A History of Haskell:
Being Lazy With Class

April 16,

Paul Hudak

Yale University
paul.hudak®@yale.edu

John Hughes

Chalmers University
rimh@cs.chalmers.se

2007

Simon Peyton Jones

Microsoft Research
simonpj@microsoft.com

Philip Wadler

University of Edinburgh
wadler@inf.ed.ac.uk

Abstract

This paper describes the history of Haskell, including gsegis
and principles, technical contributions, implementatiand tools,
and applications and impact.

1. Introduction

In September of 1987 a meeting was held at the confer-
ence on Functional Programming Languages and Computer
Architecture in Portland, Oregon, to discuss an unforteinat
situation in the functional programming community: there
had come into being more than a dozen non-strict, purely
functional programming languages, all similar in expressi
power and semantic underpinnings. There was a strong con-
sensus at this meeting that more widespread use of this class
of functional languages was being hampered by the lack of
a common language. It was decided that a committee should
be formed to design such a language, providing faster com-
munication of new ideas, a stable foundation for real ap-
plications development, and a vehicle through which others
would be encouraged to use functional languages.

These opening words in the Preface of the first Haskell Report
Version 1.0 dated 1 April 1990, say quite a bit about the nystd
Haskell. They establish the motivation for designing Hisltke

lution that are distinctive in themselves, or that devetbpe un-
expected or surprising ways. We reflect on five areas: syr8ag-(
tion 4); algebraic data types (Section 5); the type syste,tgoe
classes in particular (Section 6); monads and input/ou{get-
tion 7); and support for programming in the large, such asurtesl
and packages, and the foreign-function interface (Se&jon

Part 11l describes implementations and tools: what has lxedh
for the users of Haskell. We describe the various implememtstio
of Haskell, including GHC, hbc, hugs, nhc, and Yale Haskadd-
tion 9), and tools for profiling and debugging (Section 10).

Part IV describes applications and impact: what has bedh iy
the users of Haskell. The language has been used for a bewgjde
variety of applications, and in Section 11 we reflect on treiiic-
tive aspects of some of these applications, so far as we cn di
cern them. We conclude with a section that assesses thetimipac
Haskell on various communities of users, such as educaifmn-
source, companies, and other language designers (Se&jion 1

Our goal throughout is to tell the story, including who wagailved
and what inspired them: the paper is supposed totistaryrather
than a technical description or a tutorial.

We have tried to describe the evolution of Haskell in an even-
handed way, but we have also sought to convey some of the ex-
citement and enthusiasm of the process by including anesdwid

need for a common language), the nature of the language to bepersonal reflections. Inevitably, this desire for vividaeseans that

designed (non-strict, purely functional), and the prodassvhich
it was to be designed (by committee).

Part | of this paper describes genesis and principles: hoskéla

our account will be skewed towards the meetings and contiensa
in which we personally participated. However, we are canssi
that many, many people have contributed to Haskell. Theasize

came to be. We describe the developments leading up to Hiaskel quality of the Haskell community, its breadth and its deptle,both

and its early history (Section 2) and the processes andiplasc
that guided its evolution (Section 3).

Part Il describes Haskell's technical contributions: wiHaskell is.
We pay particular attention to aspects of the language arel/a-

Permission to make digital or hard copies of all or part of thiork for personal or
classroom use is granted without fee provided that copiesiar made or distributed
for profit or commercial advantage and that copies bear thtis@ and the full citation
on the first page. To copy otherwise, to republish, to posteswess or to redistribute
to lists, requires prior specific permission and/or a fee.

Third ACM SIGPLAN History of Programming Languages Confeze (HOPL-III)
San Diego, CA

Copyright© 2007 ACM ... $5.00

the indicator of Haskell's success and its cause.

One inevitable shortcoming is a lack of comprehensiveri¢askell

is now more than 15 years old and has been a seedbed for an im-
mense amount of creative energy. We cannot hope to do justice

all of it here, but we take this opportunity to salute all thagho

have contributed to what has turned out to be a wild ride.

Part | Lisp, and showed soundness of their evaluator with respest t
denotational semantics.

1 I I e David Turner (at St. Andrews and Kent) introduced a series

GeneSIS and PrlnCIpleS of influential languages: SASL (St Andrews Static Language)
(Turner, 1976), which was initially designed as a strict-lan

guage in 1972 but became lazy in 1976, and KRC (Kent Re-

2. The genesis of Haskell cursive Calculator) (Turner, 1982). Turner showed the aeg

In 1978 John Backus delivered his Turing Award lecture, “Gemn of programming with lazy evaluation, and in particular treeu
gramming be liberated from the von Neumann style?” (Backus, ©f lazy lists to emulate many kinds of behaviours (Turneg19
1978a), which positioned functional programming as a reichd- Turner, 1982). SASL was even used at Burroughs to develop an
tack on the whole programming enterprise, from hardwardiarc entire operating system—almost certainly the first exercit
tecture upwards. This prominent endorsement from a giatttén pure, lazy, functional programming “in the large”.

field—Backus led the team that developed Fortran, and iegent
Backus Naur Form (BNF)—put functional programming on the
map in a new way, as a practical programming tool rather than a
mathematical curiosity. ¢ In software, a variety of techniques basedgvaph reduction
were being explored, and in particular Turner's inspinatithy
elegant use 08K combinatorgTurner, 1979b; Turner, 1979a).
(Turner's work was based on Haskell Currgsmbinatory cal-
culus(Curry and Feys, 1958), a variable-less version of Alonzo
Church’s lambda calculus (Church, 1941).)

Another potent ingredient was the possibility that all thizuld

Atthe same time, there was a symbiotic effort on exciting neys
to implementazy languages. In particular:

Even at that stage, functional programming languages hada |
history, beginning with John McCarthy’s invention of Lisp the
late 1950s (McCarthy, 1960). In the 1960s, Peter Landin and
Christopher Strachey identified the fundamental imporasiche
lambda calculus for modelling programming languages aidl la
the foundations of both operational semantics, throughratis

machines (Landin, 1964), and denotational semantics di$tya lead to a radically different non-von Neumann hardwareiarch
1964). A few years later Strachey’s collaboration with D&ttt tectures. Several serious projects were underway (or wetre g
put denotational semantics on firm mathematical foundatiam ting underway) to buildiataflowandgraph reductiormachines
derpinned by Scott’s domain theory (Scott and Strachey,1197 of various sorts, including the Id project at MIT (Arvind and
Scott, 1976). In the early '70s, Rod Burstall and John Dgtlin Nikhil, 1987), the Rediflow project at Utah (Keller et al., 7)),
ton were doing program transformation in a first-order fimual the SK combinator machine SKIM at Cambridge (Stoye et al.,
language with function definition by pattern matching (Ralls 1984), the Manchester dataflow machine (Watson and Gurd,
and Darlington, 1977). Over the same period David Turneara f 1982), the ALICE parallel reduction machine at Imperial {Da
mer student of Strachey, developed SASL (Turner, 1976),ra pu lington and Reeve, 1981), the Burroughs NORMA combinator
higher-order functional language with lexically scopedables— machine (Scheevel, 1986), and the DDM dataflow machine at
a sugared lambda calculus derived from the applicative efutis Utah (Davis, 1977). Much (but not all) of this architectlyal
Landin’s ISWIM (Landin, 1966)—that incorporated Burstatid oriented work turned out to be a dead end, when it was later dis
Darlington’s ideas on pattern matching into an executatgram- covered that good compilers for stock architecture coutpen
ming language. form specialised architecture. But at the time it was alicad
and exciting.

In the late '70s, Gerry Sussman and Guy Steele developedr&ghe
a dialect of Lisp that adhered more closely to the lambdauealc Several significant meetings took place in the early '80% lgnat
lus by implementing lexical scoping (Sussman and Steelé5;19 additional impetus to the field.

Steele, 1978). At more or less the same time, Robin Milner in-
vented ML as a meta-language for the theorem prover LCF at Ed-
inburgh (Gordon et al., 1979). Milner’s polymorphic typestsm

for ML would prove to be particularly influential (Milner, I$;
Damas and Milner, 1982). Both Scheme and ML were strict{call

In August 1980, the first Lisp conference took place in Stahfo
California. Presentations included Rod Burstall, Dave @lageen,
and Don Sannella on Hope, the language that introducedraligeb
data types (Burstall et al., 1980).

by-value) languages and, although they contained imperé&tia- In July 1981, Peter Henderson, John Darlington, and David&ru
tures, they did much to promote the functional programmirytes ran an Advanced Course on Functional Programming and itd-App
and in particular the use of higher-order functions. cations, in Newcastle (Darlington et al., 1982). All the bigmes

. were there: attendees included Gerry Sussman, Gary Lordstr
2.1 The call of laziness David Park, Manfred Broy, Joe Stoy, and Edsger Dijkstra.qlies
Then, in the late '70s and early '80s, something new happeted and Peyton Jones attended as students.) Dijkstra was térésac
series of seminal publications ignited an explosion ofrigein the tically unimpressed—he wrote “On the whole | could not avoid
idea oflazy (or non-strict, or call-by-need) functional languages as some feelings of deep disappointment. | still believe thattbpic
a vehicle for writing serious programs. Lazy evaluationegus to deserves a much more adequate treatment; quite a lot we were e
have been invented independently three times. posed to was definitely not up to par.” (Dijkstra, 1981)—boit f

e Dan Friedman and David Wise (both at Indiana) published many attendees it was a watershed.

“Cons should not evaluate its arguments” (Friedman and Wise In September 1981, the first conference on Functional Pnogra
1976), which took on lazy evaluation from a Lisp perspective ~ ming Languages and Computer Architecture (FPCA)—note the
e Peter Henderson (at Newcastle) and James H. Morris Jr. (attitle!—t'oqk placg in Portsmouth, New H.ampshire. Here Tprne
Xerox PARC) published “A lazy evaluator” (Hehderson aﬁd gave his influential paper on “The semantic elegance of egiplie
Morris, 1976). They cite Vuillemin (Vuillemin, 1974) and languages” (Turner, 1981). (Wadler also presented hisdaster-
Wadsworth (Wadsworth, 1971) as responsible for the origins ence paper.) FPCA became a key biennial conference in the fiel

the idea, but popularised the idea in POPL and made one otherin September 1982, the second Lisp conference, now renamed
important contribution, the name. They also used a variént o Lisp and Functional Programming (LFP), took place in Piitgh,

Pennsylvania. Presentations included Peter Hendersoruran f
tional geometry (Henderson, 1982) and an invited talk byn&upn
programming with infinite data structures. (It also saw thet fiub-
lished papers of Hudak, Hughes, and Peyton Jones.) Speeistsy

at this conference included Church and Curry. The aftenelinalk

was given by Barkley Rosser, and received two ovations imnrtide

dle, once when he presented the proof of Curry’s paradoatingl

it to the Y combinator, and once when he presented a new proof
of the Church-Rosser theorem. LFP became the other keyiblenn
conference.

(In 1996, FPCA merged with LFP to become the annual Interna-
tional Conference on Functional Programming, ICFP, whieh r
mains the key conference in the field to the present day.)

In August 1987, Ham Richards of the University of Texas and
David Turner organised an international school on Dedlaat
Programming in Austin, Texas, as part of the UT “Year of Pro-
gramming”. Speakers included: Samson Abramsky, John Backu
Richard Bird, Peter Buneman, Robert Cartwright, Simon Thom
son, David Turner, and Hughes. A major part of the school was a
course in lazy functional programming, with practical sles using
Miranda.

All of this led to a tremendous sense of excitement. The sgnpl
ity and elegance of functional programming captivated ttesent
authors, and many other researchers with them. Lazy evaifuat
with its direct connection to the pure, call-by-name lamlodd
culus, the remarkable possibility of representing and malating
infinite data structures, and addictively simple and béalLithple-
mentation techniques—was like a drug.

(An anonymous reviewer supplied the following: “An intetiag
sidelight is that the Friedman and Wise paper inspired Sassand
Steele to examine lazy evaluation in Scheme, and for a tieg th
weighed whether to make the revised version of Scheme gall-b
name or call-by-value. They eventually chose to retain tigral
call-by-value design, reasoning that it seemed to be musierc®
simulate call-by-name in a call-by-value language (usamghda-
expressions as thunks) than to simulate call-by-value iallaby-
name language (which requires a separate evaluatiomtpnsech-
anism). Whatever we might think of that reasoning, we cary onl
speculate on how different the academic programming-laggu
landscape might be today had they made the opposite detjsion

2.2 A tower of Babel

As a result of all this activity, by the mid-1980s there weneumn-
ber of researchers, including the authors, who were keerigr-i
ested in both design and implementation techniques for, fezg
languages. In fact, many of us had independently designeoou
lazy languages and were busily building our own impleméonat
for them. We were each writing papers about our efforts, inctvh
we first had to describe our languages before we could desatib
implementation techniques. Languages that contributéugdazy
Tower of Babel include:

e Miranda, a successor to SASL and KRC, designed and imple-
mented by David Turner using SK combinator reduction. While
SASL and KRC were untyped, Miranda added strong polymor-
phic typing and type inference, ideas that had proven very su
cessful in ML.

e Lazy ML (LML), pioneered at Chalmers by Augustsson and
Johnsson, and taken up at University College London by Reyto
Jones. This effortincluded the influential developmenhefG-
machine which showed that one coutbmpilelazy functional
programs to rather efficient code (Johnsson, 1984; Auguistss
1984). (Although it is obvious in retrospect, we had become

used to the idea that laziness meant graph reduction, apt gra
reduction meant interpretation.)

e Orwell, a lazy language developed by Wadler, influenced by
KRC and Miranda, and OL, a later variant of Orwell. Bird and
Wadler co-authored an influential book on functional progra
ming (Bird and Wadler, 1988), which avoided the “Tower of
Babel” by using a more mathematical notation close to both
Miranda and Orwell.

Alfl, designed by Hudak, whose group at Yale developed a
combinator-based interpreter for Alfl as well as a compiler
based on techniques developed for Scheme and for T (a dialect
of Scheme) (Hudak, 1984b; Hudak, 1984a).

Id, a non-strict dataflow language developed at MIT by Arvind
and Nikhil, whose target was a dataflow machine that they were
building.

e Clean, a lazy language based explicitly on graph reduction,
developed at Nijmegen by Rinus Plasmeijer and his colleague
(Brus et al., 1987).

Ponder, a language designed by Jon Fairbairn, with an impred
icative higher-rank type system and lexically scoped tygé-v
ables that was used to write an operating system for SKIM
(Fairbairn, 1985; Fairbairn, 1982).

Daisy, a lazy dialect of Lisp, developed at Indiana by Cadedel
Hall, John O’Donnell, and their colleagues (Hall and O’'Delhn
1985).

With the notable exception of Miranda (see Section 3.8pfaliese
were essentially single-site languages, and each indillidiacked
critical mass in terms of language-design effort, impletagans,
and users. Furthermore, although each had lots of intage&teas,
there were few reasons to claim that one language was deraonst
bly superior to any of the others. On the contrary, we felt thay
were all roughly the same, bar the syntax, and we started tal@ro
why we didn’t have a single, common language that we could all
benefit from.

At this time, both the Scheme and ML communities had develope
their own standards. The Scheme community had major loci in
MIT, Indiana, and Yale, and had just issued its ‘revised sedi
report (Rees and Clinger, 1986) (subsequent revisionsdieat to

the ‘revised’ report (Kelsey et al., 1998)). Robin Milner had issued
a ‘proposal for Standard ML’ (Milner, 1984) (which would éat
evolve into the definitiveDefinition of Standard ML(Milner and
Tofte, 1990; Milner et al., 1997)), and Appel and MacQueed ha
released a new high-quality compiler for it (Appel and Mae@n,
1987).

2.3 The birth of Haskell

By 1987, the situation was akin to a supercooled solutior-that

was needed was a random event to precipitate crystallisafioat
event happened in the fall of ‘87, when Peyton Jones stopped a
Yale to see Hudak on his way to the 1987 Functional Program-
ming and Computer Architecture Conference (FPCA) in Pod]a
Oregon. After discussing the situation, Peyton Jones ardakiu
decided to initiate a meeting during FPCA, to garner inteirede-
signing a new, common functional language. Wadler alsopstdp

at Yale on the way to FPCA, and also endorsed the idea of a meet-
ing.

The FPCA meeting thus marked the beginning of the Haskell de-
sign process, although we had no name for the language apd ver
few technical discussions or design decisions occurrefadty a

key point that came out of that meeting was that the easigstava
move forward was to begin with an existing language, andvevol

it in whatever direction suited us. Of all the lazy languageser
development, David Turner's Miranda was by far the most meatu

It was pure, well designed, fulfilled many of our goals, hada r
bust implementation as a product of Turner's company, Rebea
Software Ltd, and was running at 120 sites. Turner was nagure

at the meeting, so we concluded that the first action item ef th
committee would be to ask Turner if he would allow us to adopt
Miranda as the starting point for our new language.

After a brief and cordial interchange, Turner declined. Haals
were different from ours. We wanted a language that couldsiee u
among other purposes, for research into language featarpsy-
ticular, we sought the freedom for anyone to extend or mottiéy
language, and to build and distribute an implementationndiy
by contrast, was strongly committed to maintaining a sirigte
guage standard, with complete portability of programs imithe
Miranda community. He did not want there to be multiple ditde
of Miranda in circulation and asked that we make our new lan-
guage sufficiently distinct from Miranda that the two wouldt be
confused. Turner also declined an invitation to join the miesign
committee.

For better or worse, this was an important fork in the road. Al
though it meant that we had to work through all the minutiae of
a new language design, rather than starting from an alreadly w
developed basis, it allowed us the freedom to contemplatee mo
radical approaches to many aspects of the language desigex+
ample, if we had started from Miranda it seems unlikely that w
would have developed type classes (see Section 6.1). Nevert
less, Haskell owes a considerable debt to Miranda, bothdbeal
inspiration and specific language elements that we freebptzd
where they fitted into our emerging design. We discuss tlaiosl-
ship between Haskell and Miranda further in Section 3.8.

Once we knew for sure that Turner would not allow us to use Mi-
randa, an insanely active email discussion quickly ensusitg

the mailing listfplangc@cs.ucl.ac.uk, hosted at the Univer-
sity College London, where Peyton Jones was a faculty member
The email list name came from the fact that originally we el
ourselves the “FPLang Committee,” since we had no name éor th
language. It wasn't until after we named the language (8e&i4)

that we started calling ourselves the “Haskell Committee.”

2.4 The first meetings

The Yale Meeting The first physical meeting (after the im-
promptu FPCA meeting) was held at Yale, January 9-12, 1988,
where Hudak was an Associate Professor. The first order of bus
ness was to establish the following goals for the language:

1. It should be suitable for teaching, research, and applmadi,

including building large systems.

. It should be completely described via the publication ofra fo
mal syntax and semantics

. It should be freely availableAnyone should be permitted to
implement the language and distribute it to whomever they
please.

. It should be usable as a basis for further language research.
. It should be based on ideas that enjoy a wide consensus.

. It should reduce unnecessary diversity in functional paogf
ming languagesMore specifically, we initially agreed to base
it on an existing language, namely OL.

The last two goals reflected the fact that we intended theulane
to be quite conservative, rather than to break new grouritiofigh
matters turned out rather differently, we intended to dielimore

than embody the current consensus of ideas and to unite sur di
parate groups behind a single design.

As we shall see, not all of these goals were realised. We ainead
the idea of basing Haskell explicitly on OL very early; we leied
the goal of embodying only well-tried ideas, notably by theli-
sion of type classes; and we never developed a formal sersanti
We discuss the way in which these changes took place in $&ktio

Directly from the minutes of the meeting, here is the comeaitt
process that we agreed upon:

1. Decide topics we want to discuss, and assign “lead petson”

each topic.

. Lead person begins discussion by summarising the issmes f
his topic.

¢ |n particular, begin with a description of how OL does it.
o OL will be the default if no clearly better solution exists.

. We should encourage breaks, side discussions, andtlitera
research if necessary.

. Some issues wilhot be resolved! But in such cases we should
establish action items for their eventual resolution.

It may seem silly, but we should not adjourn this meetingl un
at least one thing is resolvednamefor the language!

. Attitude will be important: a spirit of cooperation andnepro-
mise.

5.

We return later to further discussion of the committee degigp-
cess, in Section 3.5. A list of all people who served on thekelhs
Committee appears in Section 14.

Choosing a Name The fifth item above was important, since a

small but important moment in any language’s evolution is th

moment it is named. At the Yale meeting we used the following
process (suggested by Wadler) for choosing the name.

Anyone could propose one or more names for the languagehwhic
were all written on a blackboard. At the end of this procehs, t
following names appeared: Semla, Haskell, Vivaldi, Moz&fL
(Common Functional Language), Funl 88, Semlor, Candle (Com
mon Applicative Notation for Denoting Lambda Expressiofsin,
David, Nice, Light, ML Nouveau (or Miranda Nouveau, or LML
Nouveau, or ...), Mirabelle, Concord, LL, Slim, Meet, Lev@ulrry,
Frege, Peano, Ease, Portland, and Haskell B Curry. Aftesiden
able discussion about the various names, each person wefsd¢be

to cross out a name that he disliked. When we were done, these w
one name left.

That name was “Curry,” in honour of the mathematician and lo-
gician Haskell B. Curry, whose work had led, variously andiin
rectly, to our presence in that room. That night, two of udised
that we would be left with a lot of curry puns (aside from thé&sp
and the thought of currying favour, the one that truly hoexdfius
was Tim Curry—TIM was Jon Fairbairn’s abstract machine, and
Tim Curry was famous for playing the lead in the Rocky Horror
Picture Show). So the next day, after some further discossie
settled on “Haskell” as the name for the new language. Oniér la
did we realise that this was too easily confused with Pasddbs-
sle!

Hudak and Wise were asked to write to Curry’s widow, Virginia
Curry, to ask if she would mind our naming the language afésr h
husband. Hudak later visited Mrs. Curry at her home andrete
to stories about people who had stayed there (such as Chuodch a
Kleene). Mrs. Curry came to his talk (which was about Haskéll
course) at Penn State, and although she didn’t understaratch w

of what he was saying, she was very gracious. Her partingnema
was “You know, Haskell actually never liked the name Haskell

The Glasgow Meeting Email discussions continued fervently af-
ter the Yale Meeting, but it took a second meeting to resolaa@yn
of the open issues. That meeting was held April 6-9, 1988at th
University of Glasgow, whose functional programming grougs
beginning a period of rapid growth. It was at this meetingt tha
many key decisions were made.

It was also agreed at this meeting that Hudak and Wadler wmeild
the editors of the first Haskell Report. The name of the refjBe-
port on the Programming Language Haskell, A Non-strict,eBur
Functional Language,” was inspired in part by the “Reportua
Algorithmic Language Scheme,” which in turn was modellegiaf
the “Report on the Algorithmic Language Algol.”

IFIP WG2.8 Meetings The '80s were an exciting time to be do-
ing functional programming research. One indication oft ke
citement was the establishment, due largely to the effottobin
Williams (long-time collaborator with John Backus at IBM-Al
maden), of IFIP Working Group 2.8 on Functional Programming
This not only helped to bring legitimacy to the field, it alsoyided

a convenient venue for talking about Haskell and for pigggking
Haskell Committee meetings before or after WG2.8 meetifigs.
firsttwo WG2.8 meetings were held in Glasgow, Scotland, 1y
15, 1988, and in Mystic, CT, USA, May 1-5, 1989 (Mystic is abou
30 minutes from Yale). Figure 1 was taken at the 1992 meeting o
WG2.8 in Oxford.

2.5 Refining the design

After the initial flurry of face-to-face meetings, therelfabed fif-
teen years of detailed language design and developmentdlicoo
nated entirely by electronic mail. Here is a brief time-limfehow
Haskell developed:

September 1987 Initial meeting at FPCA, Portland, Oregon.
December 1987 .Subgroup meeting at University College London.
January 1988. A multi-day meeting at Yale University.

April 1988. A multi-day meeting at the University of Glasgow.
July 1988. The first IFIP WG2.8 meeting, in Glasgow.

May 1989. The second IFIP WG2.8 meeting, in Mystic, CT.

1 April 1990. The Haskell version 1.0 Report was published (125
pages), edited by Hudak and Wadler. At the same time, the
Haskell mailing list was started, open to all.

The closedfplangc mailing list continued for committee dis-
cussions, but increasingly debate took place on the public
Haskell mailing list. Members of the committee became in-
creasingly uncomfortable with the “us-and-them” over®oé
having both public and private mailing lists, and by Aprila9

the fplangc list fell into disuse. All further discussion about
Haskell took place in public, but decisions were still mage b
the committee.

August 1991. The Haskell version 1.1 Report was published (153
pages), edited by Hudak, Peyton Jones, and Wadler. This was
mainly a “tidy-up” release, but it includetket expressions and
operator sections for the first time.

the Noticeseditor Dick Wexelblat, for their willingness to pub-
lish such an enormous document. It gave Haskell both visibil
and credibility.

1994. Haskell gained Internet presence when John Peterson regis-

tered the haskell.org domain name and set up a server and web-
site at Yale. (Hudak’s group at Yale continues to maintai th
haskell.org server to this day.)

May 1996. The Haskell version 1.3 Report was published, edited

by Hammond and Peterson. In terms of technical changes,
Haskell 1.3 was the most significant release of Haskell after
1.0. In particular:

e A Library Report was added, reflecting the fact that pro-
grams can hardly be portable unless they can rely on stan-
dard libraries.

e Monadic I/O made its first appearance, including “do” syn-
tax (Section 7), and the I/O semantics in the Appendix was
dropped.

e Type classes were generalised to higher kinds—so-called
“constructor classes” (see Section 6).

e Algebraic data types were extended in several ways: new-
types, strictness annotations, and named fields.

April 1997. The Haskell version 1.4 report was published (139

+ 73 pages), edited by Peterson and Hammond. This was a
tidy-up of the 1.3 report; the only significant change is that
list comprehensions were generalised to arbitrary monads,
decision that was reversed two years later.

February 1999 The Haskell 98 Report: Language and Libraries

was published (150 + 89 pages), edited by Peyton Jones and
Hughes. As we describe in Section 3.7, this was a very signifi-
cant moment because it represented a commitment to syabilit
List comprehensions reverted to just lists.

1999-2002In 1999 the Haskell Committgeer seceased to exist.

Peyton Jones took on sole editorship, with the intention of
collecting and fixing typographical errors. Decisions wace
longer limited to a small committee; now anyone reading the
Haskell mailing list could participate.

However, as Haskell became more widely used (partly because
of the existence of the Haskell 98 standard), many small flaws
emerged in the language design, and many ambiguities in the
Report were discovered. Peyton Jones’s role evolved toothat
Benign Dictator of Linguistic Minutiae.

December 2002The Revised Haskell 98 Report: Language and

Libraries was published (260 pages), edited by Peyton Jones
Cambridge University Press generously published the Reygor

a book, while agreeing that the entire text could still balatde
online and be freely usable in that form by anyone. Their flex-
ibility in agreeing to publish a book under such unusual term
was extraordinarily helpful to the Haskell community, ared d
fused a tricky debate about freedom and intellectual ptgper

Itis remarkable that it took four years from the first pubtioa

of Haskell 98 to “shake down” the specification, even though
Haskell was already at least eight years old when Haskell 98
came out. Language design is a slow process!

March 1992. The Haskell version 1.2 Report was published (164 Figure 2 gives the Haskell time-line in graphical fdrnMany of
pages), edited by Hudak, Peyton Jones, and Wadler, introduc the |mplementat|on§, libraries, and tools mentioned infthere
ing only minor changes to Haskell 1.1. Two months later, in 2re discussed later in the paper.

May 1992, it appeared i8IGPLAN Noticesaccompanied by
a “Gentle introduction to Haskell” written by Hudak and Hase
We are very grateful to the SIGPLAN chair Stu Feldman, and *This figure was kindly prepared by Bernie Pope and Don Stewart

e

b

Back row

Next row

John Launchbury, Neil Jones, Sebastian Hunt, Jeel Faeraint Jones (glasses),
Geoffrey Burn, Colin Runciman (moustache)
Philip Wadler (big beard), Jack Dennis (beard)riPaiO’Keefe (glasses), Alex Aiken (mostly

hidden), Richard Bird, Lennart Augustsson, Rex Page, Glaitkin (moustache), Joe Stoy (red
shirt), John Williams, John O’'Donnell, David Turner (red)ti

Front standing row

John Hughes, David Lester
Seated
On floor

Mario Coppo, Warren Burton, Corrado BogBave MacQueen (beard), Mary Sheeran,

Karen MacQueen, Luca Cardelli, Dick Kieburtz, CBtack, Mrs Boehm, Mrs Williams, Dorothy Peyton Jones
Simon Peyton Jones, Paul Hudak, Richard (Corky)v@ayt

Figure 1. Members and guests of IFIP Working Group 2.8, Oxford, 1992

2.6 Was Haskell a joke?

The first edition of the Haskell Report was published on Afril
1990. It was mostly an accident that it appeared on April Bool

Day—a date had to be chosen, and the release was close enough t 2

April 1 to justify using that date. Of course Haskell was negpbut
the release did lead to a number of subsequent April Fodtisgo

What got it all started was a rather frantic year of Haskelladiep-
ment in which Hudak’s role as editor of the Report was esfiigcia
stressful. On April 1 a year or two later, he sent an email mgss
to the Haskell Committee saying that it was all too much fon hi

and that he was not only resigning from the committee, he was

also quitting Yale to pursue a career in music. Many membérs o
the committee bought into the story, and David Wise immedijat
phoned Hudak to plead with him to reconsider his decision.

Of course it was just an April Fool's joke, but the seed hadnbee
planted for many more to follow. Most of them are detailed lo@ t
Haskell website at haskell.org/humor, and here is a sumuofahe
more interesting ones:

1. On April 1, 1993, Will Partain wrote a brilliant announcent

about an extension to Haskell calleldskerlthat combined the
best ideas in Haskell with the best ideas in Perl. Its tectiiyic
detailed and very serious tone made it highly believable.

Several of the responses to Partain’s well-written hoa@xew
equally funny, and also released on April 1. One was by Hudak,
in which he wrote:

“Recently Haskell was used in an experiment here at Yale in
the Medical School. It was used to replace a C program that
controlled a heart-lung machine. In the six months that i wa

in operation, the hospital estimates that probably a doxes |
were saved because the program was far more robust than the C
program, which often crashed and killed the patients.”

In response to this, Nikhil wrote:

“Recently, a local hospital suffered many malpracticessdite
to faulty software in their X-ray machine. So, they decided t
rewrite the code in Haskell for more reliability.

1987

1988

1989

1990

1991

1992

1993

1994

1995

1996

1997

1998

1999

2000

2001

2002

2003

2004

2005

2006

2007

— - Haskell mailing list

www.haskell.org

(Haskell Cafe mailing Iist) - -

e o sae oasan “PE haml

roskeiwii) (Template Raskell)

. Meetings . Compilers and interpreters

. Reports

Online activities . Tools and libraries

. Literature

Figure 2. Haskell timeline

“Malpractice suits have now dropped to zero. The reasorsis th
they haven't taken any new X-rays (‘we’re still compilingeth
Standard Prelude’).”

3. On April 1, 1998, John Peterson wrote a bogus press release
in which it was announced that because Sun Microsystems had

sued Microsoft over the use of Java, Microsoft had decided to
adopt Haskell as its primary software development language
Ironically, not long after this press release, Peyton Jares

nounced his move from Glasgow to Microsoft Research in

programs, and there can be much more than a constant factor at
stake. As we discuss in Section 10.2, the prevalence of Spes®
leaks led us to add some strict features to Haskell, sugk@and

strict data types (as had been done in SASL and Miranda Barlie
Dually, strict languages have dabbled with laziness (Wastlal.,
1988). As a result, the strict/lazy divide has become mush &
all-or-nothing decision, and the practitioners of eacltoggise the
value of the other.

Cambridge, an event that Peterson knew nothing about at the3.2 Haskell is pure

time.

An immediate consequence of laziness is that evaluatioerasd

Subsequent events have made Peterson’s jape even more progemand-driven. As a result, it becomes more or less implesgib

phetic. Microsoft did indeed respond to Java by backinglzerot
language, but it was C# rather than Haskell. But many of the
features in C# were pioneered by Haskell and other functiona
languages, notably polymorphic types and LINQ (Language In
tegrated Query). Erik Meijer, a principal designer of LINSys
that LINQ is directly inspired by the monad comprehensians i
Haskell.

. On April 1, 2002, Peterson wrote another bogus but eriterta
ing and plausible article entitled “Computer Scientist &t
the ‘Bottom’ of Financial Scandal.” The article describesvh
Peyton Jones, using his research on formally valuating iahn
contracts using Haskell (Peyton Jones et al., 2000), was abl
to unravel Enron’s seedy and shaky financial network. Peyton
Jones is quoted as saying:

“It's really very simple. If | write a contract that says italue

is derived from a stock price and the worth of the stock depend
solely on the contract, we have bottom. So in the end, Enrdn ha
created a complicated series of contracts that ultimatadirio
value at all.”

3. Goals, principles, and processes

In this section we reflect on the principles that underlay think-
ing, the big choices that we made, and processes that ledru th

3.1 Haskellis lazy

Laziness was undoubtedly the single theme that united theusa
groups that contributed to Haskell's design. Technicdtigskell

is a language with a non-strict semantics; lazy evaluatosim-

ply one implementation technique for a non-strict langudggv-

ertheless the term “laziness” is more pungent and evoc#tiae
“non-strict,” so we follow popular usage by describing Helslas

lazy. When referring specifically to implementation tecjugs we
will use the term “call-by-need,” in contrast with the calj-value

mechanism of languages like Lisp and ML.

By the mid-eighties, there was almost a decade of experiehce
lazy functional programming in practice, and its attractiovere
becoming better understood. Hughes'’s paper “Why functiprea
gramming matters” captured these in an influential marofést
lazy programming, and coincided with the early stages okelitis
design. (Hughes first presented it as his interview talk wdqgly-
ing for a position at Oxford in 1984, and it circulated infaatly
before finally being published in 1989 (Hughes, 1989).)

Laziness has its costs. Call-by-need is usually less affi¢tean
call-by-value, because of the extra bookkeeping requioedetay
evaluation until a term is required, so that some terms mayao
evaluated, and to overwrite a term with its value, so thatemmtis
evaluated twice. This cost is a significant but constaniofaend
was understood at the time Haskell was designed.

A much more important problem is this: it is very hard for even
experienced programmers to predict tgacebehaviour of lazy

reliably perform input/output or other side effects as thsuit of a
function call. Haskell is, therefore, gure language. For example,
if a function £ has typeInt -> Int you can be sure that will
not read or write any mutable variables, nor will it performya
input/output. In shortf really is afunctionin the mathematical
sense: every callf 3) will return the same value.

Once we were committed to kazy language, gpure one was
inescapable. The converse is not true, but it is notable ithat
practice most pure programming languages are also lazy. AWhy
Because in a call-by-value language, whether functionabtrthe
temptation to allow unrestricted side effects inside a thion” is
almost irresistible.

Purity is a big bet, with pervasive consequences. Unresttiside
effects are undoubtedly very convenient. Lacking side otffe
Haskell's input/output was initially painfully clumsy, Wwth was a
source of considerable embarrassment. Necessity beingdtieer

of invention, this embarrassment ultimately led to the imien of
monadic I/Q which we now regard as one of Haskell's main con-
tributions to the world, as we discuss in more detail in Seci.

Whether a pure language (with monadic effects) is ultinyatie¢
best way to write programs is still an open question, butritadely

is a radical and elegant attack on the challenge of progragmi
and it was that combination of power and beauty that motil/ate
the designers. In retrospect, therefore, perhaps the &iggegle
benefit of laziness is not lazinepgr se but rather that laziness
kept us pure, and thereby motivated a great deal of produatirk

on monads and encapsulated state.

3.3 Haskell has type classes

Although laziness was what brought Haskell's designersttoey, it
is perhaps type classes that are now regarded as Haskeéitsliso
tinctive characteristic. Type classes were introducedhéoHaskell
Committee by Wadler in a message sent to theangc mailing
list dated 24 February 1988.

Initially, type classes were motivated by the narrow prablef
overloading of numeric operators and equality. These problhad
been solved in completely different ways in Miranda and SML.

SML used overloading for the built-in numeric operatorsalged
at the point of call. This made it hard to define new numeriaape
tions in terms of old. If one wanted to define, say, squarermseof
multiplication, then one had to define a different versiondach
numeric type, say integers and floats. Miranda avoided tttb-p
lem by having only a single numeric type, calledh, which was a
union of unbounded-size integers and double-precisionsfl@ath
automatic conversion afnt to float when required. This is con-
venient and flexible but sacrifices some of the advantage®t€ s
typing — for example, in Miranda the expressiarod 8 3.4) is
type-correct, even though in most languages the modulusitme
mod only makes sense for integer moduli.

SML also originally used overloading for equality, so oneldmot
define the polymorphic function that took a list and a valué e
turned true if the value was equal to some element of the(list.
define this function, one would have to pass in an equalgtirtg
function as an extra argument.) Miranda simply gave equalit
polymorphic type, but this made equality well defined on tiorc
types (it raised an error at run time) and on abstract typgeso(n-
pared their underlying representation for equality, aafian of the
abstraction barrier). A later version of SML included polgrphic
equality, but introduced special “equality type variabl@sritten

’ 73 instead of’a) that ranged only over types for which equality
was defined (that is, not function types or abstract types).

Type classes provided a uniform solution to both of thesblpros.
They generalised the notion of equality type variables ffaikhL,
introducing a notion of a “class” of types that possessedangset
of operations (such as numeric operations or equality).

The type-class solution was attractive to us because itsgemore
principled, systematic and modular than any of the altérest so,
despite its rather radical and unproven nature, it was adbpt/
acclamation. Little did we know what we were letting ourgsiin
for!

Wadler conceived of type classes in a conversation with eelF
after one of the Haskell meetings. Fasel had in mind a differe
idea, but it was he who had the key insight that overloadirayikh
be reflected in the type of the function. Wadler misundetobat
Fasel had in mind, and type classes were born! Wadler's stude
Steven Blott helped to formulate the type rules, and proved t
system sound, complete, and coherent for his doctoral s
(Wadler and Blott, 1989; Blott, 1991). A similar idea wasrfar-
lated independently by Stefan Kaes (Kaes, 1988).

We elaborate on some of the details and consequences ofhe ty
class approach in Section 6. Meanwhile, it is instructiveefitect

on the somewhat accidental nature of such a fundamentaleand f
reaching aspect of the Haskell language. It was a happyideince

of timing that Wadler and Blott happened to produce this kisai

at just the moment when the language design was still in flux.
It was adopted, with little debate, in direct contradictitmour
implicit goal of embodying a tried-and-tested consensusad
far-reaching consequences that dramatically exceededndial
reason for adopting it in the first place.

3.4 Haskell has no formal semantics

Indeed, in practice the static semantics of Haskell (i.e.shman-
tics of its type system) is where most of the complexity liese
consequences of not having a formal static semantics isapsra
challenge for compiler writers, and sometimes results inlbdif-
ferences between different compilers. But for the usereanpro-
gram type-checks, there is little concern about the staticasntics,
and little need to reason formally about it.

Fortunately, the dynamic semantics of Haskell is relagigiinple.
Indeed, at many times during the design of Haskell, we reddd
denotational semantics to discuss design options, as iflkaew

what the semantics of Haskshouldbe, even if we didn’t write it
all down formally. Such reasoning was especially usefukason-
ing about “bottom” (which denotes error or non-terminatiamd
occurs frequently in a lazy language in pattern matchinggtion

calls, recursively defined values, and so on).

Perhaps more importantly, the dynamic semantics of Haiskedip-
tured very elegantly for the average programmer throughuéeq
tional reasoning"—much simpler to apply than a formal danot
tional or operational semantics, thanks to Haskell's purfthe
theoretical basis for equational reasoning derives from stan-
dard reduction rules in the lambda calculys é&ndn-reduction),
along with those for primitive operations (so-callédules). Com-
bined with appropriate induction (and co-induction) piptes, it
is a powerful reasoning method in practice. Equational oeing)
in Haskell is part of the culture, and part of the trainingttbe-
ery good Haskell programmer receives. As a result, there beay
more proofs of correctness properties and program tramsftons
in Haskell than any other language, despite its lack of a &ilym
specified semantics! Such proofs usually ignore the fadtdbiae
of the basic steps used—suchpaeduction in Haskell—would not
actually preserve a fully formal semantics even if there was,
yet amazingly enough, (under the right conditions) the tsions
drawn are valid even so (Danielsson et al., 2006)!

Nevertheless, we always found it a little hard to admit th&ra
guage as principled as Haskell aspires to be has no formali-defi
tion. But that is the fact of the matter, and it is not withoist&d-
vantages. In particular, the absence of a formal languafieititen
does allow the language &wolvemore easily, because the costs of
producing fully formal specifications of any proposed chaiage
heavy, and by themselves discourage changes.

3.5 Haskell is a committee language
Haskell is a language designed by committee, and convetion

One of our explicit goals was to produce a language that had a wisdom would say that a committee language will be full of
formally defined type system and semantics. We were strongly warts and awkward compromises. In a memorable letter to the

motivated by mathematical techniques in programming laggu

Haskell Committee, Tony Hoare wistfully remarked that Hakk

design. We were inspired by our brothers and sisters in the ML was “probably doomed to succeed.”

community, who had shown that it was possible to give a cotaple
formal definition of a language, and tBefinition of Standard ML
(Milner and Tofte, 1990; Milner et al., 1997) had a place ofbior
on our shelves.

Nevertheless, we never achieved this goal. The Haskell iRépo
lows the usual tradition of language definitions: it usesfidly
worded English language. Parts of the language (such asethe s
mantics of pattern matching) are defined by a translatioa ant
small “core language”, but the latter is never itself fortyapeci-
fied. Subsequent papers describe a good part of Haskeltialpe
its type system (Faxen, 2002), but there is no one documaint th
describes the whole thing. Why not? Certainly not because of
conscious choice by the Haskell Committee. Rather, it jesen
seemed to be the most urgent task. No one undertook the waik, a
in practice the language users and implementers seemechtgma
perfectly well without it.

Yet, as it turns out, for all its shortcomings Haskell is ofte
described as “beautiful” or “elegant’—even “cool’—whichrea
hardly words one would usually associate with committeégueas
How did this come about? In reflecting on this question wetiden
fied several factors that contributed:

e The initial situation, described above in Section 2, wasy/ver
favourable. Our individual goals were well aligned, and we
began with a strong shared, if somewhat fuzzy, vision of what
we were trying to achieve. We all needed Haskell.

e Mathematical elegance was extremely important to us, forma
semantics or no formal semantics. Many debates were punctu-
ated by cries of “does it have a compositional semantics?” or
“what does the domain look like?” This semi-formal approach
certainly made it more difficult foad hoclanguage features to
creep in.

¢ We held several multi-day face-to-face meetings. Manyensitt 3.7 Haskell and Haskell 98
that were discussed extensively by email were only reschted

one of these meetings. The goal of using Haskell for research demaestslution while

using the language for teaching and applications requiaslity.

e At each moment in the design process, one or two members of At the beginning, the emphasis was firmly on evolution. Thef-pr
the committee served e Editor The Editor could not make ace of every version of the Haskell Report statdie committee
binding decisions, but was responsible for driving debédes hopes that Haskell can serve as a basis for future resear¢min
conclusion. He also was the custodian of the Report, and was guage design. We hope that extensions or variants of theifmey
responsible for embodying the group’s conclusion in it. may appear, incorporating experimental features.”

At each moment in the design process, one member of the However, as Haskell started to become popular, we startggtto
committee (not necessarily the Editor) served as $yatax complaints about changes in the language, and questiong abo
Czar. The Czar was empowered to make binding decisions what our plans were. “I want to write a book about Haskell, but

about syntactic matters (only). Everyone always says #mat f | can't do that if the language keeps changing” is a typicat] a
too much time is devoted to discussing syntax—but many of the fyly justified, example.

same people will fight to the death for their preferred synfbol .) .
lambda. The Syntax Czar was our mechanism for bringing such [N response to this pressure, the committee evolved a siemle

debates to an end. obvious solution: we simply named a particular instancénefian-
guage “Haskell 98,” and language implementers committechth
3.6 Haskell is a big language selves to continuing to support Haskell 98 indefinitely. \&garded

. . i Haskell 98 as a reasonably conservative design. For exaroyple
A major source of tension both within and between members of ..o multi-parameter type classes were being widedylpsut

the committee was the competition between beauty andyutit : N toesJ
the one hand we passionately wanted to design a simple,ntlega sta;kellgg%only has single-parameter type classes (Pe

language; as Hoare so memorably put it, “There are two ways of

constructing a software design: one way is to make it so @izt The (informal) standardisation of Haskell 98 was an impurtarn-
there are obviously no deficiencies, and the other way is tkema ing point for another reason: it was the moment that the Hhske
it so complicated that there are no obvious deficiencies. fiFee Committee disbanded. There was (and continues to be) artreme

method is far more difficult.” On the other hand, we ateally dous amount of innovation and activity in the Haskell comityin
wanted Haskell to be a useful language, for both teachingeald including numerous proposals for language features. Bilitera
applications. than having a committee to choose and bless particular dnes,

seemed to us that the best thing to do was to get out of the way,
let a thousand flowers bloom, and see which ones survivedast w
also a huge relief to be able to call the task finished and tmfite
enormous mail archives safely away.

Although very real, this dilemma never led to open warfarelid,
however, lead Richard Bird to resign from the committee irl-mi
1988, much to our loss. At the time he wrote, “On the eviderfce o
much of the material and comments submitted gdang, there is

a severe danger that the principles of simplicity, ease @ffprand We made no attempt to discourage variants of Haskell otrar th
elegance will be overthrown. Because much of what is prapase ~ Haskell 98; on the contrary, we explicitly encouraged thethier
half-baked, retrogressive, and even baroque, the redikieig to be development of the language. The nomenclature encourages t
amess. We are urged to return to the mind-numbing syntaxspf Li idea that “Haskell 98” is a stable variant of the languageilavh
(a language that held back the pursuit of functional prognamg its free-spirited children are free to term themselves ‘kédls

for over a decade). We are urged to design for ‘big’ programs
because constructs that are ‘aesthetic’ for small prognaithfose
their attractiveness when the scale is increased. We agl urg

' In the absence of a language committee, Haskell has codtitoue
evolve apace, in two quite different ways.

allow large where-clauses with deeply nested structureshort, e First, as Haskell has become a mature language with thossand
it seems we are urged to throw away the one feature of furadtion of users, it has had to grapple with the challenges of scale
programming that distinguishes it from the conventionaickand and complexity with which any real-world language is faced.
may ensure its survival into the 21st century: susceptybiid That has led to a range of practically oriented features and
formal proof and construction.” resources, such as a foreign-function interface, a riclectibn

of libraries, concurrency, exceptions, and much else lessid

In the end, the committee wholeheartedly embrasegerficial We summarise these developments in Section 8.

complexity; for example, the syntax supports many ways ef ex

pressing the same thing, in contradiction to our originalima- ¢ At the same time, the language has simultaneously served as
tions (Section 4.4). In other places, we eschewedpcomplex- a highly effective laboratory in which to explore advanced
ity, despite the cost in expressiveness—for example, wédagdo language design ideas, especially in the area of type sgstem
parametrised modules (Section 8.2) and extensible redQes- and meta-programming. These ideas surface both in papers—
tion 5.6). In just one case, type classes, we adopted an lide¢a t witness the number of research papers that take Haskelegs th
complicated everything but was just too good to miss. Thdeea base language—and in Haskell implementations. We discuss a
will have to judge the resulting balance, but even in reteaspve number of examples in Section 6.

feel that the elegant core of purely functional programntiag sur-
vived remarkably unscathed. If we had to pick places whea¢ re
compromises were made, they would be the monomorphism re-
striction (see Section 6.2) and the loss of parametricityrying,

and surjective pairing due teq (see Section 10.3).

The fact that Haskell has, thus far, managed the tensioneestw
these two strands of development is perhaps due to an at@iden
virtue: Haskell has not beconeo successful. The trouble with
runaway success, such as that of Java, is that you get too many
users, and the language becomes bogged down in standaeds, us
groups, and legacy issues. In contrast, the Haskell contynisi
small enough, and agile enough, that it usually not only disso
language changes but positively welcomes them: it’s likevting

red meat to hyenas.

3.8 Haskell and Miranda

At the time Haskell was born, by far the most mature and widely
used non-strict functional language was Miranda. Miranda &
product of David Turner's company, Research Software Leohit
which he founded in 1983. Turner conceived Miranda to carry
lazy functional programming, with Hindley-Milner typingAjiner,
1978), into the commercial domain. First released in 198%h w

Miranda’s proprietary status did not enjoy universal suppo

the academic community. As required to safeguard his tradem
Turner always footnoted the first occurrence of Miranda g a-
pers to state it was a trademark of Research Software Limited
In response, some early Haskell presentations includedtadte
"Haskell is not a trademark”. Miranda’s licence conditicatsthat
time required the licence holder to seek permission befistefolut-

ing an implementation of Miranda or a language whose desagm w

subsequent releases in 1987 and 1989, Miranda had a well sup-substantially copied from Miranda. This led to friction ween Ox-

ported implementation, a nice interactive user interfacel a vari-
ety of textbooks (four altogether, of which the first was fzattarly

influential (Bird and Wadler, 1988)). It was rapidly takenlpboth

academic and commercial licences, and by the early 199Ganilir
was installed (although not necessarily taught) at 250eusities
and around 50 companies in 20 countries.

Haskell's design was, therefore, strongly influenced byaviita.
At the time, Miranda was the fullest expression of a norektri
purely functional language with a Hindley-Milner type systand
algebraic data types—and that was precisely the kind ofuagg
that Haskell aspired to be. As a result, there are many diitiéis
between the two languages, both in their basic approachtypur
higher order, laziness, static typing) and in their syritdciok and
feel. Examples of the latter include: the equational stfléuac-
tion definitions, especially pattern matching, guards, ahére
clauses; algebraic types; the notation for lists and listp@hen-
sions; writing pair types aénum,bool) rather than thent*bool
of ML; capitalisation of data constructors; lexically digjuished
user-defined infix operators; the use of a layout rule; andhre-
ing of many standard functions.

There are notable differences from Miranda too, includiplgce-
ment of guards on the left of=" in a definition; a richer syntax
for expressions (Section 4.4); different syntax for dafgetgdecla-
rations; capitalisation of type constructors as well agdanstruc-
tors; use of alphanumeric identifiers for type variabletheathan
Miranda’s*, **, etc.; how user-defined operators are distinguished
(x $op y in Miranda vs.x ‘op‘ y in Haskell); and the details
of the layout rule. More fundamentally, Haskell did not atlbji-
randa’s abstract data types, using the module system ¢thses-
tion 5.3); added monadic 1/O (Section 7.2); and incorpatateny
innovations to the core Hindley-Milner type system, esalbctype
classes (Section 6).

Today, Miranda has largely been displaced by Haskell. Ode in
cation of that is the publication of textbooks: while Haskeloks
continue to appear regularly, the last textbook in Englishuse
Miranda was published in 1995. This is at first sight surpdsbe-
cause it can be hard to displace a well-established incumben
the economics worked against Miranda: Research Softwaseawa
small company seeking a return on its capital; academiadies
were cheaper than commercial ones, but neither were freiée wh
Haskell was produced by a group of universities with publicds
and available free to academic and commercial users alikeeM
over, Miranda ran only under Unix, and the absence of a Wirsdow
version increasingly worked against it.

Although Miranda initially had the better implementatidtaskell
implementations improved more rapidly—it was hard for a kma
company to keep up. Hugs gave Haskell a fast interactivefaue
similar to that which Research Software supplied for Miraiand
Hugs ran under both Unix and Windows), while Moore’s law made
Haskell's slow compilers acceptably fast and the code tleneg
ated even faster. And Haskell had important new ideas, apé#per
describes. By the mid-1990s, Haskell was a much more pedctic
choice for real programming than Miranda.

ford University and Research Software over the possibl&iblis
tion of Wadler's language Orwell. However, despite Haskelear
debt to Miranda, Turner raised no objections to Haskell.

The tale raises a tantalising “what if” question. What if hv
Turner had placed Miranda in the public domain, as some urged
him to do? Would the mid '80s have seen a standard lazy func-
tional language, supported by the research commuanity with

a company backing it up? Could Research Software have found
a business model that enabled it to benefit, rather thanrstrifen
university-based implementation efforts? Would the addil con-
straints of an existing design have precluded the creatidesame-
times anarchic ferment that has characterised the Haskeli-
nity? How different could history have been?

Miranda was certainly no failure, either commercially orestif-
ically. It contributed a small, elegant language desigrmaitvell-
supported implementation, which was adopted in many usiities
and undoubtedly helped encourage the spread of functiawal p
gramming in university curricula. Beyond academia, theafddi-
randa in several large projects (Major and Turcotte, 198teRand
Moe, 1993) demonstrated the industrial potential of a lamycf
tional language. Miranda is still in use today: it is stilutdt in
some institutions, and the implementations for Linux anth&®
(now free) continue to be downloaded. Turner’s efforts mager-
manent and valuable contribution to the development oféstan
the subject in general, paving the way for Haskell a few y&ses.

Part Il

Technical Contributions

4. Syntax

The phrase “syntax is not important” is often heard in disouss
about programming languages. In fact, in the 1980s thissghnas
heard more often than it is today, partly because there wasish
interest at the time in developing the theory behind, andrersis-
ing the importance of, théormal semantic®f programming lan-
guages, which was a relatively new field in itself. Many peogr
ming language researchers considered syntax to be thal tpiit
of language design, and semantics to be “where the actiori was

Despite this, the Haskell Committee worked very hard—magii
spent endless hours—on designing (and arguing about) titexsy

of Haskell. It wasn’t so much that we were boldly bucking ttesd,

or that the phrase “syntax is important” was a new retro-phthat
became part of our discourse, but rather that, for betterose; we
found that syntax design could be not only fun, but an obeassi
We also found that syntax, being the user interface of a laggu
could become very personal. There is no doubt that some of our
most heated debates were over syntax, not semantics.

In the end, was it worth it? Although not an explicit goal, af¢he
most pleasing consequences of our effort has been commesans h

many times over the years that “Haskell is a pretty languidem.
some reason, many people think that Haskell programs log ni
Why is that? In this section we give historical perspectwesany
of the syntactic language features that we think contriboitihis
impression. Further historical details, including somesisl consid-
ered and ultimately rejected, may be found in Hud&ksmputing
Surveysrticle (Hudak, 1989).

4.1 Layout

Most imperative languages use a semicolon to separate r#gjue
commands. In a language without side effects, however,dtiem
of sequencing is completely absent. There is still the neeskp-
arate declarations of various kinds, but the feeling of tlaskell
Committee was that we should avoid the semicolon and itsesequ
tial, imperative baggage.

Exploiting the physical layout of the program text is a siephd
elegant way to avoid syntactic clutter. We were familiarhniihe
idea, in the form of the “offside rule” from our use of Turnetan-
guages SASL (Turner, 1976) and Miranda (Turner, 1986)paljh
the idea goes back to Christopher Strachey’s CPL (Barron. et a
1963), and it was also featured in ISWIM (Landin, 1966).

The layout rules needed to be very simple, otherwise usetsdwo
object, and we explored many variations. We ended up with-a de
sign that differed from our most immediate inspiration, aida,

in supporting larger function definitions with less enfatdaden-
tation. Although we felt that good programming style inwdv
writing small, short function definitions, in practice wepected
that programmers would also want to write fairly large fuoot
definitions—and it would be a shame if layout got in the way. So
Haskell's layout rules are considerably more lenient tharahtla’s

in this respect. Like Miranda, we provided a way for the uger t
override implicit layout selectively, in our case by usingpkcit
curly braces and semicolons instead. One reason we thokight t
was important is that we expected people to write prograras th
generated Haskell programs, and we thought it would be etsie
generate explicit separators than layout.

Influenced by these constraints and a desire to “do what the pr
grammer expects”, Haskell evolved a fairly complex layaule+—
complex enough that it was formally specified for the firstdim
in the Haskell 98 Report. However, after a short adjustment p
riod, most users find it easy to adopt a programming stylefeist
within the layout rules, and rarely resort to overridingrtite

4.2 Functions and function application

There are lots of ways to define functions in Haskell—aftkitsab
a functional language—hbut the ways are simple and all fitttoare
in a sensible manner.

Currying Following a tradition going back to Frege, a function of

hyp :: Float -> Float -> Float
hyp x y = sqrt (x*x + y*y)

hyp :: (Float, Float) -> Float
hyp (x,y) = sqrt (x*xx + y*y)

In the latter, the function is viewed as taking a single argom
which is a pair of numbers. One advantage of currying is that i
is often more compactt x y contains three fewer lexemes than
f(x,y).

Anonymous functions The syntax for anonymous functions,
\x -> exp, was chosen to resemble lambda expressions, since
the backslash was the closest single ASCII character to thekG
letter \. However, =>" was used instead of a period in order to
reserve the period for function composition.

Prefix operators Haskell has only one prefix operator: arithmetic
negation. The Haskell Committee in fact did not wanty prefix
operators, but we couldn’t bring ourselves to force useraiite
something likeminus 42 or ~42 for the more conventionat42.
Nevertheless, the dearth of prefix operators makes it eésier
readers to parse expressions.

Infix operators The Haskell Committee wanted expressions to
look as much like mathematics as possible, and thus from day o
we bought into the idea that Haskell would have infix opesator

It was also important to us that infix operators be definable by
the user, including declarations of precedence and adityia
Achieving all this was fairly conventional, but we also defin
the following simple relationship between infix applicatiand
conventional function application: the formaiways binds less
tightly than the latter. Thug x + g y never needs parentheses,
regardless of what infix operator is used. This design dagisi
proved to be a good one, as it contributes to the readabifity o
programs. (Sadly, this simple rule is not adhered taipatterns,
which bind more tightly than anything; this was probably stake,
althoughe-patterns are not used extensively enough to cause major
problems.)

Sections Although a commitment to infix operators was made
quite early, there was also the feeling that all values inkidks
should be “first class"—especially functions. So there was-c
siderable concern about the fact that infix operators wetehby
themselves, first class, a problem made apparent by comgider
the expressiort + x. Does this mean the functiof applied to
two arguments, or the functionapplied to two arguments?

The solution to this problem was to use a generalised notfon o
sections a notation that first appeared in David Wile's disserta-
tion (Wile, 1973) and was then disseminated via IFIP WG2.1—
among others to Bird, who adopted it in his work, and Turner,
who introduced it into Miranda. A section is a partial apation

two arguments may be represented as a function of one argumen of an infix operator to no arguments, the left argument, orritjiet

that itself returns a function of one argument. This traditivas

argument—and by surrounding the result in parenthesesthame

honed by Moses Schonfinkel and Haskell Curry and came to be has a first-class functional value. For example, the foltapequiv-

calledcurrying.

Function application is denoted by juxtaposition and &aisses to
the left. Thusf x yis parsed(f x) y. This leads to concise and

powerful code. For example, to square each number in a list we (+y) =

writemap square [1,2,3], while to square each number in a list
of lists we writemap (map square) [[1,2],[3]].

alences hold:

#) =\xy > x+y

(x+) = \y > x+y
\X -> x+y

Being able to partially apply infix operators is consisterithw
being able to partially apply curried functions, so this wdsappy

Haskell, like many other languages based on lambda calculus solution to our problem.

supports both curried and uncurried definitions:

2The same is true of Miranda users.

3This is in contrast to the Scheme designers, who consigtaatid prefix
application of functions and binary operators (for example x y)),
instead of adopting mathematical convention.

(Sections did introduce one problem though: Recall thatkelhs
has only one prefix operator, namely negation. So the questio
arises, what is the meaning @+42)? The answer is negative
42! In order to get the functiohx-> x-42 one must write either
\x-> x-42, or (subtract 42), wheresubtract is a predefined
function in Haskell. This “problem” with sections was viedve
more as a problem with prefix operators, but as mentionedeearl
the committee decided not to buck convention in its treatroén
negation.)

Once we had sections, and in particular a way to convert infix
operators into ordinary functional values, we then askadelues
why we couldn’t go the other way. Could we design a mechanism
to convert an ordinary function into an infix operator? Oumgile
solution was to enclose a function identifier in backquotesr.
examplex ‘f¢ yis the same as x y. We liked the generality
that this afforded, as well as the ability to use “words” afixin
operators. For example, we felt that list membership, sag, more
readable when written as ‘elem‘ xs rather thanelem x xs.
Miranda used a similar notatiorx, $elem xs, taken from Art
Evans’ PAL (Evans, 1968).

4.3 Namespaces and keywords

Namespaces were a point of considerable discussion in thlecia
Committee. We wanted the user to have as much freedom as possi
ble, while avoiding any form of ambiguity. So we carefullyfided

a set of lexemes for each namespace that wetteogonal when
they needed to be, araVerlappedwhen context was sufficient to
distinguish their meaning. As an example of orthogonality,de-
signed normal variables, infix operators, normal data coosirs,
and infix data constructors to be mutually exclusive. As aamex
ple of overlap, capitalised names can, in the same lexiagiesc
refer to a type constructor, a data construcémg a module, since
whenever the namBoo appears, it is clear from context to which
entity it is referring. For example, it is quite common to e a
single-constructor data type like this:

data Vector = Vector Float Float

Here,Vector is the name of the data type, and the name of the
single data constructor of that type.

We adopted from Miranda the convention that data constrsici@
capitalised while variables are not, and added a similaveation
for infix constructors, which in Haskell must start with aaoel The
latter convention was chosen for consistency with our uder(eed
from SASL, KRC, and Miranda) of a single colanfor the list
“cons” operator. (The choice of:” for cons and “ :” for type
signatures, by the way, was a hotly contested issue (ML dues t
opposite) and remains controversial to this day.)

As a final comment, a small contingent of the Haskell Committe
argued that shadowing of variables shontit be allowed, because
introducing a shadowed name might accidentally captureiable
bound in an outer scope. But outlawing shadowing is incogsis
with alpha renaming—it means that you must know the bound
names of the inner scope in order to choose a name for use in a
outer scope. So, in the end, Haskell allowed shadowing.

Haskell has 21 reserved keywords that cannot be used as name
for values or types. This is a relatively low number (Erlaras 128,

4.4 Declaration style vs. expression style

As our discussions evolved, it became clear that there weoe t
different styles in which functional programs could be venit:
“declaration style” and “expression style” For example, here is
the filter function written in both stylés

filter :: (a -> Bool) -> [a] -> [a]

-- Declaration style
filter p []]

filter p (x:xs) | p x = x : rest
| otherwise = rest
where
rest = filter p xs

-- Expression style
filter = \p -> \xs >
case xs of
0 ->10
(x:xs) -> let
rest = filter p xs
in if (p x)
then x :
else rest

rest

The declaration style attempts, so far as possible, to daffoac-
tion by multiple equations, each of which uses pattern niatch
and/or guards to identify the cases it covers. In contraghé ex-
pression style a function is built up by composing expressimo-
gether to make bigger expressions. Each style is charseteby a
set of syntactic constructs:

Declaration style

where Clause

Function arguments on left hand side
Pattern matching in function definition|
Guards on function definitions

Expression-style
let expression
Lambda abstraction
S case expression

if expression

The declaration style was heavily emphasised in Turnaengdages
KRC (which introduced guards for the first time) and Miranda
(which introduced a where clause scoping over several gdard
equationsjncluding the guards The expression style dominates
in other functional languages, such as Lisp, ML, and Scheme.

It took some while to identify the stylistic choice as we halame
here, but once we had done so, we engaged in furious debate abo
which style was “better.” An underlying assumption was tHat
possible there should be “just one way to do something,” at th
for example, having bothet andwhere would be redundant and
confusing.

In the end, we abandoned the underlying assumption, and pro-
vided full syntactic support for both styles. This may seéke |

a classic committee decision, but it is one that the presgthioas
believe was a fine choice, and that we now regard as a strength
of the language. Different constructs have different neapand

real programmers do in practice employ batht and where,

both guards and conditionals, both pattern-matching difivé and

case expressions—not only in the same program but sometimes in

"the same function definition. It is certainly true that thelisdnal

syntactic sugar makes the language seem more elaborateistat
superficial sort of complexity, easily explained by pureyntctic
transformations.

OCaml has 48, Java has 50, C++ has 63—and Miranda has only

10), and keeping it low was a priority of the Haskell Commétte
Also, we tried hard to avoid keywords (such ass®) that might
otherwise be useful variable names.

4The example is a little contrived. One might argue that trdeagould be
less cluttered (in both cases) if one eliminated tbe or where, replacing
rest with filter p xs.

Two small but important matters concern guards. First, hiaa
placed guards on the far right-hand side of equations, thssmn-
bling common notation used in mathematics, thus:

ged x y = X, if x=y
= gcd (x-y) y, if x>y
= gcd x (y-x), otherwise
However, as mentioned earlier in the discussion of laycdu, t

Haskell Committee did not buy into the idea that programmers
should write (or feel forced to writedhortfunction definitions, and
placing the guard on the far right oflang definition seemed like a
bad idea. So, we moved them to the left-hand side of the definit
(seefilter andf above), which had the added benefit of placing
the guard right next to the patterns on formal parametersctwh

4.6 Comments

Comments provoked much discussion among the committee, and
Wadler later formulated a law to describe how effort wastetid

to various topics: semantics is discussed half as much asxsyn
syntax is discussed half as much as lexical syntax, anddexic
syntax is discussed half as much as the syntax of commens. Th
was an exaggeration: a review of the mail archives shows that
well over half of the discussion concerned semantics, afig in
operators and layout provoked more discussion than consnent
Still, it accurately reflected that committee members hétdng)
views on low-level details.

Originally, Haskell supported two commenting styles. Detiag
on your view, this was either a typical committee decisionao

logically made more sense), and in a place more suggestive ofvalid response to a disparate set of needs. Short commegits be

the evaluation order (which builds the right operationalitions).

with a double dask- and end with a newline; while longer com-

Because of this, we viewed our design as an improvement over ments begin wit{- and end with+}, and can be nested. The longer

conventional mathematical notation.

Second, Haskell adopted from Miranda the idea thatexre clause

is attached to aleclaration not an expression, and scopes over
the guards as well as the right-hand sides of the declagatieor
example, in Haskell one can write:

firstSat :: (a->Bool) -> [a] -> Maybe a

firstSat p xs | null xps = Nothing
| otherwise = Just xp
where
xps = filter p xs

Xp head xps

Here, xps is used in a guard as well as in the binding fgr. In
contrast, det binding is attached to aexpressionas can be seen
in the second definition ofilter near the beginning of this sub-
section. Note also thabp is defined only in the second clause—but
that is fine since the bindings in thkere clause are lazy.

4.5 List comprehensions

List comprehensions provide a very convenient notatiomfaps,
filters, and Cartesian products. For example,

[x¢¥x | x <= xs]
returns the squares of the numbers in thedistand
[f] £f<-[1..n], n ‘mod® f == 0]
returns a list of the factors of n, and

concatMap :: (a -> [b]) -> [a] -> [b]
concatMap f xs = [y | x <- xs, y <- f x]

applies a functiort to each element of a lists, and concatenates
the resulting lists. Notice that each elementhosen fromxs is
used to generate a new ligf x) for the second generator.

The list comprehension notation was first suggested by Jan D
lington when he was a student of Rod Burstall. The notatioa wa
popularised—and generalised to lazy lists—by David Tusnese

of it in KRC, where it was called a “ZF expression” (named afte
Zermelo-Fraenkel set theory). Turner put this notationfteative
use in his paper “The semantic elegance of applicative ages’
(Turner, 1981). Wadler introduced the name “list compresfem’

in his paper “How to replace failure by a list of successesagr,
1985).

For some reason, list comprehensions seem to be more papular
lazy languages; for example they are found in Miranda andkélhs
but not in SML or Scheme. However, they are present in Erlamly a
more recently have been added to Python, and there are pladd t
them to Javascript as array comprehensions.

form was designed to make it easy to comment out segments of
code, including code containing comments.

Later, Haskell added support for a third convention, litereom-
ments, which first appeared in OL at the suggestion of Richard
Bird. (Literate comments also were later adopted by Miranda
Bird, inspired by Knuth’s work on “literate programming” (iath,
1984), proposed reversing the usual comment conventioes lbf
code rather than lines oEommentshould be the ones requiring

a special mark. Lines that were not comments were indicayed b
a greater-than sign to the left. For obvious reasons, these non-
comment indicators came to be called ‘Bird tracks'.

Haskell later supported a second style of literate commehére
code was marked bybegin{code} and\end{code} as it is in
Latex, so that the same file could serve both as source foreséyp
paper and as an executable program.

5. Datatypes and pattern matching

Data types and pattern matching are fundamental to mostnmode
functional languages (with the notable exception of Schefftee
inclusion of basic algebraic types was straightforward,jiierest-
ing issues arose for pattern matching, abstract typesesuplew
types, recordsy+k patterns, and views.

The style of writing functional programs as a sequence ofiequ
tions with pattern matching over algebraic types goes batdaat
to Burstall's work on structural induction (Burstall, 196%nd
his work with his student Darlington on program transforioat
(Burstall and Darlington, 1977).

Algebraic types as a programming language feature firstappe
in Burstall's NPL (Burstall, 1977) and Burstall, MacQueamd
Sannella’s Hope (Burstall et al., 1980). They were absamh fthe
original ML (Gordon et al., 1979) and KRC (Turner, 1982), but
appeared in their successors Standard ML (Milner et al.7)18ad
Miranda (Turner, 1986). Equations with conditional guavesre
introduced by Turner in KRC (Turner, 1982).

5.1 Algebraic types

Here is a simple declaration of an algebraic data type andcaifin
accepting an argument of the type that illustrates the eatoires
of algebraic data types in Haskell.

data Maybe a = Nothing | Just a

mapMaybe :: (a->b) -> Maybe a -> Maybe b
mapMaybe f (Just x) = Just (f x)
mapMaybe f Nothing = Nothing

The data declaration declareBaybe to be a data type, with two
data constructorsiothing and Just. The values of thélaybe
type take one of two forms: eith@lothing or (Just x). Data
constructors can be used bothpattern-matchingto decompose
a value ofMaybe type, and inan expressionto build a value of
Maybe type. Both are illustrated in the definition sipMaybe.

The use of pattern matching against algebraic data typesigre
increases readability. Here is another example, this tiefimithg a
recursive data type of trees:

data Tree a = Leaf a | Branch (Tree a) (Tree a)

size :: Tree a -> Int
size (Leaf x) =1
size (Branch t u) = size t + size u + 1

Haskell took from Miranda the notion of defining algebraipéyg as
a ‘'sum of products’. Inthe above, atree is either a leaf oeadh (a
sum with two alternatives), a leaf contains a value (a trptaduct
with only one field), and a branch contains a left and rightiae

(a product with two fields). In contrast, Hope and Standard ML

separated sums (algebraic types) and products (tuple)tyipabe
equivalent definition of a tree, a branch would take one agpum
which was itself a tuple of two trees.

In general, an algebraic type specifies a sum of one or maee alt
natives, where each alternative is a product of zero or meldsfi It
might have been useful to permit a sum of zero alternativeg;tw
would be a completely empty type, but at the time the valuaichs
a type was not appreciated.

Haskell also took from Miranda the rule that constructor eam
always begin with a capital, making it easy to distinguishstouc-
tors (like Leaf andBranch) from variables (likex, t, andu). In

Standard ML, it is common to use lower case for both; if a pat-

tern consists of a single identifier it can be hard to tell vakethis
is a variable (which will match anything) or a constructottwno
arguments (which matches only that constructor).

Haskell further extended this rule to apply to type congtrs(like
Tree) and type variables (lika). This uniform rule was unusual.
In Standard ML type variables were distinguished by stgrtiith
atick (e.g.,tree ’a), and in Miranda type variables were written
as a sequence of one or more asterisks (erge *).

5.2 Pattern matching

The semantics of pattern matching in lazy languages is nare c
plex than in strict languages, because laziness means tedher

one chooses to first match against a variable (doesn't forake

ation) or a constructor (does force evaluation) can chahgese-

mantics of a program, in particular, whether or not the paogr
terminates.

In SASL, KRC, Hope, SML, and Miranda, matching against equa-

tions is in order from top to bottom, with the first matchingiatjon

being used. Moreover in SASL, KRC, and Miranda, matching is

from left to right within each left-hand-side—which is impant in
a lazy language, since as soon as a non-matching patterand,fo
matching proceeds to the next equation, potentially amgidion-
termination or an error in a match further to the right. Eveily,
these choices were made for Haskell as well, after consigeat
length and rejecting some other possibilities:

¢ Tightest match, as used in Hope+ (Field et al., 1992).

e Sequential equations, as introduced by Huet and Levy (Huet

and Levy, 1979).

Top-to-bottom, left-to-right matching was simple to immlent, fit
nicely with guards, and offered greater expressivenesgaosd to
the other alternatives. But the other alternatives had aaséos in
which the order of equations did not matter, which aids equoat
reasoning (see (Hudak, 1989) for more details). In the d@nglas
thought better to adopt the more widely used top-to-bottesigh
than to choose something that programmers might find ligitin

5.3 Abstract types

In Miranda, abstract data types were supported by a spemial |
guage construchbstype:

abstype stack * == [*]

with push :: * -> stack * -> stack *
pop :: stack * -> x*
empty :: stack *
top :: stack * -> *
isEmpty :: stack * -> bool

push x Xs = X:Xs

pop (x:xs) = xs

empty = []

top (x:xs) = x

isEmpty xs = xs = []

Here the typestack * and [*] are synonyms within the defini-
tions of the named functions, but distinguished everywietse.

In Haskell, instead of a special construct, the module sy&eised
to support data abstraction. One constructs an abstraattgoe
by introducing an algebraic type, and then exporting the tigpt
hiding its constructors. Here is an example:

module Stack(Stack, push, pop,
empty, top, isEmpty) where

data Stack a = Stk [a]
push x (Stk xs) = Stk (x:xs)
pop (Stk (x:xs)) = Stk xs
empty = Stk []
top (Stk (x:xs))
isEmpty (Stk xs)

X
null xs

Since the constructor for the data typeack is hidden (the export
list would sayStack(Stk) if it were exposed), outside of this
module a stack can only be built from the operatignsh, pop,
andempty, and examined witltop andisempty.

Haskell's solution is somewhat cluttered by ek constructors,
but in exchange an extra construct is avoided, and the tyjptbe 0
operations can be inferred if desired. The most importaittge
that Haskell's solution allows one to give a different imsta to a
type-class for the abstract type than for its representatio

instance Show Stack where
show s = ...

The Show instance forStack can be different from th&how in-
stance for lists, and there is no ambiguity about whethewvargi
subexpression is 8tack or a list. It was unclear to us how to
achieve this effect withbstype.

5.4 Tuples and irrefutable patterns

An expression that diverges (or calls Haskedlisror function) is
considered to have the value “bottom”, usually writtena value
that belongs to every type. There is an interesting choibe tmade
about the semantics of tuples: ateand (L, L) distinct values?
In the jargon of denotational semantics|ifeed tuple semantics

¢ Uniform patterns, as described by Wadler in Chapter 5 of Pey- distinguishes the two values, while amlifted semantics treats

ton Jones’s textbook (Peyton Jones, 1987).

them as the same value.

In an implementation, the two values will epresenteddiffer-
ently, but under the unlifted semantics they must be imijstish-
able to the programmer. The only way in which they might be dis
tinguished is by pattern matching; for example:

f (x,y) = True

If this pattern match evaluatelss argument therf 1. = 1, but
f (L, 1) = True, thereby distinguishing the two values. One can
instead consider this definition to be equivalent to

f t = True
where

x = fst t

y =snd t

in which case 1. = True and the two values are indistinguishable.

This apparently arcane semantic point became a subjecteat gr
controversy in the Haskell Committee. Miranda’s desigmtidid

L with (L, L), which influenced us considerably. Furthermore,
this identification made currying an exact isomorphism:

(a,b) ->c =@ a->b ->c

But there were a number of difficulties. For a start, shouldls-
constructor data types, such as

data Pair a b = Pair a b

share the same properties as tuples, with a semantic disaityt
induced by adding a second constructor? We were also cattern
about the efficiency of this lazy form of pattern matchingd dime
space leaks that might result. Lastly, the unlifted formugflés is
essentially incompatible witeeqg—another controversial feature
of the language, discussed in Section 10.3—because paedle
uation would be required to implemestq on unlifted tuples.

In the end, we decided to make both tuples and algebraic yjzta t
have a lifted semantics, so that pattern matching alwaysciesl
evaluation. However, in a somewhat uneasy compromise, see al
reintroduced lazy pattern-matching, in the form of tildattprns,
thus:

g :: Bool -> (Int,Int) -> Int
g b “(x,y) = if b then x+y else O

The tilde “” makes matching lazy, so that the pattern match for
(x,y) is performed only ifx or y is demanded; that is, in this
example, wher is True. Furthermore, pattern matching iret
andwhere clauses is always lazy, so thatan also be written:

g x pr = if b then x+y else 0
where
(x,y) = pr

(This difference in the semantics of pattern matching betwe
let/where and case/\ can perhaps be considered a wart on the
language design—certainly it complicates the languagerites
tion.) All of this works uniformly when there is more than one
constructor in the data type:

h :: Bool -> Maybe Int -> Int
h b “(Just x) = if b then x else O

Here againh evaluates its second argument only i True.

5.5 Newtype

The same choice described above for tuples arose for angraige
type with one constructor. In this case, just as with tuglese was
a choice as to whether or not the semantics should be liftexhn F
Haskell 1.0, it was decided that algebraic types with a singin-
structor should have a lifted semantics. From Haskell 1\8aods

there was also a second way to introduce a new algebraic tighe w
a single constructor and a single component, with an udliée-
mantics. The main motivation for introducing this had to dithw
abstract data types. It was unfortunate that the Haskelhitiefi

of Stack given above forced the representation of stacks to be not
quite isomorphic to lists, as lifting added a new bottom ealudis-

tinct from Stk L. Now one could avoid this problem by replacing
the data declaration inStack above with the following declara-
tion.

Stk [al

We can view this as a way to define a new type isomorphic to an
existing one.

newtype Stack a =

5.6 Records

One of the most obvious omissions from early versions of sk
was the absence akcords offering named fields. Given that
records are extremely useful in practice, why were they mu#

The strongest reason seems to have been that there was nro obvi
ous “right” design. There are a huge number of record systems
variously supporting record extension, concatenatiomlatgy and
polymorphism. All of them have a complicating effect on thpe
system (e.g., row polymorphism and/or subtyping), whicls &b
ready complicated enough. This extra complexity seemeticpar
ularly undesirable as we became aware that type classed beul
used to encode at least some of the power of records.

By the time the Haskell 1.3 design was under way, in 1993, see u
pressure for named fields in data structures was strongesmotin-
mittee eventually adopted a minimalist design originallggested
by Mark Jones: record syntax in Haskell 1.3 (and subseqgestl
simply syntactic sugar for equivalent operation on regalgebraic
data types. Neither record-polymorphic operations nottygibg
are supported.

This minimal design has left the field open for more sophisti-
cated proposals, of which the best documented is TRex (GGaste
and Jones, 1996) (Section 6.7). New record proposals aentm
appear regularly on the Haskell mailing list, along withengus
ways of encoding records using type classes (Kiselyov £2@04).

5.7 n+k patterns

An algebraic type isomorphic to the natural numbers can biaal®
as follows:

data Nat = Zero | Succ Nat

This definition has the advantage that one can use patteahingt

in definitions, but the disadvantage that the unary reptaten
implied in the definition is far less efficient than the builtrepre-
sentation of integers. Instead, Haskell provides so-dali pat-
terns that provide the benefits of pattern matching withbatlbss

of efficiency. (Then+k pattern feature can be considered a special
case of aview(Wadler, 1987) (see Section 5.8) combined with con-
venient syntax.) Here is an example:

fib :: Int -> Int

fib 0 = 1

fib 1 = 1

fib (n+2) = fib n + fib (n+1)

The patternn+k only matches a valuen if m > k, and if it
succeeds it binds tom — k.

Patterns of the form+k were suggested for Haskell by Wadler,
who first saw them in Godel’s incompleteness proof (GoteR1),
the core of which is a proof-checker for logic, coded usincure
sive equations in a style that would seem not unfamiliar ®rsis

of Haskell. They were earlier incorporated into DarlingsoNPL
(Burstall and Darlington, 1977), and (partially at Wadéeinstiga-
tion) into Miranda.

This seemingly innocuous bit of syntax provoked a great déal
controversy. Some users considenadt patterns essential, because
they allowed function definition by cases over the naturahbers
(as infib above). But others worried that that type did not, in
fact, denote the natural numbers. Indeed, worse was to csinmzE

in Haskell the numeric literal®(1 etc) were overloaded, it seemed
only consistent thatib’s type should be

fib ::
although the programmer is, as always, allowed to specigsa |
general type, such asnt -> Int above. In Haskell, one can
perfectly well applyf ib to matrices! This gave rise to a substantial
increase in the complexity of pattern matching, which nowd ha

to invoke overloaded comparison and arithmetic operatinen
syntactic niceties resulted:

n+1=7

Num a => a -> a

is a (function) definition of, while
(n+1) =7

is a (pattern) definition oh—so apparently redundant brackets
change the meaning completely!

Indeed, these complications led to the majority of the Héske
Committee suggesting thatk patterns be removed. One of the
very few bits of horse-trading in the design of Haskell ocedr
when Hudak, then Editor of the Report, tried to convince \Wath
agree to remova+k patterns. Wadler said he would agree to their
removal only if some other feature went (we no longer remembe
which). In the endn+k patterns stayed.

5.8 Views

Wadler had noticed there was a tension between the conanan
pattern matching and the advantages of data abstractidnsiag:

principled solution to a relatively small problem (operatwer-
loading for numeric operations and equality). As time wenttgpe
classes began to be generalised in a variety of interestidgar-
prising ways, some of them summarised in a 1997 paper “Type
classes: exploring the design space” (Peyton Jones efflr).1

An entirely unforeseen development—perhaps encouragégpley
classes—is that Haskell has become a kind of laboratory iolwh
numerous type-system extensions have been designed,-imple
mented, and applied. Examples include polymorphic reoarsi
higher-kinded quantification, higher-rank types, lexigacoped
type variables, generic programming, template meta-gmogning,

and more besides. The rest of this section summarises toeitéd
development of the main ideas in Haskell's type system rvegg

with type classes.

6.1 Type classes

The basic idea of type classes is simple enough. Considetiggu
for example. In Haskell we may write

class Eq a where
(== :a > a -> Bool
(/=) :: a => a -> Bool

instance Eq Int where
il == i2 = eqlInt il i2
i1 /= i2 = not (il == i2)

instance (Eq a) => Eq [a] where
(1 (1 = True

(x:xs) == (y:ys) = (x ==y) & (xs == ys)
xs /= ys = not (xs == ys)
member :: Eq a => a -> [a] -> Bool
member x [] = False
member x (y:ys) | x==y = True
| otherwise = member x ys

gestedviewsas a programming language feature that lessens this In the instance folEq Int, we assume thaéqInt is a primi-

tension. A view specifies an isomorphism between two datestyp
where the second must be algebraic, and then permits cotsu
of the second type to appear in patterns that match agamsirsh
(Wadler, 1987). Several variations on this initial proddsae been
suggested, and Chris Okasaki (Okasaki, 1998b) providegaat-e
lent review of these.

The original design of Haskell included views, and was based
the notion that the constructors and views exported by a feodu
should be indistinguishable. This led to complications xpaat
lists and derived type classes, and by April 1989 Wadler was a
guing that the language could be simplified by removing views

At the time views were removed, Peyton Jones wanted to agdvie
to an experimental extension of Haskell, and a detailed qzalp

to include views in Haskell 1.3 was put forward by Burton and
others (Burton et al., 1996). But views never made it bachk int
the language nor appeared among the many extensions &wailab
in some implementations.

There is some talk of including views or similar features in
Haskell, a successor to Haskell now under discussion, but they
are unlikely to be included as they do not satisfy the citerof
being “tried and true”.

6. Haskell as a type-system laboratory

Aside from laziness, type classes are undoubtedly Haskalst
distinctive feature. They were originally proposed earlythe de-
sign process, by Wadler and Blott (Wadler and Blott, 1989)aa

tive function defining equality at typent. The type signature for
member uses a form of bounded quantification: it declares that
member has typea -> [a] -> Bool, for any typea that is an
instance of the clasBq. A class declaration specifies the meth-
ods of the class (just two in this case, namé#g) and (/=)) and
their types. A type is made into an instance of the class using
instance declaration, which provides an implementation for each
of the class’s methods, at the appropriate instance type.

A particularly attractive feature of type classes is thatytitan
be translated into so-called “dictionary-passing stylg”ebtype-
directed transformation. Here is the translation of thevelbmde:

data Eq a = MkEq (a->a->Bool) (a->a->Bool)
eq (MKkEq e _) = e
ne (MkEq _ n) = n

dEqInt :: Eq Int
dEqInt = MkEq eqInt (\x y -> not (eqInt x y))
dEqList :: Eq a -> Eq [al
dEqList d = MkEq el (\x y -> not (el x y))
where el [] 1
el (x:xs) (y:ys)
el

= True
eqd xy && el xs ys
= False

-> Bool
False
= True

member d x ys

member :: Eq a -> a -> [al

member d x []

member d x (y:ys) | eqd x y
| otherwise

Theclass declaration translates todata type declaration, which
declares alictionary for Eq, that is, a record of its methods. The
functionseq andne select the equality and inequality method from
this dictionary. Thenember function takes a dictionary parameter
of typeEq a, corresponding to th&q a constraint in its original
type, and performs the membership test by extracting thalequ
ity method from this dictionary usingq. Finally, aninstance
declaration translates to a function that takes some diaties and
returns a more complicated one. For examggglist takes a dic-
tionary forEq a and returns a dictionary fatq [a].

Once type classes were adopted as part of the language dibsign
were immediately applied to support the following main greu
of operations: equalityElg) and ordering §rd); converting values
to and from stringsRead and Show); enumerationsEnum); nu-
meric operationsNum, Real, Integral, Fractional, Floating
RealFrac andRealFloat); and array indexingIx). The rather
daunting collection of type classes used to categorise theeric
operations reflected a slightly uneasy compromise betwégm a
braic purity (which suggested many more classes, suchiag
andMonoid) and pragmatism (which suggested fewer).

In most statically typed languages, the type system chemhsis
tency, but one can understand how the programeniicutaevithout
considering the types. Not so in Haskell: the dynamic seitsof
the program necessarily depends on the way that its tyss-oleer-
loading is resolved by the type checker. Type classes hawegito
be a very powerful and convenient mechanism but, because isior
happening “behind the scenes”, it is more difficult for thegram-
mer to reason about what is going to happen.

Type classes were extremely serendipitous: they were iedest
exactly the right moment to catch the imagination of the sk
Committee, and the fact that the very first release of Haglal
thirteen type classes in its standard library indicates hapidly
they became pervasive. But beyond that, they led to a wildher
set of opportunities than their initial purpose, as we discin the
rest of this section.

6.2 The monomorphism restriction

A major source of controversy in the early stages was theafiee
“monomorphism restriction.” Suppose thgénericLength has

this overloaded type:
genericLength :: Num a => [b] -> a

Now consider this definition:

f xs = (len, len)
where
len = genericlLength xs

It looks as iflen should be computed only once, but it can ac-
tually be computedwice Why? Because we can infer the type
len :: (Num a) => a; when desugared with the dictionary-
passing translationlen becomes dunction that is called once

for each occurrence dfen, each of which might used at a different

type.

Hughes argued strongly that it was unacceptable to silehghi-
cate computation in this way. His argument was motivated by a
program he had written that ran exponentially slower thamxe
pected. (This was admittedly with a very simple compilet, we
were reluctant to make performance differences as big asdh
pendent on compiler optimisations.)

Following much debate, the committee adopted the now-imtsr
monomorphism restriction. Stated briefly, it says that aniliéin
that does not look like a function (i.e. has no arguments @n th
left-hand side) should be monomorphic in any overloadec typ

variables. In this example, the rule forceen to be used at the
same type at both its occurrences, which solves the perfarena
problem. The programmer can supply an explicit type sigweefor
len if polymorphic behaviour is required.

The monomorphism restriction is manifestly a wart on the- lan
guage. It seems to bite every new Haskell programmer by givin
rise to an unexpected or obscure error message. There has bee
much discussion of alternatives. The Glasgow Haskell Canpi
(GHC, Section 9.1) provides a flag:

-fno-monomorphism-restriction
to suppress the restriction altogether. But in all this time truly
satisfactory alternative has evolved.
6.3 Ambiguity and type defaulting

We rapidly discovered a second source of difficulty with type
classes, namelgmbiguity Consider the following classic exam-

ple:

show ::
read ::

Show a
Read a

=> a -> String
=> String -> a

f :: String -> String
f s show (read s)

Here,show converts a value of any type in cladsow to aString,
while read does does the reverse for any type in clasad.

So £ appears well-typed... but the difficulty is there is nothing
to specify the type of the intermediate subexpressipgad s).
Shouldread parse arint from s, or aFloat, or even a value of
typeMaybe Int? There is nothing to say which should be chosen,
and the choice affects the semantics of the program. Praglizen

this are said to bambiguousand are rejected by the compiler. The
programmer may then say which types to use by adding a type
signature, thus:

f :: String -> String
fs show (read s ::

Int)

However, sometimes rejecting the un-annotated prograrmsee
unacceptably pedantic. For example, consider the expressi

(show (negate 4))

In Haskell, the literat is short for(fromInteger (4::Integer)),
and the types of the functions involved are as follows:

fromInteger :: Num a => Integer -> a
negate :: Num a => a -> a
show :: Show a => a -> String

Again the expression is ambiguous, because it is not cleatheh
the computation should be done at typet, or Float, or indeed
any other numeric type. Performing numerical calculationgon-
stants is one of the very first things a Haskell programmeisdoe
and furthermore there is more reason to expect numeric epera
tions to behave in similar ways for different types than ¢hiex
for non-numeric operations. After much debate, we compsenhi
by adding anad hocrule for choosing a particular default type.
When at least one of the ambiguous constraints is numerialbut
the constraints involve only classes from the StandardiBegithen
the constrained type variable defaultable The programmer may
specify a list of types in a special top-lewidfault declaration,
and these types are tried, in order, until one satisfies allctin-
straints.

This rule is clumsy but conservative: it tries to avoid makin
arbitrary choice in all but a few tightly constrained sitioat. In
fact, it seemdoo conservative for Haskell interpreters. Notably,

consider the expressidizhow [1). Are we trying toshow a list of
Char or a list of Int, or what? Of course, it does not matter, since
the result is the same in all cases, but there is no way foryihe t
system to know that. GHC therefore relaxes the defaultingsru
further for its interactive version GHCI.

6.4 Higher-kinded polymorphism

The first major, unanticipated development in the typescktsry
came when Mark Jones, then at Yale, suggested paramegeaisin
class over a typeonstructorinstead of over dype an idea he
calledconstructor classe§lones, 1993). The most immediate and
persuasive application of this idea was to monads (disdusse
Section 7), thus:

class Monad m where
return :: a -> m a
(>>=) :ma->(a->mb) ->mb

Here, the type variabla has kind *->*, so that theéMonad class
can be instantiated at a type constructor. For exampledtdkara-
tion makes thelaybe type an instance adfonad by instantiatingn
with Maybe, which has kindk->x:

data Maybe a = Nothing | Just a

instance Monad Maybe where

return x Just x
Nothing >>= k Nothing
Just x >>=k = k x

So, for example, instantiatingeturn’s type (a -> m a) with
m=Maybe gives the type(a -> Maybe a), and that is indeed the
type of thereturn function in theinstance declaration.

Jones’s paper appeared in 1993, the same year that monasdec
popular for 1/0 (Section 7). The fact that type classes seatly

be generalised to multiple parameters. They gave the fallpw
example:

class Coerce a b where
coerce :: a -> b

instance Coerce Int Float where
coerce = convertIntToFloat

Whereas a single-parameter type class can be viewed asiegtesd
over types (for exampleEq a holds whenever is a type for
which equality is defined), a multi-parameter class can beved a
relation between types (for exampt&erce a b holds whenever
a is a subtype ob).

Multi-parameter type classes were discussed in severbl par
pers on type classes (Jones, 1991; Jones, 1992; Chen &%), 1
and they were implemented in Jones’s language Gofer (see Sec
tion 9.3) in its first 1991 release. The Haskell Committee veas
sistant to including them, however. We felt that singlegpaeter
type classes were already a big step beyond our initial coatbee
design goals, and they solved the problem we initially askkrd
(overloading equality and numeric operations). Going Inelythat
would be an unforced step into the dark, and we were anxiomstab
questions of overlap, confluence, and decidability of tyyference.
While it was easy to defineoerce as above, it was less clear when
type inference would make it usable in practice. As a resldskell
98 retained the single-parameter restriction.

As time went on, however, user pressure grew to adopt multi-
parameter type classes, and GHC adopted them in 1997 (wersio
3.00). However, multi-parameter type classes did notyeaiime
into their own until the advent of functional dependencies.

6.6 Functional dependencies

supported monads made monads far more accessible and popuThe trouble with multi-parameter type classes is that it ésyv

lar; and dually, the usefulness of monadic 1/0 ensured toptash

of higher-kinded polymorphism. However, higher-kindedypaor-

phism has independent utility: it is entirely possible, aadasion-
ally very useful, to declare data types parameterised oigiren
kinds, such as:

Nil | Cons a (f a)

Furthermore, one may need functions quantified over higher-
kinded type variables to process nested data types (Okd<89;
Bird and Paterson, 1999).

Type inference for a system involving higher kinds seemgsittfh
require higher-order unification, which is both much harttean
traditional first-order unification and lacks most generaifiers
(Huet, 1975). However, by treating higher-kinded type tarts
tors as uninterpreted functions and not allowing lambdaatype
level, Jones’s paper (Jones, 1993) shows that ordinarydiicstr
unification suffices. The solution is a littked hoe—for example,
the order of type parameters in a data-type declaration eatera—
but it has an excellent power-to-weight ratio. In retrogpbigher-
kinded quantification is a simple, elegant, and useful gaiser
tion of the conventional Hindley-Milner typing disciplinilner,
1978). All this was solidified into the Haskell 1.3 Report,igrh
was published in 1996.

data ListFunctor f a =

6.5 Multi-parameter type classes

While Wadler and Blott's initial proposal focused on typasdes
with a single parameter, they also observed that type dasgght

5Kinds classify types just as types classify values. The kiiscbronounced
“type”, so if m has kind+->x, thenm is a type-level function mapping one
type to another.

easy to write ambiguous types. For example, consider thafirlg
attempt to generalise them class:

class Add a b r where
(+#) ::a->b -—>r

Add Int Int Int

Add Int Float Float
Add Float Int Float
Add Float Float Float

where ...
where ...
where ...
where ...

instance
instance
instance
instance

Here we allow the programmer to add numbers of differentsype
choosing the result type based on the input types. Alas, tivésl
programs have ambiguous types. For example, consider:

n=x+y

wherex andy have typeInt. The difficulty is that the compiler
has no way to figure out the type af The programmer intended
that if the arguments of+) are bothInt then so is the result, but
that intent is implied only by thabsencef an instance declaration
such as

instance Add Int Int Float where ...

In 2000, Mark Jones published “Type classes with functiatel

pendencies”, which solves the problem (Jones, 2000). Téwe il
to borrow a technique from the database community and deatar
explicit functional dependency between the parametersabdiss,

thus:

class Add abr | a b -> r where ...

The “a b -> r” says that fixinga andb should fixr, resolving
the ambiguity.

But that was not all. The combination of multi-parameteiss&s
and functional dependencies turned out to allow computatidhe
type level. For example:

data Z =17
data S a =S a

class Sumabr | ab->r

instance Sum Z b b
instance Sum a b r => Sum (S a) b (S r)

Here,Sum is a three-parameter class with no operations. The re-
lation Sum ta tb tc holds if the typetc is the Peano represen-
tation (at the type level) of the sum e& andtb. By liberalising
other Haskell 98 restrictions on the form of instance dedians
(and perhaps thereby risking non-termination in the typeckhr),

it turned out that one could write arbitrary computationghattype
level, in logic-programming style. This realisation gaigerto an
entire cottage industry of type-level programming thatvehiao
sign of abating (e.g., (Hallgren, 2001; McBride, 2002; Kyse

et al., 2004), as well as much traffic on the Haskell mailirsg) i

It also led to a series of papers suggesting more direct wbgs-0
pressing such programs (Neubauer et al., 2001; Neubaudr, et a
2002; Chakravarty et al., 2005b; Chakravarty et al., 2005a)

Jones’s original paper gave only an informal descriptioriuic-
tional dependencies, but (as usual with Haskell) that didstap
them from being implemented and widely used. These apitat
have pushed functional dependencies well beyond theirvateti
ing application. Despite their apparent simplicity, fuoogl depen-
dencies have turned out to be extremely tricky in detaileeidly
when combined with other extensions such as local univensal
existential quantification (Section 6.7). Efforts to urstand and
formalise the design space are still in progress (Glynn.e2aD0;
Sulzmann et al., 2007).

6.7 Beyond type classes

As if all this were not enough, type classes have spawned Rume
ous variants and extensions (Peyton Jones et al., 1997mkéand
Peyton Jones, 2005; Shields and Peyton Jones, 2001). Fodie
even leaving type classes aside, Haskell has turned outacsbe
ting in which advanced type systems can be explored andeappli
The rest of this section gives a series of examples; spactuges

a proper treatment of any of them, but we give citations fa th
interested reader to follow up.

Existential data constructors A useful programming pattern is to
package up a value with functions over that value and exisign
quantify the package (Mitchell and Plotkin, 1985). Perrgwsld in
his dissertation (Perry, 1991b; Perry, 1991a) and in hidéemen-
tation of Hope+ that this pattern could be expressed wittoatmo
new language complexity, simply by allowing a data congtuc
to mention type variables in its arguments that do not apimeis
result. For example, in GHC one can say this:

data T = forall a. MkT a (a->Int)
f :: T -> Int
f (MkT x g) = g x

Here the constructoMkT has typeVa.a — (¢ — Int) — T;
note the occurrence af in the argument type but not the result.
A value of typeT is a package of a value of some (existentially
quantified) typer, and a function of type — Int. The package
can be unpacked with ordinary pattern matching, as showhen t
definition off.

This simple but powerful idea was later formalised by Odgrsk
and Laufer (Laufer and Odersky, 1994). Laufer also dbscrhow

to integrate existentials with Haskell type classes (eguf996).
This extension was first implemented in hbc and is now a widely
used extension of Haskell 98: every current Haskell impleat#on
supports the extension.

Extensible records Mark Jones showed that type classes were
an example of a more general framework he catiadlified types
(Jones, 1994). With his student Benedict Gaster he develapec-
ond instance of the qualified-type idea, a system of polyimorp
extensible records called TRex (Gaster and Jones, 1996giGas
1998). The type qualification in this case is a collectiorlaaks
predicatesthus:

£ (r\x, T\y)
=> Rec (x::Int, y::Int | r) -> Int
f p= (#x p) + (#y p)

The type should be read as follovfstakes an argument record with
anx andy fields, plus other fields described by the row-variahle
and returns arint. Thelackspredicate(r\x, r\y) says thatr
should range only over rows that do not havezaor y field—
otherwise the argument typec (x::Int, y::Int | r) would

be ill formed. The selectatx selects the field from its argument,
so (#x p) is what would more traditionally be writtep.x. The
system can accommodate a full complement of polymorphic-ope
ations: selection, restriction, extension, update, ard fenaming
(although not concatenation).

Just as each type-class constraint corresponds to a ruatigoe
ment (a dictionary), so eadhckspredicate is also witnessed by a
runtime argument. The witness for the predicéit&1) is the offset
in r at which a field labelled would be inserted. Thus receives
extra arguments that tell it where to find the fields it needi® itiea
of passing extra arguments to record-polymorphic fundismot
new (Ohori, 1995), but the integration with a more generaife-
work of qualified types is particularly elegant; the readexyrfind

a detailed comparison in Gaster's dissertation (Gast&8)19

Implicit parameters A third instantiation of the qualified-type
framework, so-called “implicit parameters”, was develdpey
Lewis, Shields, Meijer, and Launchbury (Lewis et al., 20@)p-
pose you want to write a pretty-printing library that is paex
terised by the page width. Then each function in the libragsm
take the page width as an extra argument, and in turn pasghieto
functions it calls:

pretty ::
pretty pw doc =

Int -> Doc -> String

if width doc > pw
then pretty2 pw doc
else pretty3 pw doc

These extra parameters are quite tiresome, especially wien
are only passed on unchanged. Implicit parameters arrdrage t
this parameter passing happens implicitly, rather liketioiary
passing, thus:

pretty ::
pretty doc =

(?pw::Int) => Doc -> String
if width doc > 7pw

then pretty2 doc

else pretty3 doc

The explicit parameter turns into an implicit-parametegretycon-
straint; a reference to the page width itself is signallec{my; and
the calls topretty2 andpretty3 no longer pass an expligits pa-
rameter (it is passed implicitly instead). One way of untierding
implicit parameters is that they allow the programmer to enag&-
lective use of dynamic (rather than lexical) scoping. (3&@sdlyov
and Shan, 2004) for another fascinating approach to thdqrobf
distributing configuration information such as the pagetiuid

Polymorphic recursion This feature allows a function to be used
polymorphically in its own definition. It is hard tmfer the type of
such a function, but easy theckthat the definition is well typed,
given the type signature of the function. So Haskell 98 adlpaly-
morphic recursion when (and only when) the programmer expli
itly specifies the type signature of the function. This inzibon is
extremely simple to describe and implement, and sometiores t
out to be essential, for example when using nested data (s
and Paterson, 1999).

Higher-rank types Once one starts to use polymorphic recursion,
it is not long before one encounters the need to abstract aver
polymorphic function. Here is an example inspired by (Okasa
1999):

type Sq v a =v (v a) -- Square matrix:
-- A vector of vectors
sq_index :: (forall a . Int -> v a -> a)

-> Int -> Int -> Sq va->a
sq_index index i j m = index i (index j m)

The functionindex is used insideq_index at two different types,
so it must be polymorphic. Hence the first argumenidoindex is

a polymorphic function, andq_index has a so-called rank-2 type.
In the absence of any type annotations, higher-rank typés tyae
inference undecidable; but a few explicit type annotativos the
programmer (such as that feg_index above) transform the type
inference problem into an easy one (Peyton Jones et al.)2007

Higher-rank types were first implemented in GHC in 2000, in
a ratherad hocmanner. At that time there were two main mo-
tivations: one was to allow data constructors with polyniicp
fields, and the other was to allow th@nST function to be de-
fined (Launchbury and Peyton Jones, 1995). However, once im-
plemented, another cottage industry sprang up offeringnpies

of their usefulness in practice (Baars and Swierstra, 2D8&)mel

and Peyton Jones, 2003; Hinze, 2000; Hinze, 2001), and GHE’s
plementation has become much more systematic and genegal (P
ton Jones et al., 2007).

Generalised algebraic data typesGADTs are a simple but far-
reaching generalisation of ordinary algebraic data tySes{jon 5).
The idea is to allow a data constructor’s return type to beifipd
directly:

data Term a where

Lit :: Int -> Term Int
Pair :: Term a -> Term b -> Term (a,b)
..etc..

In a function that performs pattern matching Derm, the pattern
match givestypeas well asvalueinformation. For example, con-
sider this function:

eval :: Term a -> a
eval (Lit i) i
eval (Pair a b) (eval a, eval b)

If the argument matchekit, it must have been built with Bit
constructor, s@ must beInt, and hence we may retutn(anInt)

in the right-hand side. This idea is very well known in theayp
theory community (Dybjer, 1991). Its advent in the world obp
gramming languages (under various names) is more recenit, bu
seems to have many applications, including generic progriai,
modelling programming languages, maintaining invariantdata
structures (e.g., red-black trees), expressing conssrairdomain-
specific embedded languages (e.g. security constraimtd)mad-
elling objects (Hinze, 2003; Xi et al., 2003; Cheney and ldinz

2003; Sheard and Pasalic, 2004; Sheard, 2004). Type irfefen
GADTs is somewhat tricky, but is now becoming better undemdt
(Pottier and Régis-Gianas, 2006; Peyton Jones et al.,)2864d
support for GADTs was added to GHC in 2005.

Lexically scoped type variablesin Haskell 98, it is sometimes
impossible to write a type signature for a function, becatype
signatures are alwaydosed For example:

prefix :: a -> [[a]l] -> [[al]
prefix x yss = map xcons yss
where
xcons :: [a] -> [a] -- BAD!

Xcons ys = X : ys

The type signature foxcons is treated by Haskell 98 as speci-
fying the typeVa.[a] — [a], and so the program is rejected. To
fix the problem, some kind of lexically scoped type variatdes
required, so thatd” is bound byprefix and used in the signa-
ture forxcons. In retrospect, the omission of lexically scoped type
variables was a mistake, because polymorphic recursiorfraace
recently) higher-rank types absolutely require type sigres. In-
terestingly, though, scoped type variables were not onhidtiter
fierce debate; on the contrary, they were barely discussedim-
ply never realised how important type signatures would ert
be.

There are no great technical difficulties here, althoughetlie an
interesting space of design choices (Milner et al., 1997jéviand
Claessen, 1997; Shields and Peyton Jones, 2002; Sulzn@08), 2

Generic programming A genericfunction behaves in a uniform
way on arguments of any data types, while having a few type-
specific cases. An example might be a function that capésil

the strings that are in a big data structure: the generic\ebiis

to traverse the structure, while the type-specific caseristfings.

In another unforeseen development, Haskell has servea do#t
language for a remarkable variety of experiments in gengme
gramming, including: approaches that use pure Haskell 98z¢+
2004); ones that require higher-rank types (Lammel anddPey
Jones, 2003; Lammel and Peyton Jones, 2005); ones thaterequ
a more specific language extension, such as PolyP (Jansdon an
Jeuring, 1997), and derivable type classes (Hinze and Rdpites,
2000); and whole new language designs, such as Generic IHaske
(Loh et al., 2003). See (Hinze et al., 2006) for a recent esuf

this active research area.

Template meta-programming Inspired by the template meta-
programming of C++ and the staged type system of MetaML
(Taha and Sheard, 1997), GHC supports a form of type-safa-met
programming (Sheard and Peyton Jones, 2002).

6.8 Summary

Haskell's type system has developed extremely anarchiddfiny

of the new features described above were sketched, impteghen
and applied well before they were formalised. This anaralch
would be unthinkable in the Standard ML community, has both
strengths and weaknesses. The strength is that the desige &p
explored much more quickly, and tricky corners are oftert (mt
always!) exposed. The weakness is that the end result isregty
complex, and programs are sometimes reduced to experirt@nts
see what will and will not be acceptable to the compiler.

Some notable attempts have been made to bring order to tisch
Karl-Filip Faxen wrote a static semantics for the whole ofki!
98 (Faxen, 2002). Mark Jones, who played a prominent rolevn s
eral of these developments, developed a theoguafified typesof
which type classes, implicit parameters, and extensilderds are
all instances (Jones, 1994; Jones, 1995). More recentlyrbee

a paper giving the complete code for a Haskell 98 type infezen
engine, which is a different way to formalise the system é3pn
1999). Martin Sulzmann and his colleagues have appliedhae t
ory of constraint-handling rulesgo give a rich framework to rea-
son about type classes (Sulzmann, 2006), including thdesigist
of functional dependencies (Glynn et al., 2000; Sulzmanal.et
2007).

These works do indeed nail down some of the details, but thétre
is still dauntingly complicated. The authors of the preseaper
have the sense that we are still awaiting a unifying insigat will
not only explain but also simplify the chaotic world of typasses,
without throwing the baby out with the bath water.

Meanwhile, it is worth askingvhy Haskell has proved so friendly
a host language for type-system innovation. The followigsons
seem to us to have been important. On the technical side:

e The purity of the language removed a significant technical ob
stacle to many type-system innovations, namely dealing wit
mutable state.

¢ Type classes, and their generalisation to qualified typased]
1994), provided a rich (albeit rather complex) framewortoin
which a number of innovations fitted neatly; examples inelud
extensible records and implicit parameters.

e Polymorphic recursion was in the language, so the idea that
every legal program should typecheck without type annaorasti
(a tenet of ML) had already been abandoned. This opens the
door to features for which unaided inference is infeasible.

But there were also nontechnical factors at work:

e The Haskell Committee encouraged innovation right from the
beginning and, far from exercising control over the langjag
disbanded itself in 1999 (Section 3.7).

¢ The two most widely used implementations (GHC, Hugs) both
had teams that encouraged experimentation.

e Haskell has a smallish, and rather geeky, user base. New fea-
tures are welcomed, and even breaking changes are accepted.

7. Monads and input/output

Aside from type classes (discussed in Sectiom@)nadsare one

of the most distinctive language design features in Haskkdhads
were not in the original Haskell design, because when Hbglesd
born a “monad” was an obscure feature of category theory ehos
implications for programming were largely unrecognised this
section we describe the symbiotic evolution of Haskell’pmart

for input/output on the one hand, and monads on the other.

7.1 Streams and continuations

The story begins with 1/0. The Haskell Committee was resoint

its decision to keep the language pure—meaning no sidetgffec

so the design of the I/O system was an important issue. We did
not want to lose expressive power just because we were "pure,
since interfacing to the real world was an important pragenat
concern. Our greatest fear was that Haskell would be vievged a
a toy language because we did a poor job addressing this famor
capability.

At the time, the two leading contenders for a solution to -
lem werestreamsand continuations Both were understood well
enough theoretically, both seemed to offer consideralpesssive-
ness, and both were certainly pure. In working out the detl
these approaches, we realised that in fact they were furattjo
equivalent—that is, it was possible to completely model stream 1/0
with continuations, and vice versa. Thus in the Haskell le@dt,

we first defined 1/O in terms of streams, but also included a-com

pletely equivalent design based on continuations.

It is worth mentioning that a third model for I/O was also dissed,

in which the state of the world is passed around and updatedam
as one would pass around and update any other data structare i
pure functional language. This “world-passing” model weasger a
serious contender for Haskell, however, because we saw 30 ea
way to ensure “single-threaded” access to the world stdtee (
Clean designers eventually solved this problem throughute
of “uniqueness types” (Achten and Plasmeijer, 1995; Basend
and Smetsers, 1996).) In any case, all three designs wesideon
ered, and Hudak and his student Sundaresh wrote a reportlidesc
ing them, comparing their expressiveness, and giving katings
between them during these deliberations (Hudak and Sustiare
1989). In this section we give a detailed account of the strea
based and continuation-based models of 1/0, and follow i+ Se
tion 7.2 with the monadic model of I/O that was adopted forkéds
1.3in 1996.

Stream-based I/0 Using the stream-based model of purely func-
tional I/O, used by both Ponder and Miranda, a program iserepr
sented as a value of type:

type Behaviour [Response] -> [Request]

The idea is that a program generateBeguest to the operating
system, and the operating system reacts with s@gsponse.
Lazy evaluation allows a program to generate a request poior
processing any responses. A suitably rich seRefuests and
Responses Yields a suitably expressive I/O system. Here is a partial
definition of theRequest andResponse data types as defined in
Haskell 1.0:

ReadFile Name
WriteFile Name String
AppendFile Name String
DeleteFile Name

data Request

Success
Str String
Failure IOError

data Response

type Name = String

As an example, Figure 3 presents a program, taken from thiesas
1.0 Report, that prompts the user for the name of a file, ectimes
filename as typed by the user, and then looks up and displays th
contents of the file on the standard output. Note the reliandazy
patterns (indicated by) to assure that the response is not “looked
at” prior to the generation of the request.

With this treatment of I/O there was no need for any special-
purpose /O syntax or I/O constructs. The 1/O system was ééfin
entirely in terms of how the operating system interpretecbg@mam
having the above type—that is, it was defined in terms of wat r
sponse the OS generated for each request. An abstract speaifi

of this behaviour was defined in the Appendix of the Haskdll 1.
Report, by giving a definition of the operating system as &ftion
that took as input an initial state and a collection of Haske-
grams and used a single nondeterministic merge operataptoie

the parallel evaluation of the multiple Haskell programs.

Continuation-based I/O Using the continuation-based model of
1/0, a program was still represented as a value of Bgieaviour,

but instead of having the user manipulate the requests and re
sponses directly, a collection tthnsactionsvere defined that cap-

tured the effect of each request/response pair in a corniomia For example, say that you want to write a program to renameyeve
passing style. Transactions were just functions. For eagneast occurrence of a bound variable in a data structure repriegeat

(a constructor, such &adFile) there corresponded a transaction lambda expression. This requires some way to generate h fres
(a function, such ageadFile). name every time a bound variable is encountered. In ML, you
would probably introduce a reference cell that contains anto
and increment this count each time a fresh name is required. |
Haskell, lacking reference cells, you would probably agethat
each function that must generate fresh names accepts aalakl v
of the counter and returns an updated value of the countés. Th

The requesteadFile name induced either a failure response
“Failure msg” Or success respons8tr contents” (see above).
So the corresponding transactieradFile name accepted two
continuations, one for failure and one for success.

type Behaviour = [Response] -> [Request] is straightforward but tedious, and errors are easily ihiced by
type FailCont = IOError -> Behaviour misspelling one of the names used to pass the current couat in
type StrCont = String -> Behaviour or out of a function application. Usingstate transformemonad

would let you hide all the “plumbing.” The monad itself would
be responsible for passing counter values, so there is naoceha
readFile :: Name -> FailCont -> StrCont -> Behaviour tO misspell the associated names.

One can define this transaction in terms of streams as fallows

readFile name fail succ "(resp:resps) = A monad consists of a type constructoand a pair of functions,
= ReadFile name : return and >>= (sometimes pronounced “bind”). Here are their
case resp of types:
Str val -> succ val resps
Failure msg -> fail msg resps i::u§n B ;.I -> 1\>’l a(. MDY o> N b
= M a - a — -

If the transaction failed, the failure continuation woule &pplied
to the error message; if it succeeded, the success continuat
would be applied to the contents of the file. In a similar way, i
is straightforward to define each of the continuation-basausac-
tions in terms of the stream-based model of 1/O.

One should readM' a” as the type of a&omputationthat returns a
value of typea (and perhaps performs some side effects). Say that
m iS an expression of typ® a andn is an expression of type b

with a free variablex of typea. Then the expression

Using this style of 1/0, the example given earlier in strebased m >>= (\x => n)
I/0 can be rewritten as shown in Figure 4. The code uses the has typeM b. This performs the computation indicatedfybinds
standard failure continuatiomsbort, and an auxiliary function the value returned te, and performs the computation indicated by

let. The use of a function calletlet reflects the fact thatet n. Itis analogous to the expression
expressions were not in Haskell 1.0! (They appeared in Hiaske let x = m in n
11)

o . in a language with side effects such as ML, except that thestyp
Although the two examples look somewhat similar, the camtin g not indicate the presence of the effects: in the ML version
tion style was preferred by most programmers, since the flbw 0 ; phas typea instead ofM a, andn has typeb instead ofM b.

control was more localised. In particular, the pattern miaig re- Further, monads give quite a bit of freedom in how one defihes t
quired by stream-based 1/O forces the reader’s focus to joack operatorsreturn and>>=, while ML fixes a single built-in notion
and forth between the patterns (representing the respoasdshe of computation and sequencing.

requests.

o))) ~ Here are a few examples of the notions of side effects thatane
Above we take streams as primitive and define continuations i define with monads:

terms of them. Conversely, with some cleverness it is alssipo A ’ . d hread h h
ble to take continuations as primitive and define streamsrims * A state transformers used to thread state through a program.

of them (see (Hudak and Sundaresh, 1989), where the definitio ~ H€réM aisST s a, where s is the state type.

of streams in terms of continuations is attributed to Peyimmes). type ST s a = s —-> (a,s)

However, the definition of streams in terms of continuatiores A state transformer is a function that takes the old statéyfm
inefficient, requiring linear space and quadratic time inm of s) and returns a value (of typs) and the new state (of typs.

the number of requests issued, as opposed to the expecttbn For instance, to thread a counter through a program we might
space and linear time. For this reason, Haskell 1.0 definedrss takes to be integer.

as primitive, and continuations in terms of them, even tthocon-
tinuations were considered easier to use for most purposes.

A state readeis a simplified state transformer. It accepts a state

that the computation may depend upon, but the computation

7.2 Monads never changes the state. Hetea is SR s a, where s is the
state type.

We now pause the story of I/O while we brimyonadsonto the tvoe SR s a = s -> a

scene. In 1989, Eugenio Moggi published at LICS a paper on P

the use of monads from category theory to describe features o ® An exceptionmonad either returns a value or raises an excep-

programming languages, which immediately attracted atgfeal tion. HereM a is Exc e a, wheree is the type of the error
of attention (Moggi, 1989; Moggi, 1991). Moggi used monaals t message.
modularise the structure of a denotational semanticsesaising data Exc e a = Exception e | 0K a

the treatment of diverse features such as state and excspBot
a denotational semantics can be viewed as an interpretiemin
a functional language. Wadler recognised that the teclenidoggi
had used to structure semantics could be fruitfully appigestruc- type Cont ra = (a->1) —>r

ture other functional programs (Wadler, 1992a; Wadler,2t99In A list monad can be used to model nondeterministic computa-
effect, Wadler used monads ¢ézpresshe same programming lan- tions, which return a sequence of values. Hére is List a,
guage features that Moggi used monaddéecribe which is just the type of lists of values of type

e A continuationmonad accepts a continuation. Hetea is
Cont r a, wherer is the result type of the continuation.

main :: Behaviour
main ~(Success : “((Str userInput) : ~“(Success : “(r4 : .))))
= [AppendChan stdout "enter filename\n",
ReadChan stdin,
AppendChan stdout name,
ReadFile name,
AppendChan stdout
(case r4 of

Str contents -> contents
Failure ioerr -> "can’t open file")
] where (name : _) = lines userInput

Figure 3. Stream-based I/O

main :: Behaviour

main = appendChan stdout "enter filename\n" abort (
readChan stdin abort (\userInput ->
letE (lines userInput) (\(name : _) ->
appendChan stdout name abort (
readFile name fail (\contents ->
appendChan stdout contents abort done)))))

where

fail ioerr = appendChan stdout "can’t open file" abort done

abort :: FailCont
abort err resps = []

letE :: a->(a->b) >b
letE x k = k x

Figure 4. Continuation 1/O

main :: I0)
main = appendChan stdout "enter filename\n" >>

readChan stdin >>= \userInput ->
let (name : _) = lines userInput in
appendChan stdout name >>

catch (readFile name >>= \contents ->
appendChan stdout contents)
(appendChan stdout "can’t open file")

Figure 5. Monadic I/O

main :: I0 O

main = do appendChan stdout "enter filename\n"
userInput <- readChan stdin
let (name : _) = lines userInput
appendChan stdout name
catch (do contents <- readFile name

appendChan stdout contents)
(appendChan stdout "can’t open file")

Figure 6. Monadic 1/O usingio notation

type List a = [a]

e A parser monad can be used to model parsers. The input is

the string to be parsed, and the result is list of possiblegsr

each consisting of the value parsed and the remaining uegbar:
string. It can be viewed as a combination of the state trans-
former monad (where the state is the string being parsed) and

the list monad (to return each possible parse in turn). Mese
iSParser a.

type Parser a = String -> [(a,String)]

Each of the above monads has corresponding definitiohstafrn

Two different forms of syntactic sugar for monads appeared
in Haskell at different times. Haskell 1.3 adopted Jonesg's-“
notation,” which was itself derived from John Launchburpa-

s Peron lazy imperative programming (Launchbury, 1993). seub

quently, Haskell 1.4 supported “monad comprehensions” el§ w
asdo-notation (Wadler, 1990a)—an interesting reversal, sihee
comprehension notation was proposed bef@senotation! Most
users preferred theo-notation, and generalising comprehensions
to monads meant that errors in ordinary list comprehensiongd

be difficult for novices to understand, so monad comprelomssi
were removed in Haskell 98.

and>>=. There are three laws that these definitions should satisfy 7.3 Monadic I/O

in order to be a true monad in the sense defined by category

theory. These laws guarantee that composition of functieitis
side effects isssociativeand has aidentity (Wadler, 1992b). For
example, the latter law is this:

returnz>>=f = fux

Each of the monads above has definitiong@furn and>>= that
satisfy these laws, although Haskell provides no mechansm
ensure this. Indeed, in practice some Haskell programnssrshe
monadic types and programming patterns in situations wttere
monad laws do not hold.

A monad is a kind of “programming pattern”. It turned out tktais
pattern can be directly expressed in Haskell, using a tyassclas
we saw earlier in Section 6.4:

class Monad m where
return :: a ->m a
(>>=) :ma->(a->mb) ->mb

Although Wadler's development of Moggi’s ideas was not clieel
towards the question of input/output, he and others at Glasgpon
realised that monads provided an ideal framework for 1/0e Th
key idea is to treat a value of ty® a as a “computation” that,
when performed, might perform input and output before deiing

a value of typea. For examplereadFile can be given the type

readFile :: Name -> I0 String

SoreadFile is a function that takes ¥ame and returns a compu-
tation that, when performed, reads the file and returns itserds
as aString.

Figure 5 shows our example program rewritten using monads in
two forms. It makes use of the monad operaters, return, >>,
andcatch, which we discuss next. The first two are exactly as de-
scribed in the previous section, but specialised forlihenonad.
Soreturn x is the trivial computation of typ&0 a (wherex: :a)
that performs no input or output and returns the vateSimi-

The Monad class gives concrete expression to the mathematical larly, (>>=) is sequential composition{m >>= k) is a compu-

idea that any type constructor that has suitably typed undtlzdnd
operators is a monad. That concrete expression has diestigal
utility, because we can now write useful monadic combirsatbat
will work for anymonad. For example:

sequence :: Monad m => [m a] -> m [al

sequence [] = return []

sequence (m:ms) = m >>= \x ->
sequence ms >>= \ xs ->
return (x:xs)

The intellectual reuse of the idea of a monad is directly cifie

in actual code reuse in Haskell. Indeed, there are whole éflask

libraries of monadic functions that work fanymonad. This happy

conjunction of monads and type classes gave the two a syimbiot

relationship: each made the other much more attractive.
Monads turned out to be very helpful in structuring quite w fe

functional programs. For example, GHC's type checker uses a

monad that combines a state transformer (representingutinent
substitution used by the unifier), an exception monad (tacatd

tation that, when performed, performsappliesk to the result to
yield a computation, which it then performs. The operaper) is
sequential composition when we want to discard the resulhef
first computation:

>>)

m>>n =

:: I0a->I0b->1I00D
m>=\ _->n

The HaskellI0 monad also supporexceptionsoffering two new
primitives:

ioError :: IOError -> I0 a

catch : I0 a => (I0Error -> I0 a) -> I0 a

The computation(ioError e) fails, throwing exceptiore. The
computation(catch m h) runs computation,; if it succeeds, then
its result is the result of theatch; but if it fails, the exception is
caught and passed 1o

The same example program is shown once more, rewritten us-

ing Haskell'sdo-notation, in Figure 6. This notation makes (the
monadic parts of) Haskell programs appear much more imipetat

an error if some type failed to unify), and a state reader rdona Haskell's input/output interface ispecifiedmonadically. It can be

(to pass around the current program location, used wherntrego

an error). Monads are often used in combination, as this pleam

suggests, and by abstracting one level further one can imatthd

implementedising continuations, thus:

type I0 a = FailCont -> SuccCont a -> Behaviour

transformeran Haskell (Steele, 1993; Liang et al., 1995; Harrison (The reader may like to write implementationsrefturn, (>>=),
and Kamin, 1998). The Liang, Hudak, and Jones paper was $e fir catch and so on, using this definition ab.) However, it is also

to show that a modular interpreter could be written in Halsks!
ing monad transformers, but it required type class extersssup-
ported only in Gofer (an early Haskell interpreter—see Bec®).
This was one of the examples that motivated a flurry of exterssi
to type classes (see Section 6) and to the development ofdhadn
tranformer library. Despite the utility of monad transfara, mon-

ads do not compose in a nice, modular way, a research prohkm t

is still open (Jones and Duponcheel, 1994; Luth and Gh&di2p

possible to implement theEd monad in a completely different style,
without any recourse to a stream of requests and responkes. T
implementation in GHC uses the following one:

type I0 a = World -> (a, World)

An 10 computation is a function that (logically) takes the stdte o
the world, and returns a modified world as well as the retuineia
Of course, GHC does not actually pass the world around;adste

it passes a dummy “token,” to ensure proper sequencing mfrect
in the presence of lazy evaluation, and performs input arngubu
as actual side effects! Peyton Jones and Wadler dubbed ghk re
“imperative functional programming” (Peyton Jones and &ad
1993).

The monadic approach rapidly dominated earlier models tljes
are more compact, and more informative. For example, in the
continuation model we had

readFile :: Name -> FailCont -> StrCont -> Behaviour

The type is cluttered with success and failure continuatigvhich
must be passed by the programmer) and fails to show thats$k re
is aString. Furthermore, the types a computations could be
polymorphic:

readIORef : IORef a -> 10 a
writeIORef :: IORef a -> a -> I0 ()

These types cannot be written with a fixeghuest andResponse
type. However, the big advantage is conceptual. It is musieea

to think abstractly in terms of computations than concietal
terms of the details of failure and success continuatiohs.rffionad
abstracts away from these details, and makes it easy to ehang
them in future. The reader may find a tutorial introductiorttie

10 monad, together with various further developments in (Beyt
Jones, 2001).

Syntax matters An interesting syntactic issue is worth pointing
out in the context of the development of Haskell’s I/O systhiote

in the continuation example in Figure 4 the plethora of ptreses
that tend to pile up as lambda expressions become nesteg.tBia
style of programming was probably going to be fairly common,
the Haskell Committee decided quite late in the design poce
to change the precedence rules for lambda in the contexffigf in
operators, so that the continuation example could be write
follows:

Behaviour
appendChan stdout "enter filename\n" >>>
readChan stdin >>> \ userInput ->
let (name : _) = lines userInput in
appendChan stdout name >>>
readFile name fail (\ contents ->
appendChan stdout contents abort done)
where

fail ioerr

main ::
main

appendChan stdout "can’t open file"
abort done

wheref >>> x = f abort x. Note the striking similarity of this
code to the monadic code in Figure 5. It can be made even more
similar by defining a suitableatch function, although doing so
would be somewhat pedantic.

Although these two code fragments have a somewhat imperativ
feel because of the way they are laid out, it was really theeatlv

of do-notation—not monads themselves—that made Haskell pro-
grams look more like conventional imperative programs (fetter

or worse). This syntax seriously blurred the line betweerejyu
functional programs and imperative programs, yet was Hgart
adopted by the Haskell Committee. In retrospect it is woek-a
ing whether this same (or similar) syntactic device couldehaeen
used to make stream or continuation-based I/O look morgalatu

7.4 Subsequent developments

Once theI0 monad was established, it was rapidly developed in
various ways that were not part of Haskell 98 (Peyton Jor@] @2
Some of the main ones are listed below.

Mutable state. From the very beginning it was clear that the
monad could also support mutable locations and arrays (Pey-
ton Jones and Wadler, 1993), using these monadic operations

newIORef :: a -> I0 (IORef a)
readIORef :: IORef a -> I0 a
writeIORef :: IORef a -> a -> I0 ()

An exciting and entirely unexpected development was Launch
bury and Peyton Jones’s discovery that imperative computa-
tions could be securely encapsulated inside a pure functiom

idea was to parameterise a state monad with a type parameter
s that “infected” the references that could be generatedan th
monad:

newSTRef : a -> ST s (STRef s a)
readSTRef :: STRef s a -> ST s a
writeSTRef :: STRef s a -> a -> ST s ()

The encapsulation was performed by a single constanfST,
with a rank-2 type (Section 6.7):

(forall s. ST s a) -> a

A proof based on parametricity ensures that no references ca
“leak” from one encapsulated computation to another (Launc
bury and Peyton Jones, 1995). For the first time this offered
the ability to implement a function using an imperative algo
rithm, with a solid guarantee that no side effects couldderci

tally leak. The idea was subsequently extended to accommo-
date block-structured regions (Launchbury and Sabry, 1,997
and reused to support encapsulated continuations (Dybugig e
2005).

Random numbers need a seed, and the HaskellR&dom library
uses thag0 monad as a source of such seeds.

Concurrent Haskell (Peyton Jones et al., 1996) extends fie
monad with the ability to fork lightweight threads, each of
which can perform I/O by itself (so that the language seman-
tics becomes, by design, nondeterministic). Threads cam co
municate with each other using synchronised, mutable loca-
tions called MVars, which were themselves inspired by the M-
structures of Id (Barth et al., 1991).

Transactional memory. The trouble with MVars is that programs
built using them are notomposablgthat is, it is difficult
to build big, correct programs by gluing small correct sub-
programs together, a problem that is endemic to all conatirre
programming technologySoftware transactional memorig
a recent and apparently very promising new approach to this
problem, and one that fits particularly beautifully into Hel
(Harris et al., 2005).

Exceptions were built into theI0 monad from the start—see the
use ofcatch above—but Haskell originally only supported a
single exception mechanism in purely functional code, ngme
the functionerror, which was specified as bringing the entire
program to a halt. This behaviour is rather inflexible forlrea
applications, which might want to catch, and recover froatisc
to error, as well as pattern-match failures (which also call
error). The I0 monad provides a way to achieve this goal
without giving up the simple, deterministic semantics ofgiy
functional code (Peyton Jones et al., 1999).

runST ::

UnsafePerformlO Almost everyone who starts using Haskell
eventually asks “how do | getut of the I0 monad?” Alas,
unlike runST, which safely encapsulates an imperative compu-
tation, there is no safe way to escape from1benonad. That
does not stop programmers from wanting to do it, and occasion
ally with some good reason, such as printing debug messages,
whose order and interleaving is immaterial. All Haskell ep
mentations, blushing slightly, therefore provide:

unsafePerformI0 :: I0 a -> a

As its name implies, it is not safe, and its use amounts to a
promise by the programmer that it does not matter whether the
1/0 is performed once, many times, or never; and that itsixela
order with other I/O is immaterial. Somewhat less obviougly

is possible to usensafePerformI0 to completely subvert the
type system:

cast :: a -> b
cast x = unsafePerformIO
(do writeIORef r x
readIORef r)
where r :: I0ORef a
r = unsafePerformIO

(newIORef (error "urk"))

It should probably have an even longer name, to discourage it
use by beginners, who often use it unnecessarily.

Arrows are an abstract view of computation with the same flavour
as monads, but in a more general setting. Originally proghose
by Hughes in 1998 (Hughes, 2000; Paterson, 2003), arrows
have found a string of applications in graphical user irstess
(Courtney and Elliott, 2001), reactive programming (Hudak
et al., 2003), and polytypic programming (Jansson and dguri
1999). As in the case of monads (only more so), arrow pro-
gramming is very much easier if syntactic support is progide
(Paterson, 2001), and this syntax is treated directly byiythe
checker.

Underlying all these developments is the realisation bedtg ex-
plicit about effects is extremely usefahd this is something that we
believe may ultimately be seen as one of Haskell's main itspac
mainstream programmifigA good example is the development of
transactional memory. In an implementation of transaetiomem-
ory, every read and write to a mutable location must be logged
some way. Haskell’s crude effect system (tllanonad) means that
almost all memory operations belong to purely functionahpo-
tations, and hence, by construction, do not need to be loggeat
makes Haskell a very natural setting for experiments wihgac-
tional memory. And so it proved: although transactional ragm
had a ten-year history in imperative settings, when Halkfieslow,
Herlilhy and Peyton Jones transposed it into the Haskelinget
they immediately stumbled on two powerful new compositipa o
erators tetry and orElse) that had lain hidden until then (see
(Harris et al., 2005) for details).

8. Haskell in middle age

As Haskell has become more widely used for real applications
more and more attention has been paid to areas that recéioed s
shrift from the original designers of the language. Thessasir
are of enormous practical importance, but they have evaiveck
recently and are still in flux, so we have less historical pective

on them. We therefore content ourselves with a brief overviere,

in very rough order of first appearance.

8.1 The Foreign Function Interface

One feature that very many applications need is the abibty t
call procedures written in some other language from Haskeli
preferably vice versa. Once the@ monad was established, a variety
of ad hocmechanisms rapidly appeared; for example, GHC's very
first release allowed the inclusion of literal C code in mdnad
procedures, and Hugs had an extensibility mechanism theé riha

6«Effects” is shorthand for “side effects”.

possible to expose C functions as Haskell primitives. Tifecdity
was that these mechanisms tended to be implementatioifispec

An effort gradually emerged to specify an implementatioddpendent
way for Haskell to call C procedures, and vice versa. Thisalted
Foreign Function Interface (FFI) treats C as a lowest comden
nominator: once you can call C you can call practically amgh
else. This exercise was seen as so valuable that the idedesiStH]
Addenda” emerged, a well-specified Appendix to the Haskgll 9
Report that contained precise advice regarding the impiestion

of a variety of language extensions. The FFI Addendum effag
led by Manuel Chakravarty in the period 2001-2003, and fjrreH
sulted in the 30-page publication of Version 1.0 in 2003.drgiel
with, and symbiotic with, this standardisation effort waraumber
of pre-processing tools designed to ease the labour ofngrail
theforeign import declarations required for a large binding; ex-
amples include Green Card (Nordin et al., 1997), H/Direahr(E

et al., 1998), and C2Hs (Chakravarty, 1999a) among others.

We have used passive verbs in describing this process (fart ef
emerged,” “the exercise was seen as valuable”) becausesitif+a
ferent in kind to the original development of the Haskellgaage.
The exercise was open to all, but depended critically on tiie w
ingness of one person (in this case Manuel Chakravarty)ite dr
the process and act as Editor for the specification.

8.2 Modules and packages

Haskell’s module system emerged with surprisingly littkebelte.

At the time, the sophisticated ML module system was becoming
well established, and one might have anticipated a vigodetsite
about whether to adopt it for Haskell. In fact, this debatgene
really happened. Perhaps no member of the committee was suffi
ciently familiar with ML's module system to advocate it, @rhaps
there was a tacit agreement that the combination of typesetas
and ML modules was a bridge too far. In any case, we eventually
converged on a very simple design: the module system is a-name
space control mechanism, nothing more and nothing less.had

the great merit of simplicity and clarity—for example, thedule
system is specified completely separately from the typesayst

but, even so, some tricky corners remained unexplored farak
years (Diatchki et al., 2002).

In versions 1.0-1.3 of the language, every module was spdcifi
by aninterfaceas well as anmplementationA great deal of dis-
cussion took place about the syntax and semantics of iotsfa
issues such as the duplication of information between fantes
and implementations, especially when a module re-expatiges
defined in one of its imports; whether one can deduce fromtan-in
face which module ultimately defines an entity; a tensiomvbet
what a compiler might want in an interface and what a programm
might want to write; and so on. In the end, Haskell 1.4 conghjet
abandoned interfaces as a formal part of the language ahste
terface files were regarded as a possible artifact of sepacanhpi-
lation. As a result, Haskell sadly lacks a formally checlkathuage
in which a programmer can advertise the interface that theéubeo
supports.

8.2.1 Hierarchical module names

As Haskell became more widely used, the fact that the module
name space was completely flat became increasingly irksfime;
example, if there are two collection libraries, they canboth use

the module nam#ap.

This motivated an effort led by Malcolm Wallace to specifyean
tension to Haskell that would allow multi-component hiefacal
module names (e.gData.Map), using a design largely borrowed
from Java. This design constituted the second “Blessed idde

dum,” consisting of a single page that never moved beyond ver
sion 0.0 and “Candidate” statudNevertheless, it was swiftly im-

plemented by GHC, Hugs, and nhc, and has survived unchanged

since.

8.2.2 Packaging and distribution

Modules form a reasonable unit of prograranstruction but not

of distribution Developers want to distribute a related group of
modules as a “package,” including its documentation, ki@
information, details about dependencies on other packaggade
files, build information, and much more besides. None of Was
part of the Haskell language design.

In 2004, Isaac Jones took up the challenge of leading anteffor
to specify and implement a system called Cabal that suppioets
construction and distribution of Haskell packafeSubsequently,
David Himmelstrup implemented Hackage, a Cabal packageser
that enables people to find and download Cabal packagesisThis
not the place to describe these tools, but the historicalpeetive

is interesting: it has taken more than fifteen years for Hiaske
to gain enough momentum that these distribution and disgove
mechanisms have become important.

8.2.3 Summary

The result of all this evolution is a module system distiistpeid by
its modesty. It does about as little as it is possible for @jlmye
to do and still call itself a practical programming tool. Raps this
was a good choice; it certainly avoids a technically congéd
area, as a glance at the literature on ML modules will confirm.

8.3 Libraries

It did not take long for the importance of well-specified anellw
implemented libraries to become apparent. The initial lddske-
port included an Appendix defining the Standard Prelude but
Haskell 1.3 (May 1996) the volume of standard library codd ha
grown to the extent that it was given a separate companioratyib
Report, alongside the language definition.

The libraries defined as part of Haskell 98 were still fairlgaest in
scope. Of the 240 pages of the Haskell 98 Language and Lésrari
Report, 140 are language definition while only 100 define the
libraries. But real applications need much richer librariand an
informal library evolution mechanism began, based arouaskll
language implementations. Initially, GHC began to distiéa
bundle of libraries callechslibs but, driven by user desire for
cross-implementation compatibility, the Hugs, GHC ahd teams

Part Il

Implementations and Tools

9. Implementations

Haskell is a big language, and it is quite a lot of work to imple
ment. Nevertheless, several implementations are avajlabd we
discuss their development in this section.

9.1 The Glasgow Haskell Compiler

Probably the most fully featured Haskell compiler today hie t
Glasgow Haskell Compiler (GHC), an open-source projech it
liberal BSD-style licence.

GHC was begun in January 1989 at the University of Glasgow, as
soon as the initial language design was fixed. The first versfo
GHC was written in LML by Kevin Hammond, and was essentially
a new front end to the Chalmers LML compiler. This prototype
started to work in June 1989, just as Peyton Jones arrivedais-G
gow to join the burgeoning functional programming groupréhe
The prototype compiler implemented essentially all of Hdisk.0
including views (later removed), type classes, the degivirecha-
nism, the full module system, and binary I/O as well as batreshs
and continuations. It was reasonably robust (with occadispec-
tacular failures), but the larger Haskell prelude stresbed.ML
prelude mechanism quite badly, and the added complexitypef t
classes meant the compiler was quite a lot bigger and sldveer t
the base LML compiler. There were quite a few grumbles about
this: most people had 4-8Mbyte workstations at that time, an
the compiler used a reasonable amount of that memory (upward
of 2Mbytes!). Partly through experience with this compiltre
Haskell Committee introduced the monomorphism restnigtie-
moved views, and made various other changes to the language.

GHC proper was begun in the autumn of 1989, by a team consist-
ing initially of Cordelia Hall, Will Partain, and Peyton Jes It
was designed from the ground up as a complete implementaftion
Haskell in Haskell, bootstrapped via the prototype compilée
only part that was shared with the prototype was the pard@ghw

at that stage was still written in Yacc and C. The first betaas¢
was on 1 April 1991 (the date was no accident), but it was aroth
18 months before the first full release (version 0.10) waseriad
December 1992. This version of GHC already supported skvera
extensions to Haskell: monadic I/O (which only made it offilg

into Haskell in 1996), mutable arrays, unboxed data typey-P
ton Jones and Launchbury, 1991), and a novel system for space
time profiling (Sansom and Peyton Jones, 1995). A subsegeent
lease (July 1993) added a strictness analyser.

A big difference from the prototype is that GHC uses a vergdar
data type in its front end that accurately reflects the fulirglof
Haskell's syntax. All processing that can generate errossages
(notably resolving lexical scopes, and type inferenceeisqymed

began in 2001 to work together on a common, open-source set ofO" this data type. This approach contrasts with the more lpopu

libraries that could be shipped with each of their compilens
effort that continues to this day.

"http://haskell.org/definition
8http://haskell.org/cabal

method of first removing syntactic sugar, and only then pssicey

a much smaller language. The GHC approach required us te writ
a great deal of code (broad, but not deep) to process the many
constructors of the syntax tree, but has the huge advarttagi¢he
error messages could report exactly what the programmetewro

After type checking, the program is desugared into an eijylic
typed intermediate language called simply “Core” and them p
cessed by a long sequence of Core-to-Core analyses and opti-
mising transformations. The final Core program is transterin

the Spineless Tagless G-machine (STG) language (Peyt@s,Jon also several extensions, many of which are now in Haskele38 (

1992), before being translated into C or machine code.

operator sections).

The Core language is extremely small — its data type has only “The testing of the compiler at the time of release was resaiiy-
a dozen constructors in total — which makes it easy to write a imal, but it could compile the Standard Prelude—and theuelee!

Core-to-Core transformation or analysis pass. We injtiathsed
Core on the lambda calculus but then, wondering how to dézora
it with types, we realised in 1992 that a ready-made basigday
hand, namely Girard’s Systefiw (Girard, 1990); all we needed to
do was to add data typebet-expressions, andase expressions.

uses dot of Haskell features. Speaking of the Prelude | think it's
worth pointing out that Joe Fasel’s prelude code must beteheu
oldest Haskell code in existence, and large parts of it alleust
changed! The prelude code was also remarkably un-buggyfte ¢
that had never been compiled (or even type checked) bafere

GHC appears to be the first compiler to use System F as a typedcame along.

intermediate language, although at the time we thoughtstsueh
a simple idea that we did not think it worth publishing, extcap a
small section in (Peyton Jones et al., 1993). Shortly afiets, the
same idea was used independently by Morrisett, Harper amfitiTa
at Carnegie Mellon in their TIL compiler (Tarditi et al., 189 They
understood its significance much better than the GHC teadtfan
whole approach of type-directed compilation subsequédigtame
extremely influential.

Several years later, we added a “Core Lint” typechecker that

checked that the output of each pass remained well-typetielf
compiler is correct, this check will always succeed, butrivides
a surprisingly strong consistency check—many, perhaps mas
in the optimiser produce type-incorrect code. Furthermoagch-
ing compiler bugs this way is vastly cheaper than generating
correct code, running it, getting a segmentation fault,udejiing
it with gdb, and gradually tracing the problem back to its original
cause. Core Lint often nails the error immediately. Thissistency
checking turned out to be one of the biggest benefits of a typed
termediate language, although it took us a remarkably long to
recognise this fact.

Over the fifteen years of its life so far, GHC has grown a hugau
ber of features. It supports dozens of language extensimtalfly

in the type system), an interactive read/eval/print irtegf (GHCIi),
concurrency (Peyton Jones et al., 1996; Marlow et al., 2Q€at)s-
actional memory (Harris et al., 2005), Template Haskelleg8t
and Peyton Jones, 2002), support for packages, and muchosore
sides. This makes GHC a dauntingly complex beast to unaetsta
and modify and, mainly for that reason, development of the co
GHC functionality remains with Peyton Jones and Simon Marlo
who both moved to Microsoft Research in 1997.

9.2 hbc

“Concerning the implementation, | only remember two profégic
areas: modules and type checking. The export/import of same
modules were different in those days (renaming) and theme we
many conditions to check to make sure a module was valid. But
the big stumbling block was the type checking. It viwsd to do.

This was way before there were any good papers about how it was
supposed to be done.

“After the first release hbc became a test bed for varioussitoes
and new features and it lived an active life for over five yeBust
since the compiler was written in LML it was more or less dodme
to dwindle.”

9.3 Gofer and Hug$

GHC and hbc were both fully fledged compilers, themselves im-
plemented in a functional language, and requiring a good afea
memory and disk space. In August 1991, Mark Jones, then dlD.Ph
student at the University of Oxford, released an entireffecgnt
implementation called Gofer (short for “GOod For EquatidrRea-
soning”). Gofer was an interpreter, implemented in C, depetl on

an 8MHz 8086 PC with 640KB of memory, and small enough to fit
on a single (360KB) floppy disk.

Jones wrote Gofer as a side project to his D.Phil. studiesledd,
he reports that he did not dare tell his thesis adviser abaf¢G
until it was essentially finished—to learn more about thelémp
mentation of functional programming languages. Over tihmy-
ever, understanding type classes became a central themaes'J
dissertation work (Jones, 1994), and he began to use Gofer as
testbed for his experiments. For example, Gofer includedfitist
implementation of multi-parameter type classes, as aalfjirsug-
gested by Wadler and Blott (Wadler and Blott, 1989) and aleggu
topic of both conversation and speculation on the Haskeilimga
list at the time. Gofer also adopted an interesting varidiwadler

Thehbc compiler was written by Lennart Augustsson, a researcher and Blott’s dictionary-passing translation (Section 6hx was de-

at Chalmers University whose programming productivity deag
belief. Augustsson writes:

“During the spring of 1990 | was eagerly awaiting the first kizls

signed to minimise the construction of dictionaries at riamet, to
work with multiple parameter type classes, and to provideemo
accurate principal types. At the same time, however, ttésited
in small but significant differences between the Haskell Goder

compiler, it was supposed to come from Glasgow and be basedyype systems, so that some Haskell programs would not work in

on the LML compiler. And | waited and waited. After talking to
Glasgow people at the LISP & Functional Programming comfese
in Nice in late June of 1990 Staffan Truvé and | decided thstisiad
of waiting even longer we would write our own Haskell compile
based on the LML compiler.

“For various reasons Truvé couldn’t help in the coding oé th

Gofer, and vice versa.

Moving to take a post-doctoral post at Yale in 1992, Jonesiicon
ued to develop and maintain Gofer, adding support for canstr
tor classes (Section 6.4) in 1992-93 and producing the finpte-
mentation of thelo-notation in 1994. Both of these features were
subsequently adopted in Haskell 98. By modifying the intgr’s

compiler, so | ended up spending most of July and August cod- phack end, Jones also developed a Gofer-to-C compiler, anddw

ing, sometimes in an almost trance-like state; my head filled
Haskell to the brim. At the end of August | had a mostly com-
plete implementation of Haskell. | decided thatc would be a
cool name for the compiler since it is Haskell Curry’s inlgia(l
later learnt that this is the name the Glasgow people wardged f
their compiler too. But first come, first served.)

“The first release, 0.99, was on August 21, 1990. The impléasen
tion had everything from the report (except for File oparas) and

this as a basis for the first “dictionary-free” implementatof type
classes, using techniques from partial evaluation to afiseiaway
the results of the dictionary-passing translation.

After he left Yale in the summer of 1994, Jones undertook amaj
rewrite of the Gofer code base, to more closely track the Elask

9The material in this section was largely written by Mark Jartee author
of Gofer and Hugs.

standard. Briefly christened “Hg” (short for Haskell-ggfehe new
system soon acquired the name “Hugs” (for “the Haskell User’
Gofer System”). The main development work was mostly coteple
by the time Jones started work at the University of Nottingha
October 1994, and he hoped that Hugs would not only appease th
critics but also help to put his newly founded research grivup
Nottingham onto the functional programming map. Alwaysognj
ing the opportunity for a pun, Jones worked to complete trst fir
release of the system so that he could announce it on Feltdary
1995 with the greeting “Hugs on Valentine’s Day!” The first re
lease of Hugs supported almost all of the features of Hagka|l
including Haskell-style type classes, stream-based I/DIl gore-
lude, derived instances, defaults, overloaded numegcalis, and
bignum arithmetic. The most prominent missing feature s t
Haskell module system; Hugs 1.0 would parse but otherwiseréey
module headers and import declarations.

Meanwhile, at Yale, working from Hugs 1.0 and striving tother
close the gap with Haskell, Alastair Reid began modifyinggkiu
to support the Haskell module system. The results of Reidgw
appeared for the first time in the Yale HugsO release in Ju8é.19
Meanwhile, Jones had continued his own independent davelop
of Hugs, leading to an independent release of Hugs 1.3 in gtugu
1996 that provided support for new Haskell 1.3 features aagch
monadic /O, the labelled field syntax, newtype declaratiand
strictness annotations, as well as adding user interfabanse-
ments such as import chasing.

Even before the release of these two different versions astHu
Jones and Reid had started to talk about combining theirtgfftto
a single system. The first joint release, Hugs 1.4, was cdetpla
January 1998, its name reflecting the fact that the Haslaidstrd

9.4 nhc

The originalnhc was developed by Niklas Rojemo when he was
a PhD student at Chalmers (Rojemo, 1995a). His motivatiom fr
the start was to have a space-efficient compiler (Rojemo51P9
that could be bootstrapped in a much smaller memory space tha
required by systems such asc and GHC. Specifically he wanted
to bootstrap it on his personal machine which had around 2&tby
main memory.

To help achieve this space-efficiency he made use durindateve
ment of the first-generation heap-profiling tools—which lpad-
viously been developed at York and used to reveal space-leak
in hbc (Runciman and Wakeling, 1992; Runciman and Wakeling,
1993). Because of this link, Rdjemo came to York as a postedal
researcher where, in collaboration with Colin Runciman,dee
vised more advanced heap-profiling methods, and used thinato
residual space-inefficiencies ithc, leading to a still more space-
efficient version (Rjemo and Runciman, 1996a).

When Rojemo left York around 1996 he handeat over to Runci-
man’s group, for development and free distribution (withe cac-
knowledgements). Malcolm Wallace, a post-doc at York wgki

on functional programming for embedded systems, became the
principal keeper and developersiic—he has since released a se-
ries of distributed versions, tracking Haskell 98, additangard
foreign-function interface and libraries, and making vas im-
provements (Wallace, 1998).

Thenhc system has been host to various further experiments. For
example, a continuing strand of work relates to space efiigie
(Wallace and Runciman, 1998), and more recently the dexedop

of the Hat tools for tracing programs (Wallace et al., 20012006,

had also moved on to a new version by that time. Jones, however the York Haskell Compiler projecthc, was started to re-engineer

had also been working on a significant overhaul of the Huge typ
checker to include experimental support for advanced typtem
features including rank-2 polymorphism, polymorphic nesion,
scoped type variables, existentials, and extensible dscand also
to restore the support for multi-parameter type classdastihbeen
eliminated in the transition from Gofer to Hugs. These fesgu
were considered too experimental for Hugs 1.4 and weregetta
independently as Hugs 1.3c, which was the last version oEHaig
be released without support for Haskell modules.

It had been a confusing time for Hugs users (and developstslg
there were multiple versions of Hugs under development at th
same time. This problem was finally addressed with the releas
Hugs 98 in March 1999, which merged the features of the puosvio
Yale and Nottingham releases into a single system. Moreager

nhc.

9.5 Yale Haskell

In the 1980s, prior to the development of Haskell, there was a
active research project at Yale involving Scheme and a diale
Scheme called. Several MS and PhD theses grew out of this work,
supervised mostly by Hudak. THerbit compiler, an optimising
compiler for T, was one of the key results of this effort (Kzaat al.,
2004; Kranz et al., 1986).

So once Hudak became actively involved in the design of Haske
it was only natural to apply Scheme compilation techniqurean
implementation of Haskell. However, rather than port treaiglto a
stand-alone Haskell compiler, it seemed easier to compiiskel|

the name suggests, this was the first version of Hugs to stippor into Scheme or T, and then use a Scheme compiler as a back end.

the Haskell 98 standard. In fact Hugs 98 was also the lasteof th

Unfortunately, the T compiler was no longer being maintdinad

Nottingham and Yale releases of Hugs, as both Jones and Reidhad problems with compilation speed. T was then abandoned in

moved on to other universities at around that time (JonesGbd O
and Reid to Utah).

favour of Common Lispto address performance and portability
issues. This resulted in what became knowiYas Haskell

Hugs development has proceeded at a more gentle pace since thJohn Peterson and Sandra Loosemore, both Research Ssiantis

first release of Hugs 98, benefiting in part from the stabititg-
vided by the standardisation of Haskell 98. But Hugs devalamt
has certainly not stood still, with roughly one new formakesse
each year. Various maintainers and contributors have vdodte
Hugs during this period, including Jones and Reid, albed eg-
duced level, as well as Peterson, Andy Gill, Johan Nordlgriedf
Lewis, Sigbjorn Finne, Ross Paterson, and Dimitry Golukgvs
In addition to fixing bugs, these developers have added stippo
for new features including implicit parameters, functibdepen-
dencies, Microsoft's .NET, an enhanced foreign functideriface,
hierarchical module names, Unicode characters, and algeat
panded collection of libraries.

Yale, were the primary implementers of Yale Haskell. To achi
reasonable performance, Yale Haskell used strictnesysasand
type information to compile the strict part of Haskell intery ef-
ficient Lisp code. The CMU lisp compiler was able to generate
very good numeric code from Lisp with appropriate type aanot
tions. The compiler used a dual-entry point approach taevery
efficient first-order function calls. Aggressive in-liningas able

to generate code competitive with other languages (Hattel.g
1996). In addition, Yale Haskell performed various optiatisns
intended to reduce the overhead of lazy evaluation (Hudak an
Young, 1986; Bloss et al., 1988b; Bloss et al., 1988a; You8§8;
Bloss, 1988).

Although performance was an important aspect of the Yale-com
piler, the underlying Lisp system allowed the Yale efforfdous at-
tention on the the Haskell programming environment. Yaleked
was the first implementation to support both compiled andrint
preted code in the same program (straightforward, sincg &ys-
tems had been doing that for years). It also had a very nicegma
based programming environment in which simple two-keystro
commands could be used to evaluate expressions, run despgu
compile modules, turn specific compiler diagnostics on dfan-
able and disable various optimisers, and run a tutorial oskela
Commands could even be queued, thus allowing, for example, a
compilation to run in the background as the editing of a seftite
continued in emacs in the foreground.

Another nice feature of Yale Haskell was a “scratch pad” toatid
be automatically created for any module. A scratch pad wag-a |
ical extension of a module in which additional function aradue
definitions could be added, but whose evaluation did notlr@su
recompilation of the module. Yale Haskell also supportechyna
Haskell language extensions at the time, and thus served &s a
cellent test bed for new ideas. These extensions includethds)
dynamic types, polymorphic recursion, strictness anianat in-
lining pragmas, specialising over-loaded functions, rallyurecur-
sive modules, and a flexible foreign function interface fotthC
and Common Lisp.

Ultimately, the limitations of basing a Haskell compiler atCom-
mon Lisp back-end caught up with the project. Although early
on Yale Haskell was competitive with GHC and other compijlers
GHC programs were soon running two to three times faster than
Yale Haskell programs. Worse, there was no real hope of ngakin
Yale Haskell run any faster without replacing the back-emdi rain-
time system. Optimisations such as reusing the storagehort

to hold the result after evaluation were impossible with @en-
mon Lisp runtime system. The imperative nature of Lisp pnéee
many other optimisations that could be done in a Haskeltifipe
garbage collector and memory manager. Every thunk intredao
extra level of indirection (a Lisp cons cell) that was unresegy in

the other Haskell implementations. While performance inithe
strict subset of Haskell was comparable with other systéhese
was a factor of 3 to 5 in lazy code that could not be overcome due
to the limitations of the Lisp back end. For this reason, iditon

to the lack of funding to pursue further research in this i,

the Yale Haskell implementation was abandoned circa 1995.

9.6 Other Haskell compilers

One of the original inspirations for Haskell was the MIT dba
project, led by Arvind, whose programming language wasecall
Id. In 1993 Arvind and his colleagues decided to adopt Héiskel
syntax and type system, while retaining Id’s eager, pdraitalu-
ation order, I-structures, and M-structures. The resgltanguage
was calledpH (short for “parallel Haskell”), and formed the ba-
sis of Nikhil and Arvind’s textbook on implicit parallel pgram-
ming (Nikhil and Arvind, 2001). The idea of evaluating Haktke
eagerly rather than lazily (while retaining non-strict samics), but
on a uniprocessor, was also explored by Maessen’s EageeHlask
(Maessen, 2002) and Ennals’s optimistic evaluation (Enaad
Peyton Jones, 2003).

All the compilers described so far were projects begun in the
early or mid '90s, and it had begun to seem that Haskell was
such a dauntingly large language that no further implentiemts
would emerge. However, in the last five years several new élask
implementation projects have been started.

Helium. The Helium compiler, based at Utrecht, is focused espe-
cially on teaching, and on giving high-quality type errorsne
sages (Heeren et al., 2003b; Heeren et al., 2003a).

UHC and EHC. Utrecht is also host to two other Haskell com-
piler projects, UHC and EHGh¢tp: //www.cs.uu.nl/wiki/
Center/ResearchProjects).

jhc is a new compiler, developed by John Meacham. It is fo-
cused on aggressive optimisation using whole-program- anal
ysis. This whole-program approach allows a completely dif-
ferent approach to implementing type classes, withoutgusin
dictionary-passing. Based on early work by Johnsson and Bo-
quist (Boquist, 1999)jhc uses flow analysis to support a de-
functionalised representation of thunks, which can becexély
efficient.

The York Haskell Compiler, yhc, is a new compiler for Haskell
98, based omhc but with an entirely new back end.

9.7 Programming Environments

Until recently, with the notable exception of Yale Haskdittle
attention has been paid by Haskell implementers to the progr
ming environment. That is now beginning to change. Notakie e
amples include the Haskell Refactorer (Li et al., 2003); @&dC
Visual Studio plug-in (Visual Haskell), developed by Kragi An-
gelov and Simon Marlow (Angelov and Marlow, 2005); and the
EclipseFP plug-in for Haskell, developed by Leif Frenzdijago
Arrais, and Andrei de A Formidﬁ

10. Profiling and debugging

One of the disadvantages of lazy evaluation is that operaltio
aspects such as evaluation order, or the contents of a stapsh
of memory at any particular time, are not easily predictdhben

the source code—and indeed, can vary between executiohe of t
same code, depending on the demands the context makes on its
result. As a result, conventional profiling and debugginghuods
are hard to apply. We have allied adding side-effecting print
calls to record a trace of execution, or printing a backtratthe
stack on errors, only to discover that the information atedi was
too hard to interpret to be useful. Developing successfafilprg
and debugging tools for Haskell has taken considerablearelse
beginning in the early 1990s.

10.1 Time profiling

At the beginning of the 1990s, Patrick Sansom and PeytonsJone
began working on profiling Haskell. The major difficulty wasdt

ing a sensible way to assign costs. The conventional approac
of assigning costs to functions and procedures, works pdorl
higher-order functions such amp. Haskell provides many such
functions, which are designed to be reusable in many diftere
contexts and for many different tasks—so these functiontufe
prominently in time profiles. But knowing thatp consumes 20%
of execution time is little help to the programmer—we need to
know insteadwhich occurrence ofap stands for a large fraction
of the time. Likewise, when one logical task is implemented b
a combination of higher-order functions, then the time degido
the task is divided among these functions in a way that désgui
the time spent on the task itself. Thus a new approach torassgig
costs was needed.

The new idea Sansom and Peyton Jones introduced was to label
the source code witkhost centreseither manually (to reflect the
programmer’s intuitive decomposition into tasks) or auaically.

Onttp://eclipsefp.sourceforge.net

The profiling tool they built then assigned time and spacescos
to one of these cost centres, thus aggregating all the costné
logical task into one count (Sansom and Peyton Jones, 1995).

Assigning costs to explicitly labelled cost centres is muocbre
subtle than it sounds. Programmers expect that costs shoauld
assigned to the closest enclosing cost centre—but shoiddéh

the closestexically enclosing or the closeslynamicallyenclosing
cost centre? (Surprisingly, the best answer is the closestdlly
enclosing one (Sansom and Peyton Jones, 1995).) In a lamguag
with first-class functions, should the costefaluatinga function

tions of these forms made it possible for programmers to get a
swers to very specific questions about space use, such ag “wha
kind of objects point at cons cells allocated by function, fafter

their last use?” With information at this level of detail, fiman

and Rdjemo were able to improve the peak space requirernénts
their clausify program to less than 1K—three orders of mamgla
better than the original version. They also achieved a faaftdwo
improvement in thenhc compiler itself, which had already been
optimised using their earlier tools.

10.3 Controlling evaluation order

necessarily be assigned to the same cost centre as the €osts o

calling the function? In a call-by-need implementation, where the
cost of using a value the first time can be much greater thacaste

of using it subsequently, how can one ensure that cost assiuts
are independent of evaluation order (which the programineulsl

not need to be aware of)? These questions are hard enough to
answer that Sansom and Peyton Jones felt the need to develop

a formal cost semantics, making the assignment of costsgb co
centres precise. This semantics was published at POPL By b89

a prototype profiling tool was already in use with GHC in 1992.
Not surprisingly, the availability of a profiler led rapidtp faster
Haskell programs, in particular speeding up GHC itself bactdr

of two.

10.2 Space profiling

Sansom and Peyton Jones focused on profiimg costs, but at
the same time Colin Runciman and David Wakeling were work-
ing on space by profiling the contents of the heap. It had been
known for some time that lazy programs could sometimes déxhib
astonishingly poor space behaviour—so-cafipdce leakdndeed,
the problem was discussed in Hughes's dissertation in 1&8184dg
with the selective introduction of strictness to partidiity them,

but there was no practical way fihdingthe causes of space leaks
in large programs. Runciman and Wakeling developed a profile
that could display a graph of heap contents over time, dladsi
by the function that allocated the data, the top-level qosbr of

the data, or even combinations of the two (for example, “stioav
allocating functions of all the cons cells in the heap over ¢in-
tire program run”). The detailed information now availableabled
lazy programmers to make dramatic improvements to space effi
ciency: as the first case study, Runciman and Wakeling rebiinee
peak space requirements of a clausification program forgsiep
tional logic by two orders of magnitude, from 1.3 megabytes t
only 10K (Runciman and Wakeling, 1993). Runciman and Wakel-
ing’s original profiler worked for LML, but it was rapidly agved

by Haskell compilers, and the visualisation tool they wrimt@lis-
play heap profiles is still in use to this day.

By abstracting away fronevaluation order lazy evaluation also
abstracts away frorobject lifetimesand that is why lazy evalua-
tion contributes to space leaks. Programmers who canndigpre

and indeed do not think about—evaluation order also canret p
dict which data structures will live for a long time. Since dhall
programs allocate objects very fast, if large numbers ofntiead

up with long lifetimes, then the peak space requirementshean
very high indeed. The next step was thus to extend the heditepro
to provide direct information about object lifetimes. Thigp was
taken by Runciman and Rdjemo (the authomat), who had by
this time joined Runciman at the University of York. The nete{p
filer could show how much of the heap contained data that was no
yet neededlég), would never be used agaidrég), or, indeed, was
never used at alivpid) (Rjemo and Runciman, 1996a). A further
extension introducedetainer profiling which could explainvhy
data was not garbage collected by showing which objectstqubin
at the data of interest (Rjemo and Runciman, 1996b). Combina

In 1996, Haskell 1.3 introduced two features that give thogmm-
mer better control over evaluation order:

e the standard functioseq, which evaluates its first argument,
and then returns its second:

seqmy:{

e strictness annotations data definitions, as in:
SNil | SCons 'a !(SList a)

where the exclamation points denote strict fields, and tleus h
define a type of strict lists, whose elements are evaluatiide
the list is constructed.

if x =L
otherwise

L,
Ys

data SList a

Using these constructs, a programmer can move selectedusomp
tations earlier, sometimes dramatically shortening tfetifhes of
data structures. Botkeq and strict components of data structures
were already present in Miranda for the same reasons (Turner
1985), and indeedeq had been used to fix space leaks in lazy
programs since the early 1980s (Scheevel, 1984; Hughe8).198

Today, introducing &eq at a carefully chosen point is a very com-
mon way of fixing a space leak, but interestingly, this was not
the main reason for introducing it into Haskell. On the cantr
seq was primarily introduced to improve thepeedf Haskell pro-
grams! By 1996, we understood the importance of using sr&s
analysis to recognise strict functions, in order to invokenh us-
ing call-by-value rather than the more expensive call-bgd) but
the results of strictness analysis were not always as goodleas
hoped. The reason was that many functions were “nearly,hbtt
quite, strict, and so the strictness analyser was forcedateky)
classify them as non-strict. By introducing calls 3fq, the pro-
grammer could help the strictness analyser deliver beéisults.
Strictness analysers were particularly poor at analysatg tipes,
hence the introduction of strictness annotations in dgia tlecla-
rations, which not only made many more functions strict, ddab
allowed the compiler to optimise the representation of tua dype

in some cases.

Although seq was not introduced into Haskell primarily to fix
space leaks, Hughes and Runciman were by this time well aware
of its importance for this purpose. Runciman had spent aztatath

at Chalmers in 1993, when he was working on his heap profilér an
Hughes had a program with particularly stubborn space {edke

two spent much time working together to track them down. This
program was in LML, which already hagkq, and time and again

a carefully placeaseq proved critical to plugging a leak. Hughes
was very concerned that Haskell's versionsely should support
space debugging well.

But addingseq to Haskell was controversial because of its neg-
ative effect on semantic properties. In particulssg is not de-
finable in the lambda calculus, and is the only way to distin-
guish\x -> 1 from L (sinceseq L 0 goes into a loop, while
seq (\x -> 1) 0 does not)—a distinction that Jon Fairbairn, in
particular, was dead set against making. Moreowey, weakens

the parametricity property that polymorphic functions @njbe-
causeseq does not satisfy the parametricity property for its type
Va,b.a -> b -> b, and neither do polymorphic functions that
use it. This would weaken Wadler's “free theorems” in Hakkel
(Wadler, 1989) in a way that has recently been precisely-char
acterised by Patricia Johann and Janis Voigtlander (Jolzenl
Voigtlander, 2004).

Unfortunately, parametricity was by this time not just agionus,
but the justification for an important compiler optimisatjmamely
deforestatior—-the transformation of programs to eliminate inter-
mediate data structures. Deforestation is an importarmtnigation
for programs written in the “listful” style that Haskell emgrages,
but Wadler’'s original transformation algorithm (WadleQ2Db)
had proven too expensive for daily use. Instead, GHC sbedit-
cut deforestation which depends on two combinatorgoldr,
which consumes a list, and

build g = g (:) []
which constructs one, with the property that
foldr k z (build g) =g k z

(the “foldr/build rule”) (Gill et al., 1993). Applying this rewrite
rule from left to right eliminates an intermediate list vetyeaply. It
turns out that tholdr/build rule is not true foranyfunctiong;

it holds only if g has a sufficiently polymorphic type, and that can
in turn be guaranteed by givirgnild a rank-2 type (Section 6.7).
The proof relies on the parametrictity propertiesgsf type.

This elegant use of parametricity to guarantee a sophisticaro-
gram transformation was cast into doubt d3q. Launchbury ar-
gued forcefully that parametricity was too important toegiup,

for this very reason. Hughes, on the other hand, was very con-
cerned thateq should be applicable to values afiy type—even
type variables—so that space leaks could be fixed even immty
phic code. These two goals are virtually incompatible. Tdlatson
adopted for Haskell 1.3 was to makeq an overloadedfunction,
rather than a polymorphic one, thus weakening the paracitgtri
property that it should satisfy. Haskell 1.3 introducedassl

class Eval a where
strict :: (a->b) -> a -> b
seq a->b->b
strict f x = x ‘seq‘ f x

with the suspect operations as its members. However, proges
were not allowed to define their own instances of this clas$ielv
might not have been strict (!)—instead its instances wereveid
automatically. The point of théval class was to record uses of
seq in the typesof polymorphic functions, as contexts of the form
Eval a =>, thus warning the programmer and the compiler that
parametricity properties in that type variable were restd. Thus
short-cut deforestation remained sound, while space leakis be
fixed at any type.

However, the limitations of this solution soon became appiin-
spired by the Fox project at CMU, two of Hughes's studentdénp
mented a TCP/IP stack in Haskell, making heavy use of polymor
phism in the different layers. Their code turned out to comseri-
ous space leaks, which they attempted to fix usieg But when-
ever they inserted a call agfeq on a type variable, the type signa-
ture of the enclosing function changed to requireEaal instance
for that variable—just as the designers of Haskell 1.3 idézh
But often, the type signatures of very many functions chdrae
a consequence of a singéeq. This would not have mattered if
the type signatures were inferred by the compiler—but thdestts
had written them explicitly in their code. Moreover, theydhdone
so not from choice, but because Haskell’s monomorphisnicest

tion requiredtype signatures on these particular definitions (Sec-
tion 6.2). As a result, each insertion okaq became a nightmare,
requiring repeated compilations to find affected type digres and
manual correction of each one. Since space debugging istie so
extent a question of trial and error, the students neededstert
and remove calls afeq time and time again. In the end they were
forced to conclude that fixing their space leaks was simptyfes-
sible in the time available to complete the project—not bisea
they were hard to find, but because making the necessaryceorre
tions was simply too heavyweight. This experience provided
munition for the eventual removal of claBsal in Haskell 98.

Thus, today,seq is a simple polymorphic function that can be
inserted or removed freely to fix space leaks, without chamgi
the types of enclosing functions. We have sacrificed pandacnet
ity in the interests of programming agility and (sometimea-d
matic) optimisations. GHC still uses short-cut deforastatbut it

is unsound—for example, this equation doeshold

”

Haskell's designers love semantics, but even semantidsstaece.

foldr L 0 (build seq) seq L0

It's worth noting that making programs stricter is not théyomway

to fix space leaks in Haskell. Object lifetimes can be shededny
moving their last use earlie—or by creating them later. Heitt
famous case study, the first optimisation Runciman and Wakel
made was to make the programore lazy delaying the construction
of a long list until just before it was needed. Hearing Ruranm
describe the first heap profiler at a meeting of Working Group
2.8, Peter Lee decided to translate the code into ML to discov
the effect of introducing strictness everywhere. Sure ghotnis
translation used only one third as much space as the lazipakig

but Runciman and Wakeling’s first optimisation made the now-
lazier program twice as efficient as Peter Lee’s version.

The extreme sensitivity of Haskell's space use to evalnatiaer

is a two-edged sword. Tiny changes—the addition or remofsal o
aseq in one place—can dramatically change space requirements.
On the one hand, it is very hard for programmersatticipate
their program’s space behaviour and place callsa&f correctly
when the program is first written. On the other hand, givefii-suf
ciently good profiling information, space performance cenirb-
proved dramatically by very small changes in just the rigatp—
without changing the overall structure of the program. As design-
ers who believe in reasoning, we are a little ashamed thabréag
about space use in Haskell is so intractable. Yet Haskelbwnc
ages programmers—even forces them—to forget space optimis
tion until after the code is written, profiled, and the major space
leaks found, and at that point puts powerful tools at the g
mer’s disposal to fix them. Maybe this is nothing to be ashaafed
after all.

10.4 Debugging and tracing

Haskell's rather unpredictable evaluation order also nmam®en-
tional approaches to tracing and debugging difficult to yddiost
Haskell implementations provide a “function”
trace :: String -> a -> a

that prints its first argument as a side-effect, then retitss

second—but it is not at all uncommon for the printing of thstfir
argument to triggeanothercall of trace before the printing is com-
plete, leading to very garbled output. To avoid such prolslemore

sophisticated debuggers aimdbstract awayfrom the evaluation
order.

10.4.1 Algorithmic debugging

One way to do so is vialgorithmic debuggingShapiro, 1983),

an approach in which the debugger, rather than the users take
the initiative to explore the program’s behaviour. The dgier
presents function calls from a faulty run to the user, togethith
their arguments and results, and asks whether the resudtrisot.

If not, the debugger proceeds to the calls made from theyfauié

(its “children”), finally identifying a call with an incorme result,

all of whose children behaved correctly. This is then repiras

the location of the bug.

Since algorithmic debugging just depends on the inputtdube-
haviour of functions, it seems well suited to lazy programBst
there is a difficulty—the values of function arguments anari®
of their) results are often not computed until loafier the func-
tion call is complete, because they are not needed until lataey
were computed early by an algorithmic debugger, in orderisge d
play them in questions to the user, then this itself mighgger
faults or loops that would otherwise not have been a probleatila
Henrik Nilsson solved this problem in 1993 (Nilsson and £,
1994), in an algorithmic debugger for a small lazy languagje=d
Freja, by waiting until execution was complete before sigral-
gorithmic debugging. At the end of program execution, itigkn
whether or not each value was required—if it was, then itsieval
is now known and can be used in a question, and if it wasn't the
the value was irrelevant to the bug anyway. This “post maotiapa
proach abstracts nicely from evaluation order, and has bsed by
all Haskell debuggers since.

Although Nilsson’s debugger did not handle Haskell, Janr&pa
was meanwhile developing one that did, by transforming ldksk
program source code to collect debugging information widlm-
puting its result. Nilsson and Sparud then collaborated cim-c
bine and scale up their work, developing efficient methodsuitd
“evaluation dependence trees” (Nilsson and Sparud, 19%#p
structures that provided all the necessary information dost-
mortem algorithmic debugging. Nilsson and Sparud’s tooésre
longer extant, but the ideas are being pursued by Bernie idps
algorithmic debugger Buddha for Haskell 98 (Pope, 2005, lan
the Hat tools described next.

10.4.2 Debugging via redex trails

In 1996, Sparud joined Colin Runciman’s group at the Unitgrs

of York to begin working orredex trails another form of program
trace which supports stepping backwards through the eecut
(Sparud and Runciman, 1997). Programmers can thus/abkdid

we call £ with these arguments?” as well as inspect the evaluation
of the call itself.

Runciman realised that, with a little generalisation, shenetrace
could be used to support several different kinds of debug@ivial-
lace et al., 2001). This was the origin of the new Hat project,
which has developed a new tracer for Haskell 98 and a variety
of trace browsing tools. Initially usable only witthc, in 2002 Hat
became a separate tool, working by source-to-source tranaf
tion, and usable with any Haskell 98 compiler. Today, ther a
trace browsers supporting redex-trail debugging, alporit de-
bugging, observational debugging, single-stepping, armuh ¢est
coverage measurement, together with several more spendis t
for tracking down particular kinds of problem in the traceees
http://www.haskell.org/hat/. Since 2001, Runciman has
regularly invited colleagues to send him their bugs, or eiren
sert bugs into his own code while his back was turned, for tiees
joy of tracking them down with Hat!

The Hat suite are currently the most widely used debuggintsto
for Haskell, but despite their power and flexibility, theywhanot

become a regular part of programming for most uSerghis is
probably because Haskell, as it is used in practice, hasinecha

a moving target: new extensions appear frequently, and & it
hard for a language-aware tool such as Hat to keep up. Indeed,
Hat was long restricted to Haskell 98 programs only—a sutiset
which few serious users restrict themselves. Furtherntibegkey to
Hat's implementation is an ingenious, systematic sounessturce
transformation of the entire program. This transformaiimeiudes
the libraries (which are often large and use language extes)s
and imposes a substantial performance penalty on the rgnnin
program.

10.4.3 Observational debugging

A more lightweight idea was pursued by Andy Gill, who deveddp
HOOD, the Haskell Object Observation Debugger, in 19996200
(Gill, 2000). HOOD is also a post-mortem debugger, but users
dicate explicitly which information should be collectedibgerting
calls of

observe :: String -> a -> a

in the program to be debugged. In contrasttitace, observe
prints nothing when it is called—it just collects the valdfeate sec-
ond argument, tagged with the first. When execution is cotaple
all the collected values are printed, with values with thesdag
gathered together. Thus the programmer can observe trextoh
of values that appeared at a program point, which is ofterigimo
to find bugs.

As in Nilsson and Sparud's work, values that were collectet b
never evaluated are displayed as a dummy valtieFor example,

[0..1

Observe> take 2 (observe "nats"
[0,1]

>>>>>>> (Observations <<<<<<

nats
0 :1:)

This actually provides useful information about lazy ewdion,
showing ushow muctlof the input was needed to produce the given
result.

HOOD can even observe function values, displaying themaisla t

of observed arguments and results—the same informatidratha
algorithmic debugger would use to track down the bug locatio
However, HOOD leaves locating the bug to the programmer.

10.5 Testing tools

While debugging tools have not yet really reached the Héaskel
mainstream, testing tools have been more successful. Tl mo
widely used is QuickCheck, developed by Koen Claessen and
Hughes. QuickCheck is based on a cool idea that turned oudrio w
very well in practice, namely that programs can be testedhaga
specifications by formulating specifications as boolearctions

that should always returfirue, and then invoking these functions
on random data. For example, the function definition

prop_reverse :: [Integer] -> [Integer] -> Bool
prop_reverse xs ys =
reverse (xs++ys) == reverse ys+treverse Xxs

expresses a relationship betwessverse and++ that should al-
ways hold. The QuickCheck user can test that it does just lpev
atingquickCheck prop_reverse in a Haskell interpreter. In this

111n a web survey we conducted, only 3% of respondents namedsdHate
of the “most useful tools and libraries.”

case testing succeeds, but when properties fail then QheiC
displays a counter example. Thus, for the effort of writirgjraple
property, programmers can test a very large number of cases,
find counter examples very quickly.

To make this work for larger-than-toy examples, programsmered
to be able to control the random generation. QuickCheck @upp
this via an abstract data type of “generators,” which congaly
represent sets of values (together with a probability itlistion).
For example, to test that insertion into an ordered list gmess
ordering, the programmer could write

prop_insert ::
prop_insert x

= forAll orderedList
(\xs -> ordered (insert x xs))

Integer -> Bool

We read the first line as quantification over the set of ordésts]
but in realityorderedList is a test data generator, whichrAll
invokes to generate a value fos. QuickCheck provides a library
of combinators to make such generators easy to define.

QuickCheck was first released in 1999 and was included in the
GHC and Hugs distributions from July 2000, making it easily
accessible to most users. A first paper appeared in 200094$dae
and Hughes, 2000), with a follow-up article on testing maooad

dedicated following. HUnit supports more traditional weiting: it
does not generate test cases, but rather provides ways he desi
cases, structure them into a hierarchy, and run tests atitaita
with a summary of the results.

Part IV
Applications and Impact

A language does not have to have a direct impact on the re&d wor
to hold a prominent place in the history of programming laamggs.
For example, Algol was never used substantially in the realdy
but its impact was huge. On the other hand, impact on the reddiw
was an important goal of the Haskell Committee, so it is wattie

to consider how well we have achieved this goal.

The good news is that there are far too many interesting egopli
tions of Haskell to enumerate in this paper. The bad newsais th
Haskell is still not a mainstream language used by the mbiNgses
ertheless, there are certain niches where Haskell has festdin
this section we discuss some of the more interesting apjdita

code in 2002 (Claessen and Hughes, 2002). Some early succesand real-world impacts, with an emphasis on successekagtile
stories came from the annual ICFP programming contests: Tom to specific language characteristics.

Moertel (“Team Functional Beer”) wrote an accotfrf his entry
in 2001, with quotable quotes such as “QuickCheck to theuedsc
and “Not so fast, QuickCheck spotted a corner case. . . ,"ladimgy

QuickCheck found these problems and more, many that |
wouldn’t have found without a massive investment in test
cases, and it did so quickly and easily. From now on, I'm a
QuickCheck man!

Today, QuickCheck is widely used in the Haskell community an
is one of the tools that has been adopted by Haskell prograsnme
in industry, even appearing in job ads from Galois Connestio
and Aetion Technologies. Perhaps QuickCheck has succéeded
part because of who Haskell programmers are: given the ignest
“What is more fun, testing code or writing formal specificets?”
many Haskell users would choose the latter—if you can ted¢ co
by writing formal specifications, then so much the better!

QuickCheck is not only a useful tool, but also a good example o
applying some of Haskell's unique features. It defines a dioma
specific language of testable properties, in the classi&éliasadi-
tion. The class system is used to associate a test data teneita
each type, and to overload theickCheck function so that it can
test properties with any number of arguments, of any typée T
abstract data type of generators is a monad, and Hasketfactyc
sugar for monads is exploited to make generators easy te.\Witiie
Haskell language thus had a profound influence on QuickChieck
design.

11. Applications

Some of the most important applications of Haskell wereiorig
nally developed as libraries. The Haskell standard indwaenod-
est selection of libraries, but many more are available. Alaskell
web site (haskell.org) lists more than a score of categoviéh
the average category itself containing a score of entries.ei-
ample, the Edison library of efficient data structures, ioated by
Okasaki (Okasaki, 1998a) and maintained by Robert Dockirs,
vides multiple implementations of sequences and collestior-
ganised using type classes. The HSQL library interfacesvaria
ety of databases, including MySQL, Postgres, ODBC, SQAhité,
Oracle; it is maintained by Angelov.

Haskell also has the usual complement of parser and lexergen
tors. Marlow'sHappywas designed to be similar to yacc and gen-
erated LALR parsers. (“Happy” is a “dyslexic acronym” fortYe
Another Haskell Parser.) Paul Callaghan recently exterttigapy

to produce Generalised LR parsers, which work with ambiguou
grammars, returning all possible parses. Parser combililataries
are discussed later in this section. Documentation of Hepke
grams is supported by several systems, including Marlovdsl-H
dock tool.

11.1 Combinator libraries

One of the earliest success stories of Haskell was the dawelot
of so-calledcombinator libraries What is a combinator library?

This design has been emulated in many other languages. One ofThe reader will search in vain for a definition of this heavityed

the most interesting examples is due to Christian Lindigowh
found bugs in production-quality C compilers’ calling cemnv

term, but the key idea is this: a combinator library offersdtions
(the combinators) that combirfanctionstogether to make bigger

tions by generating random C programs in a manner inspired by functions.

QuickCheck (Lindig, 2005). A port to Erlang has been usedra fi
unexpected errors in a pre-release version of an EricssatiaMe
Gateway (Arts et al., 2006).

QuickCheck is not the only testing tool for Haskell. In 200&an
Herington released HUnit (Herington, 2002), a test frantévino-
spired by the JUnit framework for Java, which has also aequa

12Seenttp://www.kurobhin. org/story/2001/7/31/0102/11014.

For example, an early paper that made the design of combinato
libraries a central theme was Hughes’s paper “The design of a
pretty-printing library” (Hughes, 1995). In this paper anfart
document” was an abstract type that can be thought of lile thi

type Doc

That is, a document takes ant, being the available width of the
paper, and lays itself out in a suitable fashion, returnifigaing

Int -> String

that can be printed. Now a library of combinators can be ddfine
such as:

above : Doc -> Doc -> Doc
beside :: Doc -> Doc -> Doc
sep [Doc] -> Doc

The functionsep lays the subdocuments out beside each other if
there is room, or above each other if not.

While aDoc can bethought ofas a function, it may not bienple-
mentedas a function; indeed, this trade-off is a theme of Hughes’s
paper. Another productive way to think of a combinator lifyris as

a domain-specific languagSL) for describing values of a par-
ticular type (for example, document layout in the case oftpre
printing). DSLs in Haskell are described in more detail ircSe
tion 11.2.

11.1.1 Parser combinators

One of the most fertile applications for combinator libesrihas
undoubtedly beeparser combinatorsLike many ingenious pro-
gramming techniques, this one goes back to Burge’s astogish
bookRecursive Programming Technigu@sirge, 1975), but it was
probably Wadler’s paper “How to replace failure by a list ats
cesses” (Wadler, 1985) that brought it wider attentiorhaigh he
did not use the word “combinator” and described the work al*f
lore”.

A parser may be thought of as a function:

type Parser = String -> [String]

That is, aParser takes a string and attempts to parse it, returning
zero or more depleted input strings, depending on how mairyg wa
the parse could succeed. Failure is represented by the distpy§
results. Now it is easy to define a library of combinators thanh-
bine parsers together to make bigger parsers, and doindasuesal
an extraordinarily direct transcription of BNF into exegble code.
For example, the BNF

float sign” digit™ (. digit™)”
might translate to this Haskell code:

float :: Parser
float = optional sign <*> oneOrMore digit <*>
optional (lit ’.’ <*> oneOrMore digit)

The combinatorsoptional, oneOrMore, and (<*>) combine
parsers to make bigger parsers:

optional, oneOrMore :: Parser -> Parser
(<*>) :: Parser -> Parser -> Parser

It is easy for the programmer to make new parser combinatprs b
combining existing ones.

A parser of this kind is only aecogniserthat succeeds or fails.
Usually, however, one wants a parser to return a value as avedh
quirement that dovetails precisely with Haskell's notidmononad
(Section 7). The type of parsers is parameterise@dpser t,
wheret is the type of value returned by the parser. Now we can
write thefloat parser usinglo-notation, like this:

float ::
float
= do mb_sgn <- optional sign
digs <- oneOrMore digit
mb_frac <- optional (do lit ’.’
oneOrMore digit)
return (mkFloat mb_sgn digs mb_frac)

Parser Float

where optional :: Parser a -> Parser (Maybe a), and
oneOrMore :: Parser a -> Parser [a].

The interested reader may find the short tutorial by Huttod an
Meijer helpful (Hutton and Meijer, 1998). There are dozelfis o
papers about cunning variants of parser combinators, divou
error-correcting parsers (Swierstra and Duponcheel, Y99G al-

lel parsing (Claessen, 2004), parsing permutation phréBaars
et al., 2004), packrat parsing (Ford, 2002), and lexicallysig
(Chakravarty, 1999b). In practice, the most complete antklyi
used library is probably Parsec, written by Daan Leijen.

11.1.2 Other combinator libraries

In a way, combinator libraries do not embody anything fundam
tally new. Nevertheless, the idea has been extremely irtfhlen
with dozens of combinator libraries appearing in widelyfefiént
areas. Examples include pretty printing (Hughes, 1995; lgvad
2003), generic programming (Lammel and Peyton Jones,)2003
embedding Prolog in Haskell (Spivey and Seres, 2003), finhnc
contracts (Peyton Jones et al., 2000), XML processing @ball
and Runciman, 1999), synchronous programming (Scholz3)199
database queries (Leijen and Meijer, 1999), and many athers

What makes Haskell such a natural fit for combinator libisRie
Aside from higher-order functions and data abstractioerglseem
to be two main factors, both concerning laziness. First, care
write recursive combinators without fuss, such as this rsce
parser for terms:

term :: Parser Term
term = choice [float, integer,
variable, parens term, ...]

In call-by-value languages, recursive definitions likesthre gen-
erally not allowed. Instead, one would have to eta-expaaditi-
inition, thereby cluttering the code and (much more impatltg

wrecking the abstraction (Syme, 2005).

Second, laziness makes it extremely easy to write combiriato
braries with unusual control flow. Even in Wadler's origirist-
of-successes paper, laziness plays a central role, anistinaé of
many other libraries mentioned above, such as embeddingdPro
and parallel parsing.

11.2 Domain-specific embedded languages

A common theme among many successful Haskell applications
is the idea of writing a library that turns Haskell intodamain-
specific embedded languagPSEL), a term first coined by Hu-
dak (Hudak, 1996a; Hudak, 1998). Such DSELs have appeared in
a diverse set of application areas, including graphicsnation,
vision, control, GUIs, scripting, music, XML processingpotics,
hardware design, and more.

By “embedded language” we mean that the domain-specific lan-
guage is simply an extension of Haskell itself, sharing yistax,
function definition mechanism, type system, modules andrso o
The “domain-specific” part is just the new data types andtions
offered by a library. The phrase “embedded language” is corniyn
used in the Lisp community, where Lisp macros are used tgdesi
“new” languages; in Haskell, thanks to lazy evaluation, m(al-
though emphatically not all) of the power of macros is aldda
through ordinary function definitions. Typically, a datgpeyis de-
fined whose essential nature is often, at least conceptaaliync-
tion, and operators are defined that combine these abstract f
tions into larger ones of the same kind. The final program énth
“executed” by decomposing these larger pieces and applyieg
embedded functions in a suitable manner.

In contrast, a non-embedded DSL can be implemented by writ-
ing a conventional parser, type checker, and interpretecdm-
piler) for the language. Haskell is very well suited to sugh a

proaches as well. However, Haskell has been particuladgess-
ful for domain-specific embedded languages. Below is a ciitie
of examples.

11.2.1 Functional Reactive Programming

In the early 1990s, Conal Elliott, then working at Sun Migres
tems, developed a DSL callelBAG for constraint-based, semi-
declarative modelling of 3D animations (Elliott et al., #99
Schechter et al., 1994). Although largely declarative, TB#as
implemented entirely in C++. The success of his work reslifte
Microsoft hiring Elliot and a few of his colleagues into theagh-
ics group at Microsoft Research. Once at Microsoft, Elkagroup
released in 1995 a DSL callékttiveVRMLthat was more declar-
ative than TBAG, and was in fact based on an ML-like syntax
(Elliott, 1996). It was about that time that Elliott also bete in-
terested in Haskell, and began collaborating with sevezapfe in
the Haskell community on implementing ActiveVRML in Hadkel
Collaborations with Hudak at Yale on design issues, forraaian-
tics, and implementation techniques led in 1998 to a langtlagt
they calledFran, which stood for “functional reactive animation”
(Elliott and Hudak, 1997; Elliott, 1997).

The key idea in Fran is the notion ofbehaviour a first-class data
type that represents @me-varyingvalue. For example, consider
this Fran expression:

pulse ::
pulse =

Behavior Image
circle (sin time)

In Fran,pulse is a time-varying image value, describing a circle
whose radius is the sine of the time, in seconds, since thgramo
began executing. A good way to understand behaviours isheia t
following data type definition:

newtype Behavior a = Beh (Time -> a)

type Time = Float

That is, a behaviour in Fran is really just a function from dito
values. Using this representation, the vatiee used in theulse
example would be defined as:

time :: Behaviour Time
time = Beh (\t -> t)

i.e., the identity function. Since many Fran behavioursramaeric,
Haskell’'s Num and Floating classes (for example) allow one to
specify how to add two behaviours or take the sine of a belavio
respectively:

instance Num (Behavior a) where
Beh f + Beh g = Beh (\t > £ t + g t)

instance Floating (Behaviour a) where
sin (Beh f) = Beh (\t -> sin (f t))

Thinking of behaviours as functions is perhaps the easiagtte
reason about Fran programs, but of course behaviours amaeths
and thus can be implemented in other ways, just as with caattdnin
libraries described earlier.

Another key idea in Fran is the notion of an infinite stream of
events Various “switching” combinators provide the connection
between behaviours and events—i.e. between the contiramlis
the discrete—thus making Fran-like languages suitablestor
called “hybrid systems.”

This work, a classic DSEL, was extremely influential. In mart
lar, Hudak’s research group and others began a flurry of resea
strands which they collectively referred to asictional reactive
programming or FRP. These efforts included: the application of

FRP to real-world physical systems, including both mobild hu-
manoid robots (Peterson et al., 1999a; Peterson et al.b) 98
formal semantics of FRP, both denotational and operatianalthe
connection between them (Wan and Hudak, 2000); real-timme va
ants of FRP targeted for real-time embedded systems (Wan et a
2002; Wan et al., 2001; Wan, 2002); the development of amarro
based version of FRP call&hmpain 2002, that improves both the
modularity and performance of previous implementationadik

et al., 2003); the use of FRP and Yampa in the design of graphic
user interfaces (Courtney and Elliott, 2001; Courtney,£®age,
2000) (discussed further in Section 11.3); and the use ofpéim
the design of a 3D first-person shooter game cafieaty in 2005
(Cheong, 2005). Researchers at Brown have more recentiggoor
the basic ideas of FRP into a Scheme environment called &Fath
Time” (Cooper and Krishnamurthi, 2006).

11.2.2 XML and web-scripting languages

Demonstrating the ease with which Haskell can support domai
specific languages, Wallace and Runciman were one of thedirst
extend an existing programming language with features fdt.X
programming, with a library and toolset called HaXml (Waka
and Runciman, 1999). They actually provided two approatbes
XML processing. One was a small combinator library for manip
ulating XML, that captured in a uniform way much of the same
functionality provided by the XPath language at the core 81X
(and later XQuery). The other was a data-binding approath (i
plemented as a pre-processor) that mapped XML data ontoeHask
data structures, and vice versa. The two approaches havgle&eom
mentary strengths: the combinator library is flexible buib@L
data has the same type; the data-binding approach captunes m
precise types but is less flexible. Both approaches arestitimon

in many other languages that process XML, and most of these la
guages still face the same trade-offs.

Haskell was also one of the first languages to support what has
become one of the standard approaches to implementing web ap
plications. The traditional approach to implementing a \aepli-
cation requires breaking the logic into one separate progiar
each interaction between the client and the web server. gach
gram writes an HTML form, and the responses to this form becom
the input to the next program in the series. Arguably, it igdreo
invert this view, and instead to write a single program cimitay

calls to a primitive that takes an HTML form as argument and re
turns the responses as the result, and this approach waskiest

by the domain-specific language MAWL (Atkins et al., 1999).

However, one does not need to invent a completely new larguag
for the purpose; instead, this idea can be supported usimcepts
available in functional languages, either continuationsmmn-
ads (the two approaches are quite similar). Paul Graham ased
continuation-based approach as the basis for one of thec@inst
mercial applications for building web stores, which latecame
Yahoo Stores (Graham, 2004). The same approach was indepen-
dently discovered by Christian Queinnec (Queinnec, 2068)ar-

ther developed by Matthias Felleisen and others in PLT Sehem
(Graunke et al., 2001). Independently, an approach basadyen-
eralisation of monads called arrows was discovered by Hughe
(Hughes, 2000) (Section 6.7). Hughes's approach was fudée
veloped by Peter Thiemann in the WASH system for Haskell, who
revised it to use monads in place of arrows (Thiemann, 2002b)
turns out that the approach using arrows or monads is clasely
lated to the continuation approach (since continuatiorseas a
special case of monads or arrows). The continuation apprbas
since been adopted in a number of web frameworks widely uged b
developers, such as Seaside and RIFE.

Most of this work has been done in languages (Scheme, Sikallta
Ruby) without static typing. Thiemann’'s work has shown et
same approach works with a static type system that can giearan
that the type of information returned by the form matches the
type of information that the application expects. Thiematso
introduced a sophisticated use of type classes to ensure ThaL

or XML used in such applications satisfies the regular exgioes
types imposed by the document type declarations (DTD) used i
XML (Thiemann, 2002a).

11.2.3 Hardware design languages

Lazy functional languages have a long history of use for desc
ing and modelling synchronous hardware, for two fundameata
sons: first, because lazy streams provide a natural modelier
crete time-varying signals, making simulation of funcabmod-
els very easy; and second, because higher-order functienideal
for expressing the regular structure of many circuits. gsiazy
streams dates to Steve Johnson’s work in the early eigtties,
which he won the ACM Distinguished Dissertation award in4.98
(Johnson, 1984). Higher-order functions for capturingutegcir-
cuit structure were pioneered by Mary Sheeran in her langu&®
(Sheeran, 1983; Sheeran, 1984), inspired by Backus’ FPk(Bac
1978b).

It was not long before Haskell too was applied to this dom@ine

of the first to do so was John O’Donnell, whose Hydra hardware
description language is embedded in Haskell (O’'Donnel§5)9
Another was Dave Barton at Intermetrics, who proposed MHDL
(Microwave Hardware Description Language) based on Haskel
1.2 (Barton, 1995). This was one of the earliest signs of siril
interest in Haskell, and Dave Barton was later invited ta jthie
Haskell Committee as a result.

A little later, Launchbury and his group used Haskell to diesc
microprocessor architectures in the Hawk system (Matthetves.,
1998), and Mary Sheeran et al. developed Lava (Bjesse et al.
1998), a system for describing regular circuits in par@eiivhich

can simulate, verify, and generate net-lists for the ctecule-
scribed. Both Hawk and Lava are examples of domain-specific
languages embedded in Haskell.

When Satnam Singh moved to Xilinx in California, he took Lava
with him and added the ability to generate FPGA layouts fdinXi
chips from Lava descriptions. This was one of the first susces
ful industrial applications of Haskell: Singh was able tmgeate
highly efficient and reconfigurable cores for acceleratipgliza-
tions such as Adobe Photoshop (Singh and Slous, 1998). Bcs ye
thereafter, Singh used Lava to develop specialised corergans,
delivered to Xilinx customers as compiled programs thategi
appropriate parameters, generated important parts of dBAFP
design—in most cases without anyone outside Xilinx beingraw
that Haskell was involved! Singh tells an amusing anecdae f

nand a b
nand a b

let x
y

in ...

Here it seems clear that the designer intends to model twarstep
NAND-gates. But what about

nand a b
X

let x

y
in ...

Now, clearly, the designer intends to model a single NANEega
whose output signal is shared byandy. Net-lists generated from
these two descriptions should thereforediféerent—yet according
to Haskell's intended semantics, these two fragments dhbel
indistinguishable. For a while, Lava used a “circuit monsmake
the difference observable:

do x <- nand a b
y <- nand a b

versus

do x <- nand a b
y <- return x

which are perfectly distinguishable in Haskell. This is theom-
mended “Haskellish” approach—yet adopting a monadic synta
uniformly imposes quite a heavy cost on Lava users, whichus f
trating given that the only reason for the monad is to distigly
sharing from duplication! Lava has been used to teach VL Sighe
to electrical engineering students, and in the end, theygteuto
teach monadic Lava syntax to non-Haskell users became tob.mu
Claessen useghsafePerformI0 to implement “observable shar-
ing”, allowing Lava to use the first syntax above, but stiltietin-
guish sharing from duplication when generating net-ligtsprem-
'prover input, and so on. Despite its unsafe implementatibserv-
able sharing turns out to have a rather tractable theoryeSkn
and Sands, 1999), and thus Lava has both tested Haskelity &di
embed other languages to the limit, and contributed a nevhaiec
nism to extend its power.

Via this and other work, lazy functional programming has had
an important impact on industrial hardware design. Intklige-
scale formal verification work is based on a lazy language, in
both the earlier Forté and current IDV systems. Sandbuest w
founded by Arvind to exploit Bluespec, a proprietary hardsva
description language closely based on Haskell (see Set2idn?).
The language is now being marketed (with a System Verilogtfro
end) by a spin-off company called Bluespec, but the toolstile
implemented in Haskell.

A retrospective on the development of the field, and Lava itipa

these years: on one occasion, a bug in GHC prevented hi¢ latesular, can be found in Sheeran’s JUCS paper (Sheeran, 2005).

core generator from compiling. Singh mailed his code to &yt
Jones at Microsoft Research, who was able to compile it vhigh t
development version of GHC, and sent the result back to Simgh

11.2.4 Computer music

Haskoreis a computer music library written in Haskell that allows

next day. When Singh told his manager, the manager exclaimed gxpressing high-level musical concepts in a purely detil@ravay

incredulously, “You mean to say you got 24-hour support from
Microsoft?”

Lava in particular exercised Haskell's ability to embed dimspe-
cific languages to the limit. Clever use of the class systeables
signals-of-lists and lists-of-signals, for example, toused almost
interchangeably, without a profusion of zips and unzipsptGa

ing sharing proved to be particularly tricky, though. Calesithe
following code fragment:

(Hudak et al., 1996; Hudak, 1996b; Hudak, 2003). Primitizieigs
corresponding to notes and rests are combined using cotolsna
for sequential and parallel composition to form larger roabkval-
ues. In addition, musical ornamentation and embellishrtiegato,
crescendo, etc.) are treated by an object-oriented apptoanu-
sical instruments to provide flexible degrees of interpiieta

The first version of Haskore was written in the mid '90s by Huda
and his students at Yale. Over the years it has matured in d&um
of different ways, and aside from the standard distributibivale,

Henning Thielemann maintains an open-source Darcs repgsit
(Section 12.3) to support further development. Haskorekeen
used as the basis of a number of computer music projects, and
is actively used for computer music composition and edonati
One of the more recent additions to the system is the abibity t
specify musical sounds—i.e. instruments—in a declaratiag, in
which oscillators, filters, envelope generators, etc. aralined in

a signal-processing-like manner.

Haskore is based on a very simple declarative model of music
with nice algebraic properties that can, in fact, be geimrdlto
other forms of time-varying media (Hudak, 2004). Althoughm
other computer music languages preceded Haskore, nonerof th
perhaps surprisingly, reflects this simple structure. led'skpurity,

lazy evaluation, and higher-order functions are the kejufes that
make possible this elegant design.

11.2.5 Summary

Why has Haskell been so successful in the DSEL arena? After
all, many languages provide the ability to define new datagyp
together with operations over them, and a DSEL is little mtbemn

that! No single feature seems dominant, but we may identiéy t
following ways in which Haskell is a particularly friendlyobt
language for a DSEL:

1. Type classepermit overloading of many standard operations
(such as those for arithmetic) on many nonstandard types (su
as theBehaviour type above).

. Higher-order functionsllow encoding nonstandard behaviours
and also provide the glue to combine operations.

. Infix syntaxallows one to emulate infix operators that are com-
mon in other domains.

. Over-loaded numeric literalallow one to use numbers in new
domains without tagging or coercing them in awkward ways.

. Monads and arrows are flexible mechanisms for combining
operations in ways that reflect the semantics of the intended
domain.

. Lazy evaluatiorallows writing recursive definitions in the new
language that are well defined in the DSEL, but would not
terminate in a strict language.

The reader will also note that there is not much difference in
concept between the combinator libraries described eaaliel
DSELs. For example, a parser combinator library can be uewe
as a DSEL for BNF, which is just a meta-language for context-
free grammars. And Haskell libraries for XML processing reha

lot in common with parsing and layout, and thus with comtonat
libraries. It is probably only for historical reasons thateoproject
might use the term “combinator library” and another the term
“DSL” (or “DSEL").

11.3 Graphical user interfaces

Once Haskell had a sensible 1/0 system (Section 7), the rext o
vious question was how to drive a graphical user interfaddljG
People interested in this area rapidly split into two groubside-
alistsand thepragmatists

The idealists took a radical approach. Rather than adoptrtper-
ative, event-loop-based interaction model of mainstressgnam-
ming languages, they sought to answer the question, “Wttaeis
right way to interact with a GUI in a purely declarative sedt?”
This question led to several quite unusual GUI systems:

¢ The Fudgetssystem was developed by Magnus Carlsson and
Thomas Hallgren, at Chalmers University in Sweden. They
treated the GUI as a network tftream processors,’or stream

transformers (Carlsson and Hallgren, 1993). Each processo
had a visual appearance, as well as being connected to other
stream processors, and the shape of the network could change
dynamically. There was no central event loop: instead each
stream processor processed its own individual stream aitgve

Sigbjorn Finne, then a research student at Glasgow, devel-
oped Haggis which replaced the event loop with extremely
lightweight concurrency; for example, each button mighteha

a thread dedicated to listening for clicks on that buttone Th
stress was on widgetomposition so that complex widgets
could be made by composing together simpler ones (Finne and
Peyton Jones, 1995). The requirements of Haggis direatlyedr

the development of Concurrent Haskell (Peyton Jones et al.,
1996).

Based on ideas in Fran (see section 11.2.1), Meurig Sagé deve
opedFranTk (Sage, 2000), which combined the best ideas in
Fran with those of the GUI toolkit Tk, including an imperativ
model of call-backs.

e Antony Courtney took a more declarative approach based en-
tirely on FRP and Yampa, but with many similarities to Fudget
in a system that he calleruit (Courtney and Elliott, 2001;
Courtney, 2004). Fruit is purely declarative, and usesvesro
“wire together” GUI components in a data-flow-like style.

Despite the elegance and innovative nature of these GUlg no
of them broke through to become the GUI toolkit of choice for a
critical mass of Haskell programmers, and they all remagiegle-
site implementations with a handful of users. It is easy twhy.
First, developing a fully featured GUI is a huge task, andheac
system lacked the full range of widgets, and snazzy appearan
that programmers have come to expect. Second, the questrftyr p
always led to programming inconvenience in one form or agioth
The search for an elegant, usable, declarative GUI toatkitains
open.

Meanwhile, the pragmatists were not idle. They just wanteget

the job done, by the direct route of interfacing to some wijdel
available GUI toolkit library, a so-called “binding.” Egrlefforts
included an interface to Tcl/Tk called swish (Sinclair, 28%nd

an interface to X windows (the Yale Haskell project), butréhe
were many subsequent variants (e.g., TkGofer, TclHaskdlk)

and bindings to other tool kits such as OpenGL (HOpenGL), GTK
(e.g., Gtk2Hs, Gtk+Hs) and WxWidgets (WxHaskell). These ef
forts were hampered by the absence of a well defined foreign-
function interface for Haskell, especially as the librariavolved
have huge interfaces. As a direct result, early bindingsevedten
somewhat compiler specific, and implemented only part ofuahe
interface. More recent bindings, such as Gtk2Hs and WxHhaske
are generated automatically by transforming the macheaelable
descriptions of the library APl into the Haskell 98 standgFd.

These bindings all necessarily adopt the interaction moti¢he
underlying toolkit, invariably based on imperative widge¢ation
and modification, together with an event loop and call-babley-
ertheless, their authors often developed quite sophistiddaskell
wrapper libraries that present a somewhat higher-levelfate to
the programmer. A notable example is the Clean graphicali{/O
brary, which formed an integral part of the Clean system fi@m
very early stage (Achten et al., 1992) (unlike the fragmérap-
proach to GUIs taken by Haskell). The underlying GUI toolkit
for Clean was the Macintosh, but Clean allows the user to-spec
ify the interface by means of a data structure containingluztk
functions. Much later, the Clean 1/O library was ported tcskll
(Achten and Peyton Jones, 2000).

To this day, the Haskell community periodically agonisesrdie
absence of a single standard Haskell GUI. Lacking such aateln
is undoubtedly an inhibiting factor on Haskell's developrmeéret
no one approach has garnered enough support to betroie-
sign, despite various putative standardisation effottspagh Wx-
Haskell (another side project of the indefatigable Daarjengihas
perhaps captured the majority of the pragmatist market.

11.4 Operating Systems

An early operating system for Haskell was hOp, a micro-kerne

based on the runtime system of GHC, implemented by Sebastian

Carlier and Jeremy Bobbio (Carlier and Bobbio, 2004). Baoid

precise abstract syntax together with one or more concrgie s
taxes; the same description specifies both how to parse etencr
syntax into abstract syntax, and how to linearise the attsdyantax
into concrete syntax. An editing mode allows incrementakstauc-
tion of well formed texts, even using multiple languagesstax
neously. The GF system has many applications, including-hig
quality translation, multi-lingual authoring, verifyingnathemati-
cal proof texts and software specifications, communicaitiozon-
trolled language, and interactive dialogue systems. Mangable
“resource grammars” are available, easing the constnucticmew
applications.

The main GF system is written in Haskell and the whole sysem i

on hOp, a later project, House, implemented a system in which open-source software (under a GPL licence). Haskell waserho

the kernel, window system, and all device drivers are wmifte
Haskell (Hallgren et al., 2005). It uses a monad to providess to
the Intel IA32 architecture, including virtual memory maeanent,
protected execution of user binaries, and low-level IO afjens.

11.5 Natural language processing

Haskell has been used successfully in the development of a va

riety of natural language processing systems and toolshaRic
Frost (Frost, 2006) gives a comprehensive review of reliewamk
in Haskell and related languages, and discusses new todli-an
braries that are emerging, written in Haskell and relatedlages.
We highlight two substantial applications that make sigaifit use
of Haskell.

Durham’sLOLITA system [arge-scale, Object-based, Linguistic
Interactor, Translator and Analyzewas developed by Garigliano

as a suitable language for this kind of system, particulttthe
compilation and partial evaluation aspects (of grammadgnads
and type classes are extensively used in the implementation

12. The impact of Haskell

Haskell has been used in education, by the open-source coitymu
and by companies. The language is the focal point of an aatide
still-growing user community. In this section we survey soof
these groups of users and briefly assess Haskell’'s impacthen o
programming languages.

12.1 Education

One of the explicit goals of Haskell's designers was to eedan-
guage suitable for teaching. Indeed, almost as soon asrthedge
was defined, it was being taught to undergraduates at Oxfuid a

and colleagues at the University of Durham (UK) between 1986 Yale, but initially there was a dearth both of textbooks ahebust

and 2000. It was designed as a general-purpose tool for gsimze
unrestricted text that could be the basis of a wide variegppflica-
tions. At its core was a semantic network containing somem,
interlinked concepts. Text could be parsed and analysed ithe
corporated into the semantic net, where it could be reasahedt
(Long and Garigliano, 1993). Fragments of semantic netctalslo
be rendered back to English or Spanish. Several applicati@re
built using the system, including financial information Bisars
and information extraction tools for Darpa’s “Message Ustind-
ing Conference Competitions” (MUC-6 and MUC-7). The latter
involved processing original Wall Street Journal articles per-
form tasks such as identifying key job changes in busineasds
summarising articles. LOLITA was one of a small number of-sys
tems worldwide to compete in all sections of the tasks. Aesyst
description and an analysis of the MUC-6 results were writig
Callaghan (Callaghan, 1998).

LOLITA was an early example of a substantial applicationtwri
ten in a functional language: it consisted of around 50,006sl
of Haskell (with around 6000 lines of C). It is also a complexia
demanding application, in which many aspects of Haskelevirer
valuable in development. LOLITA was designed to handle unre
stricted text, so that ambiguity at various levels was uidale
and significant. Laziness was essential in handling theosiqh
of syntactic ambiguity resulting from a large grammar, andas
much used with semantic ambiguity too. The system used pleilti
DSELs (Section 11.2) for semantic and pragmatic procesaitl
for generation of natural language text from the semanticAlso
important was the ability to work with complex abstracti@msl to
prototype new analysis algorithms quickly.

TheGrammatical FrameworkGF) (Ranta, 2004) is a language for

implementations suitable for teaching. Both problems wsmen
addressed. The first Haskell book—Tony Daviais Introduction

to Functional Programming Systems Using Haskelppeared in
1992. The release of Gofer in 1991 made an “almost Haskedl” sy
tem available with a fast, interactive interface, good &aching. In
1995, when Hugs was released, Haskell finally had an implemen
tation perfect for teaching—which students could alsoalstnd
use on their PCs at home. In 1996, Simon Thompson published a
Haskell version of hiraft of Functional Programmingextbook,
which had first appeared as a Miranda textbook a year earliés.
book (revised in 1998) has become the top-selling book okéllas
far ahead of its closest competitor in Amazon’s sales raykin

The arrival of Haskell 98 gave textbooks another boost. Béd
vised Introduction to Functional Programmingising Haskell, in
1998, and in the same year Okasaki published the first tektboo
to use Haskell to teach another subje@®urely Functional Data
Structures This was followed the next year by Fethi Rabhi and
Guy Lapalme’s algorithms textlgorithms: A functional program-
ming approachand new texts continue to appear, such as Graham
Hutton’s 2006 bookProgramming in Haskell

The first Haskell texts were quite introductory in naturgeirded
for teaching functional programming to first-year studewtsthe
turn of the millennium, textbooks teaching more advanceth-te
nigues began to appear. Hudalaskell School of Expressighiu-
dak, 2000) uses multimedia applications (such as grapaiis)a-
tion, and music) to teach Haskell idioms in novel ways thaivgt
beyond earlier books. A unique aspect of this book is its Use o
DSELs (for animation, music, and robotics) as an underlyfiregne
(see Section 11.2). Although often suggested for first-yeach-
ing, it is widely regarded as being more suitable for an adedn

defining grammars based on type theory, developed by Radta an course. In 2002, Gibbons and de Moor ediTéa Fun of Program-

colleagues at Chalmers University. GF allows users to dese

13This section is based on material contributed by Paul Cadlag

ming an advanced book on Haskell programming with contribu-
tions by many authors, dedicated to Richard Bird and intdraea
follow-up to his text.

Another trend is to teach discrete mathematics and logingusi
Haskell as a medium of instruction, exploiting Haskell'stheanat-
ical look and feel. Cordelia Hall and John O’Donnell pubdédithe
first textbook taking this approach in 200®iscrete Mathemat-
ics Using a ComputerRex Page carried out a careful three-year
study, in which students were randomly assigned to a graughta
discrete mathematics in the conventional way, or a groughtu
using Hall and O’Donnell’s text, and found that studentshia lat-
ter group became significantly more effective programmBexg€,
2003). Recently (in 2004) Doets and van Eijck have publisired
other textbook in this veiriThe Haskell Road to Logic, Maths and
Programming which has rapidly become popular.

For the more advanced students, there has been an excallent s
ries of International Summer Schools on Advanced Functiena
gramming, at which projects involving Haskell have alwagsl la
significant presence. There have been five such summer sdool
date, held in 1995, 1996, 1998, 2002, and 2004.

12.1.1 A survey of Haskell in higher education

To try to form an impression of the use of Haskell in universit
education today, we carried out a web survey of courses tangh
the 2005—-2006 academic year. We make no claim that our survey
is complete, but it was quite extensive: 126 teachers retgmhn
from 89 universities in 22 countries; together they teackked to
5,000-10,000 students every y¥aR5% of these courses began
using Haskell only in the last two years (since 2004), whigh-s
gests that the use of Haskell in teaching is currently seeapid
growth.

Enthusiasts have long argued that functional languagesdare
ally suited to teaching introductory programming, and iedienost
textbooks on Haskell programming are intended for that psep
Surprisingly, only 28 of the courses in our survey were airaéd
beginners (i.e. taught in the first year, or assuming no previ
programming experience). We also asked respondents which p
gramming languages students learn first and second at timgir U
versities, on the assumption that basic programming wakke

at least two languages. We found that—even at Universitias t
teach Haskell—Java was the first language taught in 47% efcas
and also the most commonly taught second language (in 22% of
cases). Haskell was among the first two programming language
only in 35% of cases (15% as first language, 20% as second lan-
guage). However, beginners’ courses did account for thge&r
single group of students to study Haskell, 2—4,000 every, yes
cause each such course is taken by more students on avesage th
later courses are.

The most common courses taught using Haskell are explicitly
intended to teach functional programmipgr se(or sometimes
declarative programming). We received responses from 48ses

of this type, with total student numbers of 1,300-2,900 peary

A typical comment from respondees was that the course was in-
tended to teach “a different style of programming” from thgeat-
oriented paradigm that otherwise predominates. Four atime
advanced programming courses (with 3—700 students) caaithe s
to have a similar aim.

The third large group of courses we found were programming
language courses—ranging from comparative programming la
guages through formal semantics. There were 25 such courses
with 800-1,700 students annually. Surprisingly, theretigently

no Haskell-based textbook aimed at this market—an oppitytun
perhaps?

14We asked only for approximate student numbers, hence the raiage
of possibilities.

Haskell is used to teach nine compilers courses, with 3—-7@00 s
dents. It is also used to teach six courses in theoreticapaten
science (2-400 students). Both take advantage of well-know
strengths of the language—symbolic computation and ithesat
matical flavour. Finally, there are two courses in hardwascdp-
tion (50-100 students), and one course in each of domaitifgpe
languages, computer music, quantum computing, and distcb
and parallel programming—revealing a surprising varigtythie
subjects where Haskell appears.

Most Haskell courses are aimed at experienced programraers s
ing the language for the first time: 85% of respondents tasght
dents with prior programming experience, but only 23% taugh
students who already knew Haskell. The years in which Haskel
courses are taught are shown in this table:

Year %ge
1st undergrad 20%
2nd undergrad | 23%
3rd undergrad | 25%
4-5th undergrad 16%
Postgrad 12%

This illustrates once again that the majority of coursegsaught at
more advanced levels.

The countries from which we received most responses were the
USA (22%), the UK (19%), Germany (11%), Sweden (8%), Aus-
tralia (7%), and Portugal (5%).

How does Haskell measure up in teaching? Some observatiens w
received were:

e Both respondents and their students are generally happy wit
the choice of language—“Even though | am not a FL researcher,
| enjoy teaching the course more than most of my other courses
and students also seem to like the course.”

Haskell attracts good students—“The students who take the
Haskell track are invariably among the best computer seienc
students | have taught.”

Fundamental concepts such as types and recursion are ham-
mered home early.

Students can tackle more ambitious and interesting prablem
earlier than they could using a language like Java.

Simple loop programs can be harder for students to grasp when
expressed using recursion.

The class system causes minor irritations, sometimesrigadi
puzzling error messages for students.

Array processing and algorithms using in-place update are
messier in Haskell.

Haskell input/output is not well covered by current textkeo
“my impression was that students are mostly interestedmngh
which Simon Peyton Jones addressed in his paper ‘Tackling
the Awkward Squad’ (Peyton Jones, 2001). | think, for the
purpose of teaching FP, we are in dire need of a book on FP
that not only presents the purely functional aspects, t&ad al
comprehensively covers issues discussed in that paper.”

As mentioned earlier, a simplified version of Haskeflelium,
is being developed at Utrecht specifically for teaching—finet
release was in 2002. Helium lacks classes, which enablegivé
clearer error messages, but then it also lacks textbooksttznd
ability to “tackle the awkward squad.” It remains to be seewh
successful it will be.

12.2 Haskell and software productivity

Occasionally we hear anecdotes about Haskell providingadet-
of-magnitude” reduction in code size, program developntien,
software maintenance costs, or whatever. However, it ig aifi-
cult to conduct a rigorous study to substantiate such cldionsiny
language.

same challenges as the well-established incumbents sUCW &s
and Subversion, but its data model is very different. Rathan
thinking in terms of a master repository of which users taieies,
Darcs considers each user to have a fully fledged repositoty,
repositories exchanging updates by means of patches. thisrr
democratic architecture (similar to that of Arch) seemg/\atrac-
tive to the open-source community, and has numerous tesltade

One attempt at such a study was an exercise sponsored by Darpaantages as well (Roundy, 2005). It is impossible to say hamym
(the U.S. Defense Advanced Research Projects Agency) in thepeople use Darcs, but the user-group mailing list has 350beesn

early 1990s. About ten years earlier, Darpa had christerctsl as
the standard programming language to be used for futurevamdt
development contracts with the U.S. government. Ridinghat t
wave of wisdom, they then commissioned a program cafest
toTechto develop software prototyping technology, including the
development of a “common prototyping language,” to helphia t
design phase of large software systems. Potential probtessis-
ciated with standardisation efforts notwithstanding, [izés Pro-
toTech program funded lots of interesting programming leue
research, including Hudak’s effort at Yale.

Toward the end of the ProtoTech Program, the Naval Surfage Wa
fare Center (NSWC) conducted an experiment to see which of

many languages—some new (such as Haskell) and some old (suchl-

as Ada and C++)—could best be used to prototype a “geometric
region server.” Ten different programmers, using ninestléht pro-
gramming languages, built prototypes for this software gonent.
Mark Jones, then a Research Scientist at Yale, was the primar
Haskell programmer in the experiment. The results, desdrib
(Carlson et al., 1993), although informal and partly sutdyecand

too lengthy to describe in detail here, indicate fairly dowingly

the superiority of Haskell in this particular experiment.

Sadly, nothing of substance ever came from this experini¢at.
recommendations were made to use Haskell in any kind of gever
ment software development, not even in the context of pyptog,

an area where Haskell could have had significant impact. @tre ¢
munity was simply not ready to adopt such a radical programgmi
language.

In recent years there have been a few other informal effonisra
ning experiments of this sort. Most notably, the functigoalgram-
ming community, through ICFP, developed its very own Progra
ming Contest, a three-day programming sprint that has beé&h h
every year since 1998. These contests have been open toeanyon
and it is common to receive entries written in C and other irape
tive languages, in addition to pretty much every functidaaguage

in common use. The first ICFP Programming Contest, run by Olin
Shivers in 1998, attracted 48 entries. The contest has gsmn
stantially since then, with a peak of 230 entries in 2004—emnor
teams (let alone team members) than conference partisipbmt
every year only a minority of the entries are in functionah-la
guages; for example in 2004, of the 230 entries, only 67 wane-f
tional (24 OCaml, 20 Haskell, 12 Lisp, 9 Scheme, 2 SML, 1 Mer-
cury, 1 Erlang). Nevertheless, functional languages dateithe
winners: of the first prizes awarded in the eight years of tbet€st

so far, three have gone to OCaml, three to Haskell, one to érd,
one to Cilk (Blumofe et al., 1996).

12.3 Open source: Darcs and Pugs

One of the turning points in a language’s evolution is wheopte
start to learn it because of the applications that are writteit
rather than because they are interested in the languade itse
the last few years two open-source projects, Darcs and Pags,
started to have that effect for Haskell.

Darcs is an open-source revision-control system writtedaskell
by the physicist David Roundy (Roundy, 2005). It addreskes t

and the Darcs home page lists nearly 60 projects that usesDarc

Darcs was originally written in C++ but, as Roundy puts itf-“a
ter working on it for a while | had an essentially solid mass of
bugs” (Stosberg, 2005). He came across Haskell and, aftewva f
experiments in 2002, rewrote Darcs in Haskell. Four yeater,la
the source code is still a relatively compact 28,000 linetitef-

ate Haskell (thus including the source for the 100-page @mianu
Roundy reports that some developers now are learning Haskel
specifically in order to contribute to Darcs.

One of these programmers was Audrey Tang. She came across

Darcs, spent a month learning Haskell, and jumped from ttere
Pierce’s bookTypes and Programming Languag@erce, 2002).
he book suggests implementing a toy language as an exesoise
Tang picked Perl 6. At the time there were no implementatifns
Perl 6, at least partly because it is a ferociously difficatiguage
to implement. Tang started her project on 1 February 2005 y
later there were 200 developers contributing to it; perhapsz-
ingly (considering this number) the compiler is only 18,0D@&s
of Haskell (including comments) (Tang, 2005). Pugs makesye
use of parser combinators (to support a dynamically chaigea
parser) and several more sophisticated Haskell idiomsuidimay
GADTSs (Section 6.7) and delimited continuations (Dybvigakt
2005).

12.4 Companies using Haskell

In the commercial world, Haskell still plays only a minor eol
While many Haskell programmers work for companies, they usu
ally have an uphill battle to persuade their management ke ta
Haskell seriously. Much of this reluctance is associateth fvinc-
tional programming in general, rather than Haskell in paitr,
although the climate is beginning to change; witness, fangxe,
the workshops for Commercial Users of Functional Prograngmi
held annually at ICFP since 2004. We invited four comparfies t
use Haskell regularly to write about their experience. Theghtly
edited responses constitute the rest of this section.

12.4.1 Galois Connections

The late '90s were the heady days of Internet companies diudifi
lous valuations. At just this time Launchbury, then a pretesn the
functional programming research group at the Oregon Grtadua
stitute, began to wonder: can wle something with functional lan-
guages, and with Haskell in particular? He founded Galoiseo-
tions Inc, a company that began with the idea of finding ctidat
whom they could build great solutions simply by using the pow
of Haskell. The company tagline reflected this: Galois Catinas,
Purely Functional

Things started well for Galois. Initial contracts came frtima U.S.
government for building a domain-specific language for togpa-
phy, soon to be followed by contracts with local industry.eCof
these involved building a code translator for test programchip
testing equipment. Because this was a C-based problem alloésG
engineers shifted to ML, to leverage the power of the ML C-Kit

15This section is based on material contributed by John Laumghof
Galois Connections.

library. In a few months, a comprehensive code translatohwas
built and kept so precisely to a compressed code-delivdrgdide
that the client was amazed.

From a language perspective, there were no surprises hare: ¢
pilers and other code translation are natural applicatfongunc-
tional languages, and the abstraction and non-interferenaper-
ties of functional languages meant that productivity way wégh,
even with minimal project management overhead. There wgsk b
ness challenges, however: a “can do anything” businessiqgest
known for doing anything. It has to resell its capabilitiesrh the
ground up on every sale. Market focus is needed.

Galois selected a focus area of high-confidence softwath,spie-
cial emphasis on information assurance. This was seen aswigr
area and one in which the U.S. government already had major co
cerns, both for its own networks and for the public Intertiealso
appeared to present significant opportunity for introdgdaighly
innovative approaches. In this environment Haskell pregisome-
thing more than simple productivity. Because of referdritans-
parency, Haskell programs can be viewed as executable mathe
ics, as equations over the category of complete partialrerde
principle, at least, the specificatitmecomeshe program.

Examples of Haskell projects at Galois include: developnaois
for Cryptol, a domain-specific language for specifying dosp
graphic algorithms; a debugging environment for a govemimne
grade programmable crypto-coprocessor; tools for gemgr&P GA
layouts from Cryptol; a high-assurance compiler for the ABN
data-description language; a non-blocking cross-doménsfis-
tem suitable for fielding in systems with multiple indepemdiev-
els of security (MILS); a WebDAV server with audit trails atuody-
ging; and a wiki for providing collaboration across distisecurity
levels.

12.4.2 Bluespel®

Founded in June, 2003 by Arvind (MIT), Bluespec, Inc. manu-
factures an industry standards-based electronic desigmation
(EDA) toolset that is intended to raise the level of absteoactor
hardware design while retaining the ability to automaticalyn-
thesise high-quality register-transfer code without coonpising
speed, power or area.

The name Bluespec comes from a hardware description larguag
by the same name, which is a key enabling technology for the
company. Bluespec’s design was heavily influenced by Haskel
It is basically Haskell with some extra syntactic constsufrir
the term rewriting system (TRS) that describes what theharel

12.4.3 Aetiort’

Aetion Technologies LLC is a company with some nine employ-
ees, based in Columbus, Ohio, USA. The company specialises i
artificial intelligence software for decision support.

In 2001 Aetion was about to begin a significant new softwavede
opment project. They chose Haskell, because of its ricicgtgie
system, open-source compilers, and its active researcmcoiity.

At the time, no one at Aetion was an experienced Haskell jprogr
mer, though some employees had some experience with ML and
Lisp.

Overall, their experience was extremely positive, and thew

use Haskell for all their software development except forl&U
(where they use Java). They found that Haskell allows thenrite
succinct but readable code for rapid prototypes. As Haskall/ery
high-level language, they find they can concentrate on tbielem

at hand without being distracted by all the attendant prognang
boilerplate and housekeeping. Aetion does a lot of reseanch
invention, so efficiency in prototyping is very importantsé) of
Haskell has also helped the company to hire good programmers
it takes some intelligence to learn and use Haskell, andoAisti
rare use of such an agreeable programming language promotes
employee retention.

The main difficulty that Aetion encountered concerns efficie
how to construct software that uses both strict and lazyueval
tion well. Also, there is an initial period of difficulty wtel one
learns what sorts of bugs evoke which incomprehensible eres-
sages. And, although Aetion has been able to hire largelynwhe
they needed to, the pool of candidates with good Haskellrprog
ming skills is certainly small. A problem that Aetion has ryeat
encountered, but fears, is that a customer may object togbell
Haskell because of its unfamiliarity. (Customers somesiamek the
company to place source code in escrow, so that they are @able t
maintain the product if Aetion is no longer willing or able do
S0.)

12.4.4 Linspire'®

Linspire makes a Linux distribution targeted for the consumar-

ket. The core OS team settled in 2006 on Haskell as the peeferr
choice for systems programming. This is an unusual chofcthis
domain, it is much more common to use a combination of several
shells and script languages (suctbash, awk, sed, Perl, Python).
However, the results are often fragile and fraught veithhoccon-
ventions. Problems that are not solved directly by the shil
handed off to a bewildering array of tools, each with its owntax,
capabilities and shortcomings.

does. The type system has been extended with types of numericwhile not as specialised, Haskell has comparable vetyatilit

kind. Using the class system, arithmetic can be performetthese
numeric types. Their purpose is to give accurate types tgthlike
bit vectors (instead of using lists where the sizes cannohbeked
by the type checker). For example:
bundle :: Bit[n] -> Bit[m] -> Bit[n+m]

Here,n andm are type variables, but they have kingt, and (lim-
ited) arithmetic is allowed (and statically checked) attijpe level.
Bluespec is really a two-level language. The full power okl
is available at compile time, but almost all Haskell langeiagn-

structs are eliminated by a partial evaluator to get dowhédiasic
TRS that the hardware can execute.

18 This section was contributed by Rishiyur Nikhil of Bluespec

promotes much greater uniformity. Haskell’s interpretprevide
sufficient interactivity for constructing programs quigklits li-
braries are expanding to cover the necessary diversity tautly
reusable algorithms; and it has the added benefit that timms$o
compiled programs is trivial. The idioms for expressingteyss
programming are not quite as compact as in languages suarlas P
but this is an active area of research and the other languesits
outweigh this lack.

Static type-checking has proved invaluable, catching mamyrs
that might have otherwise occurred in the field, especialigmthe
cycle of development and testing is spread thin in spaceiara t
For example, detecting and configuring hardware is impssdo
test fully in the lab. Even if it were possible to collect aliiet

17This section was contributed by Mark Carroll of Aetion.
18This section was contributed by Clifford Beshers of Linspir

600

the language and the research ideas it had begun to spawn. Sub
sequent workshops were held in 1997 and 1999, after which it
became an annual institution. It now has a refereed proogsdi
500] published by ACM and a steady attendance of 60-90 partici-
pants. Since there is no Haskell Committee (Section 3.€), th
Haskell workshop is the only forum at which corporate deci-
sions can be, and occasionally are, taken.

400 The Haskell Communities and Activities Report (HCAR). In
November 2001 Claus Reinke edited the first edition of the
Haskell Communities and Activities Repbita biannual news-
letter that reports on what projects are going on in the Haske
community. The idea really caught on: the first edition liste

300 19 authors and consisted of 20 pages; but the November 2005
| edition (edited by Andres Loh) lists 96 authors and runsvero
60 pages.
] The #haskell IRC channel first appeared in the late 1990s, but
200 really got going in early 2001 with the help of Shae Erisson

(akashapr)®. It has grown extremely rapidly; at the time of
writing, there are typically 200 people logged into the afein

at any moment, with upward of 2,000 participants over a full
year. The#haskell channel has spawned a particularly suc-
cessful software client calletlhmbdabot (written in Haskell,

of course) whose many plugins include language translation
dictionary lookup, searching for Haskell functions, a tieso

W prover, Darcs patch tracking, and more besides.

The Haskell Weekly News.In 2005, John Goerzen decided to
1990 - 1995 2000 200_5 help people cope with the rising volume of mailing list ac-
Figure 7. Growth of the “hard-core” Haskell community tivity by distributing a weekly summary of the most importan
points—theHaskell Weekly Newdérst published on the 2nd of
Augusfl. The HWN covers new releases, resources and tools,
discussion, papers, a “Darcs corner,” and quotes-of-teekw-

100

various components, the time to assemble and test all thehpes
combinations is prohibitive. Another example is that Liinsjs . L oS p
tools must handle legacy data formats. Explicitly segiegahese the latter typically being “in” jokes such as “Haskell seqtes
formats into separate data types prevented the mysterioas e Church and state.

that always seem to propagate through shell programs when th The Monad Reader. Another recent initiative to help a wider
format changes. audience learn about Haskell is Shae Erissdrti'® Monad
Readef?, a web publication that first appeared in March 2005.
The first issue declaredThere are plenty of academic pa-
pers about Haskell, and plenty of informative pages on the
Haskell Wiki. But there’s not much between the two extremes.
The Monad.Reader aims to fit in there; more formal than a
Wiki page, but less formal than a journal articleFive issues
have already appeared, with many articles by practitiqriers
Learning Haskell is not a trivial task, but the economy ofresgion lustrated with useful code fragments.

and the resulting readability seem to provide a calm inshde t . . .
storm. The language, libraries and culture lead to solsttbat feel Planet H"’?Ske.'.' Is a site for Haskell bloggef$ started by Anti-

like minimal surfaces: simple expressions that comprigeiicant Juhani Kaijanaho in 2006.

Runtime efficiency can be a problem, but the Haskell communit
has been addressing this aggressively. In particular,gbent de-
velopment of thébata.ByteString library fills the most impor-
tant gap. Linspire recently converted a parser to use thidubeo
reducing memory requirements by a factor of ten and incregsi
speed to be comparable with the standard commard

complexity, with forms that seem natural, recurring in pdesb The Google Summer of Coderan for the first time in 2005, and
after problem. Open source software remains somewhatebritt included just one Haskell project, carried out by Paolo Mar-
relying on the fact that most users are developers awaresof it tini. Fired by his experience, Martini spearheaded a mudela
weak points. At Linspire, Haskell offers the promise of aalirey a Haskell participation in the 2006 Summer of Code. He organ-
stronger whole. ised a panel of 20 mentors, establishedkell.org as a men-

) toring organisation, and attracted an astonishing 114eptoj
12.5 The Haskell community proposals, of which nine were ultimately fundéd

A language that is over 15 years old might be expected to be
entering its twilight years. Perhaps surprisingly, thougtaskell
appears to be in a particularly vibrant phase at the time dafngr

Its use is growing strongly and appears for the first time twash
signs of breaking out of its specialist-geeky niche. http://haskell.org/communities/

. . . e 20 . s
The last five years have seen a variety of new community initia = bttp://haskell.org/haskellwiki/IRC_channel
tives, led by a broad range of people including some outdide t ?'http://sequence.complete.org/hwn
academic/research community. For example: 22http://wuw.haskell.org/hawiki/TheMonadReader

The Haskell Workshops. The first Haskell Workshop was held in ZBhttp://planet.haskell.org
conjunction with ICFP in 1995, as a one-day forum to discuss 2*nttp://hackage.haskell.org/trac/summer-of-code

It seems clear from all this that the last five years has seditpa
ularly rapid growth. To substantiate our gut feel, we caterit an

informal survey of the Haskell community via the Haskell fimeaj
list, and obtained almost 600 responses from 40 countriesurig,
our respondees belong to a self-selected group who areisuaffic
enthusiastic about the language itself to follow discussio the
list, and so are not representative of Haskell users in génkr
particular, it is clear from the responses that the majaoitystu-
dents currently being taught Haskell did not reply. Neveleks, as
a survey of the “hard core” of the community, the results atert
esting.

We asked respondees when they first learnt Haskell, so wel coul
estimate how the size of the community has changed over the
yearg®. The results are shown in Figure 7, where the bars show the
total number of respondees who had learnt Haskell by theipear
question. Clearly the community has been enjoying muchgen
growth since 1999. This is the year that the Haskell 98 stahaas
published—the year that Haskell took the step from a fretjuen
changing vehicle for research to a language with a guaravitee
long-term stability. It is tempting to conclude that thiceuse and
effect.

Further indications of rapid growth come from mailing listiaity.
While the “official” Haskell mailing list has seen relatiyeflat
traffic, the “Haskell Café” list, started explicitly in Qaber 2000

as a forum for beginners’ questions and informal discussibas
seen traffic grow by a factor of six between 2002 and 2005. The
Haskell Café is most active in the winters: warm weathense®
discourage discussion of functional programnifihg

Our survey also revealed a great deal about who the hard-core
Haskell programmers are. One lesson is that Haskell is arg@nmog
ming language for the whole family—the oldest responderst 8
years old, and the youngest just 16! It is sobering to redlisg
Haskell was conceived before its youngest users. Younges u®
predominate, though: respondents’ median age was 27, sb#e 2
were 35 or over, and 25% were 23 or younger.

Surprisingly, given the importance we usually attach toversity
teaching for technology transfer, only 48% of respondeamizd
Haskell as part of a university course. The majority of owwpean-
dents discovered the language by other means. Only 10% of re-
spondents learnt Haskell as their first programming langyagd

7% as their second), despite the efforts that have been rogute-t
mote Haskell for teaching introductory programnfihgFour out

of five hard-core Haskell users were already experiencegrpno-
mers by the time they learnt the language.

Haskell is still most firmly established in academia. Halfoofr
respondents were students, and a further quarter employaedrii-
versity. 50% were using Haskell as part of their studies 20 4
for research projects, so our goals of designing a languaitgxte
for teaching and research have certainly been fulfilled. 2%
of respondents work in industry (evenly divided betweegédaand
small companies), and 10% of respondents are using Haskell f
product development, so our goal of designing a languadetsei
for applications has also been fulfilled. Interestingly%®2are us-
ing Haskell for open-source projects, which are also apfibos.
Perhaps open-source projects are less constrained in tieeabf
programming language than industrial projects are.

The country with the most Haskell enthusiasts is the UnitedeS
(115), closely followed by Portugal (91) and Germany (85p-T
ditional “hotbeds of functional programming” come lowena

250f course, this omits users who learnt Haskell but then sidpgsing it
before our survey.

26This may explain its relative popularity in Scandinavia.
27Most Haskell textbooks are aimed at introductory prograngriourses.

the UK is in fourth place (49), and Sweden in sixth (29). Other
countries with 20 or more respondees were the Netherlar@)s (4
and Australia (25). It is curious that France has only sixereas
Germany has 85—perhaps French functional programmersmpref
OCaml.

The picture changes, though, when we consider the propootfio
Haskell enthusiasts in the general population. Now the Gayis-
lands top the chart, with one Haskell enthusiast per 44,e0ple.
Portugal comes second, with one in 116,000, then Scandiravi
Iceland, Finland, and Sweden all have around one Haskedler p
300,000 inhabitants. In the UK, and many other countrieskelih
enthusiasts are truly “one in a million.” The United State#sf
between Bulgaria and Belgium, with one Haskeller for every
2,500,000 inhabitants.

If we look instead at the density of Haskell enthusiasts per u
of land mass, then the Cayman Islands are positively crowded
each Haskeller has only 262 square kilometres to program in.
In Singapore, Haskellers have a little more room, at 346 qua
kilometres, while in the Netherlands and Portugal they Hg0€0
square kilometres each. Other countries offer signifigambre
space—oaver a million square kilometres each in India, Russid
Brazil.

12.6

Haskell has influenced several other programming langudges
many cases it is hard to ascertain whether there gawsalrela-
tionship between the features of a particular language laogktof
Haskell, so we content ourselves with mentioning similesit

Influence on other languages

Cleanis a lazy functional programming language, like Miranda
and Haskell, and it bears a strong resemblance to both oéthes
(Brus et al., 1987). Clean has adopted type classes fromeHask
but instead of using monads for input-output it uses an aatro
based on uniqueness (or linear) types (Achten et al., 1992).

Mercuryis a language for logic programming with declared types
and modes (Somogyi et al., 1996). It is influenced by Haskell i
a number of ways, especially its adoption of type claskied, a
language for constraint programming built on top of Mercuses
type classes in innovative ways to permit use of multiplest@int
solvers (de la Banda et al., 2002).

Curryis alanguage for functional-logic programming (Hanus gt al
1995). As its name indicates, it is intended as a sort of Ssre

to Haskell, bringing together researchers working on fiometl-
logic languages in the same way that Haskell brought togethe
researchers working on lazy languaggéscheris another language
for functional-logic programming (Lloyd, 1999). Both lamages
have a syntax influenced by Haskell and use monads for input-
output.

Cayenneis a functional language with fully fledged dependent
types, designed and implemented by Lennart Augustssonugsig
son, 1998). Cayenne is explicitly based on Haskell, althoitsg)
type system differs in fundamental ways. It is significanthesfirst
example of integrating the full power of dependent types &pro-
gramming language.

Isabelleis a theorem-proving system that makes extensive use of
type classes to structure proofs (Paulson, 2004). Wheneadigss

is declared one associates with it the laws obeyed by thatipes

in a class (for example, that plus, times, and negation foringg,

and when an instance is declared one must prove that thedesta
satisfies those properties (for example, that the integera &ng).

Pythonis a dynamically typed language for scripting (van Rossum,
1995). Layout is significant in Python, and it has also adbghe

list comprehension notation. In turdavascript another dynami-
cally typed language for scripting, is planned to adoptd@hpre-
hensions from Python, but called array comprehensionsauist

Java The generic type system introduced in Java 5 is based on the

Hindley-Milner type system (introduced in ML, and promoteyl
Miranda and Haskell). The use of bounded types in that sy&em
closely related to type classes in Haskell. The type sys¢dmased
on GJ, of which Wadler is a codesigner (Bracha et al., 1998).

C# and Visual BasicThe LINQ (Language INtegrated Query) fea-

tures of C# 3.0 and Visual Basic 9.0 are based on monad compre-

hensions from Haskell. Their inclusion is due largely to éffferts
of Erik Meijer, a member of the Haskell Committee, and theyave
inspired by his previous attempts to apply Haskell to buibvap-
plications (Meijer, 2000).

so that loop fusion is performed when bytestring functiomscam-
posed. The correctness of the rewrite rules is crucial, sotésted
by QuickCheck properties, as is agreement between comesyp
bytestring andstring operations. This is a great example of us-
ing Haskell's advanced features to achieve good performand
reliability without compromising elegance.

We interpret these as signs that, eighteen years after ithias-
tened, Haskell is maturing. It is becoming more and moreabist
for real-world applications, and the Haskell community,ilestill
small in absolute terms, is growing strongly. We hope andeekp
to see this continue.

13. Conclusion

Functional programming, particularly in its purely furanial form,

Scala Scala is a statically typed programming language that at- is a radical and principled attack on the challenge of wgitmo-

tempts to integrate features of functional and objectrted pro-
gramming (Odersky et al., 2004; Odersky, 2006). It incluttes
comprehensions that are similar to monad comprehensioms, a
view bounds and implicit parameters that are similar to type
classes.

We believe the most important legacy of Haskell will be how it
influences the languages that succeed it.

12.7 Current developments

Haskell is currently undergoing a new revision. At the 20G&kell
Workshop, Launchbury called for the definition of “Induatri
Haskell” to succeed Haskell 98. So many extensions haveaagpge
since the latter was defined that few real programs adhergeto t
standard nowadays. As a result, it is awkward for users taegay
actly what language their application is written in, difficior tool
builders to know which extensions they should support, and i
possible for teachers to know which extensions they shaadtt.

A new standard, covering the extensions that are heavilg use
industry, will solve these problems—for the time being atsie A

grams that work. It was precisely this quirky elegance thiaheted
many of us to the field. Back in the early '80s, purely functibn
languages might have been radical and elegant, but theyaisoe
laughably impractical: they were slow, took lots of memagd
had no input/output. Things are very different now! We bedighat
Haskell has contributed to that progress, by sticking resslessly
to the discipline of purity, and by building a critical madsrgerest
and research effort behind a single language.

Purely functional programming is not necessarily the Riglty

to write programs. Nevertheless, beyond our instinctiveaation

to the discipline, many of us were consciously making a long-
term bet that principled control of effects would ultimatelirn

out to be important, despite the dominance of effects-bgdein
mainstream languages.

Whether that bet will truly pay off remains to be seen. But we
can already see convergence. At one end, the purely fumdtion
community has learnt both the merit of effects, and at leasteay

to tame them. At the other end, mainstream languages areiaglop
more and more declarative constructs: comprehensionsatats,

new committee has been formed to design the new language, ap-database query expressions, first-class functions, and besides.

propriately named Haskél{Haskell-prime), and the Haskell com-
munity is heavily engaged in public debate on the featurdseto

included or excluded. When the new standard is completeillit w
give Haskell a form that is tempered by real-world use.

Much energy has been spent recently on performance. Onie ligh
hearted sign of that is Haskell’s ranking in the Great Corapuéan-
guage Shootodft. The shootout is a benchmarking web site where
over thirty language implementations compete on eighteferd
ent benchmarks, with points awarded for speed, memory efiity

We expect this trend to continue, driven especially by thedgof
parallelism, which punishes unrestricted effects cruelly

One day, Haskell will be no more than a distant memory. But we
believe that, when that day comes, the ideas and technifae# t
nurtured will prove to have been of enduring value througkirth
influence on languages of the future.

14. Acknowledgements

and concise code. Anyone can upload new versions of the bench The Haskell community is open and vibrant, and many, many peo

mark programs to improve their favourite language’s ragkiand
early in 2006 the Haskell community began doing just thateWo
eryone’s amazement, despite a rather poor initial placémerthe
10th of February 2006 Haskell and GHC occupied the first ptexce
the list! Although the shootout makes no pretence to be asfiee
comparison, this does show that competitive performanceve
achievable in Haskell—the inferiority complex over perfance
that Haskell users have suffered for so long seems now neisgla

Part of the reason for this lies in the efficient new libratiest the
growing community is developing. For exameta.ByteString
(by Coultts, Stewart and Leshchinskiy) represents strirggbyde
vectors rather than lists of characters, providing the sentegface
but running between one and two orders of magnitude faster. |
achieves this partly thanks to an efficient representatiom,also
by using GHC'’s rewrite rules to program the compiler’s opser,

28Seehttp://shootout.alioth.debian.org

ple have contributed to the language design beyond those men
tioned in our paper.

The members of the Haskell Committee played a particulanly i
portant role, however. Here they are, with their affiliasodur-
ing the lifetime of the committee, and identifying those who
served as Editor for some iteration of the language: ArvivdT),
Lennart Augustsson (Chalmers University), Dave Bartont@li
Corp), Richard Bird (University of Oxford), Brian Boutel {&foria
University of Wellington), Warren Burton (Simon Fraser ugi-
sity), Jon Fairbairn (University of Cambridge), Josephdtgkos
Alamos National Laboratory), Andy Gordon (University of iBa
bridge), Maria Guzman (Yale University), Kevin Hammondifed
tor] (University of Glasgow), Ralf Hinze (University of Baj, Paul
Hudak [editor] (Yale University), John Hughes [editor] (Mersity

of Glasgow, Chalmers University), Thomas Johnsson (Chalme
University), Mark Jones (Yale University, University of Nimg-
ham, Oregon Graduate Institute), Dick Kieburtz (Oregondtede

Institute), John Launchbury (University of Glasgow, Omedarad-
uate Institute), Erik Meijer (Utrecht University), Rishiy Nikhil
(MIT), John Peterson [editor] (Yale University), Simon Ray
Jones [editor] (University of Glasgow, Microsoft Reseaidh),
Mike Reeve (Imperial College), Alastair Reid (Universitiy®@las-
gow, Yale University), Colin Runciman (University of Yorkphilip
Wadler [editor] (University of Glasgow), David Wise (Inaia Uni-
versity), and Jonathan Young (Yale University).

lel Languages and Architectures, Europe) Conference, Eind
hoven Springer Verlag LNCS.

Atkins, D., Ball, T., Bruns, G., and Cox, K. (1999). Mawl: A
domain-specific language for form-based servicelEEE
Transactions on Software Engineerjrih(3):334—346.

Augustsson, L. (1984). A compiler for lazy ML. In (LFP84, 108
pages 218-227.

We also thank those who commented on a draft of this paper, Augustsson, L. (1998). Cayenne — a language with dependent

or contributed their recollections: Thiaggo Arrais, LertnAu-
gustsson, Dave Bayer, Alistair Bayley, Richard Bird, JarBes
stock, Warren Burton, Paul Callahan, Michael Cartmell, &bb
Dockins, Susan Eisenbach, Jon Fairbairn, Tony Field, Jerem
Gibbons, Kevin Glynn, Kevin Hammond, Graham Hutton, Jo-

han Jeuring, Thomas Johnsson, Mark Jones, Jevgeni Kabanov,

John Kraemer, Ralf Lammel, Jan-Willem Maessen, Michael Ma
honey, Ketil Malde, Evan Martin, Paolo Martini, Conor Mc8ei,
Greg Michaelson, Neil Mitchell, Ben Moseley, Denis Moskvin
Russell O’Connor, Chris Okasaki, Rex Page, Andre Pang, Will
Partain, John Peterson, Benjamin Pierce, Bernie Pope, Beeg
stall, Alberto Ruiz, Colin Runciman, Kostis Sagonas, Asdre
Sicard, Christian Sievers, Ganesh Sittampalam, Don Stedee
Stoy, Peter Stuckey, Martin Sulzmann, Josef SvenningsSen,
mon Thompson, David Turner, Jared Updike, Michael Vaniat, J
nis Voigtlander, Johannes Waldmann, Malcolm Wallace ch&tl
Wand, Eric Willigers, and Marc van Woerkom.

Some sections of this paper are based directly on material co
tributed by Lennart Augustsson, Clifford Beshers, Pauldgilan,
Mark Carroll, Mark Jones, John Launchbury, Rishiyur Nikhil
David Roundy, Audrey Tang, and David Turner. We thank them
very much for their input. We would also like to give our padiar
thanks to Bernie Pope and Don Stewart, who prepared the iti@e |
given in Figure 2.

Finally, we thank the program committee and referees of HOPL

References

Achten, P. and Peyton Jones, S. (2000). Porting the CleaecObj
1/0 library to Haskell. In Mohnen, M. and Koopman, P., ed-
itors, Proceedings of the 12th International Workshop on the
Implementation of Functional Languages, Aachen (IFL'00),
selected papersiumber 2011 in Lecture Notes in Computer
Science, pages 194-213. Springer.

Achten, P. and Plasmeijer, R. (1995). The ins and outs ohdléa
Journal of Functional Programming(1):81-110.

Achten, P., van Groningen, J., and Plasmeijer, M. (1992)ghHi
level specification of 1/O in functional languages. In (Labn
bury and Sansom, 1992), pages 1-17.

Angelov, K. and Marlow, S. (2005). Visual Haskell: a fullateired
Haskell development environment. Rroceedings of ACM
Workshop on Haskell, TallinrTallinn, Estonia. ACM.

Appel, A. and MacQueen, D. (1987). A standard ML compiler.
In Kahn, G., editorProceedings of the Conference on Func-
tional Programming and Computer Architecture, Portland
LNCS 274, Springer Verlag.

Arts, T., Hughes, J., Johansson, J., and Wiger, U. (20063tinge
telecoms software with quviq quickcheck. In Trinder, P.,
editor, ACM SIGPLAN Erlang WorkshoPortland, Oregon.
ACM SIGPLAN.

Arvind and Nikhil, R. (1987). Executing a program on the MIT
tagged-token dataflow architecture. Pmoc PARLE (Paral-

types. In (ICFP98, 1998), pages 239—-250.

Baars, A., Lh, A, and Swierstra, D. (2004). Parsing penat
phrasesJournal of Functional Programmindl4:635-646.

Baars, A. L. and Swierstra, S. D. (2002). Typing dynamic tgpi
In (ICFPQ2, 2002), pages 157-166.

Backus, J. (1978a). Can programming be liberated from the vo
Neumann style€ommunications of the ACN1(8).

Backus, J. (1978b). Can programming be liberated from the vo
Neumann style? A functional style and its algebra of pro-
grams.Communications of the ACN1(8):613—41.

Barendsen, E. and Smetsers, S. (1996). Uniqueness typifunfo
tional languages with graph rewriting semantit&athemati-
cal Structures in Computer Scien@579-612.

Barron, D., Buxton, J., Hartley, D., Nixon, E., and Strach€y
(1963). The main features of cplThe Computer Journal
6(2):134-143.

Barth, P., Nikhil, R., and Arvind (1991). M-structures: emtling a
parallel, non-strict functional language with state. IngHes,
R., editor, ACM Conference on Functional Programming and
Computer Architecture (FPCA'91)olume 523 ofLecture
Notes in Computer Scienggages 538-568. Springer Verlag,
Boston.

Barton, D. (1995). Advanced modeling features of MHDL Pliro-
ceedings of International Conference on Electronic Harcwva
Description Languages

Bird, R. and Paterson, R. (1999). De Bruijn notation as aetkest
datatype Journal of Functional Programming(1):77-91.

Bird, R. and Wadler, P. (1988)Introduction to Functional Pro-
gramming Prentice Hall.

Bjesse, P., Claessen, K., Sheeran, M., and Singh, S. (12883:
Hardware design in haskell. International Conference on
Functional Programmingpages 174-184.

Bloss, A. (1988).Path Analysis: Using Order-of-Evaluation Infor-
mation to Optimize Lazy Functional Languagé&hD thesis,
Yale University, Department of Computer Science.

Bloss, A., Hudak, P., and Young, J. (1988a). Code optirmonati
for lazy evaluation. Lisp and Symbolic Computation: An
International Journal 1(2):147-164.

Bloss, A., Hudak, P., and Young, J. (1988b). An optimizingneo
piler for a modern functional languag&he Computer Jour-
nal, 31(6):152-161.

Blott, S. (1991). Type ClassesPhD thesis, Department of Com-
puting Science, Glasgow University.

Blumofe, R. D., Joerg, C. F., Kuszmaul, B. C., Leiserson, C. E
Randall, K. H., and Zhou, Y. (1996). Cilk: An efficient multi-
threaded runtime systerdournal of Parallel and Distributed
Computing 37(1):55-69.

Boquist, U. (1999).Code Optimisation Techniques for Lazy Func-
tional Languages PhD thesis, Chalmers University of Tech-

nology, Sweden.

Bracha, G., Odersky, M., Stoutamire, D., and Wadler, P. §1.99
Making the future safe for the past: Adding genericity to the
Java programming language. In Chambers, C., ediGiM
Symposium on Object Oriented Programming: Systems, Lan-
guages, and Applications (OOPSL.Arges 183-200, Van-
couver, BC.

Brus, T., van Eckelen, M., van Leer, M., and Plasmeijer, Md8(2).
Clean — a language for functional graph rewriting. In Kahn,
G., editor, Functional Programming Languages and Com-
puter Architecturepages 364—384. LNCS 274, Springer Ver-
lag.

Burge, W. (1975).Recursive Programming Technique&ddison
Wesley.

Burstall, R. (1969). Proving properties of programs by ctnal
induction. The Computer Journapages 41-48.

Burstall, R. (1977). Design considerations for a functlop-
gramming language. Ifihe Software Revolutiomnfotech.

Burstall, R. and Darlington, J. (1977). A transformatiostgyn for
developing recursive program3ACM 24(1):44-67.

Burstall, R. M., MacQueen, D. B., and Sannella, D. T. (1980).
HOPE: An experimental applicative language Gonference
Record of the 1980 LISP Conferenpages 136-143.

Burton, W., Meijer, E., Sansom, P., Thompson, S., and WaBler
(1996). Views: An extension to Haskell pattern matching,
http://haskell.org/development/views.html.

Callaghan, P. (1998)An Evaluation of LOLITA and Related Nat-
ural Language Processing SystenhD thesis, Department
of Computer Science, University of Durham.

Carlier, S. and Bobbio, J. (2004). hop.

Carlson, W., Hudak, P., and Jones, M. (1993). An experimsingu
Haskell to prototype “geometric region servers” for Navy
command and control.
of Computer Science, Yale University.

Carlsson, M. and Hallgren, T. (1993). Fudgets — a graphisaf u
interface in a lazy functional language. In (FPCA93, 1993),
pages 321-330.

Chakravarty, M. (1999a). G> Haskell: yet another interfacing
tool. In Koopman, P. and Clack, C., editoiafernational
Workshop on Implementing Functional Languages (IFL/99)
number 1868 in Lecture Notes in Computer Science, Lochem,
The Netherlands. Springer Verlag.

Chakravarty, M. (1999b). Lazy lexing is fast. In Middeldp#p.
and Sato, T., editorsfourth Fuji International Symposium
on Functional and Logic Programmind.ecture Notes in
Computer Science. Springer Verlag.

Chakravarty, M., editor (2002)Proceedings of the 2002 Haskell
Workshop, Pittsburgh

Chakravarty, M., Keller, G., and Peyton Jones, S. (2005a&s0A
ciated type synonyms. IACM SIGPLAN International Con-
ference on Functional Programming (ICFP’QS)allinn, Es-
tonia.

Chakravarty, M., Keller, G., Peyton Jones, S., and Marlow, S
(2005b). Associated types with class. ACM Symposium
on Principles of Programming Languages (POPL'0BLM
Press.

Chen, K., Hudak, P., and Odersky, M. (1992). Parametric type
classes. IrProceedings of ACM Conference on Lisp and

Research Report 1031, Department

Functional Programmingpages 170-181. ACM.

Cheney, J. and Hinze, R. (2003). First-class phantom typd€1S
TR2003-1901, Cornell University.

Cheong, M. H. (2005) Functional Programming and 3D Games
Undergraduate thesis, University of New South Wales.

Church, A. (1941). The calculi of lambda-conversioAinnals of
Mathematics Studie$.

Claessen, K. (2004). Parallel parsing processesirnal of Func-
tional Programming14:741-757.

Claessen, K. and Hughes, J. (2000). QuickCheck: a lightwé&ig!
for random testing of Haskell programs. In (ICFPQO, 2000),
pages 268-279.

Claessen, K. and Hughes, J. (2002). Testing monadic code wit
QuickCheck. In (Chakravarty, 2002).

Claessen, K. and Sands, D. (1999). Observable sharing rfior fu
tional circuit description. In Thiagarajan, P. and Yap, &li-
tors, Advances in Computing Science (ASIAN’99); 5th Asian
Computing Science Conferendeecture Notes in Computer
Science, pages 62—73. Springer Verlag.

Cooper, G. and Krishnamurthi, S. (2006). Embedding dynamic
dataflow in a call-by-value language. 16th European Sym-
posium on Programmingvolume 3924 ofLNCS Springer-
Verlag.

Courtney, A. (2004). Modelling User Interfaces in a Functional
Language PhD thesis, Department of Computer Science,
Yale University.

Courtney, A. and Elliott, C. (2001). Genuinely functionaleun
interfaces. IrProc. of the 2001 Haskell Workshgpages 41—
69.

Curry, H. and Feys, R. (1958Combinatory Logic, Vol. 1North-
Holland, Amsterdam.

Damas, L. and Milner, R. (1982). Principal type-schemes for
functional programs. I€onference Record of the 9th Annual
ACM Symposium on Principles of Programming Languages
pages 207-12, New York. ACM Press.

Danielsson, N. A., Hughes, J., Jansson, P., and Gibborz0@6).
Fast and loose reasoning is morally corre8BtGPLAN Not.
41(1):206-217.

Darlington, J., Henderson, P., and Turner, D. (1982dvanced
Course on Functional Programming and its Applications
Cambridge University Press.

Darlington, J. and Reeve, M. (1981). ALICE — a multiproces-
sor reduction machine for the parallel evaluation of agplic
tive languages. IfProc Conference on Functional Program-
ming Languages and Computer Architecture, Portsmouth,
New Hampshirepages 66—76. ACM.

Davis, A. (1977). The architecture of ddml: a recursivelyct
tured data driven machine. Technical Report UUCS-77-113,
University of Utah.

de la Banda, M. G., Demoen, B., Marriott, K., and Stuckey, P.
(2002). To the gates of HAL: a HAL tutorial. IRroceed-
ings of the Sixth International Symposium on Functional and
Logic ProgrammingSpringer Verlag LNCS 2441.

Diatchki, I., Jones, M., and Hallgren, T. (2002). A formaksp
fication of the Haskell 98 module system. In (Chakravarty,
2002).

Dijkstra, E. (1981). Trip report E.W. Dijkstra, Newcast[E9-25
July 1981. Dijkstra working note EWD798.

Dybjer, P. (1991). Inductive sets and families in Martiofis”
type theory. In Huet, G. and Plotkin, G., editotsygical
Frameworks Cambridge University Press.

Dybvig, K., Peyton Jones, S., and Sabry, A. (2005). A monadic
framework for delimited continuations. To appear in the
Journal of Functional Programming

Elliott, C. (1996). A brief introduction to activevrml. Thaical
Report MSR-TR-96-05, Microsoft Research.

Elliott, C. (1997). Modeling interactive 3D and multimea@iaima-
tion with an embedded language. Pmoceedings of the first
conference on Domain-Specific Languageages 285—296.
USENIX.

Elliott, C. and Hudak, P. (1997). Functional reactive artiora In
International Conference on Functional Programmjipages
263-273.

Elliott, C., Schechter, G., Yeung, R., and Abi-Ezzi, S. (4pTbag:
A high level framework for interactive, animated 3d graghic
applications. IrProceedings of SIGGRAPH '9pages 421—
434. ACM SIGGRAPH.

Ennals, R. and Peyton Jones, S. (2003). Optimistic evaluati
an adaptive evaluation strategy for non-strict programs. |
(ICFPO03, 2003).

Evans, A. (1968). Pal—a language designed for teachinganog
ming linguistics. InProceedings ACM National Conference

Fairbairn, J. (1982). Ponder and its type system. TechRegbrt
TR-31, Cambridge University Computer Lab.

Fairbairn, J. (1985). Design and implementation of a sinyped

language based on the lambda-calculus. Technical Report 75

University of Cambridge Computer Laboratory.

Faxen, K.-F. (2002). A static semantics for Haskelburnal of
Functional Programming12(4&5).

Field, A., Hunt, L., and While, R. (1992). The semantics and
implementation of various best-fit pattern matching screme
for functional languages. Technical Report Doc 92/13, Dept
of Computing, Imperial College.

Finne, S., Leijen, D., Meijer, E., and Peyton Jones, S. (1998
H/Direct: a binary foreign language interface for Haskell.
In ACM SIGPLAN International Conference on Functional
Programming (ICFP’98) volume 34(1) ofACM SIGPLAN
Notices pages 153-162. ACM Press, Baltimore.

Finne, S. and Peyton Jones, S. (1995). Composing Haggfomn
5th Eurographics Workshop on Programming Paradigms in
Graphics, Maastricht

Ford, B. (2002). Packrat parsing: simple, powerful, laayear
time. In (ICFP02, 2002), pages 36—47.

FPCA93 (1993). ACM Conference on Functional Programming
and Computer Architecture (FPCA'93yophenhagen. ACM.

FPCA95 (1995). ACM Conference on Functional Programming
and Computer Architecture (FPCA'99)a Jolla, California.
ACM.

Friedman, D. and Wise, D. (1976). CONS should not evaluate it
arguments.Automata, Languages, and Programmipgges
257-281.

Frost, R. (2006). Realization of natural-language intfaus-
ing lazy functional programmingACM Computing Surveys
38(4). Article No. 11.

Gaster, B. (1998).Records, Variants, and Qualified TypeBPhD
thesis, Department of Computer Science, University of Not-

tingham.

Gaster, B. R. and Jones, M. P. (1996). A polymorphic typeesyst
for extensible records and variants. Technical Report BR-9
3, Department of Computer Science, University of Notting-
ham.

Gill, A. (2000). Debugging Haskell by observing intermedidata
structures. IrHaskell WorkshopACM SIGPLAN.

Gill, A., Launchbury, J., and Peyton Jones, S. (1993). Atstwdrto
deforestation. IPACM Conference on Functional Program-
ming and Computer Architecture (FPCA'9®Rages 223232,
Cophenhagen. ACM Press. ISBN 0-89791-595-X.

Girard, J.-Y. (1990). The system F of variable types: fiftgears
later. In Huet, G., editod_ogical Foundations of Functional
Programming Addison-Wesley.

Glynn, K., Stuckey, P., and Sulzmann, M. (2000). Type ckasel
constraint handling rules. IRirst Workshop on Rule-Based
Constraint Reasoning and Programming

Godel, K. (1931).Uber formal unentscheidbare satze der principia
mathematica und verwandter Systeme Monatshefte fir
Mathematik und Physjld8:173-198. Pages 596-616 of (van
Heijenoort, 1967).

Gordon, M., Milner, R., and Wadsworth, C. (1979Edinburgh
LCF. Springer Verlag LNCS 78.

Graham, P. (2004). Beating the averagesdéckers and Painters
O'Reilly.

Graunke, P., Krishnamurthi, S., Hoeven, S. V. D., and Fsglei M.
(2001). Programming the web with high-level programming
languages. IrProceedings 10th European Symposium on
Programming pages 122-136. Springer Verlag LNCS 2028.

Hall, C. and O’Donnell, J. (1985). Debugging in a side-gffec
free programming environment. IRroc ACM Symposium
on Language Issues and Programming Environmeh@M,
Seattle.

Hallgren, T. (2001). Fun with functional dependencies.Phoc
Joint CS/CE Winter Meeting, Chalmers Univerity, Varberg,
Sweden

Hallgren, T., Jones, M. P., Leslie, R., and Tolmach, A. (3005
A principled approach to operating system construction in
Haskell. InICFP '05: Proceedings of the Tenth ACM SIG-
PLAN International Conference on Functional Programming
pages 116-128, New York, NY, USA. ACM Press.

Hanus, M., Kuchen, H., and Moreno-Navarro, J. (1995). Cukry
truly functional logic language. IRroceedings of the ILPS
'95 Postconference Workshop on Visions for the Future of
Logic Programming

Harris, T., Marlow, S., Peyton Jones, S., and Herlihy, M.
(2005). Composable memory transactions. AGM Sym-
posium on Principles and Practice of Parallel Programming
(PPoPP’05)

Harrison, W. and Kamin, S. (1998). Modular compilers based o
monad transformers. [Rroc International Conference on
Computer Languagepages 122—-131.

Hartel, P., Feeley, M., Alt, M., Augustsson, L., Bauman \¥ejs,
P., and Wentworth, P. (1996). Pseudoknot: a float-intensive
benchmark for functional compilersJournal of Functional
Programming 6(4).

Haskell01 (2001). Proceedings of the 2001 Haskell Workshop,
Florence

Haskell04 (2004). Proceedings of ACM Workshop on Haskell,
Snowbird Snowbird, Utah. ACM.

Heeren, B., Hage, J., and Swierstra, S. (2003a). Scriptiadype
inference process. In (ICFP03, 2003), pages 3-14.

Heeren, B., Leijen, D., and van 1Jzendoorn, A. (2003b). tielifor
learning Haskell. INPACM Sigplan 2003 Haskell Workshop
pages 62 — 71, New York. ACM Press.

Henderson, P. (1982). Functional geometryPhc ACM Sympo-
sium on Lisp and Functional Programmingages 179-187.
ACM.

Henderson, P. and Morris, J. (1976). A lazy evaluator. Irin
Proceedings of 3rd International Conference on Principgés
Programming Languages (POPL'7§)ages 95-103.

Herington, D. (2002).
sourceforge.net.

Hinze, R. (2000). A new approach to generic functional paogr
ming. In (POPLOO, 2000), pages 119-132.

Hinze, R. (2001). Manufacturing datatypeeurnal of Functional
Programming 1.

Hinze, R. (2003). Fun with phantom types. In Gibbons, J. and
de Moor, O., editorsThe Fun of Programmingpages 245—
262. Palgrave.

Hinze, R. (2004). Generics for the massesAC@M SIGPLAN Inter-
national Conference on Functional Programming (ICFP’04)
Snowbird, Utah. ACM.

Hinze, R., Jeuring, J., and Lh, A. (2006). Comparing apgreato
generic programming in Haskell. IGBeneric Programming,
Advanced Lectured NCS. Springer-Verlag.

Hinze, R. and Peyton Jones, S. (2000). Derivable type dasse
In Hutton, G., editorProceedings of the 2000 Haskell Work-
shop, Montreal Nottingham University Department of Com-
puter Science Technical Report NOTTCS-TR-00-1.

Hudak, P. (1984a). ALFL Reference Manual and Programmer’s
Guide. Research Report YALEU/DCS/RR-322, Second Edi-
tion, Yale University, Dept. of Computer Science.

Hudak, P. (1984b). Distributed applicative processingesys —
project goals, motivation and status report. Research iRepo
YALEU/DCS/RR-317, Yale University, Dept. of Computer
Science.

Hudak, P. (1989). Conception, evolution, and applicatibfunc-
tional programming languagesACM Computing Surveys
21(3):359-411.

Hudak, P. (1996a). Building domain-specific embedded laggs.
ACM Computing Survey28A.

Hudak, P. (1996b). Haskore music tutorial. 3acond International
School on Advanced Functional Programmipgges 38-68.
Springer Verlag, LNCS 1129.

Hudak, P. (1998). Modular domain specific languages andtool
In Proceedings of Fifth International Conference on Software
Reusepages 134-142. IEEE Computer Society.

Hudak, P. (2000).The Haskell School of Expression — Learning
Functional Programming Through MultimediaCambridge
University Press, New York.

Hudak, P. (2003). Describing and interpreting music in teéiskn
Gibbons, J. and de Moor, O., editoBhe Fun of Program-
ming chapter 4. Palgrave.

Hunit home page.http://hunit.

Hudak, P. (2004). Polymorphic temporal mediaPimceedings of
PADL'04: 6th International Workshop on Practical Aspects
of Declarative Languages$Springer Verlag LNCS.

Hudak, P., Courtney, A., Nilsson, H., and Peterson, J. (ROB&
rows, robots, and functional reactive programming. In Jeur
ing, J. and Jones, S. P., editofsjvanced Functional Pro-
gramming, 4th International Schqalolume 2638 of_ecture
Notes in Computer Scienc8pringer-Verlag.

Hudak, P., Makucevich, T., Gadde, S., and Whong, B. (1996).
Haskore music notation — an algebra of musitournal of
Functional Programming6(3):465—483.

Hudak, P. and Sundaresh, R. (1989). On the expressive-
ness of purely-functional 1/0 systems. Research Report
YALEU/DCS/RR-665, Department of Computer Science,
Yale University.

Hudak, P. and Young, J. (1986). Higher-order strictnestyaisan
untyped lambda calculus. IWCM Symposium on Principles
of Programming Languagepages 97-109.

Huet, G. (1975). A unification algorithm for typed lambda-
calculus.Theoretical Computer Scienck22-58.

Huet, G. and Levy, J. (1979). Call by need computations in-non
ambiguous linear term-rewriting systems. Report 359, IN-
RIA.

Hughes, J. (1989). Why functional programming matteithe
Computer Journal32(2):98-107.

Hughes, J. (1995). The design of a pretty-printing librdnyJeur-
ing, J. and Meijer, E., editoréydvanced Functional Program-
ming pages 53-96. Springer Verlag, LNCS 925.

Hughes, J. (2000). Generalising monads to arro&ience of
Computer Programming37:67-111.

Hughes, R. (1983). The Design and Implementation of Pro-
gramming LanguagesPh.D. thesis, Programming Research
Group, Oxford University.

Hutton, G. and Meijer, E. (1998). Monadic parsing in Haskell
Journal of Functional Programming:437-444.

ICFP0OO (2000). ACM SIGPLAN International Conference on
Functional Programming (ICFP’0QMontreal. ACM.

ICFP02 (2002). ACM SIGPLAN International Conference on
Functional Programming (ICFP’02)Pittsburgh. ACM.

ICFP03 (2003). ACM SIGPLAN International Conference
on Functional Programming (ICFP’03)Uppsala, Sweden.
ACM.

ICFP98 (1998). ACM SIGPLAN International Conference on
Functional Programming (ICFP’98)volume 34(1) ofACM
SIGPLAN NoticesBaltimore. ACM.

ICFP99 (1999). ACM SIGPLAN International Conference on
Functional Programming (ICFP’99)Paris. ACM.

Jansson, P. and Jeuring, J. (1997). PolyP — a polytypic arogr
ming language extension. 2dth ACM Symposium on Princi-
ples of Programming Languages (POPL'9@ages 470482,
Paris. ACM.

Jansson, P. and Jeuring, J. (1999). Polytypic compactpyiahd
parsing. InEuropean Symposium on Programminglume
1576 ofLecture Notes in Computer Scienpages 273-287.
Springer-Verlag.

Johann, P. and Voigtlander, J. (2004). Free theorems iprésence
of seq. INACM Symposium on Principles of Programming
Languages (POPL'04pages 99-110, Charleston. ACM.

Johnson, S. (1984)Synthesis of Digital Designs from Recursive
Equations ACM Distinguished Dissertation. MIT Press.

Johnsson, T. (1984). Efficient compilation of lazy evaloati
In Proc SIGPLAN Symposium on Compiler Construction,
Montreal ACM.

Jones, M. (1991). Type inference for qualified types. PRG-
TR-10-91, Programming Research Group, Oxford, Oxford
University.

Jones, M. (1992). A theory of qualified types. Earopean Sym-
posium on Programming (ESOP’92)umber 582 in Lecture

Notes in Computer Science, Rennes, France. Springer Verlag

Jones, M. (1993). A system of constructor classes: oveirigeahd
implicit higher-order polymorphism. In (FPCA93, 1993).

Jones, M. (1994).Qualified Types: Theory and PracticeCam-
bridge University Press.

Jones, M. (1995). Simplifying and improving qualified typda
(FPCA95, 1995).

Jones, M. (1999). Typing Haskell in Haskell. In (Meijer,
1999). Available atftp://ftp.cs.uu.nl/pub/RUU/CS/
techreps/CS-1999/1999-28. pdf.

Jones, M. (2000). Type classes with functional dependendie
European Symposium on Programming (ESOPR’'@@mber
1782 in Lecture Notes in Computer Science, Berlin, Ger-
many. Springer Verlag.

Jones, M. and Duponcheel, L. (1994). Composing monads.-Tech
nical Report YALEU/DCS/RR-1004, Yale Univesrity.

Jouannaud, J.-P., editor (1985ACM Conference on Functional
Programming and Computer Architecture (FPCA'8%pI-
ume 201 oflLecture Notes in Computer Scienddancy,
France. Springer-Verlag.

Kaes, S. (1988). Parametric overloading in polymorphigpam-
ming languages. IRroceedings of the 2nd European Sympo-
sium on Programming

Keller, R., Lindstrom, G., and Patil, S. (1979). A looselypted
applicative multiprocessing system. AFIPS Conference
Proceedingspages 613—-622.

Kelsey, R., Clinger, W., and Rees, J. (1998). Revisegort on the
algorithmic language Schem&IGPLAN Notices33(9):26—
76.

Kiselyov, O., Lmmel, R., and Schupke, K. (2004). Stronglyegt
heterogeneous collections. In (Haskell04, 2004), pages 96
107.

Kiselyov, O. and Shan, K. (2004). Implicit configurations;tgpe
classes reflect the values of types. In (Haskell04, 2004 pa
33-44.

Knuth, D. (1984).
27(2):97-111.

Kranz, D., Kelsey, R., Rees, J., Hudak, P., Philbin, J., adans,
N. (1986). Orbit: an optimizing compiler for Scheme.
SIGPLAN '86 Symposium on Compiler Constructipages
219-233. ACM. Published as SIGPLAN Notices Vol. 21, No.
7, July 1986.

Kranz, D., Kesley, R., Rees, J., Hudak, P., Philbin, J., adans,
N. (2004). Retrospective on: Orbit: an optimizing com-
piler for Scheme. ACM SIGPLAN Notices, 20 Years of the
ACM SIGPLAN Conference on Programming Language De-
sign and Implementation (1979-1999): A SelectR#(4).

Literate programming.Computer Journal

In

Lammel, R. and Peyton Jones, S. (2003). Scrap your baéltepl
a practical approach to generic programming.AdM SIG-
PLAN International Workshop on Types in Language Design
and Implementation (TLDI'03)pages 26-37, New Orleans.
ACM Press.

Lammel, R. and Peyton Jones, S. (2005). Scrap your boiler-
plate with class: Extensible generic functions. ABM SIG-
PLAN International Conference on Functional Programming
(ICFP’05), Tallinn, Estonia.

Landin, P. (1966). The next 700 programming langua@Esnmu-
nications of the ACM9(3):157-166.

Landin, P. J. (1964). The mechanical evaluation of expoessi
Computer Journal6(4):308-320.

Laufer, K. (1996). Type classes with existential typdsurnal of
Functional Programming6(3):485-517.

Laufer, K. and Odersky, M. (1994). Polymorphic type infere
and abstract data typeACM Transactions on Programming
Languages and Systeni$(5):1411-1430.

Launchbury, J. (1993). Lazy imperative programming. Proc
ACM Sigplan Workshop on State in Programming Languages,
Copenhagen (available as YALEU/DCS/RR-968, Yale Uni-
versity) pages pp46-56.

Launchbury, J. and Peyton Jones, S. (1995). State in Hasksfi
and Symbolic Computatio8(4):293-342.

Launchbury, J. and Sabry, A. (1997). Monadic state: Axionaat
tion and type safety. IACM SIGPLAN International Confer-
ence on Functional Programming (ICFP’'9fages 227238,
Amsterdam. ACM.

Launchbury, J. and Sansom, P., editors (1992functional
Programming, Glasgow 1992Workshops in Computing.
Springer Verlag.

Leijen, D. and Meijer, E. (1999). Domain-specific embeddewh-c

pilers. InProc 2nd Conference on Domain-Specific Lan-
guages (DSL'99)pages 109-122.

Lewis, J., Shields, M., Meijer, E., and Launchbury, J. (200én-
plicit parameters: dynamic scoping with static types.
(POPLOO, 2000).

LFP84 (1984) ACM Symposium on Lisp and Functional Program-
ming (LFP'84) ACM.

Li, H., Reinke, C., and Thompson, S. (2003). Tool support for
refactoring functional programs. In Jeuring, J., edifom-
ceedings of the 2003 Haskell Workshop, Uppsala

Liang, S., Hudak, P., and Jones, M. (1995). Monad transftame
and modular interpreters. B2nd ACM Symposium on Princi-
ples of Programming Languages (POPL'9pages 333—-343.
ACM.

Lindig, C. (2005). Random testing of C calling conventioris.
AADEBUG pages 3-12.

Lloyd, J. W. (1999). Programming in an integrated functicarad
logic language. Journal of Functional and Logic Program-
ming

Loh, A., Clarke, D., and Jeuring, J. (2003). Dependengiest
Generic Haskell. In (ICFP03, 2003), pages 141-152.

Long, D. and Garigliano, R. (1993)Reasoning by Analogy and
Causality (A Model and ApplicationEllis Horwood.

Luth, C. and Ghani, N. (2002). Composing monads using abpro
ucts. In (ICFP02, 2002), pages 133-144.

In

Maessen, J.-W. (2002). Eager Haskell: Resource-boundszliex
tion yields efficient iteration. 1Mhe Haskell Workshop, Pitts-
burgh

Major, F. and Turcotte, M. (1991). The combination of synibol
and numerical computation for three-dimensional modgllin
of RNA. SCIENCE 253:1255-1260.

Marlow, S., Peyton Jones, S., and Thaller, W. (2004). BExtend
the Haskell Foreign Function Interface with concurrenay. |
Proceedings of Haskell Workshop, Snowbird, Uadges 57—
68.

Matthews, J., Cook, B., and Launchbury, J. (1998). Microps
sor specification in Hawk. Iinternational Conference on
Computer Languagepages 90-101.

McBride, C. (2002). Faking it: Simulating dependent types i
Haskell. Journal of Functional Programmindl2(4&5):375—
392.

McCarthy, J. L. (1960). Recursive functions of symbolic g3
sions and their computation by machine, Pa€oémmunica-
tions of the ACM3(4):184—195. The original Lisp paper.

Meijer, E., editor (1999).Proceedings of the 1999 Haskell Work-
shop number UU-CS-1999-28 in Technical Reports. Avail-
able at ftp://ftp.cs.uu.nl/pub/RUU/CS/techreps/
CS-1999/1999-28 . pdf.

Meijer, E. (2000). Server side web scripting in Haskdburnal of
Functional Programmingl10(1):1-18.

Meijer, E. and Claessen, K. (1997). The design and impleatient
of Mondrian. In Launchbury, J., editoHaskell Workshop
Amsterdam, Netherlands.

Milner, R. (1978). A theory of type polymorphism in prograrima.
JCSS13(3).

Milner, R. (1984). A proposal for Standard ML. lkRCM Sympo-
sium on LISP and Functional Programmingages 184-197.

Milner, R. and Tofte, M. (1990).The Definition of Standard ML
MIT Press.

Milner, R., Tofte, M., Harper, R., and MacQueen, D. (199The
Definition of Standard ML (RevisedYlIT Press, Cambridge,
Massachusetts.

Mitchell, J. and Plotkin, G. (1985). Abstract types havesesitial
type. InTwelfth Annual ACM Symposium on Principles of
Programming Languages (POPL'8§)ages 37-51.

Moggi, E. (1989). Computational lambda calculus and monhds
Logic in Computer Science, CalifornitEEE.

Moggi, E. (1991). Notions of computation and monatisforma-
tion and Computation93:55-92.

Neubauer, M., Thiemann, P., Gasbichler, M., and Sperber, M.
(2001). A functional notation for functional dependencies
In (Haskell01, 2001).

Neubauer, M., Thiemann, P., Gasbichler, M., and Sperber,
(2002). Functional logic overloading. ®WCM Symposium
on Principles of Programming Languages (POPL'02ages
233-244, Portland. ACM.

Nikhil, R. S. and Arvind (2001)Implicit Parallel Programming in
pH. Morgan Kaufman.

Nilsson, H. and Fritzson, P. (1994). Algorithmic debugdioglazy
functional languages.Journal of Functional Programming
4(3):337-370.

M.

Nilsson, H. and Sparud, J. (1997). The evaluation deperdiee
as a basis for lazy functional debuggirgutomated Software
Engineering 4(2):121-150.

Nordin, T., Peyton Jones, S., and Reid, A. (1997). Green:Card
a foreign-language interface for Haskell. In Launchbury, J
editor, Haskell WorkshopAmsterdam.

Odersky, M. (2006). Changes between Scala version 1.0 @nd 2.
Technical report, EPFL Lausanne.

Odersky, M., Altherr, P., Cremet, V., Emir, B., Maneth, S.iche-
loud, S., Mihaylov, N., Schinz, M., Stenman, E., and Zenger,
M. (2004). An overview of the Scala programming language.
Technical Report IC/2004/640, EPFL Lausanne.

O’Donnell, J. (1995). From transistors to computer araitee:
teaching functional circuit specification in Hydra. Sympo-
sium on Functional Programming Languages in Education
volume 1022 oLLNCS Springer-Verlag.

Ohori, A. (1995). A polymorphic record calculus and its camp
lation. ACM Transactions on Programming Languages and
Systemsl7:844—-895.

Okasaki, C. (1998aPurely functional data structure€Cambridge
University Press.

Okasaki, C. (1998b). Views for Standard ML. ACM SIGPLAN
Workshop on MLBaltimore, Maryland.

Okasaki, C. (1999). From fast exponentiation to square iosstr
an adventure in types. In (ICFP99, 1999), pages 28-35.

Page, R. (2003). Software is discrete mathematics. In (0BFP
2003), pages 79-86.

Page, R. and Moe, B. (1993). Experience with a large scientifi
application in a functional language. In (FPCA93, 1993).

Paterson, R. (2001). A new notation for arrows. livierna-
tional Conference on Functional Programmingages 229—
240. ACM Press.

Paterson, R. (2003). Arrows and computation. In Gibbonand.
de Moor, O., editorsThe Fun of Programmingpages 201—
222. Palgrave.

Paulson, L. (2004). Organizing numerical theories usirigraatic
type classesJournal of Automated Reasonirg3(1):29—49.

Perry, N. (1991a). An extended type system supporting poiym
phism, abstract data types, overloading and inferendérda
15th Australian Computer Science Conference

Perry, N. (1991b). The Implementation of Practical Functional
Programming Languages Ph.D. thesis, Imperial College,
London.

Peterson, J., Hager, G., and Hudak, P. (1999a). A language fo
declarative robotic programming. limternational Confer-
ence on Robotics and Automation

Peterson, J., Hudak, P., and Elliott, C. (1999b). Lambdadtion:
Controlling robots with Haskell. Ifrirst International Work-
shop on Practical Aspects of Declarative LanguagBEs-
PLAN.

Peyton Jones, S. (1987 he Implementation of Functional Pro-
gramming LanguagedPrentice Hall.

Peyton Jones, S. (2001). Tackling the awkward squad: monadi
input/output, concurrency, exceptions, and foreign-leage
calls in Haskell. In Hoare, C., Broy, M., and Steinbrueggen,
R., editors,Engineering Theories of Software Construction,
Marktoberdorf Summer School 2Q00IATO ASI Series,
pages 47-96. 10S Press.

Peyton Jones, S., Eber, J.-M., and Seward, J. (2000). Cangpos
contracts: an adventure in financial engineeringAGM SIG-
PLAN International Conference on Functional Programming
(ICFP’00), pages 280292, Montreal. ACM Press.

Peyton Jones, S., Gordon, A., and Finne, S. (1996). Condurre
Haskell. In23rd ACM Symposium on Principles of Program-
ming Languages (POPL'96pages 295-308, St Petersburg
Beach, Florida. ACM Press.

Peyton Jones, S., Hall, C., Hammond, K., Partain, W., andé&t/ad
P. (1993). The Glasgow Haskell Compiler: a technical
overview. InProceedings of Joint Framework for Informa-
tion Technology Technical Conference, Kepkges 249-257.
DTI/SERC.

Peyton Jones, S., Jones, M., and Meijer, E. (1997). Typseatas
an exploration of the design space. In Launchbury, J., edito
Haskell workshopAmsterdam.

Peyton Jones, S. and Launchbury, J. (1991).
as first class citizens. In Hughes, R., edith€M Confer-

ence on Functional Programming and Computer Architecture

(FPCA'91), volume 523 ofLecture Notes in Computer Sci-
ence pages 636—666, Boston. Springer.

Peyton Jones, S., Reid, A., Hoare, C., Marlow, S., and Heoder
F. (1999). A semantics for imprecise exceptions. AGM

Conference on Programming Languages Design and Imple-

mentation (PLDI'99) pages 25—-36, Atlanta. ACM Press.

Peyton Jones, S., Vytiniotis, D., Weirich, S., and Shielils,
(2007). Practical type inference for arbitrary-rank types
Journal of Functional Programmind.7:1-82.

Peyton Jones, S. and Wadler, P. (1993). Imperative fureitimo-
gramming. In20th ACM Symposium on Principles of Pro-
gramming Languages (POPL'93)ages 71-84. ACM Press.

Peyton Jones, S., Washburn, G., and Weirich, S. (2004). Wobb

types: type inference for generalised algebraic data types

Microsoft Research.

Peyton Jones, S. L. (1992). Implementing lazy functional la

guages on stock hardware: The spineless tagless G-machine

Journal of Functional Programmin@(2):127—-202.
Pierce, B. (2002)Types and Programming LanguagesIT Press.

Pope, B. (2005). Declarative debugging with Buddha. In V&he
and Uustalu, T., editorgydvanced Functional Programming,

5th International School, AFP 2004, Tartu, Estonia, August

14-21, 2004, Revised Lectur@slume 3622 of_ecture Notes
in Computer SciencéSpringer.

POPLO0O (2000)27th ACM Symposium on Principles of Program-
ming Languages (POPL'0pBoston. ACM.

Pottier, F. and Régis-Gianas, Y. (2006). Stratified tyfereance for
generalized algebraic data typesAGM Symposium on Prin-
ciples of Programming Languages (POPL'0&harleston.
ACM.

Queinnec, C. (2000).
or, continuations to program web servers. liternational
Conference on Functional Programming

Ranta, A. (2004). Grammatical framewordournal of Functional
Programming 14(2):145-189.

Rees, J. and Clinger, W. (1986). Revised report on the algoit
language schem&CM SIGPLAN Notice®1:37-79.

Rojemo, N. (1995a).Garbage Collection and Memory Efficiency
in Lazy Functional LanguagesPh.D. thesis, Department of

Unboxed values

Scholz, E. (1998).

The influence of browsers on evaluators S"€ard. T. and Peyton Jones, S. (2002).

Sheeran, M. (2005).

Computing Science, Chalmers University.

Rojemo, N. (1995b). Highlights from nhc: a space-efficieaskell
compiler. In (FPCA95, 1995).

Roundy, D. (2005). Darcs home pagg.tp://wuw.darcs.net.

Runciman, C. and Wakeling, D. (1992). Heap profiling a lazy
functional compiler. In (Launchbury and Sansom, 1992),
pages 203-214.

Runciman, C. and Wakeling, D. (1993). Heap profiling of lazy
functional programs. Journal of Functional Programming
3(2):217-246.

Rjemo, N. and Runciman, C. (1996a). Lag, drag, void, and use:
heap profiling and space-efficient compilation revisited. |
ACM SIGPLAN International Conference on Functional Pro-
gramming (ICFP’96) pages 34-41. ACM, Philadelphia.

Rjemo, N. and Runciman, C. (1996b). New dimensions in heap
profiling. Journal of Functional Programming(4).

Sage, M. (2000). FranTk: a declarative GUI language for idisk
In (ICFP00, 2000).

Sansom, P. and Peyton Jones, S. (1995). Time and spacengrofili
for non-strict, higher-order functional languages. 2#nd
ACM Symposium on Principles of Programming Languages
(POPL'95), pages 355—-366. ACM Press.

Schechter, G., Elliott, C., Yeung, R., and Abi-Ezzi, S. (4p9

Functional 3D graphics in C++ — with an object-oriented,
multiple dispatching implementation. Proceedings of the
1994 Eurographics Object-Oriented Graphics WorksHep-
rographics, Springer Verlag.

Scheevel, M. (1984). NORMA SASL manual. Technical report,

Burroughs Corporation Austin Research Center.

Scheevel, M. (1986). NORMA — a graph reduction processor. In

Proc ACM Conference on Lisp and Functional Programming
pages 212-2109.

Imperative streams — a monadic comhinato
library for synchronous programming. In (ICFP98, 1998).

Scott, D. (1976). Data types as lattic&AM Journal on Comput-

ing, 5(3):522-587.

Scott, D. and Strachey, C. (1971). Towards a mathematicahse

tics for computer languages. PRG-6, Programming Research
Group, Oxford University.

Shapiro, E. (1983)Algorithmic DebuggingMIT Press.
Sheard, T. (2004). Languages of the future.AM Conference

on Object Oriented Programming Systems, Languages and
Applicatioons (OOPSLA’04)

Sheard, T. and Pasalic, E. (2004). Meta-programming with-bu

in type equality. InProceedings of the Fourth Interna-
tional Workshop on Logical Frameworks and Meta-languages
(LFM’04), Cork

Template meta-
programming for Haskell. In Chakravarty, M., editéro-
ceedings of the 2002 Haskell Workshop, Pittsburgh

Sheeran, M. (1983).FP — An Algebraic VLSI Design Language

PhD thesis, Programming Research Group, Oxford Univer-
sity.

Sheeran, M. (1984)uFP, a language for VLSI design. Bymp.

on LISP and Functional ProgrammingCM.

Hardware design and functional program
ming: a perfect matchJournal of Universal Computer Sci-

ence 11(7):1135-1158http: //www. jucs.org/jucs_11_
7/hardware_design_and functional.

Shields, M. and Peyton Jones, S. (2001). Object-orientdd st
overloading for Haskell. IWorkshop on Multi-Language In-
frastructure and Interoperability (BABEL'Olrlorence, Italy.

Shields, M. and Peyton Jones, S. (2002). Lexically scoppd ty
variables. Microsoft Research.

Sinclair, D. (1992). Graphical user intefaces for Haskelin
(Launchbury and Sansom, 1992), pages 252—-257.

Singh, S. and Slous, R. (1998). Accelerating Adobe Phofsho
with reconfigurable logic. INEEE Symposium on Field-
Programmable Custom Computing MachinédSEE Com-
puter Society Press.

Somogyi, Z., Henderson, F., and Conway, T. (1996). The di@tu
algorithm of Mercury, an efficient purely declarative logic
programming languagelournal of Logic Programming

Sparud, J. and Runciman, C. (1997). Tracing lazy functioned-
putations using redex trails. limternational Symposium on
Programming Languages Implementations, Logics, and Pro-
grams (PLILP’97) volume 1292 ofLecture Notes in Com-
puter Sciencepages 291-308. Springer Verlag.

Spivey, M. and Seres, S. (2003). Combinators for logic @ogr
ming. In Gibbons, J. and de Moor, O., editof$)e Fun of
Programming pages 177-200. Palgrave.

Steele, G. (1993). Building interpreters by composing nadsndn
21st ACM Symposium on Principles of Programming Lan-
guages (POPL'94)pages 472-492, Charleston. ACM.

Steele, Jr., G. L. (1978). Rabbit: A compiler for Scheme.hFecal
Report Al-TR-474, Artificial Intelligence Laboratory, MJT
Cambridge, MA.

Stosberg, M. (2005). Interview with David Roundy of Darcs on
source controlOSDir News

Stoye, W., Clarke, T., and Norman, A. (1984). Some practical
methods for rapid combinator reduction. In (LFP84, 1984),
pages 159-166.

Strachey, C. (1964). Towards a formal semanticskdmmal Lan-
guage Description Languages for Computer Programming
pages 198-220. North Holland. IFIP Working Conference.

Sulzmann, M. (2003). A Haskell programmer’s guide to
Chameleon. Available aittp://www.comp.nus.edu.sg/
~sulzmann/chameleon/download/haskell.html.

Sulzmann, M. (2006). Extracting programs from type class
proofs. Ininternational Symposium on Principles and Prac-
tice of Declarative Programming (PPDP’'0&)ages 97-108,
Venice. ACM.

Sulzmann, M., Duck, G., Peyton Jones, S., and Stuckey, 87§20
Understanding functional dependencies via constraint han
dling rules.Journal of Functional Programmingd.7:83-130.

Sussman, G. and Steele, G. (1975). Scheme — an interpreter fo

extended lambda calculus. Al Memo 349, MIT.

Swierstra, S. and Duponcheel, L. (1996Deterministic, Error-
Correcting Combinator Parserspages 184-207. Number
1129 in Lecture Notes in Computer Science. Springer Verlag,
Olympia, Washington.

Syme, D. (2005). Initialising mutually-referential alztt objects:
the value recursion challenge. In Benton, N. and Leroy, X.,
editors,Proc ACM Workshop on ML (ML'2005pages 526,
Tallinn, Estonia.

Taha, W. and Sheard, T. (1997). Multi-stage programmingd wit
explicit annotations. IACM SIGPLAN Symposium on Par-
tial Evaluation and Semantics-Based Program Manipulation
(PEPM '97), volume 32 ofSIGPLAN Noticespages 203—
217. ACM, Amsterdam.

Tang, A. (2005). Pugs home pagettp://www.pugscode . org.

Tarditi, D., Morrisett, G., Cheng, P., Stone, C., Harper,a@Rd Lee,
P. (1996). TIL: A type-directed optimizing compiler for ML.
In ACM Conference on Programming Languages Design and
Implementation (PLDI'96)pages 181-192. ACM, Philadel-
phia.

Thiemann, P. (2002a). A typed representation for HTML andlXM
documents in HaskellJournal of Functional Programming
12(5):435-468.

Thiemann, P. (2002b). Wash/cgi: Server-side web scriptiith
sessions and typed, compositional formsPhactical Appli-
cations of Declarative Languagepages 192-208. Springer
Verlag LNCS 2257.

Turner, D. A. (1976). The SASL language manual.
report, University of St Andrews.

Turner, D. A. (1979a). Another algorithm for bracket abstian.
Journal of Symbolic Logict4(2):267—-270.

Turner, D. A. (1979b). A new implementation technique for ap
plicative languagesSoftware Practice and Experienc®31—
49,

Turner, D. A. (1981). The semantic elegance of applicatare |
guages. IlProceedings of the 1981 Conference on Functional
Programming Languages and Computer Architectynr@ges
85-92. ACM.

Turner, D. A. (1982). Recursion equations as a programming
language. In Darlington, J., Henderson, P., and Turner, D.,
editors,Functional Programming and its ApplicationGUP.

Turner, D. A. (1985). Miranda: A non-strict functional lanage
with polymorphic types. In (Jouannaud, 1985), pages 1-
16. This and other materials on Miranda are available at
http://miranda.org.uk.

Turner, D. A. (1986). An overview of Mirand&8IGPLAN Notices
21(12):158-166.

van Heijenoort, J. (1967)From Frege to Godel, A Sourcebook in
Mathematical Logic Harvard University Press.

van Rossum, G. (1995). Python reference manual.
Report Report CS-R9525, CWI, Amsterdam.

Vuillemin, J. (1974). Correct and optimal placement of mstan
in a simple programming languag@urnal of Computer and
System Sciences.

Wadler, P. (1985). How to replace failure by a list of sucesssn
(Jouannaud, 1985), pages 113-128.

Wadler, P. (1987). Views: a way for pattern matching to céhab
with data abstraction. Ib4th ACM Symposium on Principles
of Programming LanguageMunich.

Wadler, P. (1989). Theorems for free! In MacQueen, edfourth
International Conference on Functional Programming and
Computer Architecture, LondoAddison Wesley.

Wadler, P. (1990a). Comprehending monadsPtac ACM Con-
ference on Lisp and Functional Programming, Ni&&€M.

Wadler, P. (1990b). Deforestation: transforming programelim-
inate treesTheoretical Computer Sciencg3:231-248.

Technical

Technical

Wadler, P. (1992a). Comprehending monadsithematical Struc-
tures in Computer Scienc@:461-493.

Wadler, P. (1992b). The essence of functional programmimg.
20th ACM Symposium on Principles of Programming Lan-
guages (POPL'92)pages 1-14. ACM, Albuquerque.

Wadler, P. (2003). A prettier printer. In Gibbons, J. and deok|
0., editors,The Fun of ProgrammingPalgrave.

Wadler, P. and Blott, S. (1989). How to make ad-hoc polymismh
less ad hoc. IfProc 16th ACM Symposium on Principles of
Programming Languages, Austin, TexA€M.

Wadler, P., Taha, W., and MacQueen, D. (1988). How to add
laziness to a strict language, without even being odd. In
Workshop on Standard ML, Baltimore

Wadsworth, C. (1971)Semantics and Pragmatics of the Lambda
Calculus PhD thesis, Oxford University.

Wallace, M. (1998). The nhc98 web pages. Availablextatp:
//www.cs.york.ac.uk/fp/nhc98.

Wallace, M., Chitil, Brehm, T., and Runciman, C. (2001). kple-
view tracing for Haskell: a new Hat. In (Haskell01, 2001).

Wallace, M. and Runciman, C. (1998). The bits between thé{am
das: binary data in a lazy functional language. Interna-
tional Symposium on Memory Management

Wallace, M. and Runciman, C. (1999). Haskell and XML: Generi
combinators or type-based translation. In (ICFP99, 1999),
pages 148-159.

Wan, Z. (December 2002)-unctional Reactive Programming for
Real-Time Embedded SystemBhD thesis, Department of
Computer Science, Yale University.

Wan, Z. and Hudak, P. (2000). Functional reactive program-
ming from first principles. IrProceedings of the ACM SIG-
PLAN '00 Conference on Programming Language Design
and Implementation (PLDJpages 242-252, Vancouver, BC,
Canada. ACM.

Wan, Z., Taha, W., and Hudak, P. (2001). Real-time FRPAPrt?
ceedings of Sixth ACM SIGPLAN International Conference
on Functional Programming~lorence, Italy. ACM.

Wan, Z., Taha, W., and Hudak, P. (2002). Event-driven FRP. In
Proceedings of Fourth International Symposium on Pradtica
Aspects of Declarative LanguagesCM.

Watson, I. and Gurd, J. (1982). A practical data flow computer
IEEE Computerpages 51-57.

Wile, D. (1973). A Generative, Nested-Sequential Basis for Gen-
eral Purpose Programming LanguageBhD thesis, Dept. of
Computer Science, Carnegie-Mellon University. First uke o
sections, on page 30.

Xi, H., Chen, C., and Chen, G. (2003). Guarded recursivetylasa
constructors. InProceedings of the 30th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Lan-
guagespages 224-235. ACM Press.

Young, J. (1988).The Semantic Analysis of Functional Programs:
Theory and Practice PhD thesis, Yale University, Depart-
ment of Computer Science.

