
Finding Disjoint Paths in Split Graphs�

Pinar Heggernes1, Pim van ’t Hof1, Erik Jan van Leeuwen2, and Reza Saei1

1 Department of Informatics, University of Bergen, Norway
{pinar.heggernes,pim.vanthof,reza.saeidinvar}@ii.uib.no

2 MPI für Informatik, Saarbrücken, Germany
erikjan@mpi-inf.mpg.de

Abstract. The well-known Disjoint Paths problem takes as input a
graph G and a set of k pairs of terminals in G, and the task is to decide
whether there exists a collection of k pairwise vertex-disjoint paths in G
such that the vertices in each terminal pair are connected to each other
by one of the paths. This problem is known to NP-complete, even when
restricted to planar graphs or interval graphs. Moreover, although the
problem is fixed-parameter tractable when parameterized by k due to a
celebrated result by Robertson and Seymour, it is known not to admit
a polynomial kernel unless NP ⊆ coNP/poly. We prove that Disjoint

Paths remains NP-complete on split graphs, and show that the problem
admits a kernel with O(k2) vertices when restricted to this graph class.
We furthermore prove that, on split graphs, the edge-disjoint variant of
the problem is also NP-complete and admits a kernel with O(k3) vertices.
To the best of our knowledge, our kernelization results are the first non-
trivial kernelization results for these problems on graph classes.

1 Introduction

Finding vertex-disjoint or edge-disjoint paths with specified endpoints is one of
the most studied classical and fundamental problems in algorithmic graph theory
and combinatorial optimization, with many applications in such areas as VLSI
layout, transportation networks, and network reliability; see, for example, the
surveys by Frank [9] and by Vygen [24]. An instance of the Vertex-Disjoint

Paths problem consists of a graph G with n vertices and m edges, and a set
X = {(s1, t1), . . . , (sk, tk)} of k pairs of vertices in G, called the terminals. The
question is whether there exists a collection P = {P1, . . . , Pk} of k pairwise
vertex-disjoint paths in G such that Pi connects si to ti for every i ∈ {1, . . . , k}.
The Edge-Disjoint Paths problem is defined analagously, but here the task
is to decide whether there exist k pairwise edge-disjoint paths instead of vertex-
disjoint paths.

The Vertex-Disjoint Paths problem was shown to be NP-complete by
Karp [13], one year before Even et al. [8] proved that the same holds for Edge-
Disjoint Paths. A celebrated result by Robertson and Seymour [22], obtained

� This research is supported by the Research Council of Norway.

V. Geffert et al. (Eds.): SOFSEM 2014, LNCS 8327, pp. 315–326, 2014.
c© Springer International Publishing Switzerland 2014

316 P. Heggernes et al.

as part of their groundbreaking graph minors theory, states that the Vertex-

Disjoint Paths problem can be solved in O(n3) time for every fixed k. This im-
plies that Edge-Disjoint Paths can be solved in O(m3) time for every fixed k.
As a recent development, an O(n2)-time algorithm for each of the problems,
for every fixed k, was obtained by Kawarabayashi, Kobayashi and Reed [14].
The above results show that both problems are fixed-parameter tractable when
parameterized by the number of terminal pairs. On the negative side, Bodlaen-
der, Thomassé and Yeo [3] showed that, under the same parameterization, the
Vertex-Disjoint Paths problem does not admit a polynomial kernel, i.e., an
equivalent instance whose size is bounded by a polynomial in k, unless NP ⊆
coNP/poly.

Due to their evident importance, both problems have been intensively studied
on graph classes. A trivial reduction from Edge-Disjoint Paths to Vertex-

Disjoint Paths implies that the latter problem is NP-complete on line graphs.
It is known that both problems remain NP-complete when restricted to planar
graphs [16,17]. On the positive side, Vertex-Disjoint Paths can be solved in
linear time for every fixed k on planar graphs [21], or more generally, on graphs
of bounded genus [7,15]. Interestingly, Vertex-Disjoint Paths is polynomial-
time solvable on graphs of bounded treewidth [20], while Edge-Disjoint Paths

is NP-complete on series-parallel graphs [19], and hence on graphs of treewidth
at most 2. Gurski and Wanke [11] proved that Vertex-Disjoint Paths is NP-
complete on graphs of clique-width at most 6, but can be solved in linear time on
graphs of clique-width at most 2. Natarayan and Sprague [18] proved the NP-
completeness of Vertex-Disjoint Paths on interval graphs, and hence also
on all superclasses of interval graphs such as circular-arc graphs and chordal
graphs. On chordal graphs, Vertex-Disjoint Paths is linear-time solvable for
each fixed k [12].

Given the fact that theVertex-Disjoint Paths problem is unlikely to admit
a polynomial kernel on general graphs, and the amount of known results for both
problems on graph classes, it is surprising that no kernelization result has been
known on either problem when restricted to graph classes. Interestingly, even
the classical complexity status of both problems has been open on split graphs,
i.e., graphs whose vertex set can be partitioned into a clique and an independent
set, which form a well-studied graph class and a famous subclass of chordal
graphs [4,10].

We present the first non-trivial kernelization results for Vertex-Disjoint

Paths and Edge Disjoint Paths on graph classes, by showing that the prob-
lems admit kernels with O(k2) and O(k3) vertices, respectively, on split graphs.
To complement these results, we prove that both problems remain NP-complete
on this graph class. In this extended abstract, the proofs of results marked with
a star are omitted due to page restrictions.

2 Preliminaries

All the graphs considered in this paper are finite, simple and undirected. We
refer to the monograph by Diestel [5] for graph terminology and notation not

Finding Disjoint Paths in Split Graphs 317

defined below. Let G be a graph. For any vertex v in G, we write NG(v) to
denote the neighborhood of v, and dG(v) = |NG(v)| to denote the degree of v.
A split graph is a graph whose vertex set can be partitioned into a clique C and
an independent set I, either of which may be empty; such a partition (C, I) is
called a split partition. Note that, in general, a split graph can have more than
one split partition.

In any instance of Vertex-Disjoint Paths or Edge-Disjoint Paths, we
allow different terminals to coincide. For this reason, by slight abuse of termi-
nology, we define two paths to be vertex-disjoint if neither path contains an
inner vertex of the other. This implies that in any solution P for an instance
of Vertex-Disjoint Paths, a terminal might be an endpoint of several paths
in P , but none of the paths in P contains a terminal as an inner vertex. Note
that edge-disjoint paths are allowed to share vertices by definition. Hence, in any
solution P for an instance of Edge-Disjoint Paths, terminals may appear as
inner vertices of paths in P .

Let (G,X) be an instance of the Vertex-Disjoint Paths problem, where
X = {(s1, t1), . . . , (sk, tk)}. A solution P = {P1, . . . , Pk} for the instance (G,X)
is minimum if there is no solution Q = {Q1, . . . , Qk} for (G,X) such that
∑k

i=1 |E(Qi)| <
∑k

i=1 |E(Pi)|. Note that every path in a minimum solution
for (G,X) is an induced path in G.

For any problem Π, two instances I1, I2 of Π are equivalent if I1 is a yes-
instance of Π if and only if I2 is a yes-instance of Π.

A parameterized problem is a subset Q ⊆ Σ∗ × N for some finite alphabet
Σ, where the second part of the input is called the parameter. A parameterized
problem Q ⊆ Σ∗ × N is said to be fixed-parameter tractable if for each pair
(x, k) ∈ Σ∗ × N it can be decided in time f(k) |x|O(1) whether (x, k) ∈ Q, for
some function f that only depends on k; here, |x| denotes the length of input
x. We say that a parameterized problem Q has a kernel if there is an algorithm
that transforms each instance (x, k) in time (|x|+k)O(1) into an instance (x′, k′),
such that (x, k) ∈ Q if and only if (x′, k′) ∈ Q and |x′| + k′ ≤ g(k) for some
function g. Here, g is typically an exponential function of k. If g is a polynomial
or a linear function of k, then we say that the problem has a polynomial kernel or
a linear kernel, respectively. We refer the interested reader to the monograph by
Downey and Fellows [6] for more background on parameterized complexity. It is
known that a parameterized problem is fixed-parameter tractable if and only if
it is decidable and has a kernel, and several fixed-parameter tractable problems
are known to have polynomial or even linear kernels. Recently, methods have
been developed for proving non-existence of polynomial kernels, under some
complexity theoretical assumptions [1,2,3].

In the NP-completeness proofs in Section 3, we will reduce from a restricted
variant of the Satisfiability (SAT) problem. In order to define this variant,
we need to introduce some terminology. Let x be a variable and c a clause of a
Boolean formula ϕ in conjunctive normal form (CNF). We say that x appears in
c if either x or ¬x is a literal of c. If x is a literal of clause c, then we say that x
appears positively in c. Similarly, if ¬x is a literal of c, then x appears negatively

318 P. Heggernes et al.

in c. Given a Boolean formula ϕ, we say that a variable x appears positively
(respectively negatively) if there is a clause c in ϕ in which x appears positively
(respectively negatively). The following result, which we will use to prove that
Vertex-Disjoint Paths is NP-complete on split graphs, is due to Tovey [23].

Theorem 1 ([23]). The SAT problem is NP-complete when restricted to CNF
formulas satisfying the following three conditions:

– every clause contains two or three literals;
– every variable appears in two or three clauses;
– every variable appears at least once positively and at least once negatively.

3 Finding Disjoint Paths in Split Graphs Is NP-Hard

Lynch [17] gave a polynomial-time reduction from SAT to Vertex-Disjoint

Paths, thereby proving the latter problem to be NP-complete in general.
By modifying his reduction, he then strengthened his result and proved that
Vertex-Disjoint Paths remains NP-complete when restricted to planar
graphs. In this section, we first show that the reduction of Lynch can also be
modified to prove thatVertex-Disjoint Paths is NP-complete on split graphs.
We then prove that the Edge-Disjoint Paths problem is NP-complete on split
graphs as well, using a reduction from the Edge-Disjoint Paths problem on
general graphs.

We first describe the reduction from SAT to Vertex-Disjoint Paths due to
Lynch [17]. Let ϕ = c1∨c2∨ . . .∨cm be a CNF formula, and let v1, . . . , vn be the
variables that appear in ϕ. We assume that every variable appears at least once
positively and at least once negatively; if this is not the case, then we can trivially
reduce the instance to an equivalent instance that satisfies this property. Given
the formula ϕ, we create an instance (Gϕ,Xϕ) of Vertex-Disjoint Paths as
follows.

The vertex set of the graph Gϕ consists of three types of vertices: variable
vertices, clause vertices, and literal vertices. For each variable vi in ϕ, we create
two variable vertices vi and wi; we call (vi, wi) a variable pair. For each clause
cj , we add two clause vertices cj and dj and call (cj , dj) a clause pair. For each
clause cj , we also add a literal vertex for each literal that appears in cj as follows.
If cj contains a literal vi, that is, if variable vi appears positively in clause cj ,
then we add a vertex �+i,j to the graph, and we make this vertex adjacent to

vertices cj and dj . Similarly, if cj contains a literal ¬vi, then we add a vertex �−i,j
and make it adjacent to both cj and dj . This way, we create |cj | paths of length
exactly 2 between each clause pair (cj , dj), where |cj | is the number of literals
in clause cj .

For each i ∈ {1, . . . , n}, we add edges to the graph in order to create ex-
actly two vertex-disjoint paths between the variable pair (vi, wi) as follows. Let
cj1 , cj2 , . . . , cjp be the clauses in which vi appears positively, where j1 < j2 <
· · · < jp. Similarly, let ck1 , ck2 , . . . , ckq be the clauses in which vi appears neg-
atively, where k1 < k2 < · · · < kp. Note that p ≥ 1 and q ≥ 1 due to the

Finding Disjoint Paths in Split Graphs 319

assumption that every variable appears at least once positively and at least
once negatively. We now add the edges vi�

+
i,j1

and �+i,jpwi, as well as the edges

�+i,j1�
+
i,j2

, �+i,j2�
+
i,j3

, . . . , �+i,jp−1
�+i,jp . Let L+

i = vi�
+
i,j1

�+i,j2 · · · �+i,jp−1
�+i,jpwi denote

the path between vi and wi that is created this way. Similarly, we add exactly
those edges needed to create the path L−

i = vi�
−
i,k1

�−i,k2
· · · �−i,jq−1

�−i,jqwi. This
completes the construction of the graph Gϕ.

Let Xϕ be the set consisting of all the variable pairs and all the clause pairs in
Gϕ, i.e., Xϕ = {(vi, wi) | 1 ≤ i ≤ n} ∪ {(cj , dj) | 1 ≤ j ≤ m}. The pair (Gϕ,Xϕ)
is the instance of Vertex-Disjoint Paths corresponding to the instance ϕ of
SAT.

Theorem 2 ([17]). Let ϕ be a CNF formula. Then ϕ is satisfiable if and only
if (Gϕ,Xϕ) is a yes-instance of the Vertex-Disjoint Paths problem.

We are now ready to prove our first result.

Theorem 3. The Vertex-Disjoint Paths problem is NP-complete on split
graphs.

Proof. We reduce from the NP-complete variant of SAT defined in Theorem 1.
Let ϕ = c1 ∨ c2 ∨ . . . ∨ cm be a CNF formula that satisfies the three conditions
mentioned in Theorem 1, and let v1, . . . , vn be the variables that appear in ϕ. Let
(Gϕ,Xϕ) be the instance of Vertex-Disjoint Paths constructed from ϕ in the
way described at the beginning of this section. Now let G be the graph obtained
from Gϕ by adding an edge between each pair of distinct literal vertices, i.e., by
adding all the edges needed to make the literal vertices form a clique. The graph
G clearly is a split graph.

We will show that (G,Xϕ) is a yes-instance ofVertex-Disjoint Paths if and
only if (Gϕ,Xϕ) is a yes-instance of Vertex-Disjoint Paths. Since (Gϕ,Xϕ)
is a yes-instance of Vertex-Disjoint Paths if and only if the formula ϕ is
satisfiable due to Theorem 2, this suffices to prove the theorem.

If (Gϕ,Xϕ) is a yes-instance of Vertex-Disjoint Paths, then so is (G,Xϕ)
due to the fact that G is a supergraph of Gϕ. Hence it remains to prove the
reverse direction. Suppose (G,Xϕ) is a yes-instance ofVertex-Disjoint Paths.
Let P = {P1, . . . , Pn, Q1, . . . , Qm} be a minimum solution, where each path Pi

connects the two terminal vertices in the variable pair (vi, wi), and each path Qj

connects the terminals in the clause pair (cj , dj). We will show that all the paths
in P exist also in the graph Gϕ, implying that P is a solution for the instance
(Gϕ,Xϕ).

The assumption that P is a minimum solution implies that every path in P
is an induced path in G. By the construction of G, this implies that all the inner
vertices of every path in P are literal vertices. Moreover, since the literal vertices
form a clique in G, every path in P has at most two inner vertices.

Let j ∈ {1, . . . ,m}. Since NG(cj) = NG(dj), the vertices cj and dj are non-
adjacent, and Qj is an induced path between cj and dj , the path Qj must have
length 2, and its only inner vertex is a literal vertex. Recall that we only added

320 P. Heggernes et al.

edges between distinct literal vertices when constructing the graph G from Gϕ.
Hence the path Qj exists in Gϕ.

Now let i ∈ {1, . . . , n}. We consider the path Pi between vi and wi. As we
observed earlier, the path Pi contains at most two inner vertices, and all inner
vertices of Pi are literal vertices. If Pi has exactly one inner vertex, then Pi exists
in Gϕ for the same reason as why the path Qj from the previous paragraph exists
in Gϕ. Suppose Pi has two inner vertices. Recall the two vertex-disjoint paths L

+
i

and L−
i between vi and wi, respectively, that were defined just above Theorem 2.

Since vi appears in at most three different clauses, at least once positively and
at least once negatively, one of these paths has length 2, while the other path
has length 2 or 3. Without loss of generality, suppose L+

i has length 2, and let
� denote the only inner vertex of L+

i . Note that both vi and wi are adjacent to
�. Since Pi is an induced path from vi to wi with exactly two inner vertices, Pi

cannot contain the vertex �. From the construction of G, it is then clear that
both inner vertices of Pi must lie on the path L−

i . This implies that L−
i must

have length 3, and that Pi = L−
i . We conclude that the path Pi exists in Gϕ. �	

We now prove the analogue of Theorem 3 for Edge-Disjoint Paths.

Theorem 4. TheEdge-DisjointPathsproblem isNP-complete on split graphs.

Proof. We reduce from Edge-Disjoint Paths on general graphs, which is well-
known to be NP-complete [16]. Let (G,X) be an instance of Edge-Disjoint

Paths, where X = {(s1, t1), . . . , (sk, tk)}. Let G′ be the graph obtained from
G by adding, for every i ∈ {1, . . . , k}, two new vertices s′i and t′i as well as
two edges s′isi and t′iti. Let X ′ = {(s′1, t′1), . . . , (s′k, t′k)}. Clearly, (G,X) is a
yes-instance of Edge-Disjoint Paths if and only if (G′,X ′) is a yes-instance
of Edge-Disjoint Paths. From G′, we create a split graph G′′ as follows. For
every pair of vertices u, v ∈ V (G) such that uv /∈ E(G), we add to G′ the
edge uv as well as two new terminals suv, tuv. Let G′′ be the resulting graph,
let Q = {(suv, tuv) | u, v ∈ V (G), uv /∈ E(G)} be the terminal pairs that were
added to G′ to create G′′, and let X ′′ = X ′ ∪ Q. We claim that (G′′,X ′′) and
(G′,X ′) are equivalent instances of Edge-Disjoint Paths.

Since G′′ is a supergraph of G′, it is clear that (G′′,X ′′) is a yes-instance
of Edge-Disjoint Paths if (G′,X ′) is. For the reverse direction, suppose that
(G′′,X ′′) is a yes-instance. For every pair (suv, tuv) ∈ Q, let Puv be unique path
of length 3 in G′′ between suv and tuv, and let P ′ be the set consisting of these
paths. It can be shown that there is a solution P for (G′′,X ′′) such that P ′ ⊆ P .
Note that the paths in P ′ contain all the edges that were added between non-
adjacent vertices in G′ in the construction of G′′. This implies that for every
(s, t) ∈ X ′, the path in P connecting s to t contains only edges that already
existed in G′. Hence P \ P ′ is a solution for the instance (G′,X ′). �	

4 Two Polynomial Kernels

In this section, we present polynomial kernels for Vertex-Disjoint Paths

and Edge-Disjoint Paths on split graphs, parameterized by the number of
terminal pairs.

Finding Disjoint Paths in Split Graphs 321

Before we present the kernels, we introduce some additional terminology. Let
(G,X , k) be an instance of either the Vertex-Disjoint Paths problem or the
Edge-Disjoint Paths problem, where X = {(s1, t1), . . . , (sk, tk)}. Every vertex
in the set {s1, . . . , sk, t1, . . . , tk} is called a terminal. If si = v (resp. ti = v) for
some v ∈ V (G), then we say that si (resp. ti) is a terminal on v; note that,
in general, there can be more than one terminal on v. A vertex v ∈ V (G) is a
terminal vertex if there is at least one terminal on v, and v is a non-terminal
vertex otherwise. Given a path P in G and a vertex v ∈ V (G), we say that P
visits v if v ∈ V (P).

4.1 Polynomial Kernel for Vertex-Disjoint Paths on Split Graphs

Our kernelization algorithm for Vertex-Disjoint Paths on split graphs con-
sists of four reduction rules. In each of the rules below, we let (G,X , k) denote
the instance of Vertex-Disjoint Paths on which the rule is applied, where we
fix a split partition (C, I) of G. The instance that is obtained after the applica-
tion of the rule on (G,X , k) is denoted by (G′,X ′, k′). We say that a reduction
rule is safe if (G,X , k) is a yes-instance of Vertex-Disjoint Paths if and only
if (G′,X ′, k′) is a yes-instance of this problem. A reduction rule is only applied
if none of the previous rules can be applied, i.e., for every i ∈ {2, 3, 4}, Rule i is
applied only if Rule j cannot be applied for any j ∈ {1, . . . , i− 1}.
Rule 1. If there exists a terminal vertex v ∈ V (G) such that v = si = ti for
some terminal pair (si, ti) ∈ X , then we set X ′ = X \ {(si, ti)} and k′ = k − 1.
If v becomes a non-terminal vertex, then we set G′ = G − v; otherwise, we set
G′ = G.

Rule 2. If there exists a non-terminal vertex v ∈ I, then we set G′ = G − v,
X ′ = X , and k′ = k.

Lemma 1. Both Rule 1 and Rule 2 are safe.

Proof. Rule 1 is safe since there is no need to find a path between si and ti, and
we make sure that v cannot serve as an inner vertex of another path. To see why
Rule 2 is safe, suppose there exists a non-terminal vertex v ∈ I. It is clear that
if (G′,X ′, k′) is a yes-instance of Vertex-Disjoint Paths, then (G,X , k) is
also a yes-instance of Vertex-Disjoint Paths, as G is a supergraph of G′. For
the reverse direction, suppose (G,X , k) is a yes-instance of Vertex-Disjoint

Paths, and let P be a minimum solution for this instance. Since all the paths
in P are induced and v is not a terminal vertex, v is not visited by any of the
paths in P . Hence P is also a solution for the instance (G′,X ′, k′). �	
Rule 3. If there exists a terminal vertex v ∈ I with dG(v) ≥ 2k−p, where p ≥ 1
is the number of terminals on v, then we set G′ to be the graph obtained from
G by deleting all edges incident with v, adding p new vertices {x1, . . . , xp} to C,
and making these new vertices adjacent to v, to each other, and to all the other
vertices in C. We also set X ′ = X and k′ = k.

322 P. Heggernes et al.

Lemma 2. Rule 3 is safe.

Proof. Suppose there exists a terminal vertex v ∈ I with dG(v) ≥ 2k− p, where
p ≥ 1 is the number of terminals on v. Let X = {x1, . . . , xp} be the set of
vertices that were added to C during the execution of the rule. Hence, after the
execution of the rule, X ⊆ C. Let Y = {y1, . . . , yp} be the set of terminals on v.

First suppose (G,X , k) is a yes-instance of Vertex-Disjoint Paths, and
let P = {P1, . . . , Pk} be an arbitrary solution for this instance. We construct a
solution P ′ = {P ′

1, . . . , P
′
k} for (G′,X ′, k′) as follows. Let i ∈ {1, . . . , k}. First

suppose that neither of the terminals in the pair (si, ti) belongs to the set Y .
Since the paths in P are pairwise vertex-disjoint and v is a terminal vertex, the
path Pi does not contain an edge incident with v. Hence Pi exists in G′, and
we set P ′

i = Pi. Now suppose v ∈ {si, ti}. The assumption that Rule 1 cannot
be applied implies that si
= ti. Suppose, without loss of generality, that v = si.
Then si ∈ Y , so si = yr for some r ∈ {1, . . . , p}. Let vw be the first edge of the
path Pi in G. We define P ′

i to be the path in G′ obtained from Pi by deleting
the edge vw and adding the vertex xr as well as the edges vxr and xrw. Let
P ′ = {P ′

1, . . . , P
′
k} denote the collection of paths in G′ obtained this way. Since

the paths in P are pairwise vertex-disjoint in G, and every vertex in {x1, . . . , xp}
is visited by exactly one path in P ′, it holds that the paths in P ′ are pairwise
vertex-disjoint in G′. Hence P ′ is a solution for the instance (G′,X ′, k′).

For the reverse direction, suppose (G′,X ′, k′) is a yes-instance of Vertex-

Disjoint Paths, and let Q = {Q1, . . . , Qk} be a minimum solution. Then each
of the paths in Q is an induced path in G′. Let Q∗ ⊆ Q be the set of paths in
Q that visit a vertex in the set X = {x1, . . . , xp}. Since there are p terminals
on v, and v has exactly p neighbors in G′ (namely, the vertices of X), every path
in Q∗ has v as one of its endpoints and |Q∗| = p. Moreover, as no vertex in X
is a terminal vertex, and the only neighbors of a vertex xi ∈ X are v and the
vertices of C \ {xi}, every path in Q∗ visits exactly one vertex of C \X . Finally,
we observe that each of the k − p paths in Q \ Q∗ visits at most two vertices
of C and none of X , as C is a clique and every vertex in X is a non-terminal
vertex that is already visited by some path in Q∗. Recall that dG(v) ≥ 2k − p.
Therefore, at least p vertices of NG(v), say z1, . . . , zp, are not visited by any path
in Q.

Armed with the above observations, we construct a solution P = (P1, . . . , Pk)
for (G,X , k) as follows. For every path Qi ∈ Q\Q∗, we define Pi = Qi. Now let
Qi ∈ Q∗. The path Qi visits v, one vertex x� ∈ X , and one vertex z ∈ C \X .
If z ∈ NG(v), then we define Pi to be the path in G whose single edge is vz.
If z /∈ NG(v), then we define Pi to be the path obtained from Qi by replacing
the vertex x� by z�. It is easy to verify that P is a solution for the instance
(G,X , k). �	

Rule 4. If there exists a non-terminal vertex v ∈ C that has no neighbors in I,
then we set G′ = G− v, X ′ = X , and k′ = k.

Lemma 3. (�) Rule 4 is safe.

Finding Disjoint Paths in Split Graphs 323

We now prove that the above four reduction rules yield a quadratic vertex
kernel for Vertex-Disjoint Paths on split graphs.

Theorem 5. The Vertex-Disjoint Paths problem on split graphs has a ker-
nel with at most 4k2 vertices, where k is the number of terminal pairs.

Proof. We describe a kernelization algorithm for Vertex-Disjoint Paths on
split graphs. Let (G,X , k) be an instance of Vertex-Disjoint Paths, where G
is a split graph. We fix a split partition (C, I) of G. We then exhaustively apply
the four reduction rules, making sure that whenever we apply Rule i for some
i ∈ {2, 3, 4}, Rule j is not applicable for any j ∈ {1, . . . , i−1}. Let (G′,X ′, k′) be
the resulting instance on which none of the reduction rules can be applied. From
the description of the reduction rules it is clear that G′ is a split graph, and
that X ′ = X and k′ ≤ k. By Lemmas 1, 2 and 3, (G′,X ′, k′) is a yes-instance
of Vertex-Disjoint Paths if and only if (G,X , k) is a yes-instance. Hence,
the algorithm indeed reduces any instance of Vertex-Disjoint Paths to an
equivalent instance.

We now determine an upper bound on the number of vertices in G′. Let
(C′, I ′) be the unique partition of V (G′) into a clique C′ and an independent
set I ′ such that I ′ = V (G′) ∩ I, i.e., the independent set I ′ contains exactly
those vertices of I that were not deleted during any application of the reduction
rules. Since Rule 2 cannot be applied, every vertex in I ′ is a terminal vertex, so
|I ′| ≤ 2k. Similarly, since Rules 3 and 4 cannot be applied, every vertex in I ′

has degree at most 2k − 2 and every vertex in C′ has at least one neighbor in
I ′, implying that |C′| ≤ 2k(2k − 2). This shows that |V (G′)| ≤ 4k2 − 2k ≤ 4k2.

It remains to argue that the above algorithm runs in polynomial time. Rule 1
is applied at most k times. Rules 2 and 3 together are applied at most |I| times
in total, as each vertex in I is considered only once. Since every vertex xi that
is created in an application of Rule 2 has exactly one neighbor in I, Rule 4
is never applied on such a vertex. Consequently, Rule 4 is applied at most |C|
times. This means that the algorithm executes all the reduction rules no more
than k + |I|+ |C| = k + |V (G)| times in total. Since each of the reduction rules
can trivially be executed in polynomial time, the overall running time of the
kernelization algorithm is polynomial. �	

4.2 Polynomial Kernel for Edge-Disjoint Paths on Split Graphs

In this section, we present a kernel with O(k3) vertices for the Edge-Disjoint

Paths problem on split graphs. We need the following two structural lemmas.

Lemma 4. (�) Let (G,X , k) be an instance of Edge-Disjoint Paths such
that G is a complete graph. If |V (G)| ≥ 2k, then (G,X , k) is a yes-instance.

Lemma 5. Let (G,X , k) be an instance of Edge-Disjoint Paths such that G
is a split graph with split partition (C, I), X = {(s1, t1), . . . , (sk, tk)} and si
= ti
for every i ∈ {1, . . . , k}. If the degree of every terminal vertex is at least the
number of terminals on it and |C| ≥ 2k, then (G,X , k) is a yes-instance.

324 P. Heggernes et al.

Proof. The proof of this lemma consists of two steps: project to C, and route
within C. In the first step, we project the terminals to C. Consider any terminal
vertex x ∈ I. For each terminal on x, we project it to a neighbor of x in such a
way that no two terminals on x are projected to the same vertex; if the terminal
is si, denote this neighbor by s′i, and if the terminal is ti, denote this neighbor by
t′i. Since the degree of every terminal vertex is at least the number of terminals
on it, this is indeed possible. For any terminal si that is on a terminal vertex
in C, let s′i = si, and for any terminal ti that is on a terminal vertex in C, let
t′i = ti. Let X ′ = {(s′i, t′i) | i = 1, . . . , k}, and let G′ = G[V (G) \ I].

Since G′ is a complete graph and |V (G′)| = |C| ≥ 2k, there exists a solution
P ′ = (P ′

1, . . . , P
′
k) for the instance (G

′,X ′, k) due to Lemma 4. We now show that
we can extend the paths in P ′ to obtain a solution P for the instance (G,X , k).
For every i ∈ {1, . . . , k}, we extend the path P ′

i using the edges sis
′
i (if si
= s′i)

and tit
′
i (if ti
= t′i); let the resulting path be Pi. Since for every terminal vertex

x ∈ I, no two terminals on x were projected to the same neighbor of x, the paths
in P are pairwise edge-disjoint. We conclude that (G,X , k) is a yes-instance. �	

Our kernelization algorithm for Edge-Disjoint Paths on split graphs con-
sists of two reduction rules. In each of the two reduction rules below, we let
(G,X , k) denote the instance on which the rule is applied, where we fix a split
partition (C, I) of G, and assume that X = {(si, ti) | i = 1, . . . , k}. The instance
that is obtained after the application of a rule is denoted by (G′,X ′, k′). A re-
duction rule is safe if (G,X , k) is a yes-instance of Edge-Disjoint Paths if and
only if (G′,X ′, k′) is a yes-instance of this problem. Reduction Rule B is only
applied if Rule A cannot be applied on the same instance.

Rule A. If si = ti for some terminal pair (si, ti) ∈ X , then we set G′ = G,
X ′ = X \ {(si, ti)}, and k′ = k − 1.

Rule A is trivially safe. Suppose now that (G,X , k) is an instance on which
Rule A cannot be applied, that is, si
= ti for every i ∈ {1, . . . , k}. Let (C, I)
be an arbitrary split partition of G. If |C| ≥ 2k, then Lemma 5 ensures that
(G,X , k) is a yes-instance, so our kernelization algorithm will output a trivial
yes-instance. If |C| ≤ 2k − 1, then we still need to upper bound the size of I by
a polynomial in k in order to obtain a polynomial kernel. This is exactly what
the second reduction rule will achieve. Before we describe the rule, we need to
define an auxiliary graph.

Let T be the set of all terminal vertices in G. We construct an auxiliary
bipartite graph H = (I \ T,A, F), where I \ T and A are the two sides of the
bipartition and F is the set of edges. Here, the set A is defined as follows: for
each pair v, w of vertices of C, we add vertices avw1 , . . . , avw4k+1. The set F is then
constructed by, for each x ∈ I \ T , adding an edge from x to all avw1 , . . . , avw4k+1

if and only if x is adjacent to both v and w in G.
Using the graphH , we can now define our second rule. Here, given a matching

M of H , we say that x ∈ I is covered by M if x is an endpoint of an edge in M .

Rule B. Let M be any maximal matching of H, and let R be the set of vertices
of I \ T that are not covered by M . We set G′ = G−R, X ′ = X , and k′ = k.

Finding Disjoint Paths in Split Graphs 325

Lemma 6. Rule B is safe.

Proof. It is clear that if (G′,X ′, k′) is a yes-instance of Edge-Disjoint Paths,
then (G,X , k) is also a yes-instance of Edge-Disjoint Paths, as G is a super-
graph of G′. For the reverse direction, suppose that (G,X , k) is a yes-instance of
Edge-Disjoint Paths. Note that there exists a solution for (G,X , k) such that
no path in the solution visits a vertex more than once. Among all such solutions,
let P = (P1, . . . , Pk) be one for which the total number of visits by all paths
combined to vertices from R is minimized. We claim that no path in P visits a
vertex in R.

For contradiction, suppose that some path Pj ∈ P visits some vertex r ∈ R.
Since r
∈ T , there are two vertices v, w ∈ C such that the edges vr and wr appear
consecutively in the path Pj . As r ∈ R, it is not covered by the maximal matching
M used in Rule B. Since r is adjacent to all the vertices in {avw1 , . . . , avw4k+1} and
M is a maximal matching, M covers all the vertices in {avw1 , . . . , avw4k+1}, and
consequently at least 4k + 1 vertices of I \ T that are adjacent to both v and
w. Let Z denote this set of vertices. Note that all vertices in Z are adjacent to
both v and w by the construction of H . By the choice of P , no path of P visits
a vertex twice. Hence, there are at most 4k edges of

⋃k
i=1 E(Pi) incident with v

or w in G. Therefore, there exists a vertex z ∈ Z such that
⋃k

i=1 E(Pi) contains
neither the edge vz nor the edge wz. Let P ′

j be the path obtained from Pj by
replacing r with z and shortcutting it if necessary (i.e., if z ∈ V (Pj)). Then,
P ′ = (P1, . . . , Pj−1, P

′
j , Pj+1, . . . , Pk) is a solution for (G,X , k) where each path

visits each vertex at most once, and where the total number of visits by all paths
combined to vertices from R is at least one smaller than P , contradicting the
choice of P . Therefore, no path of P visits a vertex of R. Hence, P is also a
solution for (G′,X ′, k′), and thus it is a yes-instance. �	

Rules A and B, together with Lemmas 4 and 5, yield the following result.

Theorem 6. (�) The Edge-Disjoint Paths problem on split graphs has a
kernel with at most 8k3 vertices, where k is the number of terminal pairs.

5 Conclusion

It would be interesting to investigate whether or not Vertex-Disjoint Paths

or Edge-Disjoint Paths admits a linear kernel on split graphs. Another inter-
esting open question is whether either problem admits a polynomial kernel on
chordal graphs, a well-known superclass of split graphs.

Bodlaender et al. [3] asked whether or not Vertex-Disjoint Paths admits
a polynomial kernel when restricted to planar graphs. What about the Edge-

Disjoint Paths problem on planar graphs?

References

1. Bodlaender, H.L., Downey, R.G., Fellows, M.R., Hermelin, D.: On problems with-
out polynomial kernels. J. Comp. Syst. Sci. 75(8), 423–434 (2009)

326 P. Heggernes et al.

2. Bodlaender, H.L., Fomin, F.V., Lokshtanov, D., Penninkx, E., Saurabh, S., Thilikos,
D.M. (Meta) kernelization. In: 50th Annual IEEE Symposium on Foundations of
Computer Science, FOCS 2009, pp. 629–638. IEEE Computer Society (2009)

3. Bodlaender, H.L., Thomasse, S., Yeo, A.: Kernel bounds for disjoint cycles and
disjoint paths. Theor. Comp. Sci. 412(35), 4570–4578 (2011)

4. Brandstädt, A., Le, V.B., Spinrad, J.: Graph Classes: A Survey. SIAMMonographs
on Discrete Mathematics and Applications (1999)

5. Diestel, R.: Graph Theory, Electronic edn. Springer (2005)
6. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Monographs in Com-

puter Science. Springer (1999)
7. Dvorak, Z., Král’, D., Thomas, R.: Three-coloring triangle-free planar graphs in

linear time. In: Mathieu, C. (ed.) SODA 2009, pp. 1176–1182. ACM-SIAM (2009)
8. Even, S., Itai, A., Shamir, A.: On the complexity of timetable and multicommodity

flow problems. SIAM J. Comp. 5, 691–703 (1976)
9. Frank, A.: Packing paths, circuits, and cuts – a survey. In: Korte, B., Lovász,

L., Prömel, H.J., Schrijver, A. (eds.) Paths, Flows, and VLSI-Layout, pp. 47–100.
Springer, Berlin (1990)

10. Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs. Annals of
Disc. Math. 57 (2004)

11. Gurski, F., Wanke, E.: Vertex disjoint paths on clique-width bounded graphs.
Theor. Comput. Sci. 359, 188–199 (2006)

12. Kammer, F., Tholey, T.: The k-disjoint paths problem on chordal graphs. In: Paul,
C., Habib, M. (eds.) WG 2009. LNCS, vol. 5911, pp. 190–201. Springer, Heidelberg
(2010)

13. Karp, R.M.: On the complexity of combinatorial problems. Networks 5, 45–68
(1975)

14. Kawarabayashi, K., Kobayashi, Y., Reed, B.A.: The disjoint paths problem in
quadratic time. J. Comb. Theory B 102, 424–435 (2012)

15. Kobayashi, Y., Kawarabayashi, K.: Algorithms for finding an induced cycle in
planar graphs and bounded genus graphs. In: Mathieu, C. (ed.) SODA 2009, pp.
1146–1155. ACM-SIAM (2009)

16. Kramer, M., van Leeuwen, J.: The complexity of wirerouting and finding minimum
area layouts for arbitrary VLSI circuits. Adv. Comput. Res. 2, 129–146 (1984)

17. Lynch, J.F.: The equivalence of theorem proving and the interconnection problem.
ACM SIGDA Newsletter 5(3), 31–36 (1975)

18. Natarajan, S., Sprague, A.P.: Disjoint paths in circular arc graphs. Nordic J.
Comp. 3, 256–270 (1996)

19. Nishizeki, T., Vygen, J., Zhou, X.: The edge-disjoint paths problem is NP-complete
for series-parallel graphs. Discrete Applied Math. 115, 177–186 (2001)

20. Reed, B.A.: Tree width and tangles: A new connectivity measure and some appli-
cations. In: Bailey, R.A. (ed.) Surveys in Combinatorics, pp. 87–162. Cambridge
University Press (1997)

21. Reed, B.A., Robertson, N., Schrijver, A., Seymour, P.D.: Finding disjoint trees in
planar graphs in linear time. In: Contemp. Math., vol. 147, pp. 295–301. Amer.
Math. Soc., Providence (1993)

22. Robertson, N., Seymour, P.D.: Graph minors XIII. The disjoint paths problem. J.
Comb. Theory B 63(1), 65–110 (1995)

23. Tovey, C.A.: A simplified NP-complete satisfiability problem. Discrete Applied
Math. 8, 85–89 (1984)

24. Vygen, J.: Disjoint paths. Technical report 94816, Research Institute for Discrete
Mathematics, University of Bonn (1998)

	Finding Disjoint Paths in Split Graphs
	1 Introduction
	2 Preliminaries
	3 Finding Disjoint Paths in Split Graphs Is NP-Hard
	4 Two Polynomial Kernels
	4.1 Polynomial Kernel for Vertex-Disjoint Paths on Split Graphs
	4.2 Polynomial Kernel for Edge-Disjoint Paths on Split Graphs

	5 Conclusion
	References

