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Abstract

Currently, the most successful approach to steganography in empirical objects, such as digital media, is to embed the
payload while minimizing a suitably defined distortion function. The design of the distortion is essentially the only task
left to the steganographer since efficient practical codes exist that embed near the payload-distortion bound. The
practitioner’s goal is to design the distortion to obtain a scheme with a high empirical statistical detectability. In this
paper, we propose a universal distortion design called universal wavelet relative distortion (UNIWARD) that can be
applied for embedding in an arbitrary domain. The embedding distortion is computed as a sum of relative changes of
coefficients in a directional filter bank decomposition of the cover image. The directionality forces the embedding
changes to such parts of the cover object that are difficult to model in multiple directions, such as textures or noisy
regions, while avoiding smooth regions or clean edges. We demonstrate experimentally using rich models as well as
targeted attacks that steganographic methods built using UNIWARD match or outperform the current state of the art
in the spatial domain, JPEG domain, and side-informed JPEG domain.

1 Introduction
Designing steganographic algorithms for empirical cover
sources [1] is very challenging due to the fundamental
lack of accurate models. The most successful approach
today avoids estimating (and preserving) the cover source
distribution because this task is infeasible for complex
and highly non-stationary sources, such as digital images.
Instead, message embedding is formulated as source cod-
ing with a fidelity constraint [2] - the sender hides her
message while minimizing an embedding distortion. Prac-
tical embedding algorithms that operate near the theo-
retical payload-distortion bound are available for a rather
general class of distortion functions [3,4].

The key element of this general framework is the dis-
tortion, which needs to be designed in such a way that
tests on real imagery indicate a high level of securitya.
In [5], a heuristically defined distortion function was
parametrized and then optimized to obtain the smallest
detectability in terms of a margin between classes within
a selected feature space (cover model). However, unless
the cover model is a complete statistical descriptor of the
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empirical source, such optimized schemes may, paradoxi-
cally, end up being more detectable if the warden designs
the detector ‘outside of the model’ [6,7], which brings us
back to the main and rather difficult problem - modeling
the source.

In the JPEG domain, by far the most successful
paradigm is to minimize the rounding distortion with
respect to the raw, uncompressed image, if available
[8-12]. In fact, this ‘side-informed embedding’ can be
applied whenever the sender possesses a higher-quality
‘precover’b that is quantized to obtain the coverc. Cur-
rently, the most secure embedding method for JPEG
images that does not use any side information is the uni-
form embedding distortion (UED) [13] that substantially
improved upon the nsF5 algorithm [14] - the previous
state of the art. Note that most embedding algorithms
for the JPEG format use only non-zero DCT coefficients,
which makes them naturally content-adaptive.

In the spatial domain, embedding costs are typically
required to be low in complex textures or ‘noisy’ areas and
high in smooth regions. For example, HUGO [15] defines
the distortion as a weighted norm between higher-order
statistics of pixel differences in cover and stego images
[16], with high weights assigned to well-populated bins
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and low weights to sparsely populated bins that corre-
spond to more complex content. An alternative model-
free approach called wavelet obtained weights (WOW)
[17] uses a bank of directional high-pass filters to obtain
the so-called directional residuals, which assess the con-
tent around each pixel along multiple different directions.
By measuring the impact of embedding on every direc-
tional residual and by suitably aggregating these impacts,
WOW forces the distortion to be high where the content
is predictable in at least one direction (smooth areas and
clean edges) and low where the content is unpredictable
in every direction (as in textures). The resulting algorithm
is highly adaptive and has been shown to better resists
steganalysis using rich models [18] than HUGO [17].

The distortion function proposed in this paper bears
similarity to that of WOW but is simpler and suitable
for embedding in an arbitrary domain. Since the distor-
tion is in the form of a sum of relative changes between
the stego and cover images represented in the wavelet
domain, hence its name universal wavelet relative distor-
tion (UNIWARD).

After introducing the basic notation and terminology
in Section 2, we describe the distortion function in its
most general form in Section 3 - one suitable for embed-
ding in both the spatial and JPEG domains and the other
for side-informed JPEG steganography. We also describe
the additive approximation of UNIWARD that will be
exclusively used in this paper. In Section 4, we introduce
the common core of all experiments - the cover source,
steganalysis features, the classifier used to build the detec-
tors, and the empirical measure of security. A study of
the best settings for UNIWARD, formed by the choice
of the directional filter bank and a stabilizing constant,
appears in Section 5. Section 6 contains the results of all
experiments in the spatial, JPEG, and side-informed JPEG
domains as well as the comparison with previous art. The
security is measured empirically using classifiers trained
with rich media models on a range of payloads and quality
factors. The paper is concluded in Section 7.

This paper is an extended and adjusted version of an
article presented at the First ACM Information Hiding
and Multimedia Security Workshop in Montpellier in
June 2013 [19].

2 Preliminaries
2.1 Notation
Capital and lowercase boldface symbols stand for matri-
ces and vectors, respectively. The symbols X = (Xij), Y =
(Yij) ∈ In1×n2 will always be used for a cover (and the cor-
responding stego) image with n1 × n2 elements attaining
values in a finite set I . The image elements will be either
8-bit pixel values, in which case I = {0, . . . , 255}, or quan-
tized JPEG DCT coefficients, I = {−1, 024, . . . , 1, 023},
arranged into an n1 × n2 matrix by replacing each 8 × 8

pixel block with the corresponding block of quantized
coefficients. For simplicity and without loss on generality,
we will assume that n1 and n2 are multiples of 8.

For side-informed JPEG steganography, a precover (raw,
uncompressed) image will be denoted as P = (Pij) ∈
In1×n2 . When compressing P, first a blockwise DCT
transform is executed for each 8 × 8 block of pixels from
a fixed grid. Then, the DCT coefficients are divided by
quantization steps and rounded to integers. Let P(b) be
the bth 8 × 8 block when ordering the blocks, e.g., in a
row-by-row fashion (b = 1, . . . , n1 · n2/64). With a lumi-
nance quantization matrix Q = {qkl}, 1 ≤ k, l ≤ 8,
we denote D(b) = DCT(P(b))./Q the raw (non-rounded)
values of DCT coefficients. Here, the operation ′./′ is an
elementwise division of matrices and DCT(.) is the DCT
transform used in the JPEG compressor. Furthermore,
we denote X(b) = [D(b)] the quantized DCT coefficients
rounded to integers. We use the symbols D and X to
denote the arrays of all raw and quantized DCT coeffi-
cients when arranging all blocks D(b) and X(b) in the same
manner as the 8 × 8 pixel blocks in the uncompressed
image. We will use the symbol J−1(X) for the JPEG image
represented using quantized DCT coefficients X when
decompressed to the spatial domaind.

For matrix A, AT is its transpose, and |A| = (|aij|)
is the matrix of absolute values. The indices i, j will be
used solely to index pixels or DCT coefficients, while u, v
will be exclusively used to index coefficients in a wavelet
decomposition.

2.2 DCT transform
We would like to point out that the JPEG format allows
several different implementations of the DCT transform,
DCT(.). The specific choice of the transform implemen-
tation may especially impact the security of side-informed
steganography. In this paper, we work with the DCT(.)
implemented as ‘dct2’ in Matlab when feeding in pixels
represented as ‘double’. In particular, a block of 8×8 DCT
coefficients is computed from a precover block P(b) as

DCT(P(b))kl =
7∑

i,j=0

wkwl
4

cos
πk(2i + 1)

16

× cos
π l(2j + 1)

16
P(b)

ij , (1)

where k, l ∈ {0, . . . , 7} index the DCT mode and w0 =
1/

√
2, wk = 1 for k > 0.

To obtain an actual JPEG image from a two-dimensional
array of quantized coefficients X (cover) or Y (stego), we
first create an (arbitrary) JPEG image of the same dimen-
sions n1 × n2 using Matlab’s ‘imwrite’ with the same
quality factor, read its JPEG structure using Sallee’s Mat-
lab JPEG Toolbox (http://dde.binghamton.edu/download/
jpeg_toolbox.zip) and then merely replace the array of
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quantized coefficients in this structure with X and Y to
obtain the cover and stego images, respectively. This way,
we guarantee that both images were created using the
same JPEG compressor and that all that we will be detect-
ing are the embedding changes rather than compressor
artifacts.

3 Universal distortion function UNIWARD
In this section, we provide a general description of the
proposed universal distortion function UNIWARD and
explain how it can be used to embed in the JPEG
and the side-informed JPEG domains. The distortion
depends on the choice of a directional filter bank and one
scalar parameter whose purpose is stabilizing the numer-
ical computations. The distortion design is finished in
Section 5, which investigates the effect of the filter bank
and the stabilizing constant on empirical security.

Since rich models [18,20-22] currently used in ste-
ganalysis are capable of detecting changes along ‘clean
edges’ that can be well fitted using locally polynomial
models, whenever possible the embedding algorithm
should embed into textured/noisy areas that are not eas-
ily modellable in any direction. We quantify this using
outputs of a directional filter bank and construct the
distortion function in this manner.

3.1 Directional filter bank
By a directional filter bank, we understand a set of three
linear shift-invariant filters represented with their ker-
nels B = {K(1), K(2), K(3)}. They are used to evaluate the
smoothness of a given image X along the horizontal, ver-
tical, and diagonal directions by computing the so-called
directional residuals W(k) = K(k) � X, where ‘�’ is a
mirror-padded convolution so that W(k) has again n1 ×
n2 elements. The mirror padding prevents introducing
embedding artifacts at the image boundary.

While it is possible to use arbitrary filter banks, we
will exclusively use kernels built from one-dimensional
low-pass (and high-pass) wavelet decomposition filters h
(and g):

K(1) = h · gT, K(2) = g · hT, K(3) = g · gT. (2)

In this case, the filters correspond, respectively, to two-
dimensional LH, HL, and HH wavelet directional high-
pass filters, and the residuals coincide with the first-level
undecimated wavelet LH, HL, and HH directional decom-
position of X. We constrained ourselves to wavelet filter
banks because wavelet representations are known to pro-
vide good decorrelation and energy compactification for
images of natural scenes (see, e.g., Chapter 7 in [23]).

3.2 Distortion function (non-side-informed embedding)
We are now ready to describe the universal distortion
function. We do so first for embedding that does not use

any precover. Given a pair of cover and stego images,
X and Y, represented in the spatial (pixel) domain, we
will denote with W (k)

uv (X) and W (k)
uv (Y), k = 1, 2, 3, u ∈

{1, . . . , n1}, v ∈ {1, . . . , n2}, their corresponding uvth
wavelet coefficient in the kth subband of the first decom-
position level. The UNIWARD distortion function is the
sum of relative changes of all wavelet coefficients with
respect to the cover image:

D(X, Y) �
3∑

k=1

n1∑
u=1

n2∑
v=1

|W (k)
uv (X) − W (k)

uv (Y)|
σ + |W (k)

uv (X)|
, (3)

where σ > 0 is a constant stabilizing the numerical
calculations.

The ratio in (3) is smaller when a large cover wavelet
coefficient is changed (where texture and edges appear).
Embedding changes are discouraged in regions where
|W (k)

uv (X)| is small for at least one k, which corresponds to
a direction along which the content is modellable.

For JPEG images, the distortion between the two arrays
of quantized DCT coefficients, X and Y, is computed by
first decompressing the JPEG files to the spatial domain,
and evaluating the distortion between the decompressed
images, J−1(X) and J−1(Y), in the same manner as in (3):

D(X, Y) � D
(
J−1(X), J−1(Y)

)
. (4)

Note that the distortion (3) is non-additive because
changing pixel Xij will affect s × s wavelet coefficients,
where s × s is the size of the 2D wavelet support. Also,
changing a JPEG coefficient Xij will affect a block of
8 × 8 pixels and therefore a block of (8 + s − 1) × (8 +
s − 1) wavelet coefficients. It is thus apparent that when
changing neighboring pixels (or DCT coefficients), the
embedding changes ‘interact,’ hence the non-additivity of
D.

3.3 Distortion function (JPEG side-informed embedding)
By side-informed embedding in JPEG domain, we under-
stand the following general principle. Given the raw DCT
coefficient Dij obtained from the precover P, the embed-
der has the choice of rounding Dij up or down to modulate
its parity (usually the least significant bit of the rounded
value). We denote with eij = |Dij − Xij|, eij ∈ [0, 0.5], the
rounding error for the ijth coefficient when compressing
the precover P to the cover image X. Rounding ‘to the
other side’ leads to an embedding change, Yij = Xij +
sign(Dij − Xij), which corresponds to a ‘rounding error’
1−eij. Thus, every embedding change increases the distor-
tion with respect to the precover by the difference between
both rounding errors: |Dij − Yij| − |Dij − Xij| = 1 − 2eij.
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For the side-informed embedding in JPEG domain, we
therefore define the distortion as the difference:

D(SI)(X, Y) � D
(
P, J−1(Y)

) − D
(
P, J−1(X)

)
=

3∑
k=1

n1∑
u=1

n2∑
v=1

[
|W (k)

uv (P) − W (k)
uv

(
J−1(Y)

) |
σ + |W (k)

uv (P)|

− |W (k)
uv (P) − W (k)

uv
(
J−1(X)

) |
σ + |W (k)

uv (P)|

]
. (5)

Note that the linearity of DCT and the wavelet trans-
forms guarantee that D(SI)(X, Y) ≥ 0. This is because
rounding a DCT coefficient (to obtain X) corresponds
to adding a certain pattern (that depends on the modi-
fied DCT mode) in the wavelet domain. Rounding to the
other side (to obtain Y) corresponds to subtracting the
same pattern but with a larger amplitude. This is why
|W (k)

uv (P)−W (k)
uv (J−1(Y))|−|W (k)

uv (P)−W (k)
uv (J−1(X))| ≥ 0

for all k, u, v.
We note at this point that (5) bears some similarity to

the distortion used in Normalized Perturbed Quantiza-
tion (NPQ) [11,12], where the authors also proposed the
distortion as a relative change of cover DCT coefficients.
The main difference is that we compute the distortion
using a directional filter bank, allowing thus directional
sensitivity and potentially better content adaptability. Fur-
thermore, we do not eliminate DCT coefficients that
are zeros in the cover. Finally, and most importantly,
in contrast to NPQ, our design naturally incorporates
the effect of the quantization step because the wavelet
coefficients are computed from the decompressed JPEG
image.

3.3.1 Technical issues with zero embedding costs
When running experiments with any side-informed JPEG
steganography in which the embedding cost is zero, when
eij = 1/2, we discovered a technical problem that, to
the best knowledge of the authors, has not been dis-
closed elsewhere. The problem is connected to the fact
that when eij = 1/2 the cost of rounding Dij ‘down’
instead of ‘up’ should not be zero because, after all, this
does constitute an embedding change. This does not affect
the security much when the number of such DCT coeffi-
cients is small. With an increasing number of coefficients
with eij = 1/2 (we will call them 1/2-coefficients), how-
ever, 1 − 2eij is no longer a good measure of statistical
detectability and one starts observing a rather patho-
logical behavior - with payload approaching zero, the
detection error does not saturate at 50% (random guess-
ing) but rather at a lower value and only reaches 50% for
payloads nearly equal to zeroe. The strength with which
this phenomenon manifests depends on how many 1/2-
coefficients are in the image, which in turn depends on
two factors - the implementation of the DCT used to

compute the costs and the JPEG quality factor. When
using the slow DCT (implemented using ‘dct2’ in Mat-
lab), the number 1/2-coefficients is small and does not
affect security at least for low-quality factors. However,
in the fast-integer implementation of DCT (e.g., Matlab’s
imwrite), all Dij are multiples of 1/8. Thus, with decreas-
ing quantization step (increasing JPEG quality factor), the
number of 1/2-coefficients increases.

To avoid dealing with this issue in this paper, we used the
slow DCT implemented using Matlab’s dct2 as explained
in Section 2.2 to obtain the costs. Even with the slow
DCT, however, 1/2-coefficients do cause problems when
the quality factor is high. As one can easily verify from the
formula for the DCT (1), when k, l ∈ {0, 4}, the value of
Dkl is always a rational number because the cosines are
either 1 or

√
2/2, which, together with the multiplicative

weights w, gives again a rational number. In particular, the
DC coefficient (mode 00) is always a multiple of 1/4, the
coefficients of modes 04 and 40 are multiples of 1/8, and
the coefficients corresponding to mode 44 are multiples
of 1/16. For all other combinations of k, l ∈ {0, . . . , 7}, Dij
is an irrational number. In practice, any embedding whose
costs are zero for 1/2-coefficients will thus strongly prefer
these four DCT modes, causing a highly uneven distribu-
tion of embedding changes among the DCT coefficients.
Because rich JPEG models [24] utilize statistics collected
for each mode separately, they are capable of detecting this
statistical peculiarity even at low payloads. This problem
becomes more serious with increasing quality factor.

These above embedding artifacts can be largely sup-
pressed by prohibiting embedding changes in all 1/2-
coefficients in modes 00, 04, 40, and 44f. In Figure 1,
where we show the comparison of various side-informed
embedding methods for quality factor 95, we intentionally
included the detection errors for all tested schemes where
this measure was not enforced to prove the validity of the
above arguments.

The solution of the problem with 1/2-coefficients,
which is clearly not optimal, is related to the more funda-
mental problem, which is how exactly the side information
in the form of an uncompressed image should be utilized
for the design of steganographic distortion functions. The
authors postpone a detailed study of this quite intriguing
problem to a separate paper.

3.4 Additive approximation of UNIWARD
Any distortion function D(X, Y) can be used for embed-
ding in its additive approximation [4] using D to compute
the cost ρij of changing each pixel/DCT coefficient Xij. A
significant advantage of using an additive approximation
is the simplicity of the overall design. The embedding can
be implemented in a straightforward manner by apply-
ing nowadays a standard tool in steganography - the
Syndrome-Trellis Codes (STCs) [3]. All experiments in
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Figure 1 Comparison of various side-informed embedding
methods. Detection error EOOB for SI-UNIWARD and four other
methods with the union of SRMQ1 and JRM and the ensemble
classifier for JPEG quality factors 75, 85, and 95. The dashed lines in the
graph for QF 95 correspond to the case when all the embedding
methods use all coefficients, including the DCT modes 00, 04, 40, and
44 independently of the value of the rounding error eij .

this paper are carried out with additive approximations of
UNIWARD.

The cost of changing Xij to Yij and leaving all other cover
elements unchanged is

ρij(X, Yij) � D(X, X∼ijYij), (6)

where X∼ijYij is the cover image X with only its ijth ele-
ment changed: Xij → Yijg. Note that ρij = 0 when X = Y.

The additive approximation to (3) and (5) will be denoted
as DA(X, Y) and D(SI)

A (X, Y), respectively. For example,

DA(X, Y) =
n1∑

i=1

n2∑
j=1

ρij(X, Yij)[Xij 	= Yij] , (7)

where [S] is the Iverson bracket equal to 1 when the
statement S is true and 0 when S is false.

Note that, due to the absolute values in D(X, Y) (3),
ρij(X, Xij + 1) = ρij(X, Xij − 1), which permits us to use
a ternary embedding operation for the spatial and JPEG
domainsh. Practical embedding algorithms can be con-
structed using the ternary multi-layered version of STCs
(Section 4 in [3]).

On the other hand, for the side-informed JPEG
steganography, D(SI)

A (X, Y) is inherently limited to a binary
embedding operation because Dij is either rounded up or
down.

The embedding methods that use the additive approx-
imation of UNIWARD for the spatial, JPEG, and side-
informed JPEG domain will be called S-UNIWARD,
J-UNIWARD, and SI-UNIWARD, respectively.

3.5 Relationship of UNIWARD to WOW
The distortion function of WOW bears some similarity to
UNIWARD in the sense that the embedding costs are also
computed from three directional residuals. The WOW
embedding costs are, however, computed a different way
that makes it rather difficult to use it for embedding in
other domains, such as the JPEG domaini.

To obtain a cost of changing pixel Xij → Yij, WOW
first computes the embedding distortion in the wavelet
domain weighted by the wavelet coefficients of the cover.
This is implemented as a convolution ξ

(k)
ij = |W (k)

uv (X)| �

|W (k)
uv (X) − W (k)

uv (X∼ijYij)| (see Equation 2 in [17]). These
so-called embedding suitabilities ξ

(k)
ij are then aggregated

over all three subbands using the reciprocal Hölder norm,
ρ

(WOW)
ij = ∑3

k=1 1/ξ
(k)
ij to give WOW the proper content

adaptivity in the spatial domain.
In principle, this approach could be used for embed-

ding in the JPEG (or some other) domain in a similar
way as in UNIWARD. However, notice that the suitabili-
ties ξ

(k)
ij increase with increasing JPEG quantization step

(increasing spatial frequency), giving the high-frequency
DCT coefficients smaller costs, ρ(WOW)

ij , and thus a higher
embedding probability than for the low-frequency coeffi-
cients. This creates both visible and statistically detectable
artifacts. In contrast, the embedding costs in UNIWARD
are higher for high-frequency DCT coefficients, desirably
discouraging embedding changes in coefficients which are
largely zeros.
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4 Common core of all experiments
Before we move to the experimental part of this paper,
which appears in Sections 5 and 6, we introduce the
common core of all experiments: the cover source,
steganalysis features, the classifier used to build the
steganography detectors, and an empirical measure of
security.

4.1 Cover source
All experiments are conducted on the BOSSbase database
ver. 1.01 [25] containing 10,000 512 × 512 8-bit grayscale
images coming from eight different cameras. This
database is very convenient for our purposes because it
contains uncompressed images that serve as precovers for
side-informed JPEG embedding. Also, the images can be
compressed to any desirable quality factor for the JPEG
domain.

The steganographic security is evaluated empirically
using binary classifiers trained on a given cover source
and its stego version embedded with a fixed payload. Even
though this setup is artificial and does not correspond to
real-life applications, it allows assessment of security with
respect to the payload size, which is the goal of academic
investigations of this typej.

4.2 Steganalysis features
Spatial domain steganography methods will be analyzed
using the spatial rich model (SRM) [18] consisting of 39
symmetrized sub-models quantized with three different
quantization factors with a total dimension of 34, 671k.
JPEG domain methods (including the side-informed algo-
rithms) will be steganalyzed using the union of a down-
scaled version of the SRM with a single quantization step
q = 1 (SRMQ1) with dimension 12, 753 and the JPEG rich
model (JRM) [24] with dimension 22,510, giving the total
feature dimension of 35,263.

4.3 Machine learning
All classifiers will be implemented using the ensemble
[26] with Fisher linear discriminant as the base learner.
The security is quantified using the ensemble’s ‘out-of-
bag’ (OOB) error EOOB, which is an unbiased estimate
of the minimal total testing error under equal priors,
PE = minPFA

1
2 (PFA +PMD) [26]. The statistical detectabil-

ity is usually displayed graphically by plotting EOOB as a
function of the relative payload. With the feature dimen-
sionality and the database size, the statistical scatter of
EOOB over multiple ensemble runs with different seeds
was typically so small that drawing error bars around the
data points in the graphs would not show two visually
discernible horizontal lines, which is why we omit this
information in our graphs. As will be seen later, the differ-
ences in detectability between the proposed methods and
prior art are so large that there should be no doubt about

the statistical significance of the improvement. The code
for extractors of all rich models as well as the ensemble is
available at http://dde.binghamton.edu/download.

5 Determining the parameters of UNIWARD
In this section, we study how the wavelet basis and the
stabilizing constant σ in the distortion function UNI-
WARD affect the empirical security. We first focus on the
parameter σ and then on the filter bank.

The original role of σ in UNIWARD [19] was to sta-
bilize the numerical computations when evaluating the
relative change of wavelet coefficients (3). As the follow-
ing experiment shows, however, σ also strongly affects
the content adaptivity of the embedding algorithm. In
Figure 2, we show the embedding change probabilities for
payload α = 0.4 bpp (bits per pixel) for six values of
the parameter σ . For this experiment, we selected the 8-
tap Daubechies wavelet filter bank B whose 1D filters are
shown in Figure 3l. Note that a small value of σ makes the
embedding change probabilities undesirably sensitive to
content. They exhibit unusual interleaved streaks of high
and low values. This is clearly undesirable since the con-
tent (shown in the upper left corner of Figure 2) does
not change as abruptly. On the other hand, a large σ

makes the embedding change probabilities ‘too smooth,’
permitting thus UNIWARD to embed in regions with
less complex content. Intuitively, we need to choose some
middle ground for σ to avoid introducing a weakness into
the embedding algorithm.

Because the SRM consists of statistics collected from
the noise residuals of all pixels in the image, it ‘does not
see’ the artifacts in the embedding probabilities - the
interleaved bands of high and low values. Notice that the
position of the bands is tied to the content and does not
correspond to any fixed (content-independent) checker-
board pattern. Thus, we decided to introduce a new
type of steganalysis features designed specifically to uti-
lize the artifacts in the embedding probabilities to probe
the security of this unusual selection channel for small
values of σ .

5.1 Content-selective residuals
The idea behind the attack on the selection channel is to
compute the statistics of noise residuals separately for pix-
els with a small embedding probability and then for pixels
with a large embedding probability. The former will serve
as a reference for the latter, giving strength to this attack.
While it is true that the embedding probabilities estimated
from the stego image will generally not exactly match
those computed from the corresponding cover imagem,
they will be close and ‘good enough’ for the attack to
work.

We will use the first-order noise residuals (differences
among neighboring pixels):

http://dde.binghamton.edu/download
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Figure 2 Embedding change probabilities. The effect of the stabilizing constant σ on the character of the embedding change probabilities for a
128 × 128 cover image shown in the upper left corner. The numerical values are the EOOB obtained using the content-selective residual (CSR) and
the SRM on BOSSbase 1.01 for relative payload α = 0.4 bpp.

Rij = Xi,j − Xi,j+1, i ∈ {1, . . . , n1}, j ∈ {1, . . . , n2 − 1}.
(8)

To curb the residuals’ range and allow a compact sta-
tistical representation, Rij will be truncated to the range
[−T , T], Rij ← truncT (Rij), where T is a positive integer,
and

truncT (x) =

⎧⎪⎨
⎪⎩

x when − T ≤ x ≤ T
− T when x < −T
T when T < x.

(9)

Since this residual involves two adjacent pixels, we will
divide all horizontally adjacent pixels in the image into
four classes and compute the histogram for each class sep-
arately. Let pij(X, α) denote the embedding change prob-
ability computed from image X when embedding payload
of α bpp. Given two thresholds 0 < ts < tL < 1, we define
the following four sets of residuals:

Rss = {Rij|pij(X, α) < ts ∧ pi,j+1(X, α) < ts} (10)
RsL = {Rij|pij(X, α) < ts ∧ pi,j+1(X, α) > tL} (11)
RLs = {Rij|pij(X, α) > tL ∧ pi,j+1(X, α) < ts} (12)
RLL = {Rij|pij(X, α) > tL ∧ pi,j+1(X, α) > tL}. (13)

Figure 3 Daubechies wavelet filter bank. UNIWARD uses the
Daubechies 8-tap wavelet directional filter bank built from
one-dimensional low-pass and high-pass filters, h and g.
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The so-called content-selective residual (CSR) features
will be formed by the histograms of residuals in each set.
Because the marginal distribution of each residual is sym-
metrical about zero, one can merge the histograms of
residuals from RsL and RLs. The feature vector is thus
the concatenation of 3 × (2T + 1) histogram bins, l =
−T , . . . , T :

hs(l) = ∣∣{Rij|Rij = l ∧ Rij ∈ Rss}
∣∣ (14)

hL(l) = ∣∣{Rij|Rij = l ∧ Rij ∈ RLL}∣∣ (15)
hsL(l) = ∣∣{Rij|Rij = l ∧ Rij ∈ RsL ∪ RLs}

∣∣ . (16)

The set Rss holds the residual values computed from
pixels with a small embedding change probability, while
the other sets hold residuals that are likely affected by
embedding - their tails will become thicker.

All that remains is to specify the values of the parame-
ters ts, tL, and α. Since the steganalyst will generally not
know the payload embedded in the stego imagen, we need
to choose a fixed value of α that gives an overall good
performance over a wide range of payloads. In our exper-
iments, a medium value of α = 0.4 generally provided
a good estimate of the interleaved bands in the embed-
ding change probabilities. Finally, we conducted a grid
search on images from BOSSbase to determine ts and tL.
The found optimum was rather flat and located around
ts = 0.05, tL = 0.06. The threshold T for truncT (x) was
kept fixed at T = 10.

For the value of σ as originally proposed in the work-
shop version of this paper [19], σ = 10 · eps ≈ 2 × 10−15

(‘eps’ defined as in Matlab), the detection error of the 3 ×
(2 × 10 + 1) = 63-dimensional CSR feature vector turned
out to be a reliable detection statistic. Figure 4 shows the
detection error EOOB as a function of the relative pay-
load. This confirms our intuition that too small a value of
σ introduces strong banding artifacts, the stego scheme
becomes overly sensitive to content, and an approximate

Figure 4 Detection error EOOB obtained using CSR features as a
function of relative payload for σ = 10 · eps.

knowledge on the faulty selection channel can be used to
successfully attack S-UNIWARD.

As can be seen from Figure 2, the artifacts in the embed-
ding change probabilities become gradually suppressed
when increasing the value of the stabilizing constant σ .
To determine the proper value of σ , we steganalyzed S-
UNIWARD with both the CSR and SRM feature sets (and
their union) on payload α = 0.4 bpp as a function of σ

(see Figure 5)o. The detection error using both the SRM
and the CSR is basically constant until σ becomes close to
2−14 when a further increase of σ makes the CSR features
ineffective for steganalysis. From σ = 1 the SRM starts
detecting the embedding more accurately as the adaptiv-
ity of the scheme becomes lower. Also, at this value of σ ,
adding the CSR does not lower the detection error of the
SRM. Based on this analysis, we decided to set the stabiliz-
ing constant of S-UNIWARD to σ = 1 and kept it at this
value for the rest of the experiments in the spatial domain
reported in this paper.

The attack based on content-selective residuals could
be expanded to other residuals than pixel differences,
and one could use higher-order statistics instead of his-
tograms [27]p. While the detection error for the original
S-UNIWARD setting σ = 10 · eps can, indeed, be made
smaller this way, expanding the CSR feature set has virtu-
ally no effect on the security of S-UNIWARD for σ = 1
and the optimality of this value.

We note that constructing a similar targeted attack
against JPEG implementations of UNIWARD is likely not
feasible because the distortion caused by a change in a
DCT coefficient affects a block of 8 × 8 pixels and, con-
sequently, 23 × 23 wavelet coefficients. The distortion
‘averages out’ and no banding artefacts show up in the
embedding probability map. Steganalysis of J-UNIWARD
with JSRM shown in Figure 6 indicates that the optimal σ

Figure 5 Detection error of S-UNIWARD. Payload 0.4 bpp
implemented with various values of σ for the CSR and SRM features
and their union.
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Figure 6 Steganalysis of J-UNIWARD with JSRM. Detection error
EOOB obtained using the merger of JRM and SRMQ1 (JSRM) features
as a function σ for J-UNIWARD with payload α = 0.4 bpnzAC and
JPEG quality factor 75.

for J-UNIWARD is 2−6, which we selected for all experi-
ments with J-UNIWARD and SI-UNIWARD in this paper.

5.2 Effect of the filter bank
As a final experiment of this section aimed at finding the
best settings of UNIWARD, we studied the influence of
the directional filter bank. We did so for a fixed payload
α = 0.4 bpp and two values of σ when steganalyzing
using the CSR and SRM features. Table 1 shows the results
for five different wavelet bases (http://wavelets.pybytes.
com/wavelet/db8/) with varying parameters (support
size s). The best results have been achieved with the 8-tap
Daubechies wavelet, whose 1D low- and high-pass filters
are displayed in Figure 3.

6 Experiments
In this section, we test the steganography using UNI-
WARD implemented with the 8-tap Daubechies direc-
tional filter bank and σ = 1 for S-UNIWARD and σ =

Table 1 Detection error EOOB obtained using CSR and SRM
features when using different filter banks in UNIWARD

CSR SRM

σ = 10 · eps σ = 1 σ = 10 · eps σ = 1

Haar 0.0649 0.3302 0.0339 0.0707

Daubechies 2 0.0278 0.4299 0.1313 0.1744

Daubechies 4 0.0106 0.4279 0.1763 0.1966

Daubechies 8 0.0203 0.4518 0.2001 0.1981

Daubechies 20 0.1934 0.4646 0.2046 0.1868

Symlet 8 0.0235 0.4410 0.1635 0.1919

Coiflet 1 0.0458 0.4426 0.0796 0.1444

Biorthogonal 44 0.0264 0.4388 0.0859 0.1683

Biorthogonal 68 0.0376 0.4459 0.1259 0.1820

2−6 for J- and SI-UNIWARD. We report the results on a
range of relative payloads 0.05, 0.1, 0.2, . . ., 0.5 bpp, while
JPEG domain (and side-informed JPEG) methods will be
tested on the same payloads expressed in bits per non-zero
cover AC DCT coefficient (bpnzAC).

6.1 Spatial domain
In the spatial domain, we compare the proposed method
with HUGO [15], HUGO implemented using the Gibbs
construction with bounding distortion (HUGO BD) [4],
WOW [17], LSB matching (LSBM), and the edge-adaptive
(EA) algorithm [28] With the exception of the EA algo-
rithm, in which the costs and the embedding algorithm
are inseparable, the results of all other algorithms are
reported for embedding simulators that operate at the
theoretical payload-distortion bound. The only algorithm
that we implemented using STCs (with constraint height
h = 12) to assess the coding loss is the proposed S-
UNIWARD method.

For HUGO, we used the embedding simulator [25] with
default settings γ = 1, σ = 1 and the switch --T with
T = 255 to remove the weakness reported in [7]. HUGO
BD starts with a distortion measure implemented as a
weighted norm in the SPAM feature space, which is non-
additive and not locally supported either. The bounding
distortion is a method (see Section 7 in [4]) to give the
distortion the form needed for the Gibbs construction to
work - the local supportedness. HUGO BD was imple-
mented using the Gibbs construction with two sweeps
as described in the original publication with the same
parameter settings as for HUGO. The non-adaptive LSBM
was simulated at the ternary bound corresponding to
uniform costs, ρij = 1 for all i, j.

Figure 7 shows the EOOB error for all stego methods
as a function of the relative payload expressed in bits per
pixel. While the security of the S-UNIWARD and WOW

Figure 7 EOOB error for all stego methods. Detection error EOOB

using SRM as a function of relative payload for S-UNIWARD and five
other spatial domain steganographic schemes.

http://wavelets.pybytes.com/wavelet/db8/
http://wavelets.pybytes.com/wavelet/db8/
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is practically the same due to the similarity of their dis-
tortion functions, the improvement over both versions of
HUGO is quite apparent. HUGO BD performs better than
HUGO especially for large payloads, where its detectabil-
ity becomes comparable to that of S-UNIWARD. As
expected, the non-adaptive LSBM performs poorly across
all payloads, while EA appears only marginally better than
LSBM.

In Figure 8, we contrast the probability of embed-
ding changes for HUGO, WOW, and S-UNIWARD. The
selected cover image has numerous horizontal and ver-
tical edges and also some textured areas. Note that
while HUGO embeds with high probability into the pillar
edges as well as the horizontal lines above the pillars, S-
UNIWARD directional costs force the changes solely into
the textured areas. The placement of embedding changes
for WOW and S-UNIWARD is quite similar, which
is correspondingly reflected in their similar empirical
security.

6.2 JPEG domain (non-side-informed)

For the JPEG domain without side information, we com-
pare J-UNIWARD with nsF5 [14] and the recently pro-
posed UED algorithm [13]. Since the costs used in UED

are independent of the embedding change direction, we
decided to include for comparison the UED implemented
using ternary codes rather than binary, which indeed pro-
duced a more secure embedding algorithmq. All methods
were again simulated at their corresponding payload-
distortion bounds. The costs for nsF5 were uniform over
all non-zero DCTs with zeros as the wet elements [29].
Figure 9 shows the results for JPEG quality factors 75,
85, and 95. As in the spatial domain, J-UNIWARD clearly
outperformed both nsF5 and both versions of UED by a
sizeable margin across all three quality factors. Further-
more, when using STCs with constraint height h = 12, the
coding loss appears rather small.

6.3 JPEG domain (side-informed)
Working with the same three quality factors, we com-
pare SI-UNIWARD with four other methods - the block
entropy-weighted method of [10] (EBS), the NPQ [11],
BCHopt [9], and the fourth method, which can be viewed
as a modification (or simplification) of [9] or as [10]
in which the normalization by block entropy has been
removed. Following is a list of cost assignments for these
four embedding methods; ρ

(kl)
ij is the cost of changing

DCT coefficient ij corresponding to DCT mode kl.

Figure 8 Embedding probability for payload 0.4 bpp. HUGO (top right), WOW (bottom left), and S-UNIWARD (bottom right) for a 128 × 128
grayscale cover image (top left).
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Figure 9 Results for JPEG quality factors 75, 85, and 95. Testing
error EOOB for J-UNIWARD, nsF5, and binary (ternary) UED on
BOSSbase 1.01 with the union of SRMQ1 and JRM and ensemble
classifier for quality factors 75, 85, and 95.

1. ρ
(kl)
ij =

(
qkl(0.5−|eij|)

H(X(b))

)2

2. ρ
(kl)
ij = qλ1

kl (1−2|eij|)
(μ+|Xij|)λ2

3. ρ
(kl)
ij as defined in [9]

4. ρ
(kl)
ij = (

qkl(1 − 2|eij|)
)2

In method 1 (EBS), H(X(b)) is the block entropy defined
as H(X(b)) = − ∑

i h(b)
i log h(b)

i , where h(b)
i is the nor-

malized histogram of all non-zero DCT coefficients in
block X(b). Per the experiments in [11], we set μ = 0 as

NPQ embeds only in non-zero AC DCT coefficients, and
λ1 = λ2 = 1/2 as this setting seemed to produce the most
secure NPQ scheme for most payloads when tested with
various feature sets. The cost ρij for methods 1 to 4 is equal
to zero when eij = 1/2. Methods 1 and 4 embed into all
DCT coefficients, including the DC term and coefficients
that would otherwise round to zero (Xij = 0). We remind
from Section 3.3.1 that methods 1, 2, and 4 avoid embed-
ding into 1/2-coefficients from DCT modes 00, 04, 40, and
44. Since the cost assignment in method 3 (BCHopt) is
inherently connected to its coding scheme, we kept this
algorithm unchanged in our tests.

Figure 1 shows that SI-UNIWARD achieves the best
security among the tested methods for all payloads and
all JPEG quality factors. The coding loss is also quite neg-
ligible. Curiously, the weighting by block entropy in the
EBS method paid off only for quality factor 95. For factors
85 and 75, the weighting actually increases the statistical
detectability using our feature vector (c.f., the ‘Square’ and
‘EBS’ curves). The dashed curves for quality factor 95 in
Figure 1 are included to show the negative effect when
1/2-coefficients from DCT modes 00, 04, 40, and 44 are
used for embedding (see the discussion in Section 3.3.1).
In this case, the detection error levels off at approximately
25% to 30% for small-medium payloads because most
embedding changes are executed at the above four DCT
modes. Note that NPQ and BCHopt do not exhibit the
pathological error saturation as strongly because they do
not embed into the DC term (mode 00).

7 Conclusion
Perfect security seems unachievable for empirical cover
sources, examples of which are digital images. Currently,
the best the steganographer can do for such sources is
to minimize the detectability when embedding a required
payload. A standard way to approach this problem is to
embed while minimizing a carefully crafted distortion
function, which is tied to empirical statistical detectabil-
ity. This converts the problem of secure steganogra-
phy to one that has been largely resolved in terms of
known bounds and general near-optimal practical coding
constructions.

The contribution of this paper is a clean and univer-
sal design of the distortion function called UNIWARD,
which is independent of the embedding domain. The dis-
tortion is always computed in the wavelet domain as a
sum of relative changes of wavelet coefficients in the high-
est frequency undecimated subbands. The directionality
of wavelet basis functions permits the sender to assess the
neighborhood of each pixel for the presence of disconti-
nuities in multiple directions (textures and ‘noisy’ regions)
and thus avoid making embedding changes in those parts
of the image that can be modeled along at least one direc-
tion (clean edges and smooth regions). This model-free
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heuristic approach has been implemented in the spa-
tial, JPEG, and side-informed JPEG domains. In all three
domains, the proposed steganographic schemes matched
or outperformed current state-of-the-art steganographic
methods. A quite significant improvement was especially
obtained for the JPEG and side-informed JPEG domains.
As demonstrated by experiments, the innovative concept
to assess the costs of changing a JPEG coefficient in an
alternative domain seems to be quite promising.

Although all proposed methods were implemented and
tested with an additive approximation of UNIWARD, this
distortion function is naturally defined in its non-additive
version, meaning that changes made to neighboring pix-
els (DCT coefficients) interact in the sense that the total
imposed distortion is not a sum of distortions of indi-
vidual changes. This potentially allows UNIWARD to
embed while taking into account the interaction among
the changed image elements. We plan to explore this
direction as part of our future effort.

Last but not the least, we have discovered a new
phenomenon that hampers the performance of side-
informed JPEG steganography that computes embedding
costs based solely on the quantization error of DCT
coefficients. When unquantized DCT coefficients that lie
exactly in the middle of the quantization intervals are
assigned zero costs, any embedding that minimizes dis-
tortion starts introducing embedding artifacts that are
quite detectable using the JPEG rich model. While the
makeshift solution proposed in this article is by no means
optimal, it raises an important open question, which is
how to best utilize the side information in the form of
an uncompressed image when embedding data into the
JPEG compressed form. The authors postpone detailed
investigation of this phenomenon into their future
effort.

Endnotes
aFor a given empirical cover source, the statistical

detectability is typically evaluated empirically using
classifiers trained on cover and stego examples from the
source.

bThe concept of precover was used for the first time by
Ker [30].

cHistorically, the first side-informed embedding
method was the embedding while dithering algorithm
[31], in which a message was embedded to minimize the
color quantization error when converting a true-color
image to a palette image.

dThe process J−1 involves rounding to integers and
clipping to the dynamic range I .

eThis is because the embedding strongly prefers
1/2-coefficients.

fIn practice, we assign very large costs to such
coefficients.

gThis notation was used in [4] and is also standard in
the literature on Markov random fields [32].

hOne might (seemingly rightfully) argue that the cost
should depend on the polarity of the change. On the other
hand, since the embedding changes with UNIWARD are
restricted to textures, the equal costs are in fact plausible.

iThis is one of the reasons why UNIWARD was
conceived.

jBuilding a universal detector of steganography is not
the goal of this paper.

kIn Section 5, we will describe and work with another
small feature set whose sole purpose will be to probe the
security of the selection channel and to determine the
proper value of the stabilizing constant σ .

lThis filter bank was previously shown to provide the
highest level of security for WOW [17] from among
several tested filter banks. We thus selected the same
bank here as a good initial candidate for the experiments.

mAlso because the embedded payload α is unknown to
the steganalyst.

nA study on building steganalyzers when the payload is
not known appears in [33].

oWhen steganalyzing with the union of CSR and SRM
using the ensemble classifier, we made sure that all 63
CSR features were included in each random feature
subspace to avoid ‘diluting’ their strength in this type of
classifier.
Also, the value of σ for extracting the embedding change
probabilities pij(X; α) was always fixed at σ = 10 · eps as
the location of interleaved bands of high and low
probabilities are more accurately estimated this way than
with the value used in S-UNIWARD for the actual
message embedding.

pNote for reviewers: A preprint of this article is
available upon request.

qThe authors of UED were apparently unaware of this
possibility to further boost the security of their algorithm.
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