks is skewed to the right, with median 5.79. The median value of the scale parameters is 54.2. To generate series with
heterogenous scales, we draw scale parameter x from a Chi-square distribution with degrees of freedom 4.0, 4.5 and 6.0.
Note that the mean value of the Chi-square distribution equals the degree of freedom. For the homogeneous case, we
choose x to be 2.5, 3.0 and 4.5, respectively. The x¼ 3 value provides a good approximation to the actual data.

The correlation coefficients reported in the ‘corr. coef.’ row in Table A1 are average of correlation coefficients computed
for all pairs of 1313 actual returns or 1000 simulated series. In the panels of ‘std. dev.’ and ‘A’, we report the minimum,
25th percentile, median, 75th percentile and maximum out of 1000 simulated series or 1313 stock returns, respectively.
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