
ar
X

iv
:1

10
6.

57
67

v4
 [

cs
.F

L]
 1

1
Ju

l 2
01

1

Shuffling and Unshuffling

Dane Henshall
School of Computer Science

University of Waterloo
Waterloo, ON N2L 3G1

Canada
dslhensh@uwaterloo.ca

Narad Rampersad
Department of Mathematics

University of Liège
Grande Traverse, 12 (Bat. B37)

4000 Liège
Belgium

narad.rampersad@gmail.com

Jeffrey Shallit
School of Computer Science

University of Waterloo
Waterloo, ON N2L 3G1

Canada
shallit@cs.uwaterloo.ca

Abstract
We consider various shuffling and unshuffling operations on languages

and words, and examine their closure properties. Although the main goal is
to provide some good and novel exercises and examples for undergraduate
formal language theory classes, we also provide some new results and some
open problems.

1 Introduction

Two kinds of shuffles are commonly studied: perfect shuffle and ordinary shuffle.

1

http://arxiv.org/abs/1106.5767v4
dslhensh@uwaterloo.ca
narad.rampersad@gmail.com
shallit@cs.uwaterloo.ca

For two wordsx = a1a2 · · · an, y = b1b2 · · · bn of the same length, we de-
fine theirperfect shuffle xx y = a1b1a2b2 · · · anbn. For example,termx hoes =
theorems. Note thatxx y need not equalyx x. This definition is extended to
languages as follows:

L1 x L2 =

⋃

x∈L1, y∈L2
|x|=|y|

{xx y}.

If xR denotes the reverse ofx, then note that (xx y)R
= yR

x xR.
It is sometimes useful to allow|y| = |x|+1, wherex = a1 · · · an, y = b1 · · · bn+1,

in which case we definexx y = a1b1 · · · anbnbn+1.
The ordinary shuffle xX y of two words is a finiteset, the set of words ob-

tainable from merging the wordsx andy from left to right, but choosing the next
symbol arbitrarily fromx or y. More formally,

xX y = {z : z = x1y1x2y2 · · · xnyn for somen ≥ 1 and

wordsx1, . . . , xn, y1, . . . , yn such thatx = x1 · · · xn andy = y1 · · · yn}.

This definition is symmetric, andxX y = yX x. The definition is extended to
languages as follows:

L1 X L2 =

⋃

x∈L1, y∈L2

(xX y).

(As a mnemonic, the symbolX is larger thanx in size, and similarlyX
generally produces a set larger in cardinality thanx .)

As is well-known, the shuffle (resp., perfect shuffle) of two regular languages
is regular, and the shuffle (resp., perfect shuffle) of a context-free language with
a regular language is context-free. Perhaps the easiest wayto see all these results
is by using morphisms and inverse morphisms, and relying on the known closure
properties of these transformations, as follows:

If L1, L2 ⊆ Σ
∗, create a new alphabetΣ′ by putting primes on all the letters

of Σ. Define h1(a) = h2(a′) = a and h1(a′) = h2(a) = ǫ for a ∈ Σ. Define
h(a) = h(a′) = a for a ∈ Σ. Then

L1 X L2 = h(h−1
1 (L1) ∩ h−1

2 (L2)).

In a similar way,

L1 x L2 = h(h−1
1 (L1) ∩ h−1

2 (L2) ∩ (ΣΣ′)∗).

However, the shuffle (resp., perfect shuffle) of two context-free languages need
not be context-free. For example, ifL1 = {ambm : m ≥ 1} andL2 = {cndn : n ≥
1}, thenL := L1 X L2 is not a CFL. If it were, thenL ∩ a+c+b+d+ = {amcnbmdn :
m, n ≥ 1} would be a CFL, which it isn’t (via the pumping lemma).

2

Similarly, if L3 = {amb2m : m ≥ 1} and L4 = {a2nbn : n ≥ 1}, then
L3 x L4 = {a2n(ba)nb2n : n ≥ 1}, which is clearly not a CFL.

For these, and other facts, see [1].

2 Self-shuffles

Instead of shuffling languages together, we can take a language and shuffle (resp.,
perfect shuffle) each word with itself. Another variation is to shuffle each word
with its reverse. This gives four different transformations on languages, which we
call self-shuffles:

ss(L) =
⋃

x∈L

{xX x}

pss(L) =
⋃

x∈L

xx x

ssr(L) =
⋃

x∈L

{xX xR}

pssr(L) =
⋃

x∈L

xx xR.

We would like to understand how these transformations affect regular and
context-free languages. We obtain some results, but other questions are still open.

Theorem 1. If L is regular, then ss(L) need not be context-free.

Proof. We show that ss({0, 1}∗) is not a CFL. Suppose it is, and considerL′ =
ss({0, 1}∗) ∩ R, whereR = {01a0b+11c+10d1 : a, b, c, d ≥ 1}. SinceR is regular, it
suffices to show thatL′ is not context-free.

Now consider an arbitrary wordw ∈ L′. Thenw = 01a0b+11c+10d1 for some
a, b, c, d ≥ 1, and there exists ay ∈ {0, 1}∗ such thatw ∈ yX y. The structure ofw
allows us to determiney. Let y1 andy2 be copies ofy such thatw ∈ y1X y2, and
the first letter ofw is taken fromy1.

The first symbol ofy is evidently 0. It follows that the prefix 01a of w is taken
entirely fromy1, since the 0 is taken fromy1 by definition and the first symbol of
y2 is 0. Therefore 01a is a prefix ofy1.

It follows that y2 also contains 01a as a prefix, and sincea ≥ 1 this is only
possible if the first 0 ofy2 is located in the 0b+1 block of w. Otherwise,y2 would
be a subsequence of 0d1 andy1 would have 01a0b+11c+1 as a prefix (implying that
y1 , y2). Furthermore, the second symbol ofy2 being 1 implies that exactly one
of the 0’s in the 0b+1 block is fromy2. Thus the rest are fromy1 and 01a0b is a
prefix of y1.

3

Note thaty1 andy2 both end in 1, andw ends in 0d1. By the same logic as
before, we can conclude that 0d1 is a suffix of exactly one of them, and that the
other ends in the 1c+1 block. Thusy2 contains 0d1 as a suffix andy1 ends in the
1c+1 block (otherwise,y1 , y2).

Finally, since the second last symbol ofy1 is 0 andy1 ends in the 1c+1 block,
we can conclude thaty1 contains exactly one 1 from the 1c+1 block and thaty1 =

01a0b1. Unshuffling y1 from w yieldsy2 = 01c0d1.
Recall thaty1 = y2. So,

y1 = 01a0b1 = 01c0d1 = y2

and sincea, b, c, d ≥ 1 we know that

a = c and b = d.

If w ∈ L′ then

w = 01a0b+11c+10d1

= 01a0d+11a+10d1

= 01a0d(01)1a0d1.

Sincew was arbitrary, we have

L′ = {01a0b+11c+10d1 : a = c, b = d, anda, d ≥ 1}

= {01n0m(01)1n0m1 : m, n ≥ 1},

which is clearly not a CFL, using the pumping lemma. �

Remark 2. In a previous version of this paper, proving that ss({0, 1}∗) is not context-
free was listed as an open problem. After this was solved by D.Henshall, a solu-
tion was given by Georg Zetzsche independently.

Similarly, we can show

Theorem 3. L =
⋃

w∈{0,1}∗(wXwXw) is not context-free.

Proof. We use Ogden’s lemma. Consider

L = {wXwXw : w ∈ {0, 1}∗} ∩ 0∗10∗10∗1.

Pick s = 0n10n10n1 in L to pump. Writes = uvxyz and mark the middle
block of 0’s. If v begins in the middle block of 0’s, then pump up to obtain
s′ = 0n10j10k1, wheren < j andn ≤ k. We can’t haves′ ∈ wXwXw because

4

the first w (the one ending at the first 1) is too short. Ifv begins in the first
block of 0’s, theny occurs in the middle block, so now pump down to obtain
s′ = 0i10j10n1, wherei ≤ n and j < n. Again, we can’t haves′ ∈ wXwXw,
because the thirdw (the one ending at the third 1) must contain all of the 0’s
immediately preceding the final 1, and hence is too long. �

Clearly ss({0, 1}∗) is in NP, since given a wordw we can guessx and check
thatw ∈ xX x. However, we do not know whether we can solve membership for
ss({0, 1}∗) in polynomial time. This question is apparently originally due to Jeff
Erickson [2], and we learned about it from Erik Demaine.

Open Problem 4. Is ss({0, 1}∗) in P?

We mention a few related problems. Mansfield [4] showed that,given words
w, x, y, one can decide in polynomial time ifw ∈ xX y. Later, the same au-
thor [5] and, independently, Warmuth and Haussler [6] showed that, given words
w, x1, x2, . . . , xn, deciding ifw ∈ x1X x2X · · ·X xn is NP-complete. However,
the decision problem implied by Open Problem 4 asks something different: given
w, does there existx such thatw ∈ xX x?

Open Problem 5. Determine a simple closed form for

ak(n) :=

∣

∣

∣

∣

∣

∣

∣

⋃

x∈{0,1,...,k−1}n

(xX x)

∣

∣

∣

∣

∣

∣

∣

.

The first few terms are given as follows:

n 0 1 2 3 4 5 6 7 8 9
a2(n) 1 2 6 22 82 320 1268 5102 20632 83972
a3(n) 1 3 15 93 621 4425 32703 248901
a4(n) 1 4 28 244 2332 23848 254416
a5(n) 1 5 45 505 6265 83225
a6(n) 1 6 66 906 13806 225336

Clearlyai(0) = 1, ai(1) = i, andai(2) = 2i2 − i. Empirically we haveai(3) =
5i3−5i2+ i, ai(4) = 14i4−21i3+5i2+3i, andai(5) = 42i5−84i4+32i3+21i2−10i.

This suggests thatai(n) = (2n
n)

n+1 in −
(

2n−1
n+1

)

in−1
+ O(in−2), but we do not have a proof.

5

3 Perfect self-shuffle

We can consider the same question for perfect shuffle. We define

pss(L) =
⋃

x∈L

{xx x}.

Theorem 6. Both the class of regular languages and the class of context-free
languages are closed under pss.

Proof. Use the fact that pss(L) = h(L), whereh is the morphism mappinga→ aa
for each lettera. �

4 Self-shuffle with reverse

We now characterize those wordsy that can be written as a shuffle of a word with
its reverse; that is, as a member of the setxX xR.

An abelian square is a word of the formxx′ wherex′ is a permutation ofx.

Theorem 7. (a) If there exists x such that y ∈ xX xR, then y is an abelian square.
(b) If y is a binary abelian square, then there exists x such that y ∈ xX xR.

We introduce the following notation: ifw = a1a2 · · · an, then byw[i.. j] we
mean the factoraiai+1 · · · a j.

Proof. (a) If y is the shuffle of x with its reverse, then the first half ofy must
contain some prefix ofx, sayx[1..k]. Then the second half ofy must contain the
remaining suffix of x, say x[k + 1..n]. Then the second half ofy must contain,
in the remaining positions, some prefix ofx, reversed. But by counting we see
that this prefix must bex[1..k]. So the first half ofy must contain the remaining
symbols ofx, reversed. This shows that the first half ofy is just x[1..k] shuffled
with x[k + 1..n]R, and the second half ofy is justx[k + 1..n] shuffled withx[1..k]R.

So the second half ofy is a permutation of the first half ofy.
(b) It remains to see that every binary abelian square can be obtained in this

way.
To see this, note that ifx containsj 0’s andn − j 1’s, then we can gety by

shuffling 0j1n− j with its reverse. We get the 0’s inx by choosing them from 0j1n− j,
and we get the 1’s inx by choosing them from (0j1n− j)R. �

Remark 8. The word 012012 is an example of a ternary abelian square thatcannot
be written as an element ofwXwR for any wordw.

6

Remark 9. The preceding proof gives another proof of the classic identity
(

2n
n

)

=

(

n
0

)2

+ · · · +

(

n
n

)2

.

To see this, we use the following bijections: the binary words of length 2n having
exactlyn 0’s (and hencen 1’s) are in one-one correspondence with the abelian
squares of length 2n, as follows: take such a word and complement the lastn bits.
Thus there are

(

2n
n

)

binary abelian squares of length 2n.

On the other hand, there are
(

n
i

)2
words that are abelian squares and have a first

and last half, each withi 0’s. Summing this fromi = 0 to n gives the result.

Corollary 10. The language

ssr({0, 1}∗) =
⋃

x∈{0,1}∗

xX xR

is not a CFL, but is in P.

Proof. From above, intersecting ssr({0, 1}∗) with 0+1+0+1+ gives

{0m1n0m+2k1n : m, n ≥ 1 andk ≥ 0} ∪ {0m1n+2k0m1n : m, n ≥ 1 andk ≥ 0}.

Now the pumping lemma applied toz = 0n1n0n1n shows this is not a CFL.
Since we can easily test if a string is an abelian square by counting the number

of 0’s in the first half, and comparing it to the number of 0’s inthe second half, it
follows that ssr({0, 1}∗) is in P. �

As before, we can define

bk(n) :=

∣

∣

∣

∣

∣

∣

∣

⋃

x∈{0,1,...,k−1}n

(xX xR)

∣

∣

∣

∣

∣

∣

∣

.

For k = 2, our results above explainbk(n), but we do not know a closed form for
largerk.

The first few terms are given as follows:

n 0 1 2 3 4 5 6 7 8 9
b2(n) 1 2 6 20 70 252 924 3432 12870 48620
b3(n) 1 3 15 87 549 3657 25317 180459
b4(n) 1 4 28 232 2116 20560 208912
b5(n) 1 5 45 485 5785 73785
b6(n) 1 6 66 876 12906 203676

7

Clearlybi(0) = 1, bi(1) = i, andbi(2) = 2i2 − i. Empirically, we havebi(3) =
5i3−6i2+2i, bi(4) = 14i4−27i3+17i2−3i, andbi(5) = 42i5−110i4+94i3−17i2−8i.

This suggests thatbi(n) = (2n
n)

n+1 in −
((

2n−1
n−1

)

− 2n−1
)

in−1
+O(in−2), but we do not have

a proof.

5 Perfect self-shuffle with reverse

We now consider the operationw → wxwR applied to languages. Recall that
pssr(L) =

⋃

x∈L{xx xR}.

Theorem 11. If L is regular then pssr(L) is not necessarily regular.

Proof. Let L = 0+10+. Then pssr(L) ∩ 0+110+ = {0n110n : n ≥ 2}, which is
clearly not regular. �

Theorem 12. If L is context-free then pssr(L) is not necessarily context-free.

Proof. Let L = {0m1m2n3n : m, n ≥ 1}. Then pssr(L) ∩ (03)+(12)+(21)+(30)+ =
{(03)n(12)n(21)n(30)n : n ≥ 1}, and this language is easily seen to be non-context-
free. �

Theorem 13. If L is regular then pssr(L) is necessarily context-free.

We defer the proof of Theorem 13 until Section 6.4 below.

6 Unshuffling

Given a finite wordw = a1a2 · · · an we can decimate it into its odd- and even-
indexed parts, as follows:

odd(w) = a1a3 · · · an−((n+1) mod 2)

even(w) = a2a4 · · · an−(n mod 2)

Similarly, givenw = a1a2 · · · an we can extract its first and last halves, as follows:

fh(w) = a1a2 · · · a⌊n/2⌋
lh(w) = a⌊n/2⌋+1 · · · an

We now turn our attention to four “unshuffling” operations:

bd(w) = odd(w)even(w)

bdr(w) = odd(w)even(w)R

bdi(w) = fh(w)x lh(w)

bdir(w) = fh(w)x lh(w)R

8

6.1 Binary decimation

We first consider a kind of binary decimation, which forms a sort of inverse to
perfect shuffle.

Given a wordw = a1a2 · · · a2n of even length, note that

bd(w) = a1a3 · · · a2n−1a2a4 · · · a2n

is formed by “unshuffling” the word into its odd- and even-indexed letters. For
example, the French wordmaigre becomes the wordmirage under this opera-
tion.

Theorem 14. Neither the class of regular languages nor the class of context-free
languages is closed under bd.

Proof. Consider the regular (and context-free) languageL = (00+ 11)+. Then
bd(L) = {ww : w ∈ {0, 1}+}, which is well-known to be non-context-free. �

6.2 Binary decimation with reverse

We now consider the operation bdr, which is a kind of binary decimation with
reverse. Note that

bdr(a1a2 · · · a2n) = a1a3 · · · a2n−1a2n · · · a4a2.

For example, bdr(friend) = finder and bdr(perverse) = preserve.

Theorem 15. The class of regular languages is not closed under bdr.

Proof. Let L = (00)+11. Then bdr(L) = {0n110n : n ≥ 1}, which is not regular.
�

Theorem 16. The class of context-free languages is not closed under bdr.

Proof. ConsiderL = {(03)n(12)n : n ≥ 1}. Then bdr(L) = {0n1n2n3n : n ≥ 1},
which is not context-free. �

Theorem 17. If L is regular, then bdr(L) is context-free.

Proof. We show how to accept words of bdr(L) of even length; words of odd
length can be treated similarly.

On inputw = b1b2 · · · b2n, a PDA can guessx = a1a2 · · · a2n in parallel with
the elements of the input. At each stage the PDA comparesai to b(i+1)/2 if i is odd;
and otherwise it pushesai onto the stack (ifi is even). At some point the PDA
nondeterministically guesses that it has seena2n and pushed it on the stack; it now
pops the stack (which is holdinga2n · · · a4a2) and compares the stack contents to
the rest of the inputw.

The PDA accepts ifx ∈ L and the symbols matched as described. �

9

6.3 Inverse decimation

We now consider a kind of inverse decimation, which shuffles the first and last
halves of a word.

Note that ifw = a1 · · · a2n is of even length, then

bdi(w) = a1an+1a2an+2 · · · ana2n.

Further, bdi(bd(w)) = bd(bdi(w)) for w of even length.

Theorem 18. If L is regular then so is bdi(L).

Proof. On input x we simulate the DFA forL on the odd-indexed letters ofx,
starting fromq0, and we simulate a second copy of the DFA forL on the even-
indexed letters, starting at some guessed stateq. Finally, we check to see that our
guess ofq was correct. �

Theorem 19. The class of context-free languages is not closed under bdi.

Proof. Let L = {0m1m22n34n : m, n ≥ 1}. It is easy to see that

bdi(L) =



























(01)m−3n(02)2n(03)n(13)3n, if m ≥ 3n;

(02)m−n(03)n(13)m(23)3n−m, if n ≤ m ≤ 3n;

(03)m(13)m(23)2n(33)n−m, if m ≤ n.

ConsiderL′ := bdi(L) ∩ (03)+(13)+(23)+. From the above we haveL′ =
{(03)n(13)n(23)2n : n ≥ 1}, which is evidently not context-free. �

6.4 Inverse decimation with reverse

Note that ifw = a1 · · · a2n is of even length, then bdir(w) = a1a2na2a2n−1 · · · anan+1.
If w = a1 · · · a2n+1 is of odd length, we define

bdir(w) = a1a2n+1a2a2n · · · anan+2an+1.

Theorem 20. If L is regular then so is bdir(L).

Proof. On inputx we simulate the DFAM for L on the odd-indexed letters ofx,
starting fromq0. We also create an NFAM′ acceptingLR in the usual manner, by
reversing the transitions ofM, and making the start state the set of final states of
M, and we simulateM′ on the even-indexed letters ofx. Finally, we check to see
that we meet in the middle. �

Theorem 21. The class of context-free languages is not closed under bdir.

10

Proof. ConsiderL = {02m14m2n3n : m, n ≥ 1}. ThenL is a CFL, and it is easy to
verify that

bdir(02m14m2n3n) =



















































(03)n(02)n(01)2m−2n(11)m+n, if m ≥ n;

(03)n(02)2m−n(12)2n−2m(11)3m−n, if m ≤ n ≤ 2m;

(03)2m(13)n−2m(12)n(11)3m−n, if 2m ≤ n ≤ 3m;

(03)2m(13)n−2m(12)6m−n(22)n−3m, if 3m ≤ n ≤ 6m;

(03)2m(13)4m(23)n−6m(22)3m, if n ≥ 6m.

Assume bdir(L) is a CFL. ThenL′ := bdir(L) ∩ (03)+(13)+(22)+ is a CFL, and
from above we haveL′ = {(03)2m(13)4m(22)3m : m ≥ 1}, which is not a CFL. �

As Georg Zetzsche has kindly pointed out to us, the operationbdir was studied
previously by Jantzen and Petersen [3]; they called it “twist”. They proved our
Theorems 20 and 21.

We now return to the proof of Theorem 13, which was postponed until now.
We need two lemmas:

Lemma 22. Suppose L is a regular language. Then L′ = {wwR : w ∈ L} is a
CFL.

Proof. On inputx, a PDA can guessw and verify it is inL, while pushing it on
the stack. Nondeterministically it then guesses it is at theend ofw and pops the
stack, comparing to the input. �

Lemma 23. For all words w we have wxwR
= bdir(w) bdir(w)R.

Proof. If w is of even length then

wxwR
= (fh(w)lh(w))x (fh(w)lh(w))R

= (fh(w)lh(w))x (lh(w)Rfh(w)R)

= (fh(w)x lh(w)R)(lh(w)x fh(w)R)

= bdir(w)bdir(w)R.

A similar proof works forw of odd length. �

We can now prove Theorem 13.

Proof. From Lemma 23 we have

pssr(L) =
⋃

x∈L

xx xR
=

⋃

x∈L

bdir(x) bdir(x)R
=

⋃

x∈bdir(L)

xxR
.

If L is regular, then bdir(L) is regular, by Theorem 20. Then, from Lemma 22, it
follows that pssr(L) is a CFL. �

11

7 Acknowledgment

We are grateful to Georg Zetzsche for his remarks.

References

[1] J. Berstel.Transductions and Context-Free Languages. Teubner, 1979.

[2] J. Erickson. How hard is unshuffling a string?
http://cstheory.stackexchange.com/questions/34/

how-hard-is-unshuffling-a-string, August 16 2010.

[3] M. Jantzen and H. Petersen. Cancellation in context-free languages: enrichment by
reduction.Theoret. Comput. Sci. 127 (1994), 149–170.

[4] A. Mansfield. An algorithm for a merge recognition problem. Disc. Appl. Math. 4
(1982), 193–197.

[5] A. Mansfield. On the computational complexity of a merge recognition problem.
Disc. Appl. Math. 5 (1983), 119–122.

[6] M. K. Warmuth and D. Haussler. On the complexity of iterated shuffle. J. Comput.
Sys. Sci. 28 (1984), 345–358.

12

http://cstheory.stackexchange.com/questions/34/how-hard-is-unshuffling-a-string
http://cstheory.stackexchange.com/questions/34/how-hard-is-unshuffling-a-string

