
Loop Recognition in C++/Java/Go/Scala
Robert Hundt

Google
1600 Amphitheatre Parkway
Mountain View, CA, 94043

rhundt@google.com

Abstract—In this experience report we encode a well specified,
compact benchmark in four programming languages, namely
C++, Java, Go, and Scala. The implementations each use the
languages’ idiomatic container classes, looping constructs, and
memory/object allocation schemes. It does not attempt to exploit
specific language and run-time features to achieve maximum
performance. This approach allows an almost fair comparison
of language features, code complexity, compilers and compile
time, binary sizes, run-times, and memory footprint.

While the benchmark itself is simple and compact, it em-
ploys many language features, in particular, higher-level data
structures (lists, maps, lists and arrays of sets and lists), a few
algorithms (union/find, dfs / deep recursion, and loop recognition
based on Tarjan), iterations over collection types, some object
oriented features, and interesting memory allocation patterns.
We do not explore any aspects of multi-threading, or higher level
type mechanisms, which vary greatly between the languages.

The benchmark points to very large differences in all examined
dimensions of the language implementations. After publication of
the benchmark internally at Google, several engineers produced
highly optimized versions of the benchmark. We describe many
of the performed optimizations, which were mostly targeting run-
time performance and code complexity. While this effort is an
anecdotal comparison only, the benchmark, and the subsequent
tuning efforts, are indicative of typical performance pain points
in the respective languages.

I. INTRODUCTION

Disagreements about the utility of programming languages
are as old as programming itself. Today, these “language wars”
become increasingly heated, and less meaningful, as more
people are working with more languages on more platforms
in settings of greater variety, e.g., from mobile to datacenters.

In this paper, we contribute to the discussion by imple-
menting a well defined algorithm in four different languages,
C++, Java, Go, and Scala. In all implementations, we use the
default, idiomatic data structures in each language, as well as
default type systems, memory allocation schemes, and default
iteration constructs. All four implementations stay very close
to the formal specification of the algorithm and do not attempt
any form of language specific optimization or adaption.

The benchmark itself is simple and compact. Each imple-
mentation contains some scaffold code, needed to construct
test cases allowing to benchmark the algorithm, and the
implementation of the algorithm itself.

The algorithm employs many language features, in partic-
ular, higher-level data structures (lists, maps, lists and arrays
of sets and lists), a few algorithms (union/find, dfs / deep
recursion, and loop recognition based on Tarjan), iterations

over collection types, some object oriented features, and
interesting memory allocation patterns. We do not explore any
aspects of multi-threading, or higher level type mechanisms,
which vary greatly between the languages. We also do not
perform heavy numerical computation, as this omission allows
amplification of core characteristics of the language implemen-
tations, specifically, memory utilization patterns.

We believe that this approach highlights features and charac-
teristics of the languages and allows an almost fair comparison
along the dimensions of source code complexity, compilers
and default libraries, compile time, binary sizes, run-times, and
memory footprint. The differences along these dimensions are
surprisingly large.

After publication of the benchmark internally at Google,
several engineers produced highly optimized versions of the
benchmark. We describe many of the performed optimizations,
which were mostly targeting run-time performance and code
complexity. While this evaluation is an anecdotal comparison
only, the benchmark itself, as well as the subsequent tuning
efforts, point to typical performance pain points in the respec-
tive languages.

The rest of this paper is organized as follows. We briefly
introduce the four languages in section II. We introduce the
algorithm and provide instructions on how to find, build, and
run it, in section III. We highlight core language properties
in section IV, as they are needed to understand the imple-
mentation and the performance properties. We describe the
benchmark and methodology in section V, which also contains
the performance evaluation. We discuss subsequent language
specific tuning efforts in section VI, before we conclude.

II. THE CONTENDERS

We describe the four languages by providing links to the
the corresponding wikipedia entries and cite the respective
first paragraphs from wikipedia. Readers familiar with the
languages can skip to the next section.

C++ [7] is a statically typed, free-form, multi-paradigm,
compiled, general-purpose programming language. It is re-
garded as a ”middle-level” language, as it comprises a com-
bination of both high-level and low-level language features.
It was developed by Bjarne Stroustrup starting in 1979 at
Bell Labs as an enhancement to the C language and originally
named C with Classes. It was renamed C++ in 1983.

Java [9] is a programming language originally developed
by James Gosling at Sun Microsystems (which is now a sub-

sidiary of Oracle Corporation) and released in 1995 as a core
component of Sun Microsystems’ Java platform. The language
derives much of its syntax from C and C++ but has a simpler
object model and fewer low-level facilities. Java applications
are typically compiled to byte-code (class file) that can run on
any Java Virtual Machine (JVM) regardless of computer ar-
chitecture. Java is a general-purpose, concurrent, class-based,
object-oriented language that is specifically designed to have
as few implementation dependencies as possible. It is intended
to let application developers ”write once, run anywhere”. Java
is currently one of the most popular programming languages
in use, and is widely used from application software to web
applications.

Go [8] is a compiled, garbage-collected, concurrent pro-
gramming language developed by Google Inc. The initial
design of Go was started in September 2007 by Robert Griese-
mer, Rob Pike, and Ken Thompson, building on previous work
related to the Inferno operating system. Go was officially
announced in November 2009, with implementations released
for the Linux and Mac OS X platforms. At the time of
its launch, Go was not considered to be ready for adoption
in production environments. In May 2010, Rob Pike stated
publicly that Go is being used ”for real stuff” at Google.

Scala [10] is a multi-paradigm programming language de-
signed to integrate features of object-oriented programming
and functional programming. The name Scala stands for
”scalable language”, signifying that it is designed to grow with
the demands of its users.

Core properties of these languages are:
• C++ and Go are statically compiled, both Java and Scala

run on the JVM, which means code is compiled to
Java Byte Code, which is interpreted and/or compiled
dynamically.

• All languages but C++ are garbage collected, where Scala
and Java share the same garbage collector.

• C++ has pointers, Java and Scala has no pointers, and Go
makes limited use of pointers.

• C++ and Java require statements being terminated with a
’;’. Both Scala and Go don’t require that. Go’s algorithm
enforces certain line breaks, and with that a certain coding
style. While Go’s and Scala’s algorithm for semicolon
inference are different, both algorithms are intuitive and
powerful.

• C++, Java, and Scala don’t enforce specific coding styles.
As a result, there are many of them, and many larger pro-
grams have many pieces written in different styles. The
C++ code is written following Google’s style guides, the
Java and Scala code (are trying to) follow the official Java
style guide. Go’s programming style is strictly enforced
– a Go program is only valid if it comes unmodified out
of the automatic formatter gofmt.

• Go and Scala have powerful type inference, making
explicit type declarations very rare. In C++ and Java
everything needs to be declared explicitly.

• C++, Java, and Go, are object-oriented. Scala is object-
oriented and functional, with fluid boundaries.

Fig. 1. Finding headers of reducible and irreducible loops. This presentation
is a literal copy from the original paper [1]

III. THE ALGORITHM

The benchmark is an implementation of the loop recognition
algorithm described in ”Nesting of reducible and irreducible
loops”, by Havlak, Rice University, 1997, [1]. The algo-
rithm itself is an extension to the algorithm described R.E.
Tarjan, 1974, Testing flow graph reducibility [6]. It further
employs the Union/Find algorithm described in ”Union/Find
Algorithm”, Tarjan, R.E., 1983, Data Structures and Network
Algorithms [5].

The algorithm formulation in Figure 1, as well as the var-
ious implementations, follow the nomenclature using variable
names from the algorithm in Havlak’s paper, which in turn
follows the Tarjan paper.

The full benchmark sources are available
as open-source, hosted by Google code at
http://code.google.com/p/ in the project
multi-language-bench. The source files contain
the main algorithm implementation, as well as dummy classes
to construct a control flow graph (CFG), a loop structure
graph (LSG), and a driver program for benchmarking (e.g.,
LoopTesterApp.cc).

As discussed, after an internal version of this document
was published at Google, several engineers created optimized
versions of the benchmark. We feel that the optimization
techniques applied for each language were interesting and
indicative of the issues performance engineers are facing in
their every day experience. The optimized versions are kept

src README file and auxiliary scripts
src/cpp C++ version
src/cpp_pro Improved by Doug Rhode
src/scala Scala version
src/scala_pro Improved by Daniel Mahler
src/go Go version
src/go_pro Improved by Ian Taylor
src/java Java version
src/java_pro Improved by Jeremy Manson
src/python Python version (not discussed here)

Fig. 2. Benchmark source organization (at the time of this writing, the
cpp pro version could not yet be open-sourced)

non_back_preds an array of sets of int’s
back_preds an array of lists of int’s
header an array of int’s
type an array of char’s
last an array of int’s
nodes an array of union/find nodes
number a map from basic blocks to int’s
Fig. 3. Key benchmark data structures, modeled after the original paper

in the Pro versions of the benchmarks. At time of this writing,
the cpp_pro version depended strongly on Google specific
code and could not be open-sourced. All directories in Figure
2 are found in the havlak directory.

Each directory contains a Makefile and supports three
methods of invocation:

make # build benchmark
make run # run benchmark
make clean # clean up build artifacts

Path names to compilers and libraries can be overridden on
the command lines. Readers interested in running the bench-
marks are encouraged to study the very short Makefiles for
more details.

IV. IMPLEMENTATION NOTES

This section highlights a few core language properties, as
necessary to understanding the benchmark sources and per-
formance characteristics. Readers familiar with the languages
can safely skip to the next section.

A. Data Structures

The key data structures for the implementation of the
algorithm are shown in Figure 3. Please note again that we
are strictly following the algorithm’s notation. We do not seek
to apply any manual data structure optimization at this point.
We use the non object-oriented, quirky notation of the paper,
and we only use the languages’ default containers.

1) C++: With the standard library and templates, these data
structures are defined the following way in C++ using stack
local variables:

typedef std::vector<UnionFindNode> NodeVector;
typedef std::map<BasicBlock*, int> BasicBlockMap;
typedef std::list<int> IntList;
typedef std::set<int> IntSet;

typedef std::list<UnionFindNode*> NodeList;
typedef std::vector<IntList> IntListVector;
typedef std::vector<IntSet> IntSetVector;
typedef std::vector<int> IntVector;
typedef std::vector<char> CharVector;

[...]
IntSetVector non_back_preds(size);
IntListVector back_preds(size);
IntVector header(size);
CharVector type(size);
IntVector last(size);
NodeVector nodes(size);
BasicBlockMap number;

The size of these data structures is known at run-time and
the std:: collections allow pre-allocations at those sizes,
except for the map type.

2) Java: Java does not allow arrays of generic types.
However, lists are index-able, so this code is permissible:
List<Set<Integer>> nonBackPreds =

new ArrayList<Set<Integer>>();
List<List<Integer>> backPreds =

new ArrayList<List<Integer>>();
int[] header = new int[size];
BasicBlockClass[] type =

new BasicBlockClass[size];
int[] last = new int[size];
UnionFindNode[] nodes = new UnionFindNode[size];
Map<BasicBlock, Integer> number =

new HashMap<BasicBlock, Integer>();

However, this appeared to incur tremendous GC overhead.
In order to alleviate this problem we slightly rewrite the code,
which reduced GC overhead modestly.

nonBackPreds.clear();
backPreds.clear();
number.clear();
if (size > maxSize) {
header = new int[size];
type = new BasicBlockClass[size];
last = new int[size];
nodes = new UnionFindNode[size];
maxSize = size;

}

Constructors still need to be called:
for (int i = 0; i < size; ++i) {
nonBackPreds.add(new HashSet<Integer>());
backPreds.add(new ArrayList<Integer>());
nodes[i] = new UnionFindNode();

}

To reference an element of the ArrayLists, the
get/set methods are used, like this:

if (isAncestor(w, v, last)) {
backPreds.get(w).add(v);

} else {
nonBackPreds.get(w).add(v);

}

3) Scala: Scala allows arrays of generics, as an array is just
a language extension, and not a built-in concept. Constructors
still need to be called:
var nonBackPreds = new Array[Set[Int]](size)
var backPreds = new Array[List[Int]](size)
var header = new Array[Int](size)
var types =

new Array[BasicBlockClass.Value](size)

var last = new Array[Int](size)
var nodes = new Array[UnionFindNode](size)
var number =

scala.collection.mutable.Map[BasicBlock, Int]()

for (i <- 0 until size) {
nonBackPreds(i) = Set[Int]()
backPreds(i) = List[Int]()
nodes(i) = new UnionFindNode()

}

With clever use of parenthesis (and invocation of apply()
accesses become more canonical, e.g.:

if (isAncestor(w, v, last)) {
backPreds(w) = v :: backPreds(w)

} else {
nonBackPreds(w) += v

}

4) Go: This language offers the make keyword in addition
to the new keyword. Make takes away the pain of the explicit
constructor calls. A map is a built-in type, and has a special
syntax, as can be seen in the 1st line below. There is no set
type, so in order to get the same effect, one can use a map to
bool. While maps are built-in, lists are not, and as a result
accessors and iterators become non-canonical.
nonBackPreds := make([]map[int]bool, size)
backPreds := make([]list.List, size)
number := make(map[*cfg.BasicBlock]int)
header := make([]int, size, size)
types := make([]int, size, size)
last := make([]int, size, size)
nodes := make([]*UnionFindNode, size, size)

for i := 0; i < size; i++ {
nodes[i] = new(UnionFindNode)
}

B. Enumerations
To enumerate the various kinds of loops an enumeration

type is used. The following subsections show what the lan-
guages offer to express compile time constants.

1) C++: In C++ a regular enum type can be used
enum BasicBlockClass {

BB_TOP, // uninitialized
BB_NONHEADER, // a regular BB
BB_REDUCIBLE, // reducible loop
BB_SELF, // single BB loop
BB_IRREDUCIBLE, // irreducible loop
BB_DEAD, // a dead BB
BB_LAST // Sentinel

};

2) Java: Java has quite flexible support for enumeration
types. Specifically, enum members can have constructor pa-
rameters, and enums also offer iteration via values(). Since
the requirements for this specific benchmark are trivial, the
code looks similarly simple:

public enum BasicBlockClass {
BB_TOP, // uninitialized
BB_NONHEADER, // a regular BB
BB_REDUCIBLE, // reducible loop
BB_SELF, // single BB loop
BB_IRREDUCIBLE, // irreducible loop
BB_DEAD, // a dead BB
BB_LAST // Sentinel

}

3) Scala: In Scala, enumerations become a static instance
of a type derived from Enumeration. The syntax below
calls and increments Value() on every invocation (param-
eterless function calls don’t need parenthesis in Scala). Note
that, in this regard, enums are not a language feature, but
an implementation of the method Enumeration.Value().
Value also offers the ability to specify parameter values,
similar to the Java enums with constructors.

class BasicBlockClass extends Enumeration {
}
object BasicBlockClass extends Enumeration {
val BB_TOP, // uninitialized
BB_NONHEADER, // a regular BB
BB_REDUCIBLE, // reducible loop
BB_SELF, // single BB loop
BB_IRREDUCIBLE, // irreducible loop
BB_DEAD, // a dead BB
BB_LAST = Value // Sentinel

}

4) Go: Go has the concept of an iota and initialization
expression. For every member of an enumeration (constants
defined within a const block), the right hand side expres-
sion will be executed in full, with iota being incremented
on every invocation. iota is being reset on encountering
the const keyword. This makes for flexible initialization
sequences, which are not shown, as the use case is trivial.
Note that because of Go’s powerful line-breaking, not even
a comma is needed. Furthermore, because of Go’s symbol
exporting rules, the first characters of the constants are held
lower case (see comments on symbol binding later).

const (
_ = iota // Go has the iota concept
bbTop // uninitialized
bbNonHeader // a regular BB
bbReducible // reducible loop
bbSelf // single BB loop
bbIrreducible // irreducible loop
bbDead // a dead BB
bbLast // sentinel
)

C. Iterating over Data Structures

1) C++: C++ has no ”special” built-in syntactical support
for iterating over collections (e.g., the upcoming range-based
for-loops in C++0x). However, it does offer templates, and all
basic data structures are now available in the standard library.
Since the language support is minimal, to iterate, e.g., over a
list of non-backedges, one has to write:

// Step d:
IntList::iterator back_pred_iter =

back_preds[w].begin();
IntList::iterator back_pred_end =

back_preds[w].end();
for (; back_pred_iter != back_pred_end;

back_pred_iter++) {
int v = *back_pred_iter;

To iterate over all members of a map:

for (MaoCFG::NodeMap::iterator bb_iter =
CFG_->GetBasicBlocks()->begin();
bb_iter != CFG_->GetBasicBlocks()->end();
++bb_iter) {

number[(*bb_iter).second] = kUnvisited;
}

2) Java: Java is aware of the base interfaces supported by
collection types and offers an elegant language extension for
easier iteration. In a sense, there is ”secret” handshake between
the run time libraries and the Java compiler. The same snippets
from above look like the following in Java:

// Step d:
for (int v : backPreds.get(w)) {

and for the map:

for (BasicBlock bbIter :
cfg.getBasicBlocks().values()) {

number.put(bbIter, UNVISITED);

3) Scala: Scala offers similar convenience for iterating over
lists:

// Step d:
for (v <- backPreds(w)) {

and for maps iterations:

for ((key, value) <- cfg.basicBlockMap) {
number(value) = UNVISITED

}

These ”for-comprehensions” are very powerful. Under the
hood, the compiler front-end builds closures and transforms
the code into combinations of calls to map(), flatmap,
filter(), and foreach(). Loop nests and conditions
can be expressed elegantly. Each type implementing the base
interfaces can be used in for-comprehensions. This can be
used for elegant language extensions. On the downside -
since closures are being built, there is performance overhead.
The compiler transforms the for-comprehensions and therefore
there is also has a ”secret” hand-shake between libraries and
compiler. More details on Scala for-comprehensions can be
found in Section 6.19 of the Scala Language Specification
[3].

Note that in the example, the tuple on the left side of the
arrow is not a built-in language construct, but cleverly written
code to mimic and implement tuples.

4) Go: Lists are not built-in, and they are also not type-
safe. As a result, iterations are more traditional and require
explicit casting. For example:

// Step d:
for ll := backPreds[w].Front(); ll != nil;

ll = ll.Next() {
v := ll.Value.(int)

Since maps are built-in, there is special range keyword and
the language allows returning tuples:

for i, bb := range cfgraph.BasicBlocks() {
number[bb] = unvisited

Note that lists are inefficient in Go (see performance and
memory footprint below). The GO Pro version replaces most
lists with array slices, yielding significant performance gains
(25%), faster compile times, and more elegant code. We
denote removed lines with - and the replacement lines with

+, similarly to the output of modern diff tools. For example,
the LSG data structure changes:
type LSG struct {
root *SimpleLoop

- loops list.List
+ loops []*SimpleLoop
}

and references in FindLoops() change accordingly:
- backPreds := make([]list.List, size)
+ backPreds := make([][]int, size)

and
- for ll := nodeW.InEdges().Front(); ll != nil;
- ll = ll.Next() {
- nodeV := ll.Value.(*cfg.BasicBlock)

+ for _, nodeV := range nodeW.InEdges {

Note that both Go and Scala use _ as a placeholder.

D. Type Inference

C++ and Java require explicit type declarations. Both Go
and Scala have powerful type inference, which means that
types rarely need to be declared explicitly.

1) Scala: Because of Scala functional bias, variables or
values must be declared as such. However, types are inferred.
For example:

var lastid = current

2) Go: To declare and define a variable lastid and assign it
the value from an existing variable current, Go has a special
assignment operator :=

lastid := current

E. Symbol Binding

The languages offer different mechanism to control symbol
bindings:

1) C++: C++ relies on the static and external
keywords to specify symbol bindings.

2) Java: Java uses packages and the public keyword to
control symbol binding.

3) Scala: Scala uses similar mechanism as Java, but there
are differences in the package name specification, which make
things a bit more concise and convenient. Details are online
at [2] and [4].

4) Go: Go uses a simple trick to control symbol binding.
If a symbol’s first character is uppercase - it’s being exported.

F. Member Functions

1) C++: Google’s coding style guidelines require that class
members be accessed through accessor functions. For C++,
simple accessor functions come with no performance penalty,
as they are inlined. Constructors are explicitly defined. For
example, for the BasicBlockEdge class in the benchmarks,
the code looks like the following:
class BasicBlockEdge {
public:
inline BasicBlockEdge(MaoCFG *cfg,

int from,

int to);

BasicBlock *GetSrc() { return from_; }
BasicBlock *GetDst() { return to_; }

private:
BasicBlock *from_, *to_;

};
[...]
inline
BasicBlockEdge::BasicBlockEdge(MaoCFG *cfg,

int from_name,
int to_name) {

from_ = cfg->CreateNode(from_name);
to_ = cfg->CreateNode(to_name);

from_->AddOutEdge(to_);
to_->AddInEdge(from_);

cfg->AddEdge(this);
}

2) Java: Java follows the same ideas, and the resulting code
looks similar:

public class BasicBlockEdge {
public BasicBlockEdge(CFG cfg,

int fromName,
int toName) {

from = cfg.createNode(fromName);
to = cfg.createNode(toName);

from.addOutEdge(to);
to.addInEdge(from);

cfg.addEdge(this);
}

public BasicBlock getSrc() { return from; }
public BasicBlock getDst() { return to; }

private BasicBlock from, to;
};

3) Scala: The same code can be expressed in a very
compact fashion in Scala. The class declaration allows pa-
rameters, which become instance variables for every object.
Constructor code can be placed directly into the class def-
inition. The variables from and to become accessible for
users of this class via automatically generated getter functions.
Since parameterless functions don’t require parenthesis, such
accessor functions can always be rewritten later, and no
software engineering discipline is lost. Scala also produces
setter functions, which are named like the variables with an
appended underscore. E.g., this code can use from_(int)
and to_(int) without having to declare them. The last
computed value is the return value of a function, saving on
return statements (not applicable in this example)

class BasicBlockEdge(cfg : CFG,
fromName : Int,
toName : Int) {

var from : BasicBlock = cfg.createNode(fromName)
var to : BasicBlock = cfg.createNode(toName)

from.addOutEdge(to)
to.addInEdge(from)

cfg.addEdge(this)
}

4) Go: Go handles types in a different way. It allows dec-
laration of types and then the definition of member functions
as traits to types. The resulting code would look like this:
type BasicBlockEdge struct {

to *BasicBlock
from *BasicBlock

}

func (edge *BasicBlockEdge) Dst() *BasicBlock {
return edge.to

}

func (edge *BasicBlockEdge) Src() *BasicBlock {
return edge.from

}

func NewBasicBlockEdge(cfg *CFG, from int, to int)
*BasicBlockEdge {

self := new(BasicBlockEdge)
self.to = cfg.CreateNode(to)
self.from = cfg.CreateNode(from)

self.from.AddOutEdge(self.to)
self.to.AddInEdge(self.from)

return self
}

However, the 6g compiler does not inline functions and the
resulting code would perform quite poorly. Go also has the
convention of accessing members directly, without getter/setter
functions. Therefore, in the Go Pro version, the code is
becoming a lot more compact:
type BasicBlockEdge struct {

Dst *BasicBlock
Src *BasicBlock

}

func NewBasicBlockEdge(cfg *CFG, from int, to int)
*BasicBlockEdge {

self := new(BasicBlockEdge)
self.Dst = cfg.CreateNode(to)
self.Src = cfg.CreateNode(from)

self.Src.AddOutEdge(self.Dst)
self.Dst.AddInEdge(self.Src)

return self
}

V. PERFORMANCE ANALYSIS

The benchmark consists of a driver for the loop recognition
functionality. This driver constructs a very simple control flow
graph, a diamond of 4 nodes with a backedge from the bottom
to the top node, and performs loop recognition on it for 15.000
times. The purpose is to force Java/Scala compilation, so that
the benchmark itself can be measured on compiled code.

Then the driver constructs a large control flow graph con-
taining 4-deep loop nests with a total of 76000 loops. It
performs loop recognition on this graph for 50 times. The
driver codes for all languages are identical.

As a result of this benchmark design, the Scala and Java
measurements contain a small fraction of interpreter time.
However, this fraction is very small and run-time results
presented later should be taken as “order of magnitude”
statements only.

Benchmark wc -l Factor
C++ Dbg/Opt 850 1.3x
Java 1068 1.6x
Java Pro 1240 1.9x
Scala 658 1.0x
Scala Pro 297 0.5x
Go 902 1.4x
Go Pro 786 1.2x

Fig. 4. Code Size in [Lines of Code], normalized to the Scala version

Benchmark Compile Time Factor
C++ Dbg 3.9 6.5x
C++ Opt 3.0 5.0x
Java 3.1 5.2x
Java Pro 3.0 5.0x
Scala scalac 13.9 23.1x
Scala fsc 3.8 6.3x
Scala Pro scalac 11.3 18.8x
Scala Pro fsc 3.5 5.8x
Go 1.2 2.0x
Go Pro 0.6 1.0x

Fig. 5. Compilation Times in [Secs], normalized to the Go Pro version

The benchmarking itself was done in a simple and fairly
un-scientific fashion. The benchmarks were run 3 times and
the median values are reported. All of the experiments are
done on an older Pentium IV workstation. Run-times were
measured using wall-clock time. We analyze the benchmarks
along the dimensions code size, compile time, binary size,
memory footprint, and run-time.

A. Code Size

The benchmark implementations contain similar comments
in all codes, with a few minor exceptions. Therefore, to
compare code size, a simple Linux wc is performed on the
benchmarking code and the main algorithm code together,
counting lines. The results are shown in Figure 7. Code is
an important factor in program comprehension. Studies have
shown that the average time to recognize a token in code
is a constant for individual programmers. As a result, less
tokens means goodness. Note that the Scala and Go versions
are significantly more compact than the verbose C++ and Java
versions.

B. Compile Times

In Figure 5 we compare the static compile times for the
various languages. Note that Java/Scala only compile to Java
Byte Code. For Scala, the scalac compiler is evaluated, as
well as the memory resident fsc compiler, which avoids re-
loading of the compiler on every invocation. This benchmark
is very small in terms of lines of code, and unsurprisingly,
fsc is about 3-4x faster than scalac.

Benchmark Binary or Jar [Byte] Factor
C++ Dbg 592892 45x
C++ Opt 41507 3.1x
Java 13215 1.0x
Java Pro 21047 1.6x
Scala 48183 3.6x
Scala Pro 36863 2.8x
Go 1249101 94x
Go Pro 1212100 92x

Fig. 6. Binary and JAR File Sizes in [Byte], normalized to the Java version

Benchmark Virt Real Factor Virt Factor Real
C++ Opt 184m 163m 1.0 1.0
C++ Dbg 474m 452m 2.6-3.0 2.8
Java 1109m 617m 6.0 3.7
Scala 1111m 293m 6.0 1.8
Go 16.2g 501m 90 3.1

Fig. 7. Memory Footprint, normalized to the C++ version

C. Binary Sizes

In Figure 6 we compare the statically compiled binary sizes,
which may contain debug information, and JAR file sizes.
Since much of the run-time is not contained in Java JAR
files, they are expected to be much smaller in size and used
as baseline. It should also be noted that for large binaries,
plain binary size matters a lot, as in distributed build systems,
the generated binaries need to be transferred from the build
machines, which can be bandwidth limited and slow.

D. Memory Footprint

To estimate memory footprint, the benchmarks were run
alongside the Unix top utility and memory values were
manually read out in the middle of the benchmark run. The
numbers are fairly stable across the benchmark run-time. The
first number in the table below represents potentially pre-
allocated, but un-touched virtual memory. The second number
(Real) represents real memory used.

E. Run-time Measurements

It should be noted that this benchmark is designed to
amplify language implementations’ negative properties. There
is lots of memory traversal, so minimal footprint is beneficial.
There is recursion, so small stack frames are beneficial. There
are lots of array accesses, so array bounds checking will be
negative. There are many objects created and destroyed - this
could be good or bad for the garbage collector. As shown, GC
settings have huge impact on performance. There are many
pointers used and null-pointer checking could be an issue. For
Go, some key data structures are part of the language, others
are not. The results are summarized in Figure 8.

VI. TUNINGS

Note again that the original intent of this language compar-
ison was to provide generic and straightforward implementa-
tions of a well specified algorithm, using the default language

Benchmark Time [sec] Factor
C++ Opt 23 1.0x
C++ Dbg 197 8.6x
Java 64-bit 134 5.8x
Java 32-bit 290 12.6x
Java 32-bit GC* 106 4.6x
Java 32-bit SPEC GC 89 3.7x
Scala 82 3.6x
Scala low-level* 67 2.9x
Scala low-level GC* 58 2.5x
Go 6g 161 7.0x
Go Pro* 126 5.5x

Fig. 8. Run-time measurements. Scala low-level is explained below, it has
a hot for-comprehension replaced with a simple foreach(). Go Pro is the
version that has all accessor functions removed, as well as all lists. The Scala
and Java GC versions use optimized garbage collection settings, explained
below. The Java SPEC GC version uses a combination of the SPECjbb settings
and -XX:+CycleTime

containers and looping idioms. Of course, this approach also
led to sub-optimal performance.

After publication of this benchmark internally to Google,
several engineers signed up and created highly optimized
versions of the program, some of them without keeping the
original program structure intact.

As these tuning efforts might be indicative to the problems
performance engineers face every day with the languages, the
following sections contain a couple of key manual optimiza-
tion techniques and tunings for the various languages.

A. Scala/Java Garbage Collection

The comparison between Java and Scala is interesting.
Looking at profiles, Java shows a large GC component, but
good code performance

100.0% 14073 Received ticks
74.5% 10484 Received GC ticks
0.8% 110 Compilation
0.0% 2 Other VM operations

Scala has this breakdown between GC and compiled code:

100.0% 7699 Received ticks
31.4% 2416 Received GC ticks
4.8% 370 Compilation
0.0% 1 Class loader

In other words, Scala spends 7699-2416-1 = 5282 clicks on
non-GC code. Java spends 14073-10484-110-2 = 3477 clicks
on non-GC code. Since GC has other negative performance
side-effects, one could estimate that without the GC anomaly,
Java would be about roughly 30% faster than Scala.

B. Eliminating For-Comprehension

Scala shows a high number of samples in several apply()
functions. Scala has 1st-class functions and anonymous func-
tions - the for-comprehension in the DFS routine can be
rewritten from:

for (target <- currentNode.outEdges
if (number(target) == UNVISITED)) {

lastid = DFS(target, nodes, number,
last, lastid + 1)

}

to:
currentNode.outEdges.foreach(target =>

if (number(target) == UNVISITED) {
lastid = DFS(target, nodes, number,

last, lastid + 1)
}

)

This change alone shaves off about 15secs of run-time, or
about 20% (slow run-time / fast run-time). This is marked
as Scala Low-Level in Figure 8. In other words, while for-
comprehensions are supremely elegant, a better compiler
should have found this opportunity without user intervention.

Note that Java also creates a temporary object for foreach
loops on loop entry. Jeremy Manson found that this was one of
the main causes of the high GC overhead for the Java version
and changed the Java forall loops to explicit while loops.

C. Tuning Garbage Collection

Originally the Java and Scala benchmarks were run with
64-bit Java, using -XX:+UseCompressedOops, hoping to
get the benefits of 64-bit code generation, without incurring
the memory penalties of larger pointers. Run-time is 134 secs,
as shown in above table.

To verify the assumptions about 64/32 bit java, the bench-
mark was run with a 32-bit Java JVM, resulting in run-time of
290 secs, or a 2x slowdown over the 64-bit version. To evaluate
the impact of garbage collection further, the author picked
the GC settings from a major Google application component
which is written in Java. Most notably, it uses the concurrent
garbage collector.

Running the benchmark with these options results in run-
time of 106 secs, or a 3x improvement over the default 32-bit
GC settings, and a 25% improvement over the 64-bit version.

Running the 64-bit version with these new GC settings, run-
time was 123 secs, a further roughly 10% improvement over
the default settings.

Chris Ruemmler suggested to evaluate the SPEC JBB
settings as well. With these settings, run-time for 32-bit Java
reduced to 93 secs, or another 12% faster. Trying out various
combinations of the options seemed to indicate that these
settings were highly tuned to the SPEC benchmarks.

After some discussions, Jeremy Manson suggested to com-
bine the SPEC settings with -XX:+CycleTime, resulting in
the fasted execution time of 89 seconds for 32-bit Java, or
about 16% faster than the fastest settings used by the major
Google application. These results are included in above table
as Java 32-bit SPEC GC.

Finally, testing the Scala-fixed version with the Google
application GC options (32-bit, and specialized GC settings),
performance improved from 67 secs to 58 secs, representing
another 13% improvement.

What these experiments and their very large performance
impacts show is that tuning GC has a disproportionate high
effect on benchmark run-times.

D. C++ Tunings
Several Google engineers contributed performance enhance-

ments to the C++ version. We present most changes via citing
from the engineers’ change lists.

Radu Cornea found that the C++ implementation can be
improved by using hash maps instead of maps. He got a 30%
improvement

Steinar Gunderson found that the C++ implementation can
be improved by using empty() instead of size() > 0 to
check whether a list contains something. This didn’t produce
a performance benefit - but is certainly the right thing to do,
as list.size() is O(n) and list.empty() is O(1).

Doug Rhode created a greatly improved version, which
improved performance by 3x to 5x. This version will be
kept in the havlak_cpp_pro directory. At the time
of this writing, the code was heavily dependent on several
Google internal data structures and could not be open sourced.
However, his list of change comments is very instructional:

30.4% Changing BasicBlockMap from
map<BasicBlock*, int> to hash_map
12.1% Additional gain for changing it to hash_map<int,
int> using the BasicBlock’s name() as the key.
2.1% Additional gain for pre-sizing BasicBlockMap.
10.8% Additional gain for getting rid of BasicBlockMap
and storing dfs_numbers on the BasicBlocks themselves.
7.8% Created a TinySet class based on
InlinedVector<> to replace set<> for
non_back_preds.
1.9% Converted BasicBlockSet from set<> to
vector<>.
3.2% Additional gain for changing BasicBlockSet from
vector<> to InlinedVector<>.
2.6% Changed node_pool from a list<> to a
vector<>. Moved definition out of the loop to recycle it.
1.9% Change worklist from a list<> to a deque<>.
2.2% Changed LoopSet from set<> to vector<>.
1.1% Changed LoopList from list<> to vector<>.
1.1% Changed EdgeList from list<BasicBlockEdge*>
to vector<BasicBlockEdge>.
1.2% Changed from using int for the node dfs numbers to
a logical IntType<uint32> NodeNum, mainly to clean
up the code, but unsigned array indexes are faster.
0.4% Got rid of parallel vectors and added more fields to
UnionFindNode.
0.2% Stack allocated LoopStructureGraph in one loop.
0.2% Avoided some UnionFindNode copying when assigning
local vars.
0.1% Rewrote path compression to use a double sweep
instead of caching nodes in a list.

Finally, David Xinliang Li took this version, and applied a
few more optimizations:

Structure Peeling. The structure UnionFindNode has 3
cold fields: type_, loop_, and header_. Since nodes are
allocated in an array, this is a good candidate for peeling
optimization. The three fields can be peeled out into a separate
array. Note the header_ field is also dead – but removing

it has very little performance impact. The name_ field in the
BasicBlock structure is also dead, but it fits well in the
padding space so it is not removed.

Structure Inlining. In the BasicBlock structure, vector
is used for incoming and outgoing edges – making it an
inline vector of 2 element remove the unnecessary memory
indirection for most of the cases, and improves locality.

Class object parameter passing and return. In Doug
Rhode’s version, NodeNum is a typedef of the
IntType<...> class. Although it has only one integer
member, it has non trivial copy constructor, which makes it to
be of memory class instead of integer class in the parameter
passing conventions. For both parameter passing and return,
the low level ABI requires them to be stack memory, and
C++ ABI requires that they are allocated in the caller – the
first such aggregate’s address is passed as the first implicit
parameter, and the rest aggregates are allocated in a buffer
pointed to by r8. For small functions which are inlined,
this is not a big problem – but DFS is a recursive function.
The downsides include unnecessary memory operation
(passing/return stack objects) and increased register pressure
– r8 and rdi are used.

Redundant this. DFS’s this parameter is never used – it
can be made a static member function

E. Java Tunings

Jeremy Manson brought the performance of Java on par
with the original C++ version. This version is kept in the
java_pro directory. Note that Jeremy deliberately refused
to optimize the code further, many of the C++ optimizations
would apply to the Java version as well. The changes include:

• Replaced HashSet and ArrayList with much smaller
equivalent data structures that don’t do boxing or have
large backing data structures.

• Stopped using foreach on ArrayLists. There is no
reason to do this it creates an extra object every time,
and one can just use direct indexing.

• Told the ArrayList constructors to start out at size 2
instead of size 10. For the last 10% in performance, use
a free list for some commonly allocated objects.

F. Scala Tunings

Daniel Mahler improved the Scala version by creating a
more functional version, which is kept in the Scala Pro
directories. This version is only 270 lines of code, about 25%
of the C++ version, and not only is it shorter, run-time also
improved by about 3x. It should be noted that this version
performs algorithmic improvements as well, and is therefore
not directly comparable to the other Pro versions. In detail,
the following changes were performed.

The original Havlak algorithm specification keeps all node-
related data in global data structures, which are indexed by
integer node id’s. Nodes are always referenced by id. Similar
to the data layout optimizations in C++, this implementation
introduces a node class which combines all node-specific
information into a single class. Node objects are referenced

for (int parlooptrees = 0; parlooptrees < 10;
parlooptrees++) {

cfg.CreateNode(n + 1);
buildConnect(&cfg, 2, n + 1);
n = n + 1;

for (int i = 0; i < 100; i++) {
int top = n;
n = buildStraight(&cfg, n, 1);
for (int j = 0; j < 25; j++) {

n = buildBaseLoop(&cfg, n);
}
int bottom = buildStraight(&cfg, n, 1);
buildConnect(&cfg, n, top);
n = bottom;

}
buildConnect(&cfg, n, 1);

}

Fig. 9. C++ code to construct the test graph

(1 to 10).foreach(
_ => {

n2
.edge
.repeat(100,

.back(.edge
.repeat(25,

baseLoop(_)))
.edge)

.connect(n1)
})

Fig. 10. Equivalent Scala code to construct the test graph

and passed around in an object-oriented fashion, and accesses
to global objects are no longer required

Most collection were replaced by using ArrayBuffer.
This data structure is Scala’s equivalent of C++’s vector.
Most collections in the algorithm don’t require any more
advanced functionality than what this data structure offers.

The main algorithmic change was to make the main search
control loop recursive. The original algorithm performs the
search using an iterative loop and maintains an explicit
’worklist’ of nodes to be searched. Transforming the search
into more natural recursive style significantly simplified the
algorithm implementation.

A significant part of the original program is the specification
of a complex test graph, which is written in a procedural style.
Because of this style, the structure of the test graph is not
immediately evident. Scala made it possible to introduce a
declarative DSL which is more concise and additionally makes
the structure of the graph visible syntactically. It should be
noted that similar changes could have been made in other
languages, e.g., in C++ via nested constructor calls, but Scala’s
support for functional programming seemed to make this really
easy and required little additional supporting code.

For example, for the construction of the test graph, the
procedural C++ code shown in Figure 9 turns into the more
functional Scala code shown in Figure 10:

VII. CONCLUSIONS

We implemented a well specified compact algorithm in four
languages, C++, Java, Go, and Scala, and evaluated the results
along several dimensions, finding factors of differences in
all areas. We discussed many subsequent language specific
optimizations that point to typical performance pain points in
the respective languages.

We find that in regards to performance, C++ wins out by
a large margin. However, it also required the most extensive
tuning efforts, many of which were done at a level of sophisti-
cation that would not be available to the average programmer.

Scala concise notation and powerful language features al-
lowed for the best optimization of code complexity.

The Java version was probably the simplest to implement,
but the hardest to analyze for performance. Specifically the
effects around garbage collection were complicated and very
hard to tune. Since Scala runs on the JVM, it has the same
issues.

Go offers interesting language features, which also allow
for a concise and standardized notation. The compilers for this
language are still immature, which reflects in both performance
and binary sizes.

VIII. ACKNOWLEDGMENTS

We would like to thank the many people commenting on
the benchmark and the proposed methodology. We would
like to single out the following individuals for their con-
tributions: Jeremy Manson, Chris Ruemmler, Radu Cornea,
Steinar H. Gunderson, Doug Rhode, David Li, Rob Pike, Ian
Lance Taylor, and Daniel Mahler. We furthermore thank the
anonymous reviewers, their comments helped to improve this
paper.

REFERENCES

[1] HAVLAK, P. Nesting of reducible and irreducible loops. ACM Trans.
Program. Lang. Syst. 19, 4 (1997), 557–567.

[2] ODERSKY, M. Chained package clauses. http://www.scala-lang.org/
docu/files/package-clauses/packageclauses.html.

[3] ODERSKY, M. The Scala language specification, version 2.8. http:
//www.scala-lang.org/docu/files/ScalaReference.pdf.

[4] ODERSKY, M., AND SPOON, L. Package objects. http://www.scala-lang.
org/docu/files/packageobjects/packageobjects.html.

[5] TARJAN, R. Testing flow graph reducibility. In Proceedings of the fifth
annual ACM symposium on Theory of computing (New York, NY, USA,
1973), STOC ’73, ACM, pp. 96–107.

[6] TARJAN, R. Data structures and network algorithms. Society for
Industrial and Applied Mathematics, Philadelphia, PA, USA, 1983.

[7] WIKIPEDIA. C++. http://en.wikipedia.org/wiki/C++.
[8] WIKIPEDIA. Go. http://en.wikipedia.org/wiki/Go (programming

language).
[9] WIKIPEDIA. Java. http://en.wikipedia.org/wiki/Java (programming

language).
[10] WIKIPEDIA. Scala. http://en.wikipedia.org/wiki/Scala (programming

language).

