
“These Aren’t the Droids You’re Looking For”: Retrofitting
Android to Protect Data from Imperious Applications

Peter Hornyack∗
pjh@cs.washington.edu

Seungyeop Han∗
syhan@cs.washington.edu

Jaeyeon Jung†
jjung@microsoft.com

Stuart Schechter†
stuart.schechter@microsoft.com

David Wetherall∗
djw@cs.washington.edu

University of Washington∗ Microsoft Research†

ABSTRACT
We examine two privacy controls for Android smartphones
that empower users to run permission-hungry applications
while protecting private data from being exfiltrated:

(1) covertly substituting shadow data in place of data
that the user wants to keep private, and

(2) blocking network transmissions that contain data the
user made available to the application for on-device
use only.

We retrofit the Android operating system to implement
these two controls for use with unmodified applications. A
key challenge of imposing shadowing and exfiltration block-
ing on existing applications is that these controls could cause
side effects that interfere with user-desired functionality. To
measure the impact of side effects, we develop an automated
testing methodology that records screenshots of application
executions both with and without privacy controls, then au-
tomatically highlights the visual differences between the dif-
ferent executions. We evaluate our privacy controls on 50
applications from the Android Market, selected from those
that were both popular and permission-hungry. We find
that our privacy controls can successfully reduce the effective
permissions of the application without causing side effects
for 66% of the tested applications. The remaining 34% of
applications implemented user-desired functionality that re-
quired violating the privacy requirements our controls were
designed to enforce; there was an unavoidable choice be-
tween privacy and user-desired functionality.

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Protection;
K.4.1 [Computers and society]: Public Policy Issues—
Privacy

General Terms
Design, Security

c© ACM, 2011. This is the author’s version of the work. It is posted here
by permission of ACM for your personal use. Not for redistribution. The
definitive version was published in CCS’11, October 17-21, 2011, Chicago,
Illinois, USA.

1. INTRODUCTION
When a user prepares to install an application on the

increasingly-popular Android platform, she will be presented
with an ultimatum: either grant the application every per-
mission demanded in its manifest or abandon the installa-
tion entirely. Even when a user agrees that an application
should have access to sensitive data to provide functionality
she desires, once the application has access to these data
it may misappropriate them and exfiltrate them off the de-
vice. Despite the permission disclosures provided by the
Android platform, the power of permission ultimatums and
the inevitability that data will be misappropriated for ex-
filtration have created an application ecosystem in which
privacy-invasive applications are commonplace [8]. U.S. fed-
eral prosecutors have even taken notice, initiating a criminal
investigation into the misappropriation of users’ data by mo-
bile applications [3].

We have developed a system, called AppFence, that
retrofits the Android operating system to impose privacy
controls on existing (unmodified) Android applications.
AppFence lets users withhold data from imperious applica-
tions that demand information that is unnecessary to per-
form their advertised functionality and, for data that are
required for user-desired functions, block communications
by the application that would exfiltrate these data off the
device.

When an application demands access to sensitive data a
user doesn’t want it to have, AppFence substitutes innocu-
ous shadow data in its place. For example, an application
that demands a user’s contacts may receive shadow data that
contains no contact entries, contains only those genuine en-
tries not considered sensitive by the user, or that contains
shadow entries that are entirely fictional. Similarly, an appli-
cation that demands the unique device ID (IMEI number),
which is frequently used to profile users across applications,
may instead receive the hash of the device ID salted with a
device secret and the application name. This shadow data
provides the illusion of a consistent device ID within the
application, but is different from the ID given to other ap-
plications on the same device. Presenting a different device
ID to each application thwarts the use of this ID for cross-
application profiling. In other words, when an application
demands the device ID for the purpose of linking the user to
a cross-application profile, shadowing the device ID empow-
ers users to reply that their device is “not the droid you’re
looking for.”

Shadowing prevents the ingress of sensitive data into ap-
plications, breaking applications that truly require the cor-
rect data to provide functionality the user wants. For ex-
ample, a user cannot examine or search her contacts if the
application only has access to an empty shadow contact list.
For data that is allowed to enter the application, we intro-
duce a complementary data-egress control to prevent infor-
mation from being misappropriated and sent off the device:
exfiltration blocking. We extend the TaintDroid information-
flow tracking system [8] to track data derived from informa-
tion the user considers private, then block unwanted trans-
missions of these data. For each sensitive data type in the
system, AppFence can be configured to block messages con-
taining data of that particular type.

In this paper, we first measure how 110 popular
permission-hungry applications use the private information
that they have access to. We expose the prevalence of third-
party analytics libraries packaged within the studied appli-
cations and reveal that these applications send sensitive data
over encrypted channels (Section 2). This investigation of
existing applications’ behavior guided us to design two pri-
vacy controls, shadowing and exfiltration blocking, that pro-
tect against undesired uses of the user’s sensitive data by
applications (Section 3). We then study the potential side
effects of these two privacy controls on the user experience of
50 applications. We develop a novel testing methodology for
efficiently and reliably repeating experiments to investigate
the user-discernable side effects that result when privacy
controls are imposed on applications. The testing process
records applications’ screenshots and highlights the differ-
ences between executions so that they can be easily analyzed
visually (Section 4). The evaluation that we performed us-
ing this methodology shows that, by combining shadowing
and exfiltration blocking, it is possible to eliminate all side
effects in the applications we studied except for those that
represent a direct conflict between user-desired functionality
and the privacy goal that our controls enforce—that private
data must not leave the device (Section 5). We discuss fu-
ture and related work in Sections 6 and 7, and we conclude
in Section 8.

We make the following three contributions. First, we pro-
vide an extensive analysis of information exposure by An-
droid applications in terms of types of information inves-
tigated, forms of exposure including encryption, and ex-
posure patterns to advertising and analytics servers. Sec-
ond, we present two privacy controls for reducing sensitive
data exposure and show experimentally that the controls are
promising: the privacy controls reduced the effective permis-
sions of 66% of the 50 applications in our testbed without
side effects. Last, we develop a novel testing methodology
to detect side effects by combining automated GUI testing
with visual highlighting of differences between application
screenshots. This methodology allows us to characterize the
side effects of the tested applications, revealing some com-
mon functionalities of Android applications that require the
exposure of the user’s sensitive data and are thus unavoid-
ably in conflict with the goal of privacy controls.

2. PRIVACY RISKS ON ANDROID
To inform the design of our privacy controls, we performed

several initial measurements and analyses of today’s An-
droid applications. As an application cannot misappropriate
data it does not have access to, we first measured the preva-

lence with which applications request access to each type of
potentially sensitive data. We then determined the preva-
lence with which applications exfiltrate data of each type
and where they send the data to.

2.1 Application selection
We used three sets of applications for our initial measure-

ments (described in this section) and in-depth experiments
(described in Section 5). We began with a set of 1100 pop-
ular free Android applications, which we obtained by sam-
pling the 50 most popular applications from each of 22 cate-
gories listed by the Android Market in November 2010. We
examined this set of applications to identify a set of 11 per-
missions that applications must request to access sensitive
data (Section 2.2). We also analyzed this set of applications
to identify third-party packages that applications include for
advertising and analytics (A&A) purposes (Section 2.4).

From the set of 1100 applications, we then selected a sub-
sample of 110 applications for deeper analysis. For each
type of permission used to access sensitive data, we in-
cluded in the subsample at least 10 applications that used
the permission, drawing first from those applications that
contained a third-party A&A package and, if more appli-
cations were needed, next drawing from the set of applica-
tions without A&A packages but that still required Internet
access.1 We did not exclude any awkward or challenging
applications when sampling the 110 applications. This sub-
sample is intentionally biased in favor of permission-hungry
applications: those that require the most permissions. This
bias toward permission-hungry applications only increases
the likelihood that our experiments in Section 5 will cause
side effects when imposing privacy controls. In other words,
this sampling overestimates side effects, leading to a conser-
vative (high) estimate of the actual rate of side effects for
the privacy controls in our experiments.

For our in-depth experiments in Section 5, which required
scripting user inputs for each application to automate test-
ing, we further subsampled the 110 applications; the labor-
intensive nature of writing the test scripts limited us to au-
tomating 50 of the 110 applications. To select the 50 appli-
cations, we first excluded applications that did not transmit
any type of sensitive data during our preliminary analyses;
again, this increased the likelihood of identifying side effects
in our experiments. We also excluded five applications that
could not be tested using a single device with automated
user behavior (for example, the Bump application requires
two devices for its primary functionality). From the remain-
ing pool of applications, we randomly selected 50 of them
to be scripted; Appendix B lists the resulting set of applica-
tions.

2.2 Sources of sensitive information
By examining the applications in our 1100-application

sample, we identified 11 permissions that could result in
the disclosure of 12 types of sensitive information: loca-

tion, phone_state (granting access to phone number &
unique device ID information types as well as call state),
contacts, user account information, camera, microphone,
browser history & bookmarks, logs, SMS messages, cal-

endar, and subscribed_feeds. We measured the prevalence
with which applications demanded each permission by pars-

1Fewer than 10 applications requested access to the sub-
scribed feeds and calendar permissions.

Resource type Applications

phone_state 374 (34.0%)
location 368 (33.5%)
contacts 105 (9.5%)
camera 84 (7.6%)
account 43 (3.9%)
logs 38 (3.5%)
microphone 32 (2.9%)
SMS messages 24 (2.2%)
history & bookmarks 19 (1.7%)
calendar 9 (0.8%)
subscribed_feeds 2 (0.2%)

Table 1: Of the 1100 popular Android applications
we examined, those that required both access to a
resource containing sensitive data and access to the
Internet (through which data might be exfiltrated)

ing the applications’ manifests using the publicly available
Android aapt tool [13]. We find that 605 applications (55%)
require access to at least one of these resources and access
to the Internet, resulting in the potential for unwanted dis-
closure. We present these results broken down by resource
type in Table 1.

2.3 Misappropriation
Prior work has revealed that some Android applications

do exploit user data for purposes that may not be ex-
pected nor desired by users. Enck et al., who developed
the TaintDroid information-flow tracking system extended
in our work, used this system to analyze 30 Android ap-
plications that required access to the Internet and either
users’ location, camera, or microphone [8]. They found
that half of these applications shared users’ locations with
advertisement servers. The problem is not unique to An-
droid. Egele et al. used static analysis to track informa-
tion flow in popular iPhone applications and discovered that
many contained code to send out the unique device ID [7].
Smith captured network traffic to observe iPhone applica-
tions transmitting device IDs [18]. The Wall Street Journal
commissioned its own study of 50 iPhone applications and
50 Android applications, also using a network-observation
approach [22, 23]. The article suspects that these unique
IDs are so commonly transmitted because they can be used
to profile users’ behaviors across applications.

2.4 A profile of the profilers
Given the existing concerns over cross-application profil-

ing of user behavior, we examined our sample of 1100 ap-
plications to identify third-party advertising and analytics
(A&A) libraries that might build such profiles. We used
the Android apktool [1] to disassemble and inspect applica-
tion modules to identify the most commonly used libraries.
We found eight A&A packages, listed in Table 2. AdMob
was the most popular A&A package, employed by a third
of our sample applications, followed by Google Ads. Google
acquired AdMob in 2010; the combined application mar-
ket share of AdMob and existing Google Ads and Analytics
packages was 535 of our 1100 applications (49%). We also
found that 591 applications (54%) have one or more A&A
packages included in their code. Moreover, 361 of these ap-
plications (33%) demand access to the Internet and at least

Applications
all sensitive

A&A Module 1100 605

admob.android.ads 360 (33%) 225 (37%)
google.ads 242 (22%) 140 (23%)
flurry.android 110 (10%) 88 (15%)
google.android.apps.analytics 91 (8%) 66 (11%)
adwhirl 79 (7%) 67 (11%)
mobclix.android.sdk 58 (5%) 46 (8%)
millennialmedia.android 48 (4%) 47 (8%)
qwapi.adclient.android 39 (3%) 37 (6%)

Table 2: The prevalence of third-party advertising
and analytics modules in our sample of 1100 Android
applications, and a subset of 605 applications that
demand access to at least one resource containing
potentially sensitive information.

A&A destination Any IMEI Loc

*.admob.com 57 0 11
*.doubleclick.net 36 0 0
data.flurry.com 27 2 15
*.googlesyndication.com 24 0 0
*.mydas.mobi 23 0 0
*.adwhirl.com 21 0 0
*.mobclix.com 17 10 6
*.google-analytics.com 17 0 0
tapad.jumptap.com 6 0 0
droidvertising.appspot.com 5 0 0
*.mojiva.com 4 0 0
ad.qwapi.com 2 0 0
*.greystripe.com 2 2 0
*.inmobi.com 1 0 1

Table 3: The number of applications (from our 110
application sample) that sent any communication to
the A&A server, number that sent the unique device
ID (IMEI), and number that sent the user’s location.

one of the resource types identified in Table 1, enabling the
potential for disclosure of sensitive information to these third
party servers.

2.5 Where sensitive information goes
Not all applications that request permission to access sen-

sitive information will exfiltrate it. We ran an experiment
to identify the prevalence with which applications transmit
each type of sensitive information off the user’s device and
where they send it to. Performing this preliminary study re-
quired us to enhance TaintDroid, as it had previously only
tracked five of the 12 data types examined in our study, and
it did not track traffic sent through SSL. With our modifica-
tions, TaintDroid is able to detect sensitive data even when
it has been obfuscated, encrypted using AES, or transmitted
via SSL, although it is still limited in that it cannot track
information leaked through control flow operations; we dis-
cuss this issue of leaks via implicit flows in Section 3.3. We
also added instrumentation to record the identity of commu-
nicating parties and the traffic going to, and coming from,
these parties.

To perform this analysis, we manually executed each of
the applications in our 110-application subsample for about

Sent to
Resource Demanded Anywhere A&A

phone_state
IMEI 83 31 37% 14 17%

Phone# 83 5 6% 0 0%
location 73 45 62% 30 41%
contacts 29 7 24% 0 0%
camera 12 1 8% 0 0%
account 11 4 36% 0 0%
logs 10 0 0% 0 0%
microphone 10 1 10% 0 0%
SMS/MMS messages 10 0 0% 0 0%
history&bookmarks 10 0 0% 0 0%
calendar 8 0 0% 0 0%
subscribed_feeds 1 0 0% 0 0%

Table 4: The prevalence of permissions demanded
by applications in the sample used for our initial in-
formation flow experiments. Note that the sum of
the application counts is greater than 110 as many
applications require access to multiple data types.
For each data type, we tracked applications that de-
manded access to that data type and measured the
fraction that transmitted messages tainted by that
data type.

five minutes, exercising the application’s main features and
any features we thought might require the use or exfiltration
of sensitive data (the same methodology is used in [22, 23]).
We augmented the list of A&A domain names previously
obtained through static analysis by observing traffic from
these 110 applications and manually inspecting the sites they
contacted to verify which third-parties were A&A servers.
The resulting list of domain names of A&A servers can be
found in Table 3.

For each sensitive resource, Table 4 shows the number
of applications in our 110-application subsample that de-
manded access to it, and the fraction that we observed trans-
mitting messages tainted by data from this resource out to
the Internet. The only data types we see transmitted are
device ID (IMEI), phone number, location, contacts, cam-
era, account, and microphone. Some applications may send
more information than we observed as we could not guaran-
tee that all code paths were executed. In addition, the 110-
application subsample contains a disproportionate number
of permission-hungry applications as described in Section 2.1
and therefore this bias should be reflected when weighing the
results reported in this section against the general popula-
tion of Android applications. Table 3 shows the breakdown
of A&A destinations that collected tainted data from ap-
plications. We observed that location was sent to AdMob,
Flurry, Mobclix, and Inmobi, and device ID was sent to
Flurry, Mobclix, and Greystripe.
Phone number. Five applications transmitted phone num-
bers. Two applications required users to register a phone
number, so they filled in the device’s phone number by de-
fault when the user completed the registration form (but the
user could then modify the phone number if desired). The
third application used the phone number to create a custom
unique device identifier, so the phone number was not dis-
closed directly in the payload. However, two applications–
Dilbert comic viewer and Mabilo ringtones downloader–sent

the device’s phone number with no discernable legitimate
purpose!
Contacts. Seven applications transmitted contacts. Two
did so to perform contact-specific searches, and three sent
contacts as requested by the user. One, a reverse phone
number lookup application (Mr. Number), sent contact en-
tries to its own servers; it asks the user to opt in, but only
after it has already sent the data to its servers. An instant
messaging application (KakaoTalk) sent the phone numbers
collected from the user’s entire address book to its servers
to automatically add other users of the application. The
transmission took place without any notice and this feature
is turned on by default. Additionally, six of the seven appli-
cations sent the device ID along with the contacts, making it
easy for applications to link contacts with other information
that is commonly collected as described below.
Device ID. 31 applications transmitted the device ID
(IMEI). As reported by previous studies, the use of the de-
vice ID by applications is prevalent. 11 applications em-
ployed SSL secure connections when they transmitted the
device ID to application servers. We find that these en-
crypted transmissions of the device ID sometimes accom-
pany other sensitive data such as contacts and phone num-
ber. We find seven game applications that send the device
ID over SSL along with a score to store high scores using a
third-party company.
Location. 45 applications transmitted location data.
Third-party servers are the most common destinations for lo-
cation data; 30 applications shared location data with A&A
servers. All but two of these 30 shared location data with
A&A servers exclusively. Half (15) employ the Flurry an-
alytics package, which uses a binary (non-human readable)
data format when sending out location data to the Flurry
server. Prior investigations that observed network traffic
alone would not have detected the transmission of this in-
formation.
Camera & Microphone data. We observed that one
application sent a photo and another application sent a voice
memo. Both cases are triggered by explicit user requests.
Account. The account resource is used to store profile and
authentication information for online accounts that the user
has access to. Four applications transmitted data tainted
by the account resource; all uses appear legitimate. One
security application used account data to send email to the
user’s Gmail account. One multimedia application used ac-
count data to allow the user to register her Facebook account
for creating personal profiles. One music sharing application
used account data to authenticate the user with its server.
One application used account data to access the Android
Market for providing enhanced services.

2.6 Informing privacy controls
Our preliminary analysis can guide the selection of pri-

vacy control mechanisms for protecting sensitive data. One
simple approach would be to block all access to the Internet
by the application. While this obviously would impede user-
desired functionality in some cases, we wondered if it might
be sufficient in others. Having intercepted and observed all
Internet communications to and from these applications, we
show the fraction of each application’s Internet traffic that is
used for advertising and analytics (A&A) in Figure 1. Of the
97 applications in our 110 application sample that accessed
A&A servers, 23 (24%) communicated exclusively with A&A

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 11 21 31 41 51 61 71 81 91

Fr
ac

tio
na

l s
ha

re
 o

f n
et

w
or

k
tr

af
fic

Rank

Other Servers

A&A Servers

Figure 1: The fraction of network traffic (bytes in-
bound + bytes outbound) sent to A&A servers.

servers during our observations. While these could presum-
ably provide the same functionality if one simply denied all
access to the network, the rest would likely exhibit side ef-
fects.

Given the variation in the types of sensitive data, ways of
using this data for user-desired features, and ways to misuse
this data, it may simply not be possible to apply a single,
one-size-fits-all policy that can protect data while minimiz-
ing side effects. Thus, we set out to explore a choice of
privacy controls that could be customized to balance the
needs of applications with the privacy requirements of their
users.

3. PRIVACY CONTROLS
AppFence implements data shadowing, to prevent appli-

cations from accessing sensitive information that is not re-
quired to provide user-desired functionality, and exfiltration
blocking, to block outgoing communications tainted by sen-
sitive data. Either (or even both) of these controls may be
applied to limit an application’s misuse of a sensitive data
type.

3.1 Data shadowing
Since today’s applications do not suspect the use of shad-

owing, we opt for simple shadow data rather than developing
more elaborate ruses to fool applications that might attempt
to detect shadowing. However, our implementation can be
easily extended to support more sophisticated shadow data
than what is presented below if it becomes necessary to do
so.

Android applications use the file system to access the cam-
era, microphone, and logs. When applications try to open
these resources, we provide the illusion of opening an empty
file. Similarly, we shadowed browser metadata (history and
bookmarks), SMS/MMS messages, subscribed feeds, con-
tacts, accounts, and calendar entries by returning an empty
set of data.

When applications request the device’s location, we return
the coordinates 37.421265, -122.084026.

When applications request the device’s phone state, we
construct phone state with a fixed phone number (1 650 623
4000) and an application-specific device ID. The shadow de-
vice ID (IMEI) is generated by hashing a three-tuple con-
taining the device ID, application name, and a secret salt

randomly generated for the device. The salt ensures that an
application that is granted access to the device ID cannot be
linked to an application that is granted access to the shadow
ID. The result of the hash is a string containing 15 decimal
digits—the proper format for a GSM IMEI number.

The Android phone state permission also grants access
the software version number (IMEI/SV), SIM serial number,
voice mail number, and subscriber ID (IMSI). We did not
observe any applications use these data, and thus did not
test any shadowing strategies for them.

Implementation
The Android architecture sandboxes each running applica-
tion within a Dalvik virtual machine. Virtual machines are
isolated from each other by running each in its own process.
The Android operating system includes the Android core
libraries, which are contained in each VM, as well as the
Android framework, a set of centralized services and man-
agers that reside outside of the VMs. Applications access
the core libraries and framework through the Android API.

To impose privacy controls on unmodified applications,
AppFence modifies the Android core libraries and Android
framework. Figure 2 shows the components of the Android
architecture that we modified for shadowing. The modified
libraries and framework that guard access to sensitive data
reside outside of the application sandbox imposed by the
Dalvik virtual machine. We rely on the sandbox to prevent
the application from tampering with these components. As
native libraries are not sandboxed, AppFence prevents ap-
plications from loading their own native libraries (Android’s
core native libraries are still loaded on demand as applica-
tions require them). At the time of testing, the use of native
libraries was exceptionally rare; not one application that we
examined with AppFence (including all applications in our
110-application sample) required its own native libraries.

For simple resources such as the device ID, phone num-
ber, and location, we return shadow values directly from
the managers in the Android framework code. More com-
plex resources, such as the user’s calendar and contact list,
are accessed through Android’s content provider frame-
work [11]. Applications identify the resource they wish to
access via a URI. For example, the calendar may be queried
with the string content://calendar. For these content
provider resources, we replace the cursor that would nor-
mally be returned by the content manager with a shadow
database cursor. For our experiments we return an empty
database cursor, though one could instead create a shadow
database and return a cursor to it.

3.2 Exfiltration blocking
To block exfiltration of data, we intercept calls to the net-

work stack to (1) associate domain names with open sockets
and (2) detect when tainted data is written to a socket.
When an output buffer contains tainted data, we drop the
buffer and choose one of two actions: we may drop the of-
fending message covertly, misleading the application by in-
dicating that the buffer has been sent, or overtly, emulating
the OS behavior an application would encounter if the buffer
were dropped as a result of the device entering airplane mode
(all wireless connections disabled).

Dalvik	
 VM	

sendStream()	

write()	

open()	

content://calendar	

content	
 manager	

account	
 manager	

process	
 manager	

loca<on	
 manager	

telephony	
 manager	

AppFence	
 seAngs	

AppFence	

daemon	

taint	
 tracking	

OSNetworkSystem,	

SSLOutputStream	

applica<on	

sandbox	

OSFileSystem	

log,	
 camera,	

microphone	

shadowing	

connec<on	

blocking	

Figure 2: AppFence system architecture. The
Dalvik VM sandboxes the application and contains
the Android core libraries. Resource managers re-
side in the Android framework outside of the VMs.
Existing resource manager and file system compo-
nents are modified for shadowing, while exfiltration
blocking introduces new components (solid boxes)
for connection blocking and taint tracking. The
AppFence daemon runs as a native library, and is
controlled by the AppFence settings application.

Implementation
To monitor and block network traffic, we modify both the
Java code and native code in the Android networking stack.
Figure 2 shows key modules that we instrumented or created
for exfiltration blocking.

When an application writes to a socket’s output stream,
the buffer is sent to the sendStream() method within the
OSNetworkSystem core library. We modified sendStream so
that if the buffer is tainted by data that should not be sent
to its intended destination, we drop the buffer. When SSL
sockets are used, we capture write calls to the SSLOutput-

Stream class.
To emulate airplane mode, we first return error code

SOCKERR_TIMEOUT, then block the next send with error code
SOCKERR_EPIPE. If the application tries to open a new socket
(via a socket.connect() call), we finally return a Socke-

tException with error code SOCKERR_ENETUNREACH. Subse-
quent attempts to open sockets or send data will be allowed
until we next encounter tainted data bound for a forbidden
destination.

In order to facilitate user configuration and testing, we
separate the policy specification mechanism into a service
(daemon) that can be configured automatically or by users.
Our privacy controls obtain their policies from this daemon.
The privacy controls can be enabled globally or on a per-
application basis.

AppFence relies on the open-source TaintDroid platform
which, at the time of our testing, did not yet fully support
just-in-time (JIT) compilation. We have thus initially im-
plemented AppFence for Android version 2.1, which does
not use JIT compilation. Android 2.1 represented 15% of
the Android installations accessing the Android Market as
of August 2011 [14]. We did not encounter any compatibility
issues running applications on Android 2.1.

Our combined implementation of shadowing and exfil-
tration blocking required introducing or modifying roughly
5, 000 lines of the Android platform code.

3.3 Limitations
One of the known limitations of our implementation is

that the TaintDroid information flow tracking system, on
which we built AppFence’s exfiltration blocking feature,
does not track information leaked through control flow op-
erations. Applications intent on circumventing exfiltration
blocking could move data using control flow operations.
Tracking control flow may have reasonable overhead, espe-
cially if the code to do so is only activated when a tainted
variable is loaded into the register space, but could raise the
rate of false positives.

Still, actively circumventing AppFence would not be with-
out consequences for software developers. Static analysis
could be used to identify sections of code that appear to
be designed to transfer data using control flow, exposing
applications that actively attempt to subvert users’ desired
privacy policies. If application developers are found to be
actively targeting and circumventing AppFence’s exfiltra-
tion blocking controls, they may undermine their ability
to employ the traditional excuse used to defend developers
of privacy-invasive applications—that they operate openly
with the implicit consent of a user base that is happy to
reveal information.

An application that is aware of AppFence can detect the
presence of exfiltration blocking. For example, an applica-
tion could open two independent sockets, transmit tainted
data over only one of those sockets and untainted data over
the other socket, and have the server report back what it
received. Similarly, shadow data may also not be convinc-
ing enough to fool an application. Applications that detect
the presence of privacy controls could refuse to provide user-
desired functionality until the controls are deactivated.

4. TEST METHODOLOGY
The primary cost of imposing privacy controls on appli-

cations is the introduction of side effects that negatively im-
pact the user’s experience. To enable the evaluation of our
AppFence system, we developed a novel test methodology
that allows us to automate the execution of applications
and easily measure and characterize side effects introduced
by the privacy controls. Our methodology overcomes the
two main obstacles to systematic testing of the interaction
between AppFence’s privacy controls and applications: the
ability to reproduce program executions (reproducibility),
and the ability to detect side effects (detection). We de-
scribe how we use automated GUI testing and screenshot
comparisons to tackle these issues in the next subsections.

We focus on user-visible side effects as the metric for eval-
uating AppFence because shadowing and exfiltration block-
ing have equivalent benefits when applied to the applications
in our test bed; given that AppFence-unaware applications
do not (at least to our knowledge) deliberately circumvent
the information flow tracking used to block exfiltration, both
privacy controls are equally effective on today’s applications.
We do not measure the performance impact of our privacy
controls; the underlying information flow tracking provided
by TaintDroid is fast enough to run applications in real-time
with modest slowdown (worst case increase in CPU utiliza-
tion of 14%), and beyond this we witnessed no discernable

impact as applications with and without our privacy controls
enabled ran side by side.

4.1 Automated application runs
Reproducibility is difficult because different runs of the

same application may exercise different code paths. Further-
more, variations in user inputs, their timing, system state,
and other factors may cause results to change. To minimize
these variations, we built a test infrastructure that auto-
mates human usage patterns to remove variations in users’
choices of actions and their timing. To this end we used
the Android GUI testing system provided by the TEMA
project [15, 20], which leverages the Android monkey event
generator. The test system supports a scripting language in
which user actions are expressed via high-level commands
such as TapObject, PressKey and SelectFromMenu. Com-
mands were sent from our PC running the GUI testing sys-
tem to our Nexus One devices via a USB cable.

As described in Section 2.1, we selected 50 applications
to be scripted for our experiments (these are listed in Ap-
pendix B). We scripted each application to perform its main
tasks as we expected users to perform them. Our scripts
are not guaranteed to cover all possible code paths, and so
our results may not detect all uses of sensitive data by an
application or all of the side effects of our privacy controls.
The average time to execute each test script – excluding
installation, uninstallation and cleanup – was 3.5 minutes,
with an average of 24 script commands. We created a mas-
ter test script that configures an Android device, enables
the AppFence privacy controls for experimental configura-
tions or disables them for the baseline configuration, and
then tests all applications. For each application, the script
installs and launches the application, executes the GUI test
adapter to provide inputs, uninstalls the application, and
then removes any changes to the device state caused by the
application; we refer to these steps as an application execu-
tion.

4.2 Detecting changes in behavior
Detecting whether side effects impact user -desired func-

tionality is a determination that eventually requires consul-
tation of a user. However, placing a human in the loop can
introduce bias and slow the process down, running counter
to our goal of systematic, automated testing. To reduce the
scalability constraints and bias caused by human evaluation,
we leverage the insight that side effects are likely easy to de-
tect and confirm if the visual outputs of the baseline and
experimental executions can be compared side by side. We
employed a feature of the GUI testing system to capture a
screenshot from the Android device after every command in
the test script. We first ran each test script with our base-
line configuration—no resources were replaced with shadow
resources and no attempts to exfiltrate data were blocked.
We then ran each test script with our experimental con-
figurations, in which either data shadowing or exfiltration
blocking was activated. For each experimental execution,
we automatically generated a web page with side-by-side
screenshots from the baseline execution and the experimen-
tal execution, along with a visual diff of the two images.
We found that these outputs could be scanned quickly and
reliably, with little ambiguity as to whether a side effect had
been captured in the image logs, as shown in Figure 3.

(a) Baseline execu-
tion

(b) With exfiltra-
tion blocking

(c) Visual diff be-
tween (a) and (b)

Figure 3: Detecting side effects using visual diff:
The red shaded region in (c) highlights the adver-
tising banner missing from (b).

We also monitored the tainted data exposure across test
runs and found that it is not deterministic: it is possible
for applications to transmit tainted data in some test runs
but not others. We took steps to mitigate the underlying
sources of variation during our testing. For example, we
discovered that many applications request the most recent
calculated location, without asking for the phone to access
the GPS; they may do this to avoid the latency required to
obtain updated location data, or to avoid the battery drain
of activating the GPS unit. If a null location is returned, or
if the last known location is stale (e.g. more than 60 min-
utes old), applications will often proceed without location
data. To avoid inconsistencies during our testing, we modi-
fied the Android framework to always return a fixed default
location, rather than null, when no last known location is
available. To account for remaining variations in our test-
ing, we examined the results of at least two test executions
for every experimental configuration, and used additional
executions and manual log inspection to resolve inconsistent
application behavior.

5. EXPERIMENTS
This section shows the experimental results of testing

AppFence’s privacy controls on the 50 applications for which
we generated test scripts (see Appendix B). We discuss the
side effects resulting from the privacy controls and evaluate
their impact on the user experience.

5.1 Experimental configurations
We executed applications over eight different experimen-

tal configurations. The control configuration, which did not
have any privacy controls activated, represents how users
run applications on Android today. In the shadowing con-
figuration, sensitive data was replaced by shadow data, as
described in Section 3.1. The remaining six configurations
implemented some form of message blocking, three of which
used overt blocking (simulating airplane mode) and three of
which used covert blocking (pretending that blocked mes-
sages were actually sent). One pair of exfiltration block-
ing configurations (one covert, one overt) blocked messages
tainted by sensitive data regardless of the server to which
they were destined. Like data shadowing, these configura-
tions are destination-agnostic. A pair of destination-specific
exfiltration blocking configurations only blocked tainted mes-
sages if they were destined to known advertising & analytics

Exfiltration blocking of tainted messages to. . . Blocking all messages
all destinations only A&A servers to A&A servers

Shadowing Covert Overt Covert Overt Covert Overt
None 28 (56%) 16 (32%) 16 (32%) 45 (90%) 45 (90%) 19 (38%) 18 (36%)
Ads absent 0 (0%) 11 (22%) 11 (22%) 4 (8%) 4 (8%) 29 (58%) 26 (52%)
Less functional 14 (28%) 10 (20%) 10 (20%) 0 (0%) 0 (0%) 0 (0%) 1 (2%)
Broken 8 (16%) 13 (26%) 13 (26%) 1 (2%) 1 (2%) 2 (4%) 5 (10%)

Table 5: The side effects of imposing privacy controls on all 12 categories of sensitive data for 50 test
applications.

(A&A) servers. Finally, to examine the benefits of exfil-
tration blocking over more näıve approaches, a destination
blacklisting pair blocked all traffic to known A&A servers,
regardless of whether it was tainted by sensitive data or not.
The list of known A&A servers can be found in Table 3.

We divided the possible side effects impacting the user ex-
perience into four categories based on severity: the privacy
controls had no side effect (none); advertisements no longer
appeared (ads absent); the application still performed its
primary purpose but failed to perform a less-important sec-
ondary function, or was otherwise less functional ; or the ap-
plication no longer fulfilled its primary purpose or crashed
(broken). We then classified each application into one of
these categories, based on the most severe side effect we ob-
served in the entire execution of the application under our
test script.

The definition of less functional (as opposed to broken)
is somewhat subjective, and will vary according to the in-
dividual user. When classifying applications, we carefully
considered the primary purposes for which a user would run
a particular application, and when judgment calls were nec-
essary, we made them in favor of more severe impacts. A
detailed explanation of when we considered each application
to be less functional is presented in Appendix A. Because we
are concerned with evaluating the potential negative impact
of our privacy controls on the user’s experience, we do not
consider the absence of advertisements to be a side effect,
nor do we study the impact on application developers or
their advertising and analytics partners.

5.2 Coarse-grained controls
Our first experiment examines the side effects of impos-

ing privacy controls on all 12 data types simultaneously. We
begin with such a coarse-grained analysis because it allows
us to identify the best applications for further examination;
those that are not impacted by coarse-grained privacy con-
trols will not require more detailed analysis. Our results
are summarized in Table 5. Advertising & analytics (A&A)
servers don’t generally provide user-desired functionality,
so it is not surprising that the näıve approach of blocking
tainted messages sent to known A&A servers has fewer side
effects than approaches that block messages to other servers
as well. However, even blocking just tainted messages to
known A&A servers can cause disruption to the user expe-
rience if applications fail to handle blocking gracefully. For
example, after a connection to an A&A server failed, one
application assumed that the network was unavailable and
abandoned all network access. Blocking all messages sent
to A&A servers, rather than just those messages tainted by
sensitive data, caused slightly more applications to break.
Closer inspection revealed that these applications send un-
tainted communications to A&A servers upon launch, which

may cause them to wait indefinitely for a response (covert
mode) or receive a socket exception that is interpreted as
network unavailability (overt mode). For all exfiltration
blocking configurations, we found negligible differences in
the occurrence of side effects caused by overt blocking ver-
sus covert blocking.

Alas, blocking only A&A servers only defends against be-
havioral advertising which, despite its popularity, is likely
the least pernicious threat to sensitive data. More nefari-
ous applications can circumvent such blacklist approaches,
for example by proxying communications to A&A servers
through their own (first party) servers. Preventing exfiltra-
tion of data through non-A&A servers requires one of our
destination-agnostic approaches, i.e. using shadowing or us-
ing exfiltration blocking of tainted messages to all destina-
tions. Table 5 shows that overall, shadowing causes fewer
and less severe side effects than exfiltration blocking; a more
detailed analysis is presented in the following section.

5.3 Fine-grained controls
We ran a second experiment to determine which resources

were causing side effects when destination-agnostic privacy
controls were applied. This required us to re-run our tests,
applying privacy controls individually to each type of sensi-
tive information. However, we only had to do so for those
applications that were less functional or were broken when
privacy controls had been applied to all types of informa-
tion. For each resource (row) and privacy control (column)
in Table 6, the corresponding entry shows the number of
applications that experienced side effects as a result of im-
posing the privacy control on that resource.

Our results reflect that data types that are rarely directly
presented to the user – device ID, location, and phone num-
ber – are best protected by shadowing. Shadowing did not
break any applications that attempted to send the device
ID or phone number to their servers. Six applications did
become less functional when the device ID was shadowed—
all were games that could still track their high scores, but
not build cross-application high-score profiles. In contrast,
eight applications that access the device ID broke when
overt exfiltration blocking was imposed, and another seven
were less functional. Many of these applications send data
upon launch, then wait for a response before continuing,
and thus break when exfiltration blocking is imposed. Oth-
ers included the device ID in login information sent over an
encrypted (SSL) socket, which we blocked. Because appli-
cations use the device ID in a way that is not directly visible
to the user, shadowing the device ID can be less disruptive
to the user experience than actively blocking the communi-
cation.

When controlling access to the user’s location, shadowing
also had slightly fewer side effects than exfiltration blocking.

Breaks or less functional Breaks (only)

Exfiltration blocking Exfiltration blocking
Shadowing Covert Overt Shadowing Covert Overt

device ID 6/43 (14%) 16/43 (37%) 15/43 (35%) 0/43 (0%) 9/43 (21%) 8/43 (19%)
location 10/36 (28%) 14/36 (39%) 14/36 (39%) 5/36 (14%) 8/36 (22%) 8/36 (22%)
contacts 4/14 (29%) 2/14 (14%) 2/14 (14%) 2/14 (14%) 1/14 (7%) 1/14 (7%)
history&bookmarks 1/3 (33%) 0/3 (0%) 0/3 (0%) 0/3 (0%) 0/3 (0%) 0/3 (0%)
phone number 0/43 (0%) 3/43 (7%) 3/43 (7%) 0/43 (0%) 3/43 (7%) 3/43 (7%)
SMS 1/2 (50%) 0/2 (0%) 0/2 (0%) 1/2 (50%) 0/2 (0%) 0/2 (0%)
calendar 1/4 (25%) 0/4 (0%) 0/4 (0%) 0/4 (0%) 0/4 (0%) 0/4 (0%)

Table 6: For each type of sensitive information, the fraction of applications that require this information that
either break or are less functional as a result of imposing a destination-agnostic privacy control (first three
data columns), followed by the subset of only those applications that break – rather than just become less
functional – as a result of these controls (the last three data columns). Data types not represented by rows in
this table did not cause our privacy controls to induce side effects.

Like the device ID, location coordinates are rarely presented
to the user directly; rather, they are usually used to down-
load information about a given location. Thus, exfiltration
blocking will prevent any information from being retrieved,
whereas shadowing will result in data being retrieved for the
shadow location instead of the actual location. For some ap-
plications, data for the shadow location was not better than
no data at all (as with exfiltration blocking), so these appli-
cations (14%) were classified as broken. However, the differ-
ence between the number of applications that were broken
or less useful with location shadowing (28%) versus those
broken or less useful with exfiltration blocking (39%) shows
that some applications exfiltrated location data for purposes
(such as analytics) that did not cause user-visible side effects
when the location was shadowed. For these applications
that use location data in a way that is not visible to the
user, shadowing is a more appropriate privacy control than
exfiltration blocking.

The results demonstrate that exfiltration blocking is best
used for data that applications display to the user or allow
the user to navigate. For example, whereas data shadowing
causes four applications that use contacts to break or become
less functional, only one of these applications is impacted by
exfiltration blocking. Similar results are seen in Table 6 for
bookmarks, SMS messages, and calendar entries.

Shadowing and exfiltration blocking are complementary,
and when used together can produce fewer side effects than
either can alone. While 28 of the 50 applications in our
sample (56%) run side effect-free with just shadowing and
merely 16 applications (32%) are side effect-free with exfil-
tration blocking, 33 (66%) could run side effect-free if the
most appropriate privacy control (i.e. as determined by an
oracle) could be applied to each application. Section 6.1 de-
scribes how we might determine appropriate privacy settings
in the future.

The benefits of having two privacy controls to choose from
are also apparent from Table 7, which presents another view
of the data from our fine-grained analysis. This table char-
acterizes the types of application functionality that were im-
pacted by our privacy controls, and shows which data types
led to side effects for shadowing, exfiltration blocking, or
both. Many of the rows in this table show that for partic-
ular functionalities and data types, one control exhibits the
side effect but the other does not, indicating that AppFence

can avoid impacting this type of functionality if the appro-
priate privacy control is used.

Table 7 also offers further insight into the behavior of the
tested applications. For example, returning to the previous
discussion of applications that use location data in ways that
are not visible to users, these applications are precisely those
listed in the rows of the table for which exfiltration blocking
of the location data type made applications broken or less
functional while shadowing had no side effects.

Finally, Table 7 provides insight into the 34% of applica-
tions that exhibit side effects that were unavoidable: those
side effects that occurred regardless of which privacy con-
trol was used. These are represented by the five rows in
Table 7 in which both the shadowing and exfiltration block-
ing columns list that some side effect was present. In every
instance, these side effects were the result of a direct con-
flict between the goal of imposing a privacy control (keeping
information from leaving the device) and the functionality
desired by the user. This functionality included sharing con-
tacts with others (FindOthers), broadcasting the user’s loca-
tion to others (GeoBroadcast), performing a query contain-
ing the user’s location on a remote server (GeoSearch), and
building a cross-application profile of the user on a remote
server (GameProfile). All of these are features that violate
the privacy requirement by design, and represent a nearly-
unavoidable2 choice between the functionality desired and
the privacy goal. For this minority of applications, the user
cannot have her privacy and functionality too.

6. FUTURE WORK
This section discusses promising avenues to explore in or-

der to further strengthen AppFence. In particular, we dis-
cuss how to address the problems of determining which pri-
vacy controls to apply to which applications and data types,
and preventing applications from circumventing exfiltration
blocking.

6.1 Determining privacy settings
While a user’s privacy goals can be met by choosing the

right privacy controls, the responsibility for making the cor-
rect choice must fall somewhere. To allow for more informed
choices, we envision that AppFence could report application

2Outside of rearchitecting both client and server to support
private-information retrieval protocols.

Impacted functionality Sh EB Data type Applications impacted

Launch: Application can’t launch because required network transaction contains sensitive data
- ⊗ Phone # dilbert, yearbook
- ⊗ Device ID dex, docstogo, kayak, moron, yearbook
- ⊗ Location dex, docstogo, moron

Login: User can’t login because login request contains sensitive data
- ⊗ Device ID assistant, tunewiki

Query: User can’t receive response to a query because query contains sensitive data
- ⊗ Device ID wnypages, yellowpages
- ⊗ Location manga

- ⊗ Phone # callerid

- ⊗ Contacts callerid

- � Device ID iheartradio

GameProfile: Can’t access cross-application high-score profile associated with device ID
� � Device ID droidjump, mario, papertoss, simon, smiley_pops, trism
- � Location papertoss

GeoSearch: Can’t perform geographic search
⊗ ⊗ Location compass, dex, starbucks, wnypages, yellowpages
� � Location apartments, iheartradio, npr, yearbook

GeoBroadcast: Can’t broadcast geographic location to others
� � Location heytell

FindOthers: Can’t learn which contacts are also using this application
� � Contacts mocospace

SelectRecipient: Can’t select contacts with whom to call, message, or share
⊗ - Contacts callerid, heytell
� - Contacts quickmark

DeviceData: Can’t access bookmarks, SMS messages, calendar reminders, or other device data
� - Bookmarks skyfire

⊗ - SMS sqd

� - Calendar tvguide

‘-’: no side effect, ‘�’: application less functional, ‘⊗’: primary application functionality breaks.

Table 7: The types of application functionality that were impacted by AppFence’s privacy controls. The
symbols in the shadowing (Sh) and exfiltration blocking (EB) columns indicate the severity of the side effects
observed when privacy controls were applied to the given data types. Applications may be listed multiple
times if they exhibited side effects for multiple functionalities or for different data types.

behaviors to a server and that users could report side ef-
fects. This data would reveal how applications use data and
whether they will exhibit side effects if privacy controls are
applied. Open problems to achieve this goal include finding
ways to crowdsource the construction of application profiles
while respecting users’ privacy, detecting attempts by de-
velopers to compromise the integrity of this system to the
advantage of their applications, and finding the right set of
choices to present to users based on the data available.

6.2 Hampering evasion
As we discussed in Section 3.3, applications may be able

to exploit limitations of AppFence’s information flow track-
ing, which only monitors data flow operations, to circumvent
exfiltration blocking.

Tracking information flow through control dependencies
may broaden the set of data that is marked as tainted and
result in false positives, which would in turn result in the
unwarranted blocking of messages from an application. One
promising option is to continue information flow tracking
that is less likely to overtaint, and simultaneously use a more
aggressive tracking that may overtaint. When AppFence

detects a message that is tainted only by the more aggres-
sive flow tracking it would allow the message. However, it
would also report the event and the conditions that led up
to it, to our servers for further analysis. We would then
perform more comprehensive offline analysis (e.g. influence
analysis [16]) to detect the cause of the difference between
more and less aggressive tainting.

Alas, we cannot prevent applications from exploiting side
channels (e.g. cache latency) to cleanse data of taint and
circumvent exfiltration blocking. As shadowing prevents
applications from ever accessing private data, it may al-
ways be the safest way to protect data from truly mali-
cious applications. Data shadowing can be extended to offer
finer-granularity controls such as shadowing location with a
nearby but less private place, e.g. the city center. However,
this kind of context-dependent control would require more
configuration, warranting more research to make such con-
trols practical and useful.

7. RELATED WORK
The use of shadow resources dates back at least as far

as 1979, when the chroot operation was introduced to run

UNIX processes with a virtualized view of the file system
hierarchy. Shadow password files allow system components
that once accessed the real password files to get some of
the information in that file without exposing the password
hashes. Honeypots and Honeynets [17, 19, 21] have popu-
larized the use of shadow resources to run malware while
studying its behavior and limiting its potential to do dam-
age. The prefix honey is frequently used for shadow re-
sources created for the purpose of attracting an adversary
and/or monitoring the adversary’s behavior.

Felt and Evans propose a data shadowing scheme, called
privacy-by-proxy [10]. Their mechanism is similar to our
data shadowing as it provides a fake placeholder to third-
party Facebook applications rather than the user’s real in-
formation but the privacy-by-proxy is only effective to ap-
plications that access the user’s information for the sole pur-
pose of displaying the exact information back to the user.
A recent paper by Beresford et al. also argues for replac-
ing sensitive user data with “mock” (shadow) information.
They apply data shadowing for a limited number of data
types to 23 applications selected from those that were previ-
ously examined by Enck et al. using TaintDroid. However,
they only tested to determine if shadowing could be applied
to applications without causing them to crash–they did not
measure user-discernable side effects [5]. Zhou et al. present
a similar system that uses shadow data to provide a“privacy
mode” for untrusted applications [27].

The Privacy Blocker application [2] performs static analy-
sis of application binaries to identify and selectively replace
requests for sensitive data with hard-coded shadow data.
This binary-rewriting approach requires that each target
application be rewritten and reinstalled, whereas AppFence
performs data shadowing on unmodified applications at run-
time. AppFence’s dynamic approach also supports exfiltra-
tion blocking, which requires the hostname or IP address
of the destination server that can only known for certain at
runtime. However, this increased control over privacy comes
at the price of deployability: AppFence requires modifica-
tions to the underlying operating system, whereas Privacy
Blocker only requires the user to install an application.

There is also a wealth of prior work on the use of
information-flow tracking to protect data confidentiality and
integrity. Yin et al.’s Panorama uses dynamic information-
flow tracking (DIFT) to perform offline analysis of data
exfiltration by malware [26]. Chow et al.’s TaintBochs [6]
uses DIFT to analyze the lifetime of security-critical data in
memory, finding vulnerabilities when applications free mem-
ory containing encryption keys without first deleting them.
Wang et al.’s PRECIP [25] tracks sensitive data (e.g., clip-
board and user keystrokes) in Windows at the system-call
level – tainting system objects – to prevent malicious pro-
cesses from gaining access to them. However, it does not
track taint propagation within applications and so the taint
is lost when data is copied between objects. Perhaps most
relevant is Vachharajani et al.’s RIFLE [24], which enforces
security policies at runtime by translating programs into a
custom instruction set architecture enhanced to track infor-
mation flow.

Others have have worked to detect potential abuses of per-
missions and data by Android applications. Enck et al. [9]
have developed a lightweight security checker, called Kirin,
that analyzes manifest files to identify permissions that are
dangerous when combined.

Android applications obtain user consent for all the per-
missions they will require at the time they are installed [12].
An alternative approach, to obtain consent for access to a re-
source at the time it is requested, is used for certain resources
on Apple’s iOS platform (e.g. location [4]). Requiring con-
sent at time of access gives users more granular control over
the time at which applications can access sensitive resources,
and likely reduces the success rate of ultimatums. It does so
at a cost of more frequent user interruptions. The Android
team argues that the usability cost of time-of-access consents
work “to the detriment of security” [12]. Regardless of when
permissions are granted, neither the time-of-install nor the
time-of-access consent model can prevent applications from
misappropriating them.

8. CONCLUSION
AppFence offers two different approaches for protecting

sensitive data from today’s Android applications: shadow-
ing sensitive data and blocking sensitive data from being ex-
filtrated off the device. We find that these privacy controls
are complementary. For the 50 applications we studied, 34%
of those have a direct conflict between the desired function-
ality and the privacy constraint our controls were designed
to enforce—ensuring that sensitive data never leave the de-
vice. The testing methodology that we have developed for
assessing side effects proves valuable for characterizing the
types of application functionality that may be impacted by
privacy controls. For the remaining applications, all side ef-
fects could be avoided with the right choice of either data
shadowing or exfiltration blocking. How to help a user to
make the right choice, however, remains a challenge to be
addressed in future research.

Acknowledgments
We would like to thank Intel Labs for supporting this work,
William Enck for sharing Android application binaries and
Byung-Gon Chun, Peter Gilbert, Daniel Halperin, Patrick
Gage Kelley, Robert Reeder, Anmol Sheth, the anonymous
reviewers, and our shepherd, Ninghui Li for providing valu-
able feedback. This work was supported by National Science
Foundation award CNS-0917341.

9. REFERENCES
[1] android-apktool: Tool for reengineering Android apk

files. http://code.google.com/p/android-apktool/.

[2] Privacy Blocker.
http://privacytools.xeudoxus.com/.

[3] S. T. Amir Efrati and D. Searcey. Mobile-app makers
face U.S. privacy investigation.
http://online.wsj.com/article/

SB10001424052748703806304576242923804770968.

html, Apr. 5, 2011.

[4] Apple Inc. iPhone and iPod touch: Understanding
location services.
http://support.apple.com/kb/HT1975, Oct. 22,
2010.

[5] A. R. Beresford, A. Rice, N. Skehin, and R. Sohan.
MockDroid: Trading privacy for application
functionality on smartphones. In Proceedings of the
12th Workshop on Mobile Computing Systems and
Applications (HotMobile), 2011.

http://code.google.com/p/android-apktool/
http://privacytools.xeudoxus.com/
http://online.wsj.com/article/SB10001424052748703806304576242923804770968.html
http://online.wsj.com/article/SB10001424052748703806304576242923804770968.html
http://online.wsj.com/article/SB10001424052748703806304576242923804770968.html
http://support.apple.com/kb/HT1975

[6] J. Chow, B. Pfaff, T. Garfinkel, K. Christopher, and
M. Rosenblum. Understanding data lifetime via whole
system simulation. In USENIX Security Symposium,
2004.

[7] M. Egele, C. Kruegel, E. Kirda, and G. Vigna. PiOS:
Detecting privacy leaks in iOS applications. In NDSS,
2011.

[8] W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung,
P. McDaniel, and A. N. Sheth. TaintDroid: An
information-flow tracking system for realtime privacy
monitoring on smartphones. In OSDI, 2010.

[9] W. Enck, M. Ongtang, and P. McDaniel. On
lightweight mobile phone application certification. In
CCS, 2009.

[10] A. Felt and D. Evans. Privacy protection for social
networking APIs. In Proceedings of Web 2.0 Security
And Privacy (W2SP), 2008.

[11] Google Inc. Android developers: Content providers.
http://developer.android.com/guide/topics/

providers/content-providers.html.

[12] Google Inc. Android developers: Security and
permissions. http://developer.android.com/guide/
topics/security/security.html.

[13] Google Inc. Android developers: Using aapt.
http://developer.android.com/guide/developing/

tools/aapt.html.

[14] Google Inc. Android developers: Platform versions.
http://developer.android.com/resources/

dashboard/platform-versions.html, Aug. 2011.

[15] A. Jääskeläinen. Design, Implementation and Use of a
Test Model Library for GUI Testing of Smartphone
Applications. Doctoral dissertation, Tampere
University of Technology, Tampere, Finland, Jan.
2011.

[16] J. Newsome, S. McCamant, and D. Song. Measuring
channel capacity to distinguish undue influence. In
Proceedings of the ACM SIGPLAN Fourth Workshop
on Programming Languages and Analysis for Security,
June 15, 2009.

[17] N. Provos. A virtual honeypot framework. In USENIX
Security Symposium, 2004.

[18] E. Smith. iPhone applications & privacy issues: An
analysis of application transmission of iPhone unique
device identifiers (UDIDs). In Technical Report, 2010.

[19] L. Spitzner. Honeypots: Tracking Hackers.
Addison-Wesley, Boston, MA, Sept. 10, 2002.

[20] Tampere University of Technology. Introduction:
Model-based testing and glossary.
http://tema.cs.tut.fi/intro.html.

[21] The Honeynet Project. Know Your Enemy: Revealing
the Security Tools, Tactics, and Motives of the
Blackhat Community. Addison-Wesley, 2001.

[22] S. Thurm and Y. I. Kane. The Journal’s cellphone
testing methodology. The Wall Street Journal. Dec.
18, 2010. http://online.wsj.com/article/
SB10001424052748704034804576025951767626460.

html.

[23] S. Thurm and Y. I. Kane. Your apps are watching
you. The Wall Street Journal. Dec. 18, 2010.
online.wsj.com/article/

SB10001424052748704694004576020083703574602.

html.

[24] N. Vachharajani, M. J. Bridges, J. Chang, R. Rangan,
G. Ottoni, J. A. Blome, G. A. Reis, M. Vachharajani,
and D. I. August. RIFLE: An architectural framework
for user-centric information-flow security. In MICRO,
2004.

[25] X. Wang, Z. Li, N. Li, and J. Y. Choi. PRECIP:
Practical and retrofittable confidential information
protection. In NDSS, Feb. 2008.

[26] H. Yin, D. Song, M. Egele, C. Kruegel, and E. Kirda.
Panorama: capturing system-wide information flow for
malware detection and analysis. In CCS, 2007.

[27] Y. Zhou, X. Zhang, X. Jiang, and V. Freeh. Taming
information-stealing smartphone applications (on
Android). In International Conference on Trust and
Trustworthy Computing (TRUST), 2011.

http://developer.android.com/guide/topics/providers/content-providers.html
http://developer.android.com/guide/topics/providers/content-providers.html
http://developer.android.com/guide/topics/security/security.html
http://developer.android.com/guide/topics/security/security.html
http://developer.android.com/guide/developing/tools/aapt.html
http://developer.android.com/guide/developing/tools/aapt.html
http://developer.android.com/resources/dashboard/platform-versions.html
http://developer.android.com/resources/dashboard/platform-versions.html
http://tema.cs.tut.fi/intro.html
http://online.wsj.com/article/SB10001424052748704034804576025951767626460.html
http://online.wsj.com/article/SB10001424052748704034804576025951767626460.html
http://online.wsj.com/article/SB10001424052748704034804576025951767626460.html
online.wsj.com/article/SB10001424052748704694004576020083703574602.html
online.wsj.com/article/SB10001424052748704694004576020083703574602.html
online.wsj.com/article/SB10001424052748704694004576020083703574602.html

APPENDIX
A. WHEN APPLICATIONS ARE

“LESS FUNCTIONAL”
When evaluating the impact of privacy controls on user

experience, we consider certain side effects to render an ap-
plication “less functional” when the application is able to
perform its primary purpose but cannot perform some sec-
ondary function. In this appendix we explain the precise
circumstances that led us to classify applications as less func-
tional.

device ID (IMEI): We classified as less functional games
that could not load a cross-application high-score pro-
file because the profile is associated with the true device
ID. Additionally, we classified the iheartradio appli-
cation as less functional because its searches for nearby
radio stations failed due to the inclusion of the device
ID with the search request.

location: We included those applications where location
proximity would have provided enhanced, but not core,
functionality. For example, the npr radio application
enhances its primary service by identifying the user’s
local stations, yearbook offers local chat in addition
to its other chat options, and heytell allows users
to optionally include their current location along with
sent messages. We also included some applications that
could no longer automatically capture the user’s loca-
tion, but offered users the option of manually entering
their location (e.g. the apartments apartment-hunting
application). Finally, the papertoss application be-
came less functional when its high-score profile failed
to load because it sends the user’s location along with
the request.

contacts: We included one chat application, mocospace,
that could no longer add users’ local contacts to the
server-side chat contacts database. We also classified as
less functional a barcode scanning application, quick-
mark, that offers the ability to send a bar code image to
someone in the contacts book, but was not able to do
so if contacts were protected by our privacy controls.

bookmarks: We included a browser, skyfire, that could
still browse the web but was not be able to read or save
bookmarks if they were protected.

calendar: We classified as less functional the tvguide ap-
plication that cannot add reminders to the user’s cal-
endar if the calendar has been replaced by a shadow
calendar.

B. APPLICATIONS SCRIPTED
FOR AUTOMATED TESTING

application package name
1 antivirus com.antivirus

2 apartments com.cellit.forrent

3 assistant com.netgate

4 astrid com.timsu.astrid

5 autorun com.rs.autorun

6 avril com.ringtone.avrillavigne

7 basketball com.droidhen.basketball

8 bible com.faithcomesbyhearing.android.

bibleis

9 callerid net.bsdtelecom.calleridfaker

10 christmas com.maxdroid.christmas

11 chuck_norris com.bakes.chucknorrisfacts

12 compass com.a0soft.gphone.aCompass

13 dex com.mportal.dexknows.ui

14 dilbert com.tarsin.android.dilbert

15 docstogo com.dataviz.docstogo

16 droidjump com.electricsheep.edj

17 espn com.espnsport

18 flightview com.flightview.flightview_free

19 fmlife fmlife.activities

20 heytell com.heytell

21 howtotie com.artelplus.howtotie

22 iheartradio com.clearchannel.iheartradio.

controller2

23 kayak com.kayak.android

24 manga com.ceen.mangaviewer

25 mario de.joergjahnke.mario.android.

free

26 minesweeper artfulbits.aiMinesweeper

27 mocospace com.jnj.mocospace.android

28 moron com.distinctdev.tmtlite

29 mp3_ringtone net.lucky.star.mrtm

30 musicbox com.dreamstep.musicbox

31 npr org.npr.android.news

32 papertoss com.bfs.papertoss

33 princesses com.socialin.android.puzzle.

princess

34 quickmark tw.com.quickmark

35 simon com.neilneil.android.games.

simonclassic

36 simpsons us.sourcio.android.puzzle.

simpson

37 skyfire com.skyfire.browser

38 slotmachine com.slot.slotmachine

39 smarttactoe com.dynamix.mobile.SmartTacToe

40 smiley_pops com.boolbalabs.smileypops

41 sqd com.superdroid.sqd

42 starbucks com.brennasoft.findastarbucks

43 taskos com.taskos

44 trism com.feasy.tris2.colorblocks

45 tunewiki com.tunewiki.lyricplayer.android

46 tvguide com.roundbox.android.tvguide.

presentation.activity

47 videopoker com.infimosoft.videopoker

48 wnypages com.avantar.wny

49 yearbook com.myyearbook.m

50 yellowpages com.avantar.yp

