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Abstract

We consider various sifiling and unshfiling operations on languages
and words, and examine their closure properties. Althohghtain goal is
to provide some good and novel exercises and examples fergnaduate
formal language theory classes, we also provide some neiltgesd some
open problems.

1 Introduction

Two kinds of shifles are commonly studied: perfect ileiand ordinary shile.
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For two wordsx = aya,---a,, Yy = biby---b, of the same length, we de-
fine theirperfect shuffle xmy = a;b,ab, - - - a,b,. For exampletermmrhoes =
theorems. Note thatxmy need not equaym x. This definition is extended to
languages as follows:

Lyml, = U {XIHy}

xelq, yelp
IX=Iy1

If xR denotes the reverse gfthen note that(m y)R = yR o xR,

It is sometimes useful to alloy| = [X|+ 1, wherex =a;---an, Yy = by - - - by,
in which case we definemy = a;b; - - - a,bnbp; 1.

Theordinary shuffle x 11y of two words is a finiteset, the set of words ob-
tainable from merging the wordsandy from left to right, but choosing the next
symbol arbitrarily fromx ory. More formally,

XIITy ={Z : Z= Xy1 XY - - - XaYn fOr Somen > 1 and
wordsXi, . .., Xn, Y1, . . ., Yn SUCh thatx = X1 - - - X, andy = y; - - - ).

This definition is symmetric, angIlly = yIII x. The definition is extended to
languages as follows:
LT, = [ ) (x1Iy).
xeli, yelo

(As a mnemonic, the symbdlIlI is larger thanm in size, and similarlyILl
generally produces a set larger in cardinality thar)

As is well-known, the shitie (resp., perfect stiile) of two regular languages
is regular, and the sffile (resp., perfect shide) of a context-free language with
a regular language is context-free. Perhaps the easiedbveae all these results
Is by using morphisms and inverse morphisms, and relyindgherkhown closure
properties of these transformations, as follows:

If Ly, L, C X¥, create a new alphab#&t by putting primes on all the letters
of £. Definehy(a) = hy(&) = aandhy(&) = hy(a) = € for a € £. Define
h(a) = h(a’) = aforae . Then

Ly T L, = hhi (L) N hp'(L2)).
In a similar way,
Lym L, = h(h;*(Ly) N hyl(Ly) N (EZ)Y).

However, the shitie (resp., perfect slhide) of two context-free languages need
not be context-free. For examplelif = {a™™ : m> 1} andL, = {c"d" : n>
1}, thenL := L, IIT L, is not a CFL. If it were, theh N a*ctb*d* = {a™c"b™d" :
m, n > 1} would be a CFL, which it isn't (via the pumping lemma).
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Similarly, if Ly = {a™?™ : m > 1} andL, = {@®" : n > 1}, then
Lzm Ly = {@®"(ba)"b® : n > 1}, which is clearly not a CFL.
For these, and other facts, see [1].

2 Self-shuffles

Instead of shfiling languages together, we can take a language arttlesfresp.,
perfect shiile) each word with itself. Another variation is to stie each word
with its reverse. This gives fourflierent transformations on languages, which we
call self-shifies:

ss) = U{XHI X}
psst) = XG X1 X
ssrl) = GL{XHI X7

pssr) = GL X XX

We would like to understand how these transformatioftisca regular and
context-free languages. We obtain some results, but otlestipns are still open.

Theorem 1. If L isregular, then ss) need not be context-free.

Proof. We show that s$0, 1}*) is not a CFL. Suppose it is, and considér=
ss(0, 1)) N R, whereR = {0120°*11°*1091 : a,b,c,d > 1}. SinceRis regular, it
sufices to show thdt’ is not context-free.

Now consider an arbitrary wond € L’. Thenw = 0120°11¢1091 for some
a,b,c,d > 1, and there existsyae {0, 1}* such thatv € yII1y. The structure ofv
allows us to determing. Lety; andy, be copies of/ such thatw € y; 11 y,, and
the first letter ofw is taken fromy;.

The first symbol ofy is evidently 0. It follows that the prefix @f wis taken
entirely fromy,, since the 0 is taken froy, by definition and the first symbol of
Yy, is 0. Therefore (dis a prefix ofy;.

It follows thaty, also contains (flas a prefix, and sinca > 1 this is only
possible if the first 0 of, is located in the & block of w. Otherwisey, would
be a subsequence ofDandy; would have 030°11¢+! as a prefix (implying that
y1 # ¥2). Furthermore, the second symbolyafbeing 1 implies that exactly one
of the 0’s in the 0 block is fromy,. Thus the rest are froipy, and 020° is a
prefix ofy;.



Note thaty; andy, both end in 1, anav ends in @1. By the same logic as
before, we can conclude thatlis a siffix of exactly one of them, and that the
other ends in the®t! block. Thusy, contains 081 as a sffix andy, ends in the
1°*1 block (otherwisey; # y»).

Finally, since the second last symbolyafis 0 andy; ends in the 3! block,
we can conclude that contains exactly one 1 from thé&*1 block and thay, =
0120°1. Unshifing y; from wyieldsy, = 01°091.

Recall thaty; = y,. So,

y1 = 01°0°1 = 01°0“1 = y,
and sincea, b, c,d > 1 we know that

a==c and b=d.

If we L’ then
W = 01a0b+1lc+lodl
— 01a0d+lla+lod1
= 0120%(01)270%1.
Sincew was arbitrary, we have

L’ = {0170"'1%%0%. :a=c,b=d, anda, d > 1}
={01"0M(01)1"0™ : m,n > 1},

which is clearly not a CFL, using the pumping lemma. O

Remark 2. In a previous version of this paper, proving tha{8sl}*) is not context-
free was listed as an open problem. After this was solved kydhshall, a solu-
tion was given by Georg Zetzsche independently.

Similarly, we can show
Theorem 3. L = Uyeo.1y-(WILI WIIT w) is not context-free.
Proof. We use Ogden’s lemma. Consider
L={wlIwllIw : we{0,1}'}n0"10"10"1.

Pick s = 0"10"10"1 in L to pump. Writes = uvxyz and mark the middle
block of 0's. If v begins in the middle block of 0's, then pump up to obtain
s = 0"10'10¢1, wheren < j andn < k. We can’t haves' € wIII wIII w because
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the firstw (the one ending at the first 1) is too short. vifbegins in the first
block of 0’s, theny occurs in the middle block, so now pump down to obtain
s = 010101, wherei < nandj < n. Again, we can’'t haves € wIII wIIIw,
because the thirev (the one ending at the third 1) must contain all of the 0’s
immediately preceding the final 1, and hence is too long. |

Clearly ss{0, 1}*) is in NP, since given a word/ we can guesx and check
thatw e xIII x. However, we do not know whether we can solve membership for
ss{0, 1}*) in polynomial time. This question is apparently origiyadlue to J&
Erickson [2], and we learned about it from Erik Demaine.

Open Problem 4. Is ss(0, 1}*) in P?

We mention a few related problems. Mansfield [4] showed thgen words
w, X,y, one can decide in polynomial timew € xIIly. Later, the same au-
thor [5] and, independently, Warmuth and Haussler [6] stbthat, given words
W, X1, Xo, . . . , X, deciding ifw € x; ITT x, IIT - - - III X, is NP-complete. However,
the decision problem implied by Open Problem 4 asks somgttifferent: given
w, does there exist such thatv € x I1T x?

Open Problem 5. Determine a simple closed form for

(X III x)
x€{0,1,....k-1}"

a(n) :=

The first few terms are given as follows:

n [0[1]2] 3| 4 5 6 7 8 9
a(n) |12 6| 22| 82 | 320 | 1268 | 5102 | 20632| 83972
as(n) | 1| 3[15| 93 | 621 | 4425 | 32703 | 248901

asn) | 1| 4| 28] 244| 2332 | 23848 | 254416

as(n) | 1| 5| 45| 505| 6265 | 83225

as(n) | 1| 6| 66| 906 | 13806| 225336

Clearlya(0) = 1, a(1) = i, anda;(2) = 2i%2 - i. Empirically we haves;(3) =
5i®—5i2+i, g;(4) = 14i*-21i%+5i%+3i, anda(5) = 42i°—84i* + 32+ 21i - 10i.
This suggests tha (n) = Qi” — (2”‘1)i”‘l + O(i"2), but we do not have a proof.

n+1 n+1
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3 Perfect self-shuffle

We can consider the same question for perfectihuNe define

pss() = U{Xm x}.

xelL

Theorem 6. Both the class of regular languages and the class of context-free
languages are closed under pss

Proof. Use the fact that psk) = h(L), whereh is the morphism mapping — aa
for each lettea. ]

4 Self-shuffle with rever se

We now characterize those worgithat can be written as a sfiie of a word with
its reverse; that is, as a member of thexsHIfl xR
An abelian square is a word of the formxx’ wherex’ is a permutation ox.

Theorem 7. (a) If thereexists x such that y € X I1I xR, then y isan abelian square.
(b) If yisa binary abelian square, then there exists x such that y € x ITI x®,

We introduce the following notation: v = a;a,---a,, then byw[i..j] we
mean the factoaa;,; - - - g;.

Proof. (a) If y is the shiffle of x with its reverse, then the first half gf must
contain some prefix ok, sayx[1..k]. Then the second half gf must contain the
remaining stfix of x, sayx[k + 1..n]. Then the second half of must contain,
in the remaining positions, some prefix xfreversed. But by counting we see
that this prefix must bg[1..k]. So the first half ofy must contain the remaining
symbols ofx, reversed. This shows that the first halfyois just x[1..k] shufled
with X[k + 1..n]R, and the second half gfis justx[k + 1..n] shufled with x[1..K]R.

So the second half gfis a permutation of the first half ¢f

(b) It remains to see that every binary abelian square carbtaened in this
way.

To see this, note that it containsj 0’'s andn — j 1's, then we can get by
shufling 0'1™1 with its reverse. We get the 0’s inby choosing them fromiQ™J,
and we get the 1’s i by choosing them from (@™ )R, O

Remark 8. The word 012012 is an example of a ternary abelian squarednabt
be written as an element of 111 WX for any wordw.
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Remark 9. The preceding proof gives another proof of the classic itent

[2)=(o )

To see this, we use the following bijections: the binary veaséllength 2 having
exactlyn 0’'s (and hencen 1's) are in one-one correspondence with the abelian
squares of lengthr® as follows: take such a word and complement theridsts.
Thus there ar(aznn) binary abelian squares of length.2

On the other hand, there 4. ® words that are abelian squares and have a first
and last half, each with0’s. Summing this from = 0 to n gives the result.

Corollary 10. The language
ssr(0, 1)) = U X ITT xR
xe{0,1}*
isnot a CFL, butisinP.
Proof. From above, intersecting sf(1}*) with 0*1*0"1* gives

{0M"0™%*1" : mn>1andk> 0} U {0M™Z%*0™" : mn> 1 andk > 0}.

Now the pumping lemma applied #= 0"1"0"1" shows this is not a CFL.

Since we can easily test if a string is an abelian square bytoauthe number
of O’s in the first half, and comparing it to the number of 0’dhie second half, it
follows that ssr{0, 1}*) is in P. O

As before, we can define

b(n) := (XTI x7)

x€{0,1,....k—1}n

Fork = 2, our results above explaiq(n), but we do not know a closed form for
largerk.
The first few terms are given as follows:

n |0]1] 2] 3 4 5 6 7 8 9
bo(n) |1]2] 6 | 20| 70 | 252 | 924 | 3432 | 12870] 48620
be(n) | 1| 3| 15| 87 | 549 | 3657 | 25317 | 180459

ba(n) | 1] 4| 28] 232| 2116 | 20560 | 208912

bs(n) | 1| 5 | 45| 485| 5785 | 73785

be(n) | 1| 6 | 66 | 876 | 12906| 203676




Clearlyb;(0) = 1, bi(1) = i, andb;(2) = 2i? — i. Empirically, we havep;(3) =
5i3—-6i%+2i, bi(4) = 14i*-273+171?-3i, andb;(5) = 42°-1104+94i°-17i2-8i.
This suggests thdt(n) = %i” = ((3)) - 21)int + O(i"-?), but we do not have
a proof.

5 Pefect saf-shuflewith rever se

We now consider the operatiom — wmwWR applied to languages. Recall that
pssr) = Uye {xm X}
Theorem 11. If L isregular then pssr() isnot necessarily regular.

Proof. Let L = 0*10". Then pssi() N 07110 = {0"110" : n > 2}, which is
clearly not regular. O

Theorem 12. If L is context-free then pssr() is not necessarily context-free.

Proof. LetL = {0™1™2"3" : m,n > 1}. Then pssi() n (03)"(12)"(21)"(30)" =
{(03"(12)"(21)"(30)" : n > 1}, and this language is easily seen to be non-context-
free. O

Theorem 13. If L isregular then pssr() is necessarily context-free.

We defer the proof of Theorem 13 until Section 6.4 below.

6 Unshuffling

Given a finite wordw = aa,---a, we can decimate it into its odd- and even-
indexed parts, as follows:

oddfv) = @83 - 8n((n+1) mod 2)
even(v) = &as---an-(nmod?2)
Similarly, givenw = a;a, - - - &, we can extract its first and last halves, as follows:
fh(W) = a1y - Any2
lh(w) = apnz2p1---an

We now turn our attention to four “unshling” operations:

bdw) = oddw)even{)
bdriw) = oddfv)eveni)?
bdiw) = fh(w)mIh(w)

bdirw) = fh(w)m Ih(w)R
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6.1 Binary decimation

We first consider a kind of binary decimation, which forms & & inverse to
perfect shifle.
Given a wordw = a;a; - - - &, Of even length, note that

bdWw) = a183- - - Axn-18284 - - - @

is formed by “unshfiling” the word into its odd- and even-indexed letters. For
example, the French worthigre becomes the wordlirage under this opera-
tion.

Theorem 14. Neither the class of regular languages nor the class of context-free
languagesis closed under bd.

Proof. Consider the regular (and context-free) language (00 + 11)*. Then
bd(L) = {ww : we {0, 1}*}, which is well-known to be non-context-free. o

6.2 Binary decimation with reverse

We now consider the operation bdr, which is a kind of binargim@tion with
reverse. Note that

bdr@@az - - - an) = a183 - - An-180n - A
For example, bdffiriend) = finder and bdrperverse) = preserve.
Theorem 15. The class of regular languagesis not closed under bdr.

Proof. LetL = (00)*11. Then bdrd() = {0"110" : n > 1}, which is not regular.
m|

Theorem 16. The class of context-free languagesis not closed under bdr.

Proof. ConsiderL = {(03)"(12)" : n > 1}. Then bdr{) = {0"1"2"3" : n > 1},
which is not context-free. O

Theorem 17. If L isregular, then bdr(L) is context-free.

Proof. We show how to accept words of bdj(of even length; words of odd
length can be treated similarly.

On inputw = byb,---by,, @ PDA can guess = a;a; - - - &, in parallel with
the elements of the input. At each stage the PDA comptedy, . if i is odd;
and otherwise it pushes onto the stack (if is even). At some point the PDA
nondeterministically guesses that it has segrand pushed it on the stack; it now
pops the stack (which is holdira, - - - a4a,) and compares the stack contents to
the rest of the inpulv.

The PDA accepts ik € L and the symbols matched as described. O
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6.3 Inversedecimation

We now consider a kind of inverse decimation, whichfies the first and last
halves of a word.
Note that ifw = a; - - - @y, is of even length, then

bdi(w) = a18n,182802 - - - @ndn.
Further, bdi(bd{)) = bd(bdifv)) for w of even length.
Theorem 18. If L isregular then sois bdi(L).

Proof. On inputx we simulate the DFA folL on the odd-indexed letters of
starting fromqo, and we simulate a second copy of the DFA oon the even-
indexed letters, starting at some guessed sgakenally, we check to see that our
guess ofj was correct. i

Theorem 19. The class of context-free languagesis not closed under bdi.
Proof. LetL = {0™1M22"3*" : m,n> 1}. It is easy to see that
(01)™3"(02"(03)"(13)*",  if m> 3n;

bdi(L) = { (02)™"(03y'(13)"(23/™™, if n<m< 3n;
(03" (13"(23P"(33™,  if m<n.

ConsiderL’ := bdi(L) n (03)"(13)"(23)". From the above we haw =
{(03"(13)"(23¥" : n > 1}, which is evidently not context-free. ]

6.4 Inversedecimation with reverse

Note that ifw = a; - - - @, is of even length, then bdii) = a;a,a280_1 - - - @ndny1.
If w=ay---ag,: is of odd length, we define

bdir(w) = ai8n1880n - - - Bnns28n41-
Theorem 20. If L isregular then sois bdir(L).

Proof. On inputx we simulate the DFAM for L on the odd-indexed letters af
starting fromgy. We also create an NFM’ accepting_R in the usual manner, by
reversing the transitions dfl, and making the start state the set of final states of
M, and we simulaté/1’ on the even-indexed letters »f Finally, we check to see
that we meet in the middle. m|

Theorem 21. The class of context-free languagesis not closed under bdir.
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Proof. Consider. = {0°™1#M2"3" : m,n > 1}. ThenL is a CFL, and it is easy to
verify that

(03" (021 (01P™2(11)™", if m> n;

(03 (02P™ " (12" 2M(11P™ ", if m< n < 2m;
bdir(0*™1m2"3") = { (03™(13y-2"(12"(11™",if 2m < n < 3m;
(03P™(13y-2m(12)°™"(22)-3™, if 3m < n < 6m;
(03P™(13Y™(23)-5m(228™, if n > 6m.

Assume bdir() is a CFL. TherL’ := bdir(L) n (03)*(13)"(22)" is a CFL, and
from above we have’ = {(03YM(13)'™(22)*™ : m> 1}, whichisnota CFL. O

As Georg Zetzsche has kindly pointed out to us, the operatiorwas studied
previously by Jantzen and Petersen [3]; they called it ‘fwi$hey proved our
Theorems 20 and 21.

We now return to the proof of Theorem 13, which was postpomedl inow.
We need two lemmas:

Lemma 22. Suppose L isa regular language. Then L’ = {(wwWR : we L}isa
CFL.

Proof. On inputx, a PDA can guesw and verify it is inL, while pushing it on
the stack. Nondeterministically it then guesses it is attie ofw and pops the
stack, comparing to the input. O

Lemma 23. For all words w we have wm wR = bdir(w) bdir(w)R.

Proof. If wis of even length then

wmwWR = (fh(w)lh(w)) mx (Fh(w)lh(w))R
= (fh(w)lh(w)) z (Ih(w)Rfh(w)F)
= (fh(w) m Ih(W)R) (Ih(w) 1 Th(w)F)
= bdir(w)bdir(w)R.
A similar proof works forw of odd length. O

We can now prove Theorem 13.

Proof. From Lemma 23 we have

pssr() = U X xR = U bdir(x) bdir(x)R = U X,

xeL xelL xebdir(L)

If L is regular, then bdit() is regular, by Theorem 20. Then, from Lemma 22, it
follows that pssi() is a CFL. |
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