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Abstract—This paper presents a comprehensive performance
comparison between CUDA and OpenCL. We have selected 16
benchmarks ranging from synthetic applications to real-world
ones. We make an extensive analysis of the performance gaps
taking into account programming models, optimization strategies,
architectural details, and underlying compilers. Our results show
that, for most applications, CUDA performs at most 30% better
than OpenCL. We also show that this difference is due to unfair
comparisons: in fact, OpenCL can achieve similar performance
to CUDA under a fair comparison. Therefore, we define a fair
comparison of the two types of applications, providing guidelines
for more potential analyses. We also investigate OpenCL’s porta-
bility by running the benchmarks on other prevailing platforms
with minor modifications. Overall, we conclude that OpenCL’s
portability does not fundamentally affect its performance, and
OpenCL can be a good alternative to CUDA.

Index Terms—Performance Comparison, CUDA, OpenCL.

I. INTRODUCTION

In recent years, more and more multi-core/many-core pro-
cessors are superseding sequential ones. Increasing paral-
lelism, rather than increasing clock rate, has become the pri-
mary engine of processor performance growth, and this trend
is likely to continue [1]. Particularly, today’s GPUs (Graphic
Processing Units), greatly outperforming CPUs in arithmetic
throughput and memory bandwidth, can use hundreds of
parallel processor cores to execute tens of thousands of par-
allel threads [2]. Researchers and developers are becoming
increasingly interested in harnessing this power for general-
purpose computing, an effort known collectively as GPGPU
(for “General-Purpose computing on the GPU”) [3], to rapidly
solve large problems with substantial inherent parallelism.

Due to this large performance potential, GPU programming
models have evolved from high-level shading languages such
as Cg [4], HLSL [5], and GLSL [6] to modern programming
languages, alleviating programmers’ burden and thus enabling
GPUs to gain more popularity. Particularly, the release of
CUDA (Compute Unified Device Architecture) by NVIDIA
in 2006 has eliminated the need of using the graphics APIs
for computing applications, pushing GPU computing to more
extensive use [7]. Likewise, APP (Advanced Parallel Pro-
cessing) is a programming framework which enables ATI’s
GPUs, working together with the CPUs, to accelerate many
applications beyond just graphics [8]. All these programming
frameworks allow programmers to develop a GPU computing

application without mastering graphic terms, and enables them
to build large applications easier [9].

However, every programming framework has its unique
method for application development. This can be inconvenient,
because software development and related services must be
rebuilt from scratch every time a new platform hits the
market [10]. The software developers were forced to learn
new APIs and languages which quickly became out-of-date.
Naturally, this caused a rise in demand for a single language
capable of handling any architecture. Finally, an open standard
was established, now known as “OpenCL” (Open Computing
Language). OpenCL, managed by the Khronos Group [11], is a
framework that allows parallel programs to be executed across
various platforms. As a result, OpenCL can give software
developers portable and efficient access to the power of diverse
processing platforms. Nevertheless, this also brings up the
question of whether the performance is compromised, as it is
often the case for this type of common languages and middle-
wares [10]. If the performance suffers significantly when using
OpenCL, its usability becomes debatable (users may not want
to sacrifice the performance for portability).

To investigate the performance-vs-portability trade-offs of
OpenCL, we make extensive investigations and experiments
with diverse applications ranging from synthetic ones to real-
world ones, and we observe the performance differences
between CUDA and OpenCL. In particular, we give a detailed
analysis of the performance differences and then conclude that
under a fair comparison, the two programming models are
equivalent, i.e., there is no fundamental reason for OpenCL to
perform worse than CUDA.

We focus on exploring the performance comparison of
CUDA and OpenCL on NVIDIA’s GPUs because, in our view,
this is the most relevant comparison. First, for alternative
hardware platforms it is difficult to find comparable models: on
ATI’s GPU, OpenCL has become the “native” programming
model, so there is nothing to compare against; on the Cell
Broadband Engine, OpenCL is still immature and a compar-
ison against the 5-year old IBM SDK would be unfair “by
design”; on the general purpose multi-core processors, we did
not find a similar model (i.e., a model with similar low level
granularity) to compare against. Second, CUDA and OpenCL,
which are both gaining more and more attention from both
researchers and practitioners, are similar to each other in many
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aspects.

A. Similarities of CUDA and OpenCL

CUDA is a parallel computing framework designed only
for NVIDIA’s GPUs, and OpenCL is a standard designed
for diverse platforms including CUDA-enabled GPUs, some
ATI-GPUs, multi-core CPUs from Intel and AMD, and other
processors such as the Cell Broadband Engine.

OpenCL shares a range of core ideas with CUDA: they have
similar platform models, memory models, execution models,
and programming models [7] [11]. To a CUDA/OpenCL pro-
grammer, the computing system consists of a host (typically a
traditional CPU), and one or more devices that are massively
parallel processors equipped with a large number of arithmetic
execution units [12]. There also exists a mapping between
CUDA and OpenCL in memory and execution terms, as is
presented in Table I. Additionally, their syntax for various
keywords and built-in functions are fairly similar to each other.
Therefore, it is relatively straightforward to translate CUDA
programs to OpenCL programs.

TABLE I
A COMPARISON OF GENERAL TERMS [13]

CUDA terminology OpenCL terminology

Global Memory Global Memory

Constant Memory Constant Memory

Shared Memory Local Memory

Local Memory Private Memory

Thread Work-item

Thread-block Work-group

The rest of this paper is organized as follows: Section II
presents some related work on performance comparison of
parallel programming models on multi-core/many-core pro-
cessors. Section III illustrates our methodology, the selected
benchmarks and the testbeds. Section IV gives an overall
performance comparison and identifies the main reasons for
the performance differences. Then we define a fair comparison
for potential performance comparisons and analyses of CUDA
and OpenCL. OpenCL’s ability in code-portability is shown in
Section V. Section VI concludes this paper.

II. RELATED WORK

There has been a fair amount of work on performance
comparison of programming models for multi-core/many-core
processors. Rick Weber et al. [14] presented a collection of
Quantum Monte Carlo algorithms implemented in CUDA,
OpenCL, Brook+, C++, and VHDL. They gave a systematic
comparison of several application accelerators on performance,
design methodology, platform, and architectures. Their results
show that OpenCL provides application portability between
multi-core processors and GPUs, but may incur a loss in
performance. Rob van Nieuwpoort et al. [15] explained how
to implement and optimize signal-processing applications on
multi-core CPUs and many-core architectures. They used
correlation (a streaming, possibly real-time, and I/O intensive

application) as a running example, investigating the aspects
of performance, power efficiency, and programmability. This
study includes an interesting analysis of OpenCL: the problem
of performance portability is not fully solved by OpenCL and
thus programmers have to take more architectural details into
consideration.

In [16], the authors compared programming features, plat-
form, device portability, and performance of GPU APIs
for cloth modeling. Implementations in GLSL, CUDA and
OpenCL are given. They conclude that OpenCL and CUDA
have more flexible programming options for general com-
putations than GLSL. However, GLSL remains better for
interoperability with a graphics API. In [17], a comparison
between two GPGPU programming approaches (CUDA and
OpenGL) is given using a weighted Jacobi iterative solver for
the bidomain equations. The CUDA approach using texture
memory is shown to be faster than the OpenGL version.
Kamran Karimi et al. [18] compared the performance of
CUDA and OpenCL using complex, near-identical kernels.
They showed that there are minimal modifications involved
when converting a CUDA kernel to an OpenCL kernel. Their
performance experiments measure and compare data transfer
time to and from the GPU, kernel execution time, and end-to-
end application execution time for both CUDA and OpenCL.
Only one application or algorithm is used in all the work
mentioned above.

Ping Du et al. [19] evaluated many aspects of adopting
OpenCL as a performance-portable method for GPGPU appli-
cation development. The triangular solver (TRSM) and matrix
multiplication (GEMM) have been selected for implementation
in OpenCL. Their experimental results show that nearly 50%
of peak performance could be obtained in GEMM on both
NVIDIA Tesla C2050 and ATI Radeon 5870 in OpenCL. Their
results also show that good performance can be achieved when
architectural specifics are taken into account in the algorithm
design. In [20], the authors quantitatively evaluated the per-
formance of CUDA and OpenCL programs developed with
almost the same computations. The main reasons leading to
these performance differences are investigated for applications
including matrix multiplication from the CUDA SDK and CP,
MRI-Q, MRI-HD from the Parboil benchmark suite. Their
results show that if the kernels are properly optimized, the
performance of OpenCL programs is comparable with their
CUDA counter-parts. They also showed that the compiler
options of the OpenCL C compiler and the execution configu-
ration parameters have to be tuned for each GPU to obtain its
best performance. These two papers inspired us to analyze the
performance differences by looking into intermediate codes.

Anthony Danalis et al. [21] presented a Scalable HeterOge-
neous Computing (SHOC) benchmark suite. Its initial focus
was on systems containing GPUs and multi-core processors,
and on the new OpenCL programming standard. SHOC is a
spectrum of programs that test the performance and stability
of these scalable heterogeneous computing systems. At the
lowest level, SHOC uses micro-benchmarks to assess archi-
tectural features of the system. At higher levels, SHOC uses
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TABLE II
SELECTED BENCHMARKS

App. Suite Dwarf/Class* Performance Metric Description

BFS Rodinia Graph Traversal sec Graph breadth first search

Sobel SELF Dense Linear Algebra sec Sobel operator on a gray image in X direction

TranP SELF Dense Linear Algebra GB/sec Matrix transposition with shared memory

Reduce SHOC Reduce* GB/sec Calculate a reduction of an array

FFT SHOC Spectral Methods GFlops/sec Fast Fourier Transform

MD SHOC N-Body Methods GFlops/sec Molecular dynamics

SPMV SHOC Sparse Linear Algebra GFlops/sec Multiplication of sparse matrix and vector (CSR)

St2D SHOC Structured Grids sec A two-dimensional nine point stencil calculation

DXTC NSDK Dense Linear Algebra MPixels/sec High quality DXT compression

RdxS NSDK Sort* MElements/sec Radix sort

Scan NSDK Scan* MElements/sec Get prefix sum of an array

STNW NSDK Sort* MElements/sec Use comparator networks to sort an array

MxM NSDK Dense Linear Algebra GFlops/sec Matrix multiplication

FDTD NSDK Structured Grids MPoints/sec Finite-difference time-domain method

application kernels to determine system-wide performance
including many systems features. SHOC includes benchmark
implementations in both OpenCL and CUDA in order to
provide a comparison of these programming models. Some
of the benchmarks used in this work are selected from SHOC.

The majority of previous work has used very few ap-
plications to compare existing programming models. In our
work, we tackle the problem by observing a large set of
diverse applications to show the performance differences of
CUDA and OpenCL. We also give a detailed analysis of the
performance gap (if any) from all possible aspects. Finally,
we discuss an eight-step fair comparison strategy to judge
the performance of any applications implemented in both
programming models.

III. METHODOLOGY AND EXPERIMENTAL SETUP

In this section, we explain the methodologies we adopt in
this paper. The used benchmarks and experimental testbeds
are also explained.

A. Unifying Performance Metrics

In order to compare the performance of CUDA and
OpenCL, we define a normalized performance metric, called
𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒𝑅𝑎𝑡𝑖𝑜(𝑃𝑅), as follows:

𝑃𝑅 =
𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒𝑂𝑝𝑒𝑛𝐶𝐿

𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒𝐶𝑈𝐷𝐴
(1)

For 𝑃𝑅 < 1, the performance of OpenCL is worse than
its counter-part; otherwise, OpenCL will give a better or the
same performance. In an intuitive way, if ∣1−𝑃𝑅∣ < 0.1, we
assume CUDA and OpenCL have similar performance.

When it comes to different domains, performance metrics
have different meanings. In memory systems, the bandwidth
of memories can be seen as an important performance metric.
The higher the bandwidth is, the better the performance is. For
sorting algorithms, performance may refer to the number of el-
ements a processor finishes sorting in unit time. Floating-point

operations per second (Flops/sec) is a typical performance
metric in scientific computing. Exceptionally, performance is
inversely proportional to the time a benchmark that takes from
start to end. Therefore, we have selected specific performance
metrics for different benchmarks, as illustrated in Table II.

B. Selected Benchmarks

Benchmarks are selected from the SHOC benchmark suite,
NVIDIA’s SDK, and the Rodinia benchmark suite [22]. We
also use some self-designed applications. These benchmarks
fall into two categories: synthetic applications and real-world
applications.

1) Synthetic Applications: Synthetic applications are those
which provide ideal instructions to make full use of the un-
derlying hardware. We select two synthetic applications from
the SHOC benchmark suite: MaxFlops and DeviceMemory,
which are used to measure peak performance (floating-point
operations and device-memory bandwidth) of GPUs in GFlop-
s/sec and GB/sec. In this paper, peak performance includes
theoretical peak performance and achieved peak performance.
Theoretical peak performance (or theoretical performance) can
be calculated using hardware specifications, while achieved
peak performance (or achieved performance) is measured by
running synthetic applications on real hardware.

2) Real-world Applications: Such applications include al-
gorithms frequently used in real-world domains. The real-
world applications we select are listed in Table II. Among
them, Sobel, TranP in both CUDA and OpenCL, and
BFS in OpenCL are developed by ourselves (denoted by
“SELF”); others are selected from the SHOC benchmarks suite
(“SHOC”), NVIDIA’s CUDA SDK (“NSDK”) and the Rodinia
benchmark suite (only BFS in CUDA, denoted by “Rodinia”).
Following the guidelines of the 7+ Dwarfs [23], different
applications fall into different categories. Their performance
metrics and descriptions are also listed in the table.
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C. Experimental Testbeds

We obtain all our measurement results on real hardware
using three platforms, called Dutijc, Saturn, and Jupiter. Each
platform consists of two parts: the host machine (one CPU)
and its device part (one or more GPUs). Table III shows the
detailed configurations of these three platforms. A short com-
parison of the three GPUs we have used (NVIDIA GTX280,
NVIDIA GTX480, and ATI Radeon HD5870) is presented in
Table IV (MIW there stands for Memory Interface Width).
Intel(R) Core(TM) i7 CPU 920@2.67GHz (or Intel920) and
Cell Broadband Engine (or Cell/BE) are also used as OpenCL
devices. For the Cell/BE, we use the OpenCL implementation
from IBM. For the Intel920, we use the implementation from
AMD (APP v2.2), because Intel’s implementation on Linux is
still unavailable at the moment of writing.

TABLE III
DETAILS OF UNDERLYING PLATFORMS

Saturn Dutijc Jupiter

Host CPU Intel(R) Core(TM) i7 CPU 920@2.67GHz

Attached GPUs GTX480 GTX280 Radeon HD5870

gcc version 4.4.1 4.4.3 4.4.1

CUDA version 3.2 3.2 —

APP version — — 2.2

TABLE IV
SPECIFICATIONS OF GPUS

GTX480 GTX280 HD5870

Architecture Fermi GTX200s Cypress

#Compute Unit 60 30 20

#Cores 480 240 320

#Processing Elements — — 1600

Core Clock(MHz) 1401 1296 850

Memory Clock(MHz) 1848 1107 1200

MIW(bits) 384 512 256

Memory Capacity(GB) GDDR5 1.5 GDDR3 1 GDDR5 1

IV. PERFORMANCE COMPARISON AND ANALYSIS

A. Comparing Peak Performance

1) Bandwidth of Device Memory: 𝑇𝑃𝐵𝑊 (Theoretical Peak
Bandwidth) is given as follows:

𝑇𝑃𝐵𝑊 = 𝑀𝐶 ∗ (𝑀𝐼𝑊/8) ∗ 2 ∗ 10−9 (2)

where MC is the abbreviation for Memory Clock. Using
Equation 2 we calculate 𝑇𝑃𝐵𝑊 of GTX280 and GTX480 to
be 141.7 GB/sec and 177.4 GB/sec, respectively.

𝐴𝑃𝐵𝑊 (Achieved Peak Bandwidth) is measured here by
reading global-memory in a coalesced manner. Moreover,
our experimental results show that 𝐴𝑃𝐵𝑊 depends on work-
group-size (or block-size), which we set to 256. The results of
the experiments with DeviceMemory on Saturn (GTX480) and
Dutijc (GTX280) are shown in Figure 1. We see that OpenCL

outperforms CUDA in 𝐴𝑃𝐵𝑊 by 8.5% on GTX280 and 2.4%
on GTX480. Further, the OpenCL implementation achieves
68.6% and 87.7% of 𝑇𝑃𝐵𝑊 on GTX280 and GTX480,
respectively.
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Fig. 1. A comparison of the peak bandwidth for GTX280 and GTX480

2) Floating-Point Performance: 𝑇𝑃𝐹𝐿𝑂𝑃𝑆 (Theoretical
Peak Floating-Point Operations per Second) is calculated as
follows:

𝑇𝑃𝐹𝐿𝑂𝑃𝑆 = 𝐶𝐶 ∗#𝐶𝑜𝑟𝑒𝑠 ∗𝑅 ∗ 10−9 (3)

where CC is short for Core Clock and R stands for maximum
operations finished by a scalar core in one cycle. R differs
depending on the platforms: it is 3 for GTX280 and 2 for
GTX480, due to the dual-issue design of the GT200 architec-
ture. As a result, 𝑇𝑃𝐹𝐿𝑂𝑃𝑆 is equal to 933.12 GFlops/sec and
1344.96 GFlops/sec for these two GPUs, respectively.
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Fig. 2. A comparison of the peak FLOPS for GTX280 and GTX480

𝐴𝑃𝐹𝐿𝑂𝑃𝑆 (Achieved Peak FLOPS) in MaxFlops is mea-
sured in different ways on GTX280 and GTX480. For
GTX280, a mul instruction and a mad instruction appear in
an interleaved way (in theory they can run on one scalar core
simultaneously), while only mad instructions are issued for
GTX480. The experimental results are compared in Figure
2. We see that OpenCL obtains almost the same 𝐴𝑃𝐹𝐿𝑂𝑃𝑆

as CUDA for GTX280 and GTX480, accounting for approxi-
mately 71.5% and 97.7% of the corresponding 𝑇𝑃𝐹𝐿𝑂𝑃𝑆 .

Thus, CUDA and OpenCL are able to achieve similar peak
performance (to be precise, OpenCL even performs slightly
better), which shows that OpenCL has the same potential to
use the underlying hardware as CUDA.
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B. Performance Comparison of Real-world Applications

The real-world applications mentioned in Section III-B are
selected to compare the performance of CUDA and OpenCL.
The 𝑃𝑅 of all the real-world applications without any mod-
ifications is shown in Figure 3. As can be seen from the
figure, 𝑃𝑅 varies a lot when using different benchmarks and
underlying GPUs. We analyze these performance differences
using the following criteria.

1) Programming Model Differences: as is shown in Section
I-A, CUDA and OpenCL have many conceptual similarities.
However, there are also several differences in programming
models between CUDA and OpenCL. For example, NDRange
in OpenCL represents the number of work-items in the whole
problem domain, while GridDim in CUDA is the number of
blocks.
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Fig. 4. Performance impact of texture memory

Additionally, they have different abstractions of device
memory hierarchy, where CUDA explicitly supports specific
hardware features which OpenCL avoids for portability rea-
sons. Through analyzing kernel codes, we find that texture
memory is used in the CUDA implementations of MD and
SPMV. Both benchmarks have intensive and irregular access
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Fig. 5. Performance ratio before and after removing texture memory

to a read-only global vector, which is stored in the texture
memory space. Figure 4 shows the performance of the two
applications when running with and without the usage of
texture memory. As can be seen from the figure, after the
removal of the texture memory, the performance drops to about
87.6%, 65.1% on GTX280 and 59.6%, 44.3% on GTX480 of
the performance with texture memory for MD and SPMV,
respectively. We compare the performance of OpenCL and
CUDA after removing the usage of texture memory. The
results of this comparison are presented in Figure 5, showing
similar performance between CUDA and OpenCL. It is the
special support of texture cache that makes the irregular access
look more regular. Consequently, texture memory plays an im-
portant role in performance improvement of kernel programs.

2) Different Optimizations on Native Kernels: in [24], many
optimization strategies are listed: (i) ensure global memory
accesses are coalesced whenever possible; (ii) prefer shared
memory access wherever possible; (iii) use shift operations to
avoid expensive division and modulo calculations; (iv) make
it easy for the compiler to use branch prediction instead of
loops, etc.

220



One of the important optimization to be performed in kernel
codes is to reduce the number of dynamic instructions in the
run-time execution. Loop unrolling is one of the techniques
that reduces loop overhead and increases the computation per
loop iteration [25]. NVIDIA’s CUDA provides an interface to
unroll a loop fully or partially using the pragma unroll.
When analyzing the native kernel codes of FDTD (as is
illustrated in the following list), we find these two codes are
the same except that the CUDA code uses the pragma unroll
at both unroll points a and b, while the OpenCL one unrolls
the loop only at point b.

/ / Code segment o f FDTD k e r n e l
/ / S t e p t h r o u g h t h e xy−p l a n e s
#pragma u n r o l l 9 / / u n r o l l p o i n t : a
f o r ( i n t i z =0 ; i z<dimz ; i z ++){

/ / some work here
#pragma u n r o l l RADIUS / / u n r o l l p o i n t : b

f o r ( i n t i =1 ; i<=RADIUS ; i ++){
/ / some work here

}
/ / some work here

}

The performance of the application (in CUDA only) with
and without the pragma unroll at point a is shown in
Figure 6. We can see that the performance without the pragma
unroll drops to 85.1% and 82.6% of the performance with
it for GTX280 and GTX480. We then remove the pragma at
point a from the CUDA version and present a performance
comparison between CUDA and OpenCL in Figure 7. It can
be seen that they achieve similar performance on GTX480,
while OpenCL outperforms CUDA by 15.1% on GTX280.
Moreover, we observe that when adding the pragma unroll
at unroll point a of the OpenCL implementation, the perfor-
mance degrades sharply to 48.3% and 66.1% of that of the
CUDA implementation for GTX280 and GTX480, also shown
in Figure 7.
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3) Architecture-related Differences: since the birth of the
original G80, the Fermi architecture can be seen as the most
remarkable leap forward for GPGPU computing. It differs
from the previous generations by, e.g, (i) improved double
precision performance; (ii) ECC support; (iii) true cache
hierarchy; (iv) faster context switching [26].

The introduction of the cache hierarchy has a significant
impact on Fermi’s performance. When looking at Figure 3, we
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Fig. 7. A performance comparison of FDTD with/without loop-unrolling
at different points (𝐶𝑈𝐷𝐴𝑥 represents we execute loop-unrolling at
point x, and it is the same for OpenCL. For example, the third group
𝐶𝑈𝐷𝐴𝑎,𝑏/𝑂𝑝𝑒𝑛𝐶𝐿𝑎,𝑏 represents we unroll the loop at both points for
CUDA and OpenCL).

see that the values diverge remarkably for Sobel on GTX280
and GTX480. On GTX280, the OpenCL version runs three
times faster than the CUDA one, but it only obtains 83% of
CUDA’s performance when the benchmark runs on GTX480.
These differences are caused by the constant memory and the
cache. In the implementation with OpenCL, constant memory
is employed to store the “filter” in Sobel, while it is not in the
CUDA version.

After removing the usage of constant memory, we do the
same experiments on these two GPUs. The execution time is
presented in Figure 8. On the one hand, we see the kernel
execution time drops to one quarter of that without using
constant memory on GTX280. On the other hand, there are
few changes on GTX480 due to the availability of the global-
memory cache in the Fermi architecture. Overall, CUDA and
OpenCL achieve similar performance with/without constant
memory on GTX480.
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Fig. 8. A performance comparison for Sobel with and without constant
memory on GTX280 and GTX480

4) Compiler and Run-time Differences: among all the
benchmarks, the performance gap between OpenCL and
CUDA is the biggest for the FFT. Their native kernel codes
are exactly the same. However, when looking into their PTX
codes, we find notable differences between them. A quanti-
tative comparison of these two PTX kernels is presented in
Table V. The statistics are gathered for the “forward” kernel
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TABLE V
STATISTIC FOR PTX INSTRUCTIONS

Instruction Count Instruction Count

Class Instructions CUDA OpenCL Class Instructions CUDA OpenCL

add 93 191 cvt 16 16

sub 83 95 mov 687 88

mul 33 138 ld.param 1 1

Arithmetic div 0 2 ld.local 97 64

fma 0 37 Data ld.shared 32 32

mad 2 22 Movement ld.const 0 24

neg 9 36 ld.global 8 8

and 1 291 st.local 250 78

Sub-total 220 521 st.shared 32 32

or 2 33 st.global 8 8

not 0 4 Sub-total 1131 351

Logic xor 0 4 setp 2 80

Shift shl 0 50 Flow Control selp 0 40

shr 1 43 bra 2 68

Sub-total 4 163 Sub-total 4 188

Synchronization bar 7 7 Total 1366 1230

of the FFT implementation.

From Table V, the differences between these two PTX codes
become visible. The OpenCL front-end compiler generates two
times more arithmetic instructions than its CUDA counter-
part. There are rarely any logic-shift instructions in CUDA,
while there are 163 such instructions in the OpenCL kernel.
A similar situation happens with the flow-control instructions:
there are many more for OpenCL than for CUDA. Although
there are many more data-movement instructions for CUDA,
most of them are mov, simply moving data to or from registers
or local memories. Finally, we note that all time-consuming in-
structions such as ld.global and st.global are exactly
the same.

We can explain this situation by assuming that the front-
end compiler for CUDA has been used and optimized more
heavily, thus is more mature, than that of OpenCL. As a result,
when it comes to some kernels like “forward” in FFT, OpenCL
performs worse than CUDA.

BFS is also an interesting example here. It has to invoke
the kernel functions several times to solve the whole problem.
Thus, the kernel launch time (the time that a kernel takes from
entering the command-queue until starting its execution) plays
a significant role in the overall performance. Our experimental
results show that the kernel launch time of OpenCL is longer
than that of CUDA (the gap size depends on the problem size),
due to differences in the run-time environment. The longer
kernel launch time may also explain why OpenCL performs
worse than CUDA for applications like BFS.

In the previous analysis, we only identify the most influ-
ential factor for each application that shows an observable
performance difference. It is important to note that several
factors may often affect the program performance together,
leading to larger performance discrepancies. An analysis of

such combinations, as well as the investigation of lower level
factors (such as compiler optimizations), is left for future
work.

C. A Fair Comparison

So far, we have shown that the performance gaps between
OpenCL and CUDA are due to programming model differ-
ences, different optimizations on native kernels, architecture-
related differences, and compiler differences. It has been
shown that performance can be equalized by systematic code
changes. Therefore, we present an eight-step fair comparison
approach for CUDA and OpenCL applications from the orig-
inal problem to its final solution, which provides guidelines
for investigating the performance gap between CUDA and
OpenCL (if any). A schematic view of this approach is shown
in Figure 9.

1) Problem Description: this step describes what the prob-
lem is and what form the solutions could be.

2) Algorithm Translation: how to address the problem
is given using certain algorithms. The algorithms can be
described in pseudo-code which is environment-independent
and easier for humans to understand.

3) Implementation: in this step, the algorithms mentioned
above are implemented with different programming models or
languages. As for GPU programs, there are two parts: one is
the host program and the other is the kernel code running
on GPUs. On NVIDIA GPUs, CUDA+C and OpenCL+C
are usually adopted to implement GPU programs. If two
implementations use similar APIs to access the same type of
hardware resources, we consider these two implementations to
be the same. Note that two implementations also have to use
the same type of timers to measure performance.

4) Native Kernel Optimizations: after implementation,
architecture-dependent optimizations on kernel programs are
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executed. For example, whether to use the shared memory (or
local memory in OpenCL), whether to employ vectorization,
whether to unroll loops, whether to reduce bank-conflicts,
whether to use texture memory in CUDA, and whether to
access global memory in a coalesced way. are decisions that
should be taken into account. On the one hand, optimizations
on native kernels is a time-consuming and error-prone job; on
the other hand, it can contribute to performance improvement
significantly.

5) First-Stage Compilation and Optimization: the first-
stage compiler adopted in CUDA is called NVOPENCC. There
is a similar front-end compiler for OpenCL in this stage.
This stage compiles kernel codes into PTX codes, a low-level
parallel thread execution virtual machine and instruction set
architecture (ISA) developed by NVIDIA [27]. Some advanced
optimizations are also executed in this stage.

6) Second-Stage Compilation and Optimization: PTXAS
(the back-end compiler) translates PTX codes into binary
format in this step and it may execute some additional op-
timizations.

7) Program Configuration and Start-up: before executing
the program prepared so far, we need to configure two kinds
of parameters: (1) problem parameters (the parameters of the
problem to be solved such as the size of the matrix), and
(2) algorithmic parameters (for example, block-size or work-

Problem

Describe

Problem Description

Translate

Algorithmic Pseudo-code

Implement in CUDA Implement with OpenCL

Kernel Program
in CUDA

Kernel Program
in OpenCL

Optimize Kernel Program

Optimized Kernel Program
in CUDA

Compile
with NVOPENCC

Compile
with LLVM

PTX Kernel Program

Compile
with PTXAS

Binary Codes

Underlying GPUs

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

Development Flow

Provide 
Run-time Configurations

Optimized Kernel Program
in OpenCL

Programmers

Users

Compilers

Fig. 9. Development flow of GPU kernel programs (The ellipses represent
entities such as a program or a description and the rectangles represent actions
on the entities. We categorize three types of roles participating the whole
process: programmers, compilers, and users.)

group size). Although these parameters don not change the
correctness of final results, they can have a significant impact
on the performance of the application.

8) Running on GPUs: With the help of drivers, the binary
codes are finally scheduled to run on the GPUs.

These eight steps make up the application development
flow from an original problem to its final solution. Based on
this, we define that a comparison for CUDA and OpenCL
is “fair” when configurations in all the eight steps of the
comparison are the same. According to the analysis in previous
subsection, OpenCL can obtain similar performance to CUDA
in the case of “a fair comparison”. In real-world, programmers
are responsible for steps (1) - (4) and compilers take charge
of steps (5), (6). Finally, users will employ the application
through steps (7) and (8), as is illustrated in Figure 9. Each of
the eight steps is probably executed by different programmers
(they have different programming habits, abilities and choices)
or different compilers (they may execute different optimiza-
tions) or different users (they have different requirements and
investments). All those lead to the difficulty of making sure
that a performance comparison is fair for CUDA and OpenCL.

V. A BRIEF EVALUATION OF OPENCL’S PORTABILITY

We have seen so far that for a set of 16 benchmarks,
OpenCL implementations differ from the CUDA ones on
performance. Given that OpenCL’s portability is typically in-
voked as a good reason for performance drops, we investigate
if the portability claim holds by porting all the real-world
benchmarks from NVIDIA’s GPUs to HD5870, Intel920 and
Cell/BE. All performance data is listed in Table VI (the
performance units are the same as those shown in Table II).

When comparing performance on NVIDIA’s GPUs, we
find that most benchmarks, without additional optimizations
on HD5870, achieve comparable performance with that on
GTX280. An exceptional example is TranP on HD5870 which
performs much worse than it does on GTX280.

When benchmarks run on Intel920 and Cell/BE, we
have to make some minor modifications of changing
CL DEVICE TYPE GPU to CL DEVICE TYPE CPU or
to CL DEVICE TYPE ACCELERATOR for benchmarks se-
lected from the CUDA SDK. Moreover, there are more pro-
gramming constraints on Cell/BE (e.g. get_local_id or
cosine functions are not allowed within inline definition of
another function). When it comes to performance on Intel920,
we observe that the bandwidth of TranP drops from 2.411
GB/sec to 0.2150 GB/sec because of using local memory:
all OpenCL memory objects for CPU are cached implicitly
by hardware and thus explicitly using local memory just
introduces unnecessary overhead. Another interesting obser-
vation is that SPMV sees a performance degradation from
3.805 GFlops/sec to 0.1247 GFlops/sec when employing warp-
oriented optimization (using a warp of threads to work together
on one matrix row). We believe this happens because there
are orders of magnitude less processing cores in CPUs than
in GPUs.
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TABLE VI
PERFORMANCE DATA ON PREVAILING PLATFORMS

BFS Sobel TranP Reduct MD SPMV FFT St2D DXTC RdxS Scan STNW MxM FDTD

HD5870 0.0246 0.0048 5.951 114.4 28.60 4.665 36.10 1.666 14.50 FL 177.6 42.43 205.3 3352

Intel920 0.1455 0.1553 2.411 0.9936 2.597 3.805 1.424 238.4 14.48 FL 1.071 0.7605 0.8857 3787

Cell/BE 1.159 5.425 0.1993 0.0528 0.1264 0.0809 ABT 0.1178 ABT ABT 1.620 ABT 1.473 19.15

In Table VI, “ABT” means the programs (FFT, DXTC,
RdxS, and SNTW) exit, showing “aborted”. It is mainly
because there are not enough resources on the Cell/BE. For
example, DXTC shows “CL OUT OF RESOURCES” when
invoking clEnqueueNDRangeKernel because of insuffi-
cient registers or local memories. The possible solution we
can imagine now is to make the input problem size smaller.

We also find that RdxS can end normally, but get wrong
results (denoted by “FL” in the Table VI) on HD5870 and
Intel920. The benchmark uses the four-step radix sort in each
pass proposed in papers [28] [29]. However, the implementa-
tion of RdxS depends on warp-size in CUDA, i.e., wavefront-
size in APP. The warp-size is 32 in CUDA, while it is 64 in
APP. Therefore, only one half warp of threads are able to map
keys into buckets and the other half are not when it comes to
APP, leading to incorrectly sorted sequences. This is a typical
example of hiding platform specific details into programs, and
can be considered as a programmer’s mistake.

To sum up, all the benchmarks compile correctly and
most of them run properly on the other platforms, illustrat-
ing OpenCL’s cross-platforms portability. In order to make
OpenCL programs run on more platforms, programmers are
encouraged to use vendor-independent terms (for example,
CL DEVICE TYPE ALL) and provide users with optional
choices. After all, even minor modifications and additional
debugging can be time-consuming. When it comes to a specific
architecture, an auto-tuner could be used to boost performance
[30]. Finally, we note that OpenCL is very useful as a pro-
totyping tool, enabling portability while still achieving good
performance.

VI. CONCLUSIONS

From the results and analysis above, we can see that there
is no reason for OpenCL to obtain worse performance than
CUDA under a fair comparison. Several benchmarks also show
the interesting performance gaps. The reasons behind the gaps
are analyzed thoroughly and they can all be essentially related
to various behaviors of programmers, compilers and users. We
also port all the real-world benchmarks to other platforms
with minor modifications to show OpenCL’s potential for
portability.

Since it has been shown in this paper that OpenCL is a good
alternative to CUDA, we would like to develop an auto-tuner
to adapt general-purpose OpenCL programs to all available
specific platforms to fully exploit the hardware.
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