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Abstract

Consider the portfolio problem of choosing the mix between stocks and bonds under a downside risk
constraint. Typically stock returns exhibit fatter tails than bonds corresponding to their greater downside
risk. Downside risk criteria like the safety first criterion therefore often select corner solutions in the sense
of a bonds only portfolio. This is due to a focus on the asymptotically dominating first order Pareto term of
the portfolio return distribution. We show that if second order terms are taken into account, a balanced
solution emerges. The theory is applied to empirical examples from the literature.
© 2007 Published by Elsevier B.V.
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1. Introduction

Consider the portfolio problem of choosing the mix between a stock index and a government
bond index. The mean variance criterion selects non-zero proportions of each as long as stocks
have higher expected returns and higher variance. Investors nevertheless in addition often worry
about the downside risk features of their portfolio, witness the popularity of policies with put
protection that lock in gains, portfolio insurance, capital buffers at pension funds, Value at Risk
(VaR) exercises at banks, etc. It is a fact that asset return distributions exhibit fat tails, i.e. are
asymptotic to a Pareto distribution. Typically stocks exhibit fatter tails than bonds, i.e. have
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smaller hyperbolic Pareto coefficient, corresponding to the greater downside risk of stocks.
Downside risk criteria like the safety first criterion therefore often select corner solutions in the
sense of a bonds only portfolio. This is due to a focus on the tail of the asset return distributions
whereby only the asymptotically dominating first order Pareto term is taken into account. In this
note we show that if the second order terms are considered as well, a more balanced solution
emerges. The theory is applied to examples from the literature.

Portfolio risk and its upside potential are in an important way driven by the ‘abnormal’ returns
emanating from heavy-tailed distributed asset returns. Therefore the financial industry often
employs so called downside risk measures to characterize the asset and portfolio risk, since it is
widely recognized that large losses are more frequent than a normal distribution based statistic
like the standard deviation suggests. A formal portfolio selection criterion which incorporates the
concern for downside risk is the safety first criterion, see Roy (1952) and Arzac and Bawa (1977).
The paper by Gourieroux, Laurent and Scaillet (2000) analyzes the sensitivity of VaR with respect
to portfolio allocation, which is essentially the same problem as portfolio selection with the safety
first criterion. Gourieroux et al. (2000) show how to check for the convexity of the estimated VaR
efficient portfolio set. Jansen, Koedijk and de Vries (2000) and Jansen (2000) apply the safety
first criterion and exploit the fact that returns are fat-tailed. They propose a semi-parametric
method for modeling tail events and use extreme value theory to measure the downside risk. This
method was subsequently used by Susmel (2001) in an application involving Latin American
stock markets.

If one selects assets on the basis of the tail properties of the return distribution, there is a
tendency to end up with a corner solution whereby the asset with the highest tail coefficient
(thinnest tail) is selected, see e.g. Straetmans (1998, ch.5), Jansen et al. (2000), Hartmann,
Straetmans and de Vries (2004) and Poon, Rockinger and Tawn (2003). This follows from Geluk
and de Haan (1987), who show that a convolution of two regularly varying variables produces a
random variable which has the same tail properties as the fattest tail of the two convoluting
variables, i.e. the fattest tail (lowest tail coefficient) dominates. In case the tails are equally fat, the
scales of the two random variables have to be added. In this paper we show how to extend the first
order convolution result to a second order asymptotic expansion. Whereas in the first order
convolution result only the fattest of the two tails plays a role, in the second order expansion often
both tails play a role. We show that with a second order expansion of the downside risk, the
portfolio solution yields a balanced solution, i.e. both assets are held in non-zero proportion,
whereas the first order expansion selects the corner solution. In an extension we also consider the
case of dependent returns in multi asset portfolios. In the empirical application, we follow up on
Jansen et al. (2000) and Susmel (2001), who apply the safety first criterion to a number of
portfolio problems. In several cases Jansen et al. (2000) end up with a corner solution. We
calculate the downside risk using the second order expansion and show how this implies a move
towards the interior.

2. Extreme value theory

The fat tail property is one of the salient features of asset returns. This can be modeled by
letting the tail of the distribution be governed by a power law, instead of an exponential rate.
Technically speaking, suppose that the returns are i.i.d. and have tails which vary regularly at
infinity. This entails that to a first order

PfXNsg ¼ As−α þ oðs−αÞ
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as s→∞, where αN0, AN0. A more detailed parametric form for the tail probability can be
obtained by taking a second order expansion at infinity. There are only two non-trivial expansions
(de Haan and Stadtmüller, 1996). The first expansion has a second order term which also declines
hyperbolically

PfXNsg ¼ As−α½1þ Bs−b þ oðs−bÞ�
as s→∞, where αN0, AN0, βN0 and B is a real number. This expansion applies to the non-
normal sum-stable, Student-t, Fréchet, and other fat tailed distributions. The other non-trivial
expansion is

PfXNsg ¼ As−α½1þ B log sþ oðlog sÞ�
which is not considered in this paper.1

We assume that the tails of two assets are different but symmetric, and vary regularly at
infinity. Consider the following second order expansions,

PfX1Nsg ¼ PfX1b−sg ¼ A1s
−α1 ½1þ B1s

−b1 þ oðs−b1Þ� ð1Þ
PfX2Nsg ¼ PfX2b−sg ¼ A2s
−α2 ½1þ B2s

−b2 þ oðs−b2Þ� ð2Þ

as s→∞. We assume 2bα1≤α2. The assumption of 2bα1 implies that at least the mean and
variance exist, which seems to be the relevant case for financial data. Portfolios are essentially
(weighted) sums of different random variables. We therefore investigate the tail probability of the
convolution X1+X2. The case of equal tail indices α1=α2 is known from Feller (1971, ch. VIII).
In this case P{X1+X2N s}=(A1+A2)s

α1 +o(s−α1) as s→∞. When the tail indices are unequal we
have the following results.

Theorem 1. Suppose that the tails of the distributions of X1 and X2 satisfy Eqs. (1) and (2).
Moreover, assume 2bα1bα2 so that E[X] and E[X2] are bounded. When X1 and X2 are
independent, the asymptotic 2-convolution up to the second order terms is

(I) if α2−α1bmin(β1, 1), then P{X1+X2N s}=A1 s
−α1+A2 s

−α2+o(s−α2)
(II) if 1bα2−α1 and 1bβ1, then P{X1+X2N s}=A1 s

−α1+A1α1E[X2] s
−α1−1+o (s−α2)

(III) if β1bα2−α1 and β1b1, then P{X1+X2N s}=A1 s
−α1+A1B1 s

−α1−β1+o(s−α1−β1)
(IV) if α2−α1=1bβ1, then P{X1+X2N s}=A1 s

−α1+{A2+A1α1E [X2 ]} s
−α2+o(s−α2)

(V) if α2−α1=β1b1, then P{X1+X2N s}=A1 s
−α1+{A2+A1B1}s

−α1+o(s−α1)
(VI) if α2−α1=β1=1, then P{X1+X2N s}=A1 s

−α1+{A2+A1α1E[X2 ]+A1B1} s
−α2+o (s−α2).
Proof. We only provide the proof of the upper tail case. The proof for the lower tail case only
requires a small modification of this proof. Parts of the proof are similar in spirit as the proof in
Dacarogna, Müller, Pictet and de Vries (2001, Lemma 4). It is an extension of Feller's original
convolution result for regularly varying distributions. We divide the area over which we have to
integrate into five parts A, B, C, D and E; where PfAg ¼ P X1 þ X2f V s;X1N− s

2 ;X2N
s
2g;

PfCg ¼ P X1V s
2 ;X2V s

2

� �
;PfDg ¼ P X1 þ X2V s;X1V− s

2 ;X2N
s
2

� �
, and where P{B} and P{E}

are the counterparts of P{A} and P{D} respectively. By integration we find P{A}, P{D}, and
1 The slow decay of the second order term makes this class sufficiently different from the other class. The inclusion of
this class would make our paper overly long.
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P{C}. The integrals are provided in Appendix A. Adding up and ignoring the terms which are
of smaller order than s−γ, γ=α1+β1, α1+1, α2+β2, or α2+1, we find that

PfX1 þ X2Nsg ¼ 1−½PfCg þ PfAg þ PfBg�
¼ A1s

−α1 þ A1B1s
−α1−b1 þ A2s

−α2 þ A2B2s
−α2−b2 þ A1α1E½X2�s−α1−1

þ A2α2E½X1�s−α2−1 þ oðs−gÞ

By considering the different parameter configurations (I)–(VI), we obtain the results of
Theorem 1. □

What is the relevance of this theorem for portfolio selection? Suppose that portfolio selection is
done on the basis of the concern for the downside risk, safety-first criterion using this convolution
result. By mapping negative returns into the positive quadrant, this theorem applies to the left tail
with a little modification. Let Xi denote the loss returns on two independent project. Under this
criterion the problem is to minimize P{ωX1+(1−ω)X2Ns} at some large loss levels s by choosing
the asset mix ω. Suppose only the first order terms of tail probability P{XiNs}=Ais

−αi are taken
into account. Then for large loss levels s one choose ω=0, if α1bα2. This corner solution is driven
by evaluation of the safety first criterion in the limit (where only the first order term is relevant). In
practice what counts are very high, but finite loss levels. Thus a second order expansion inwhich the
second order term still plays a role has practical relevance. To this end we can use the Theorem 1.

Consider first the case III above. Since asset 1 dominates the first two terms in the loss
probability, one is still better of by putting all eggs in one basket. Turn to case I. If one would
focus on the first term only, i.e. only taking the limit as s→∞ into consideration, then again only
asset two is selected. At any finite loss level s, this solution is, however, suboptimal. Given that
P{X1+X2N s}≈A1s

−α1 +A2s
−α1 in case I, one should take both assets into account and diversify

away from the corner solution. This lowers the loss probability P{X1+X2N s} at any finite loss
level s. This idea is put on a firm footing in the next section by investigating the convexity
properties of the solutions.

3. The sensitivity and convexity of VaR

The aim of this section is to analyze the sensitivity of VaR with respect to portfolio allocation.
Gourieroux et al. (2000) derive analytical expression for the first and second derivatives of the VaR
in a general framework, and state sufficient conditions for the VaR efficient portfolio set to be
convex. Gourieroux et al. (2000) also provide explicit expression for the first and second derivatives
in case of the normal distribution. Here we provide explicit expressions for the class of fat tailed
distributions. Moreover, we show how to ensure an interior solution under which the VaR is convex
with respect to the portfolio weight. If a riskmeasure is a convex function of the portfolio allocation,
it induces portfolio diversification. From this we can ensure that an interior solution to the safety first
problem exists.While Gourieroux et al. (2000) show the convexity of the VaR-efficient portfolio set
in general, they do not give conditions to ensure an interior solution for the optimal allocation.

First, we derive analytical expression of derivatives of the tail probability at a given quantile in
the heavy tail context. This allows us to discuss the convexity properties of VaR. We consider two
financial assets whose returns at time t are denoted by Xi, i=1, 2. We suppress time indices
whenever this is not confusing. The return at t of a portfolio with allocation ω then is ωX1+ (1−ω)
X2. For a loss probability level p the Value at Risk, VaR(ω, p) is defined by:

PfxX1 þ ð1−xÞX2NVaRðx; pÞg ¼ p:
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In practice, VaR is often computed under the normality assumption for returns. Recently, semi-
parametric approaches have been developed, which are based on the extreme value

approximation to the tail probability like in the previous section. We derive the first and second
derivatives of the probability with respect to portfolio allocation under this approximation. Under
the safety first rule an investor specifies a low threshold return s and selects the portfolio of assets
which minimizes the probability of a return below this threshold.

3.1. Convexity of the tail probability

Suppose the tails of the distributions of X1 and X2 satisfy Eqs. (1) and (2). We obtain the first
and second derivatives in the Proof to Proposition 2. We first investigate the case I from the
convolution Theorem 1.

Proposition 2. Under assumptions of Theorem 1 and if α2−α1bmin(β1, 1), there exists a
ω⁎∈ (0, 1) for given large sN0 such that

Pfx⁎X1 þ ð1−x⁎ÞX2NsgVPfxX1 þ ð1−xÞX2Nsg
for any 0≤ω≤1. The equality holds only when ω=ω⁎.

Proof. From Theorem 1, the asymptotic 2-convolution up to the second order terms is

PfxX1 þ ð1−xÞX2Nsgcxα1A1s
−α1 þ ð1−xÞα2A2s

−α2upðx; sÞ;
for given large sN0. Note that p(ω, s) is an approximate asymptotic expansion. We show the
function of p(ω, s) has a minimum for some ω∈ (0, 1). The slope of this function with respect to
ω is

Apðx; sÞ
Ax

¼ α1x
α1−1A1s

−α1−α2ð1−xÞα2−1A2s
−α2

for large sN0. Thus slopes at the endpoints are

Apðx; sÞ
Ax

j
x¼0

¼ −α2A2s
−α2b0

and

Apðx; sÞ
Ax

j
x¼1

¼ α1A1s
−α1N0:

for large sN0. The slope of this function increases monotonically since the second order
derivative of this function is

A2pðx; sÞ
Ax2

¼ ðα1−1Þα1x
α1−2A1s

−α1 þ ðα2−1Þα2ð1−xÞα2−2A2s
−α2

which is positive for all 0≤ω≤1 provided α=min{α1, α2}N1. □
In the Proof of the Proposition 2 we show the convexity of p(ω, s)≡ωα1 A1s

−α1 + (1−
ω)α2A2 s

−α2. Note that this expression is only asymptotic to P{ωX1+ (1−ω) X2N s} as s→∞.
Therefore ∂P{ω⁎X1+ (1−ω⁎)X2N s} /∂ω will typically be close to zero but not be exactly
equal to zero. The Proof of the Proposition 2 carries over for the exact expansions under the
monotone density condition.
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Remark 1. The Proposition 2 implies that if one constructs a portfolio which minimizes the
probability of extreme negative returns, one has to assign some weight to the asset with the fatter
tail.

Remark 2. Under conditions (II) and (III) from Theorem 1, Proposition 2 has trivial solutions
such as ω⁎=0 or ω⁎=1 depending on the conditions of parameters.

Remark 3. With conditions (IV), (V) and (VI) from Theorem 1, Proposition 2 has non-trivial
solution such that ω⁎∈ (0, 1) provided the parameters satisfy additional conditions. We illustrate
the case of condition (IV) as an example. Under the condition (IV), α2−α1=1bβ1 , then P{ωX1+
(1−ω)X2N s}≈ωα1A1s

−α1 + (1−ω)α1A2s
−α2 +ωα2A1α1E[(1−ω)X2] s

−α1≡q(ω). The slope of this
function is

AqðxÞ
Ax

¼ xα1−1α1A1s
−α1−ð1−xÞα2−1α2A2s

−α2 þ ðxα1−1α1−xα1ðα1 þ 1ÞÞA1α1E½X2�s−α2

For the corner solution excluding the asset 1 with the heaviest tail

AqðxÞ
Ax

j
x¼0

¼ −α2A2s
−α2b0

for large sN0. On the other hand, if the following condition is satisfied forlarge sN0,

AqðxÞ
Ax

j
x¼1

¼ α1A1s
−α1−α1A1E½X2�s−α2N0

then there exists a non-trivial solution under the condition (IV), too. The last condition will be
satisfied if E[X2]b s. That is, E[X2] must not be too large for the given a finite loss level s. This
holds certainly as long as the expected return is positive (since the E[X2]b0, recall that a positive
Xi reflects a loss).

3.2. Convexity of VaR

We now turn around the question from the previous section, and ask whether the VaR at a
given probability level is convex. If the VaR criterion is used as the risk measure for judging the
portfolio, and if we can show that the VaR is a convex function of the portfolio allocation, then
there is an incentive for portfolio diversification under the VaR objective.

Proposition 3. Under assumptions of Theorem 1 and if α2−α1bmin(β1, 1), consider the
downside risk level

PfxX1 þ ð1−xÞX2Nsg ¼ xα1A1s
−α1 1þ ð1−xÞα2A2

xα1A1
s−α2þα1 þ oðs−α2þα1Þ

� �
and define the VaR implicitly as follows P{ωX1+(1−ω)X2NVaR(ω, p)}=p. By De Bruijn's theory
on asymptotic inversion

VaRðx; pÞ ¼ xA
1
α1
1 p

− 1
α1 1þ ð1−xÞα2

xα2

A2

α1A
α2=α1

1

p
α2−α1
α1 þ oð1Þ

" #

for any 0bωb1.
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Proof. Directly follows from de Bruijn's inverse in Theorem 1.5.13 of Bingham, Goldie and
Teugels (1987). □

For the given loss probability p, we can find an allocation which minimizes the VaR risk.

Proposition 4. Under assumptions of Theorem 1 and if α2−α1bmin(β1, 1), there existω⁎∈ (0, 1)
for given probability level p̄ such that

VaRðx⁎; p̄ÞVVaRðx; p̄Þ

for any 0bωb1. The equality holds only when ω=ω⁎.

Proof. For a given probability level p̄, the first derivative of the VaR is

AVaRðx; p̄Þ
Ax

¼ A
1
α1
1 p̄− 1

α1−α−1
1 A

1−α2
α1
1 A2 p̄

α2−α1−1
α1 fα2ð1−xÞα2−1x1−α2 þ ðα2−1Þð1−xÞα2x−α2g:

From this, it follows that

AVaRðx; p̄Þ
Ax

j
x¼1

¼ A
1
α1
1 p̄−

1
α1N0:

Moreover, multiplying the derivative by ωα2 and evaluating the resulting expression at ω=0
gives

xα2
AVaRðx; p̄Þ

Ax
j
x¼0

¼ −α−1
1 A

1−α2
α1
1 A2 p̄

α2−α1−1
α1 ðα2−1Þb0:

The second-order derivative at ω=ω⁎ with respect to the portfolio allocation is:

A2VaRðx; p̄Þ
Ax2

¼ α2ðα2−1Þ
α1

A
1−α2
α1
1 A2 p̄

α2−α1−1
α1 x−3 1

x
−1

� �α2−2

which is strictly positive for ω∈ (0, 1) under the stated assumptions. Together these derivatives
imply there is an interior minimum. □

It follows that the VaR is convex in the portfolio mix if the distribution of returns have tails
which vary regularly at infinity. The VaR criterion thus induces diversification, even though it
penalizes asset returns which have a higher asymptotic downside risk than others. Under the
stated conditions in Proposition 4, the optimal choice includes the riskier asset for the limited
downside risk portfolio.

4. Revisit to Jansen et al. (2000)

We now demonstrate the relevance of the above second order expansion by revisiting
applications from the literatures. It will be shown how the second order theory modifies the
portfolio selected if one only relies on the first order theory. An example is a study of the safety
first criterion by Jansen et al. (2000). We first briefly review the safety first criterion and then
present our portfolio choices.
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4.1. Safety-first portfolio

Portfolio selection is based on a trade-off between expected return and risk. The risk in the
safety-first criterion, initially proposed by Roy (1952) and Arzac and Bawa (1977), is evaluated
by the probability of failure. A lexicographic form of the safety first principle is:

max
xi;b

ðk; lÞ lexicographically;

subject toX
i

xiVit þ b ¼ Wt;

where π=1 if p=P{ΣωiVit+1+br≤ s}≤ δ, and π=1−p otherwise. Furthermore let μ=E [Σωi

Vit+1]+br, Vit denotes the initial market values of asset i at time t, Wt is the initial wealth level
of the investor, b denotes the amount of lending or borrowing (bN0 represents lending), r is the
risk-free gross rate of return, ωi denotes the weight of invested amount in the risky asset i, s is
the disaster level of wealth, and δ gives the maximal acceptable probability of this disaster.

Arzac and Bawa (1977) showed that the safety first problem can be separated into two
problems: First, the risk averse safety-first investor maximizes the ratio of the risk premium to the
return opportunity loss that he is willing to incur with probability δ, that is

max
xi

ðR̄−rÞ
ðr−qdðRÞÞ

where R=ΣωiVit+1 /ΣωiVit are the gross returns, R̄ =E(R), and qδ(R) is a quantile (loss level)
sucPh that there is δ% probability of returns less than or equal to this value, that is, the VaR. In the
second stage the investor determines the scale of the risky portfolio and the amount borrowed
from the budget constraint;

Wt−b ¼ s−rWt

qdðRÞ−r :

For further details on this part, we refer to Arzac and Bawa (1977).

4.2. Empirical illustrations

We re-calculate the optimum portfolio weights for the examples in Jansen et al. (2000) which
resulted in a corner solution. By using Proposition 2 and the parameter estimates from Jansen
et al. (2000) we obtain an interior solution when we apply the second order theory. The problem
consists in choosing between investing in a mutual fund of bonds or a mutual fund of stocks over
the period 1926.01–1992.12 with 804 monthly observations of a US bond index and a US stock
index (from the CRSP database). We also present, separately, an analysis of the two French stocks
Thomson-CSF and L'Oreal, covering 546 daily observations, studied both by Jansen et al. (2000)
and Gourieroux et al. (2000).

The Table 1 reproduces the summary statistic and tail indices from Jansen et al. (2000). For US
assets the tail index is calculated for the lower tails of the distribution of monthly stock and bond
returns. For the daily returns of the two French stocks the calculations combined the data from the
upper and lower tails upon the assumption of tail symmetry.



Table 1
Summary statistics and estimates of tail indices

US bonds and stocks French stocks

Corporate bonds Stocks Thomson-CSF L'Oreal

Mean 0.004445 0.007943 0.0000495 0.0005861
S.D. 0.019782 0.055702 0.01261 0.01129
Skewness 0.746 −0.488 −0.239 0.061
Kurtosis 10.027 9.888 4.114 4.311
No. observations 804 804 546 546
m 16 13 21 13
X(m) −0.03843 −0.13150 0.0275 0.0285
α 2.932 2.601 4.370 4.829
q1/2n −0.125 −0.460 −0.063 −0.056

Note: Tables 1 and 2 are from Jansen et al. (2000). US bond index and a US stock index (1926.01–1992.12), Thomson-
CSF and L'Oreal, 546 daily observations. X(n−m) denote the m-th lowest observation for US assets, the m-th largest
absolute observation for French stocks respectively. qδ denotes VaR level corresponding to the probability δ.
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From Table 1 we see that the first order tail indices differ. In Jansen et al. (2000) for the case of
the two French stocks the safety first criterion allocates all wealth to L'Oreal which has the higher
tail index. For the US assets, note that with r=1 and and a risk level δ=0.000625 all wealth is
allocated to the low risk (higher tail index) bond. Our solutions using the second order approach
will be different.

We verify whether the conditions for an interior solution from Proposition 2 do apply. Without
loss of generality, we set US stock and Thomson-CSF as X1. We calculate the second order tail
index, β1, by using the estimates from Table 1. One can calibrate the values of the second order
coefficient from Table 1 as follows. A consistent estimator for the ratio between the first and
second order tail indices is

db=α ¼ ln m̂
2 ln n−2 ln m̂

;

where n is the number of observations, m is the window size for the estimation of the tail index,
see Danielsson et al. (2000). By Proposition 1.7 from Geluk and de Haan (1987) on the properties
of regularly varying functions we have that ln m̂

ln n Y
2b=α

1þ2b=α in probability as n→∞. Then we use
the fact that m̂ /m→1 in probability, where m̂ is a consistent estimator of m. Thus, for the US
assets, β1=0.809 and α2−α1=0.311, in case of the two French stocks, β1=1.657 and α2−
α1=0.459. Thus both cases satisfy the conditions of Proposition 2.

To determine the portfolio mix, we follow the same procedure as in Jansen et al. (2000). We
first calculate the VaR quantiles for each hypothetical portfolio.2 These are reported in Table 2.
2 We can calculate Ai,i=1, 2, used in Jansen et al. (2000) by using

Ai ¼ mi

n
X αi

ðmiÞ

where X(m) is the m-th largest observation. Then we plug those values in Proposition 3, and solve the following
approximation

xα1A1q
−α1
d þ ð1−xÞα2A2q

−α2
d cd

to get the value qδ for the given value of ω and δ.



Table 2
Estimated VaR levels corresponding to the stated probabilities

Portfolio of two assets US bonds and stocks French stocks

Probabilities 0.0025 0.000625 0.0018

(2/804) (0.5/804) (1/546)

100% asset 2 −0.2695 −0.4593 −0.0487
90% asset 2 −0.2426 −0.4134 −0.0438
80% asset 2 −0.2157 −0.3675 −0.0390
70% asset 2 −0.1888 −0.3217 −0.0344
60% asset 2 −0.1622 −0.2763 −0.0309a

50% asset 2 −0.1361 −0.2316 −0.0305⁎
40% asset 2 −0.1113 −0.1887 −0.0338
30% asset 2 −0.0896 −0.1505 −0.0389
20% asset 2 −0.0752 −0.1236 −0.0443
10% asset 2 −0.0721⁎ −0.1163⁎ −0.0499
0% asset 2 −0.0780a −0.1251a −0.0554

Note: The values in parentheses denote the expected number of occurrences. Asset 2 for the US case is US stocks and asset
2 for the French case is the stock of L'Oreal. ⁎ indicates the minimum VaR level among available choices on basis of the
second order theory, while a indicates the portfolio weight with the minimum VaR level from Jansen et al. (2000).
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The investor can borrow or lend at the risk-free rate r, and maximizes (R̄− r) / (r−qδ(R)). The
safety-first investor specifies the desired probability of δ level; the calculations are done for two
choices of δ, δ=0.0025, and δ=0.000625. Two interest rates are used, r=1 and r=1.00303 (the
latter corresponds to an annual rate of 3.7%, which equals the average returns on the US Treasury
bills over 1926–1992). The mean return R̄ is taken from Table 2 by weighting the mean returns on
the two assets with the indicated portfolio mix. Optimal portfolios in Table 3 are marked with an
asterisk. In all four configurations considered, the optimal portfolio contains 20% stocks and 80%
bonds. Fig. 1 illustrates the portfolio choice problem, plotting the mean return versus VaR for
portfolios of stocks and bonds when r=1.003. For the case r=1 and δ=0.000625, Jansen et al.
(2000) select a corner solution with 100% bonds. In our procedure, however, stocks are still part
of the portfolio.

Empirical analyses of the daily data on the two French stocks are presented in Tables 2 and 4.
Fig. 2 illustrates that the limited downside risk portfolio selection criterion chooses a portfolio
with 30% of Thomson-CSF stocks and 70% of L'Oreal stocks, not the corner solution as in Jansen
et al. (2000).

To conclude, if we take into account the second order terms, solutions are often bounded away
from the 100% bond portfolio in the example of US assets, while if only the first order terms are
taken into account, a corner solution is repeatedly selected. This may make the portfolio overly
conservative, giving up quite a bit of upside potential.

We briefly examine another example from the literature. Susmel (2001) investigates the
diversification opportunities which the Latin American emerging markets offer to a US safety first
investor. From the portfolio choice problem between an equally weighted Latin American Index
and US index, the optimal investment in the Latin American Index is 15% in Susmel's (2001)
paper. Instead of an equally weighted Latin American Index, we analyze the optimum portfolio
weight for each pair of US and Argentina, US and Brazil, US and Chile, US and Mexico
respectively. One can verify that the conditions of Proposition 2 are satisfied for all Latin
American stocks combined with US from the estimates in Table 4 of Susmel (2001). Using the
same procedure as before, we calculate optimal weights for each pair. For the case of r=1 and



Table 3
Portfolio selection for monthly US stocks and bonds

Portfolio qδ(R) (R− r) / (r−qδ) (R− r) / (r−qδ)

r=1 r=1.00303

Portfolio selection with δ=0.0025
100% stock 1−0.2695 0.02947 0.01802
90% stock 1−0.2426 0.03130 0.01858
80% stock 1−0.2157 0.03359 0.01927
70% stock 1−0.1888 0.03650 0.02014
60% stock 1−0.1622 0.04034 0.02126
50% stock 1−0.1361 0.04550 0.02274
40% stock 1−0.1113 0.05252 0.02462a

30% stock 1−0.0896 0.06133 0.02661
20% stock 1−0.0752 0.06844⁎ 0.02704⁎

10% stock 1−0.0721 0.06648a 0.02348
0% stock 1−0.0780 0.05701 0.01747

Portfolio selection with δ=0.000625
100% stock 1−0.4593 0.01729 0.01063
90% stock 1−0.4134 0.01838 0.01096
80% stock 1−0.3675 0.01971 0.01137
70% stock 1−0.3217 0.02143 0.01190
60% stock 1−0.2763 0.02369 0.01258
50% stock 1−0.2316 0.02675 0.01349
40% stock 1−0.1887 0.03097 0.01468a

30% stock 1−0.1505 0.03653 0.01606
20% stock 1−0.1236 0.04162⁎ 0.01670⁎

10% stock 1−0.1163 0.04125 0.01480
0% stock 1−0.1251 0.03553a 0.01104

Note: ⁎ indicates optimal portfolio among available choices on basis of the second order theory, while a indicates the
optimal choice from Jansen et al. (2000).
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δ=0.00289 (1/346), we find only portfolio weights 1%, 2%, 5% and 2%. For the case of r=1 and
δ=0.001445 (0.5/346), we find only 1%, 1%, 4% and 2% portfolio weights. These low
proportions of Latin American stocks are due to the much higher tail risk (low tail indices)
compared to the US.3 Since the estimated tail indices of US and Latin American markets are very
different, from 3.2 to 1.8–2.1 the portfolio selection problems have near corner solutions for all
cases.

5. Extension to the multi assets with dependence between assets

We extend the theoretical results to the case of multi asset portfolios with dependent returns.
This relaxes the two independent asset portfolio case treated above, and gives the theory more
scope.

Typically there exist two types of dependence: over time and cross-sectionally. The time series
dependency structure is very common in financial time series. Typically asset return series exhibit
3 Susmel (2001) proceeds along a different line and selects much higher proportions. The reason is that Susmel (2001)
estimates different tail indices for each portfolio combination. This approach, however, biases the tail indices upward
(causing underestimation of the risk). This is further clarified in Appendix B.



Fig. 1. US stock and bond index.
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clusters of high and low volatility. An ARCH process is often used to capture this data feature.
Nevertheless, as long as the cross-sectional dependence structure remains time invariant
(stationary), the (univariate) time series structure bears no relevance for the (unconditional) cross-
sectional portfolio selection rules. Thus we only need to address cross-sectional dependence.

The assumption of cross-sectional independence can be easily weakened. For instance, we can
allow for the cross-sectional dependency which arises within the Capital Asset Pricing Model
(CAPM). Divide the (excess) return Ri of an asset into the (excess) market return R and the
idiosyncratic return Qi. We apply again Feller's theorem to derive the benefits from cross-
Fig. 2. French stocks.



Table 4
Portfolio selection for daily French stocks

Portfolio qδ(R) (R− r) / (r−qδ)

r=1

100% L'Oreal 1−0.048650 0.01209a

90% L'Oreal 1−0.043786 0.01218
80% L'Oreal 1−0.038953 0.01226
70% L'Oreal 1−0.034358 0.01241⁎

60% L'Oreal 1−0.030859 0.01211
50% L'Oreal 1−0.030450 0.01037
40% L'Oreal 1−0.033801 0.00778
30% L'Oreal 1−0.038869 0.00542
20% L'Oreal 1−0.044338 0.00352
10% L'Oreal 1−0.049873 0.00210
0% L'Oreal 1−0.055415 0.00088

Note: ⁎ indicates optimal portfolio among available choices on basis of the second order theory, while a indicates the
optimal choice from Jansen et al. (2000). Portfolio selection is done with δ=0.0018.
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sectional portfolio diversification. Under the CAPM the following one factor model for n-assets
applies

Ri ¼ biRþ Qi; i ¼ 1; N ; n: ð3Þ

Moreover, assume that the Qi's are independent from each other. Suppose the idiosyncratic
risk factors Qi have distributions with tails

PfQib−sg ¼ Ais
−αi ½1þ Bis

−bi þ oðs−biÞ�; i ¼ 1; N ; n; ð4Þ

and the market risk has a distribution with a tail

PfRb−sg ¼ ARs
−αR ½1þ BRs

−bR þ oðs−bRÞ�; ð5Þ

For simplicity we assume4

2bα1b N bαnbαR:

We further assume that for each h, h=2,…, n,

αhbmin½ðα1 þ b1Þ; N ; ðαh−1 þ bh−1Þ; ðα1 þ 1Þ�;

and

αRbmin½ðα1 þ b1Þ; N ; ðαn þ bnÞ; ðα1 þ 1Þ�
4 Similar results follow if one assumes 2bαRbα1b…bαn or 2bα1b…bαRb…bαn.
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to ensure that any of the second order tail indices do not appear in the following expression. In the
case of positive portfolio weights λi, by Feller's theorem

Pf
Xn
i¼1

kiRib−sgf
Xn
i¼1

kαi
i Ais

−αi þ
Xn
i¼1

kibi

 !αR

ARs
−αR ð6Þ

as s→∞.

Proposition 5. Suppose αi, αRN2, λi≥0,Σi=1
n λi=1 and biN0, then the function

f ðkÞ ¼
Xn
i¼1

kαi
i Ais

−αi þ
Xn
i¼1

kibi

 !αR

ARs
−αR

is convex.

Proof. In Appendix C we prove that the Hessian n×n matrix

Hu
A2f ðkÞ
AkiAkj

� �
is positive definite: □

A corner solution can be ruled out by the following argument. For any choice such that λi=1
for one i but λj=0 for all j≠ i, the function f (λ) is not minimal since Af ðkÞ

Aki
jki¼1;kj¼0 for all jp i ¼

αiAis−αi þ αRb
αR
i ARs−αRN0 for all i.

To prove the convexity of VaR, we provide a heuristic explanation instead of doing De Bruijn
inversion for multiple assets. By the above convexity result we know that at a given VaR-level s,
there exists optimal bλi weights such that

pf
Xn
i¼1

bki Xib−sgbPf
Xn
i¼1

kiXib−sg:

Denote the associated probability-level as pp

pp ¼ Pf
Xn
i¼1

bki Xib−sg:

Given this particular probability-level pp, it must be the case that the VaR levels at pp are
increasing if one deviates from the optimal bλi weights and uses any other λi. This follows from
the fact that the probability for a given set of asset weights λi

Pf
Xn
i¼1

kiXib−sg ð7Þ

is (weakly) decreasing in the VaR-level s. To bring down the probability (7) with weights bλi≠λi
to the level pp, we have to raise s since a distribution function is monotonic in s.

6. Conclusion

We consider the portfolio problem of choosing the mix between stocks and bonds. Investors
often worry about the downside risk features of their portfolio. It is a fact that asset return
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distributions exhibit fat tails, i.e. are asymptotic to a Pareto distribution. Typically stocks exhibit
fatter tails than bonds corresponding to the greater downside risk of stocks. Downside risk criteria
like the safety first criterion therefore often select corner solutions in the sense of a bonds only
portfolio. This is due to a focus on the tail of the asset return distributions whereby only the
asymptotically dominating first order Pareto term is taken into account. We extend the first order
convolution result to a second order asymptotic expansion. Whereas in the first order convolution
result only the fattest of the two tails plays a role, in the second order expansion often the tails of
both assets play a role. We suggest that with a second order expansion of the downside risk, the
portfolio solution may yield a balanced solution, i.e. both assets are held in non-zero proportion,
whereas the first order expansion selects the corner solution. The theoretical results were extended
to multi asset portfolios with dependent returns.

In the empirical application, we follow up on Jansen et al. (2000), who apply the safety first
criterion to a number of portfolio problems. In the cases where Jansen et al. (2000) give a corner
solution, our procedure still selects both assets for incorporation in the limited downside risk
portfolio. We also briefly addressed another example from the literature.
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Appendix A. Proof of Theorem 1

For the calculation of P{X1+X2≤ s}, we divide the area over which we have to integrate into
five parts A, B, C, D and E; where PfAg ¼ P X1 þ X2V s;X1N− s

2 ;X2N
s
2

� �
; PfCg ¼ P X1Vf

s
2 ;X2V s

2g;PfDg ¼ P X1 þ X2V s;X1V− s
2 ;X2N

s
2

� �
, and where P{B} and P{E} are the counter-

parts of P{A} and P{D} respectively. We start by P{C}:

pfCg ¼ P X1V
s
2
;X2V

s
2

n o
¼ P X1V

s
2

n o
P X2V

s
2

n o
¼ 1−A1

s
2

� 	−α1

−A1B1
s
2

� 	−α1−b1
−A2

s
2

� 	−α2

−A2B2
s
2

� 	−α2−b2þoðs−gÞ

as s→∞. The terms which are of smaller order than s−γ, γ=α1+β1, α1+1, α2+β2, or α2+1, can
be ignored throughout this proof. The probability P{A} takes more effort

PfAg ¼ P X1 þ X2V s;X1N−
s
2
;X2N

s
2

n o
¼
Z s=2

−s=2
F2ðs−xÞ−F2

s
2

� 	h i
f1ðxÞdx

¼
Z s=2

−s=2
F2ðs−xÞ f1ðxÞdx−

Z s=2

−s=2
F2

s
2

� 	
f1ðxÞdx ¼ I−II ;

where fi(·) and Fi(·) denote respectively the density function and distribution function of Xi. For
integral I note that a Taylor series around x=0 with remainder gives

ðs−xÞ−α ¼ s−α þ αs−α−1xþ ðαþ 1Þα
2

ðs−qÞ−α−2x2;
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where q is some number between − s
2 ;

s
2


 �
. Hence, for large s

I ¼ ½1−A2s
−α2−A2B2s

−α2−b2 þ oðs−α2−b2Þ�
Z s=2

−s=2
f1ðxÞdx−½α2A2s

−α2−1 þ oðs−α2−1Þ�

�
Z s=2

−s=2
xf1ðxÞdxþ oðs−gÞ ¼ ½1−A2s

−α2−A2B2s
−α2−b2 �

� 1−2A1
s
2

� 	−α1

−2A1B1
s
2

� 	−α1−b1þoðs−α1−b1Þ
� �

−α2A2s
−α2−1½E½X1� þ Oðs−α1þ1Þ� þ oðs−gÞ:

Note that ðs−qÞ−α−2V 3
2 s
� 
−α−2

for qa − s
2 ;

s
2


 �
. Thus

ðα2 þ 1Þα2

2
A2ðs−qÞ−α2−2

Z s=2

−s=2
x2f1ðxÞdxV ðα2 þ 1Þα2

2
A2

3
2
s

� �−α2−2

E½X 2
1 � ¼ oðs−α2−1Þ:

Hence the o(s−γ) in the integral I expression.
And for part II

II ¼ F2
s
2

� 	Z s=2

−s=2
f1ðxÞdx ¼ 1−A2

s
2

� 	−α2

−A2B2
s
2

� 	−α2−b2þoðs−α2−b2Þ
� �

� 1−2A1
s
2

� 	−α1

−2A1B1
s
2

� 	−α1−b1þoðs−α1−b1Þ
� �

Combine the two parts to obtain P{A}.

PfAg ¼ I−II ¼ −A2s
−α2−A2B2s

−α2−b2 þ A2
s
2

� 	−α2þA2B2
s
2

� 	−α2−b2

−α2A2s
−α2−1E½X1� þ o s−gð Þ:

The probability P{D} is

PfDg ¼ P X1 þ X2V s;X1V−
s

2
;X2N

s

2

n o
¼
Z −s=2

−l
F2ðs−xÞ−F2

s

2

� 	h i
f1ðxÞdx ¼ oðs−gÞ

Similar expressions hold for P{B}and P{E}. □

Appendix B. Bias in α̂

Suppose that the tails of the distributions of X satisfy P{XN s}=As−α [1+Bs−β+o (s−β)] as
s→∞, where αN0, AN0, βN0 and B is a real number. The asymptotic bias for the Hill estimatord1=α is

E d1=α−1=αh i
¼ −Bb

αðαþ bÞ s
−b þ oðs−bÞ
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as s→∞ in Goldie and Smith (1987). For the portfolio from case I in Theorem 1, the asymptotic
bias of the Hill estimator is

Biasðd1=αÞ ¼ −
ð1−xÞα2

xα1

A1

A2

ðα2−α1Þ
α1α2

s−ðα2−α1Þ þ o s−ðα2−α1Þ
� 	

where

−
ð1−xÞx2

xα1

A1

A2

ðα2−α1Þ
α1α2

s−ðα2−α1Þb0

which proves the upward bias in the tail estimator α̂.

Appendix C. Proof of positive definiteness of H

The elements of H are

Hiiu
A2f ðkÞ
Ak2i

¼ ci þ b2i cR

Hiju
A2f ðkÞ
AkiAkj

¼ bibjcR;

where bi is in Eq. (3) and

ci ¼ αiðαi−1Þkαi−2
i Ais−αiN0

cR ¼ αRðαR−1Þ
Xn
i¼1

kibi

 !αR−2

ARs−αRN0;

given the assumptions of αi, αRN2, λi≥0, and biN0 for all i=1,…, n.
Then matrix H can be decomposed as

H ¼ C þ cRBB
V;

where C is a diagonal matrix of (c1,…, cn), B′=[b1,…, bn]. We show x′HxN0 for any non-zero
vector x. Note that the quadratic expression can be split into two parts

x VHx ¼ x VðC þ cRBB
VÞx ¼ x VCxþ cRx

VBB Vx

Since C is positive definite as all diagonal elements ciN0 and the other part is a quadratic
expression x′BB′x=(x′B)2N0, it follows that H is positive definite.
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