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Abstract

Handwriting-based writer identification, a branch of biometrics, is an active research topic in pattern recognition. Since most existing methods
and models aim to on-line and/or text-dependent writer identification, it is necessary to propose new methods for off-line, text-independent
writer identification. At present, two-dimensional Gabor model is widely acknowledged as an effective and classic method for off-line, text-
independent handwriting identification, while it still suffers from some inherent shortcomings, such as the excessive calculational cost. In
this paper, we present a novel method based on hidden Markov tree (HMT) model in wavelet domain for off-line, text-independent writer
identification of Chinese handwriting documents. Our experiments show this HMT method, compared with two-dimensional Gabor model, not
only achieves better identification results but also greatly reduces the elapsed time on computation.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Since the beginning of civilization, identifying the statuses
of uncertain persons has been crucial to the human society.
Consequently, personal identification is widely used in diverse
commercial and governmental sections such as financial access,
health care, security control, border control and communica-
tion. In particular, personal identification is in highly increasing
demand after the 9

11 terroristic attack. Traditionally, the ways
for personal identification are identification cards (ID cards)
and passwords, while they cannot provide us an unique, secure
and consistent personal identification. For example, passwords
and ID cards can be shared by others and therefore are not
unique. Furthermore, it is possible that we forget to bring the
ID cards along with us or forget the passwords and thus they
are not consistent. A nationwide survey in USA showed that
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heavy web users have an average of twenty-one passwords, and
they often make confusion on their varied passwords [1]. So
we need better solutions to personal identification.

Writer identification, which, speaking in a simple way, is
to determine the writer from his/her handwritings (including
signatures, letters, notes, etc.), is such a technique that satisfies
four requirements of personal identification: accessible, cheap,
reliable and acceptable. Therefore, in spite of the existence
and development of other techniques on personal identification
based on DNA [2,3], iris [4], fingerprint [5], etc., it appears that
the writer identification still remains an attractive application.
As a result, writer identification enjoys a huge interest from
both industry and academia [6–8].

Writer identification can be classified in several ways, how-
ever the most straightforward one is to classify it into on-line
and off-line writer identifications [7,9]. The former assumes
that a transducer device is connected to the computer, which
can convert writing movement into a sequence of signals
and then send these signals to the connected computer. The
most common form of the transducer is a tablet digitizer,
which consists of a plastic or electronic pen and a pressure or
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electrostatic-sensitive writing surface on which the user writes
down his/her handwritings with the electronic pen. Since dy-
namic information of the writing process captured by the trans-
ducer device contains many useful writing features, on-line
writer identification, compared to the off-line writer identifica-
tion, is easier to achieve a high identification accuracy. On the
other hand, off-line writer identification deals with handwrit-
ings scanned into a computer file in two-dimensional image
representation. Despite continuous effort, off-line writer identi-
fication still remains as a challenging issue [7]. In fact, off-line
systems rely on more sophisticated architectures to accomplish
the same identification task, and their identification results are
still lower than those of on-line identification systems under
same testing conditions. Unfortunately, on-line systems are in-
applicable in many cases. For example, on-line systems cannot
help us to find out the writer of an existing handwriting doc-
ument. Therefore, developing effective techniques on off-line
writer identification is an urgent task.

Further, off-line writer identification can be divided into two
types: text-dependent and text-independent writer identifica-
tion [7,9]. Text-dependent identification matches one or a small
group of same characters/words and consequently requires the
writer to write the same fixed text in the handwriting doc-
uments. For example, signature identification, which is well
known to us, is a special case of text-dependent writer identifi-
cation. Commonly, the geometry or structure features of those
given characters/words are extracted as the writing features in
text-dependent writer identification. While in many applica-
tions, it is impossible to find out the same text from different
handwriting documents and therefore text-dependent identifi-
cation is unavailable. In this case, we need text-independent
identification. Text-independent identification does not use the
writing features of some specific characters/words, while in-
stead considers handwriting document layout features, text line
features, etc. Generally speaking, text-dependent identification,
compared to text-independent identification, has a better iden-
tification performance. However, as mentioned above, its ap-
plicability is lower than text-independent identification because
of its strict requirement on same characters/words. In this pa-
per, we focus on the research on off-line, text-independent
writer identification, which still is a challenging research topic
and comparatively less touched by researchers. In the follow-
ing, we briefly review the previous researches on off-line, text-
independent writer identification.

In Ref. [9], R. Plamondon made a summary of the early
researches on the handwriting-based writer identification. He
pointed out that two general approaches had been proposed for
the off-line, text-independent writer identification: transform
techniques and histogram descriptions. In transform techniques,
Duvernoy et al. had reported that the most important varia-
tions of the writer’s transfer function are reflected in the low
frequency bands of the Fourier spectrum of handwritten pages
[10,11]. Durvernoy et al. had also designed a hybrid optical-
digital image processing system to extract features from Fourier
spectra of handwritten texts. The dominant eigenvectors of the
data covariance matrix of the Fourier description of the dif-
ference between spectras were used as features [11]. Similarly

Kuckuck et al. had used Fourier transform techniques to pre-
process handwritten text as a texture. The feature sets extracted
in this study were either composed of a sequence of spectrum
mean values per bandwidth, or polynomial fitting coefficients
or linear transform of these coefficients [12]. In the second tech-
nology, frequency distributions of different global or local prop-
erties were used. In most cases, the properties were extracted
by measuring global run length, the handwritten line’s curva-
ture [12], length and direction of straight pixel chains [13,14],
relative number of connected segments, distance between
special points [9,15].

In view of that the handwritings of different people usually
are visually different, and at the same time inspired by the idea
of multi-channel spatial filtering technique, Said et al. proposed
a texture analysis approach [7]. In this method, they regarded
the handwriting as an image containing some special textures
and applied a well-established two-dimensional Gabor model
to extract features of such textures. In their paper, Said et al.
also compared the two-dimensional Gabor model with the grey-
scale co-occurrence matrix, and concluded the two-dimensional
Gabor model outperformed grey-scale co-occurrence matrix.

Except the global style of handwriting, some researchers
found valuable features from single word or text line. In Ref.
[16], Zois et al. morphologically processed horizontal projec-
tion profiles of single words. To increase the identification effi-
ciency, the projections were derived and processed in segments.
Bayesian classifier or neural network was used for classifica-
tion. In Ref. [17], Hertel et al. designed a system for writer
identification base on the text line features. They segmented a
given text into individual text lines and then extracted a set of
features from each text line. The text line features were regarded
as the writing features. And then the k-nearest neighbor classi-
fier was adopted for classification. In Ref. [18], Schlapbach et
al. proposed the hidden Markov model (HMM) based recog-
nizer which also extracted the text line features. They trained
an HMM recognizer on text line for each writer in the database.
The query handwriting was presented to each of these recog-
nizers, and thus a series of log-likelihood score results were ob-
tained. They ranked log-likelihood score results and regarded
the recognizer with the highest log-likelihood score belonged
to the writer of query handwriting.

Structure features and geometrical features also came into
the researchers’ views. In Ref. [19], Bulacu et al. used the
edge-based directional probability distributions as features for
writer identification. They found out that the joint probability
distribution of the angle combination of two “hinged” edge
fragments outperformed all individual features. Limitation of
their method is that a large number of handwritten materials
were needed to obtain the reliable distribution estimates.

In Refs. [20–22], researchers gave a definition of writer
invariants. They suggested that each handwriting could be char-
acterized by a set of writer invariant features and these invari-
ant features could be detected by using an automatic grapheme
clustering procedure.

In Ref. [23], G. Leedham et al. presented eleven innovative
features, which could be extracted from handwritten digits. All
these features were binarized to form a binary feature vectors of
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constant lengths. Then the formed binary feature vectors were
measured by Hamming distance for writer discrimination.

Naturally, some papers integrated multiple features to writer
identification. In Ref. [24], Cha et al. integrated several distance
measures for many feature types: element, histogram, string,
convex hull, etc. A satisfied result was achieved on their exper-
iment database.

The rest of the paper is organized as follows. In Section 2,
two-dimensional Gabor model, a classic method for off-line,
text-independent writer identification, is briefly introduced,
which is used as a benchmark to be compared with our method
in this paper. In Section 3, we propose our method on off-line,
text-independent writer identification. The experiments for
writer identification using our method and relative discussions
are offered in Section 4. Finally, a short conclusion is made in
Section 5.

2. A classic method for writer identification:
two-dimensional Gabor model

Gabor function is the name given to a Gaussian weighted si-
nusoid. The function was named after Dennis Gabor who used
this function in the 1940s. Later, Daugman proposed the func-
tion to describe the spatial response of cells in visual stimuli
experiments [25]. Gabor function is chosen for image process-
ing because of its biological relevance and technical properties:
(1) Gabor function is of similar shape as the receptive fields of
simple cells in the primary visual cortex. (2) Gabor function
is localized in both space and frequency domains and has the
shape of plane waves restricted by a Gaussian function. Gen-
erally, the Gabor function is a representative of time-frequency
analysis and multi-channel filtering technology, and is used in
a wide range of image processing applications.

In Ref. [7], Said et al. firstly applied the two-dimensional
Gabor model on English off-line, text-independent writer
identification. Later, in Ref. [8], Zhu et al. also applied the
same two-dimensional Gabor model on Chinese off-line,
text-independent writer identification. Both of the two papers
said two-dimensional Gabor model achieved good results and
outperformed the co-occurrence matrix in their experiments.
And nowadays, the academia also widely acknowledges this
two-dimensional Gabor model is one of the best methods for
off-line, text-independent writer identification.

The computational model of the two-dimensional Gabor fil-
ters proposed in Ref. [7,8] is given as follows:

he(x, y) = g(x, y) cos[2�f (x cos � + y sin �)], (1)

ho(x, y) = g(x, y) sin[2�f (x cos � + y sin �)], (2)

where he and ho denote the so-called even- and odd- symmetric
Gabor filters, and g(x, y) is an isotropic Gaussian function.

The spatial frequency responses of the Gabor filters are

He(u, v) = [H1(u, v) + H2(u, v)]
2

, (3)

Ho(u, v) = [H1(u, v) − H2(u, v)]
2j

, (4)

where j = √−1 and

H1(u, v) = exp{−2�2�2[(u − f cos �)2 + (v − f sin �)2]},
H2(u, v) = exp{−2�2�2[(u + f cos �)2 + (v + f cos �)2]}.
Here, f, �, � are the spatial frequency, orientation, and space
constant of the Gabor envelope, respectively. he(x, y) and
ho(x, y) will combine to provide multi-channel outputs of the
input image with different f, � and �. An example of multi-
channel output of Gabor filters are shown in Fig. 1.

The mean (M) and standard derivation (�) of the multi-
channel outputs are selected as features to represent writer
global features for writer identification. Weighted Euclidean
Distance (WED) is applied for feature matching after extract-
ing the writing features,

WED(k) =
N∑

i=1

(Mi − Mk
i )2

�k
i

, (5)

where Mi denotes the ith mean value of the query handwriting,
Mk

i and �k
i denote the ith mean and standard derivation of the

training handwriting of writer K separately, and N denotes the
total number of mean values.

3. Our algorithm for writer identification

Our algorithm for writer identification, which can be re-
garded as a problem of pattern recognition to some extent, con-
tains three main steps. They are

(1) Preprocessing: Removing the image noises and other detri-
mental factors which would disturb the later processings.

(2) Feature extraction (FE): Extracting features to fully repre-
sent the given handwriting image.

(3) Similarity measurement (SM): Using a certain measure-
ment function to calculate the similarity between extracted
features of the query handwriting image and the training
handwriting images.

The whole procedure of our algorithm is described in Fig. 2.

3.1. Preprocessing

As we know, the original handwriting image contains char-
acters of different sizes, spaces between text lines and even
noises. So prior to FE, the original image should be prepro-
cessed firstly. In the whole identification procedure, preprocess-
ing plays an important role and inevitably influences the later
processes and even the identification result.

In Refs. [7,8,26], preprocessing steps are as follows: firstly,
removing the noises in the handwriting image; secondly, locat-
ing the text line and separating the single character using pro-
jection; thirdly, normalizing each character into a same size;
finally, creating the preprocessed handwriting image (PHI) by
text padding. However this method only aims to handle the
handwriting documents with a regular layout. Admittedly, au-
tomatic localization and segmentation of irregular handwriting
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f=16, �=0° f=16, �=45° f=16, �=90° f=16, �=135°

f=32, �=0° f=32, �=45° f=32, �=90° f=32, �=135°

f=64, �=0° f=64, �=45° f=64, �=90° f=64, �=135°

f=128, �=0° f=128, �=45° f=128, �=90° f=128, �=135°

Fig. 1. (a) One preprocessed handwriting image (we will introduce how to obtain the preprocessed handwriting image from the original handwriting image in
Section 3.1), (b) Multi-channel outputs of this preprocessed handwriting image by two-dimensional Gabor filters at different orientations and frequencies.

documents are far from being successfully solved [9], and eva-
sive in nearly all relevant papers. While we cannot guarantee
that all involved handwritings are written in a regular layout in
practical applications. Therefore, we must find out an effective
method to deal with the irregular handwriting documents. For
this, in our research, we develop a software which can interac-
tively localize and segment the characters manually from the

irregular part of handwritings and generates the preprocessed
handwriting images (PHIs) with high-quality. In the following,
we offer an example to show how our software works.

Our software provides a rubber-like tool to remove the noises
and needless marks. Fig. 3(a) is the original situation of the
Chinese characters we want to process. Obviously, in this figure,
the right character is surrounded by a circle, which may be a
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Fig. 2. The flow chart of our algorithm for writer identification.

Fig. 3. Removing the noise.

PHI

Original
handwriting

image

Fig. 4. Segmenting the character.

revising mark. Fig. 3(b) shows how to remove the outside circle,
where the dotted box is the area the rubber-like tool is working
in. The size of this tool can be adjusted. Therefore, one user
can select large size when dealing with a large area of noise
and small size when carefully dealing with the overlapping.
Fig. 3(c) is the result after removing the needless mark.

Our software also provides a segmenting tool, which is a
rectangle box with two blue “ears” at the left upper corner
and right bottom corner separately. By manipulating these two
“ears”, the user can segment any rectangle area from the image.
Fig. 4 shows the Chinese character we want is segmented and
then padded into the PHI. The normalization of the character is

Fig. 5. An example of preprocessing. (a) One original handwriting image.
(b) PHI obtained from this original handwriting image via our software. To
offer a good visual effect, the size of PHI is enlarged in this figure.

implemented automatically by our software when the character
is padded into the PHI.

Fig. 5 shows one original Chinese handwriting and the PHI
generated from it using our software. Ref. [27] provides more
details about the preprocessing.

3.2. FE based on the hidden Markov tree model in wavelet
domain

Though two-dimensional Gabor model is effective to extract
the global writing style of handwriting images, this method still
suffers from some inherent disadvantages, which greatly limit
its practicability. One of the most serious disadvantages is its
intensively computational cost, because the two-dimensional
Gabor filters have to convolute the whole handwriting image for
each orientation and each frequency. As a better multi-channel
analysis tool, wavelet transform can decompose the image into
a series of wavelet subbands with different resolutions, and
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afterward only subbands with interest are taken into account.
Another disadvantage of the Gabor method is that it does not
consider relation among the Gabor coefficients in each subband
and only use the mean and standard derivation to represent
a whole subband. As we know, mean and standard derivation
are not accurate statistical description of one subband. To well
capture the relation among wavelet coefficients, hidden Markov
tree (HMT) is an ideal model.

3.2.1. Two-dimensional wavelet decomposition
Here we assume that point (x, y) is a pixel in an image. It

has a gray function f (x, y), which indicates the gray level at
this pixel. Then, the wavelet transform of function f (x, y) is
defined as [29]

Wf (x, y) = f (x, y) ∗ �(x, y), (6)

where, ‘∗’ stands for the two-dimensional convolution opera-
tor, and �(x, y) is a two-dimensional wavelet function, which
satisfies the “admissibility” condition,

c�:=
∫ +∞

−∞

∫ +∞

−∞
(�̂(�x, �y))

2/(�2
x+�2

y)d�xd�y<∞, (7)

where, �̂(�x, �y) is Fourier transform of the function �(x, y).
In order to extract features from an image at different res-
olutions, the multi-scale wavelet function can be written
explicitly as

�s(x, y) = (1/s2)�(x/s, y/s), (8)

where s is the scale. Wavelet transform of f (x, y) at scale s is,

Ws,f (x, y) = f (x, y) ∗ �s(x, y). (9)

Furthermore, some constraints are forced into the “mother”
wavelet function so as to guarantee the transform to be non-
redundant, complete, and form a multi-resolution representation
for the original image. A well-known example is Daubechies
wavelet, which is the orthonormal bases of compactly supported
wavelet [28], from which the pyramid algorithm of wavelet
decomposition can be drawn out.

After we decompose the handwriting image into a series of
wavelet subbands, what we should do next is to is find the
feature information contained in these wavelet subbands, based
on which we can discriminate one handwriting image from
others.

3.2.2. Training HMT model for the handwriting image
In Refs. [29–31], researchers found the wavelet coefficients

satisfy two properties: clustering, persistence across scale. Clus-
tering means the large/small values of wavelet coefficients tend
to propagate to their neighbors. Persistence across scale means
the large/small values of wavelet coefficients tend to propagate
across scales.

To match the non-Gaussian nature of the wavelet coefficients,
M-state Gaussian mixture density is used as a probabilistic

models for an individual wavelet coefficient,

fW(w) =
M∑

s=1

PS(s)fW |S(�|s), (10)

where, PS(s)s∈1,2,...,M is the probability massive function (pmf)
of state variable S with value s, and fW |S(�|s) is the Gaussian
conditional probability density function (pdf).

The persistence property of wavelet coefficients suggests
an across-scale dependency between a wavelet coefficient
wi at a coarse resolution and its corresponding coefficients
at the next resolution, which are also called the children of
wi . For example, in Fig. 6, tree nodes 2, 3, 4, 5 are children
nodes of node 1. In other words, node 1 is the parent node
of tree nodes 2, 3, 4, 5. The cluster property of wavelet co-
efficients reveals a strong inter-scale dependency between
a wavelet coefficient wi and its neighbors within the same
scale.

Fig. 6 is a vivid example graph to describe the dependency
among wavelet coefficients. In Fig. 6, each white node refers
to the observed value of a continuous wavelet coefficient �i ,
each black node represents the mixture state value Si for �i .
Connecting the hidden state value nodes vertically across scale
(solid links) yields the HMT model [32].

Using the M-state Gaussian mixture model mentioned above
for each wavelet coefficient �i , the HMT model can be com-
pletely defined by the following parameters.

(1) PS1(m), the pmf of state value of the root node 1.
(2) �i,P (i)

m,n =PSi |SP(i)
(m|n), the parent → children link between

hidden states.
(3) �im, �im, the mean and standard derivation of Gaussian pdf

of wavelet coefficient �i given state Si = m.

For simplicity, we usually assume M =2 because in this case
the state value has a clear physical meaning. Wavelet coeffi-
cients with large value contain significant contributions of sig-
nal energy, wavelet coefficients with small value contain little
signal energy. And since the wavelet coefficients are generated
by the wavelet filters with zero sum, they can be considered to
be zero-mean.

The basic idea of using HMT model to characterize the
features of a handwriting image is to train an HMT model
for a handwriting image, and then use the trained HMT
parameter set � = {PS1(m), �i,P (i)

m,n , �im} as the features of
handwriting.

On training HMT model, we look for the parameters that
best fit a given set of wavelet coefficients. Maximum likelihood
estimation is an effective principle for parameter estimation.
That is, we choose the model parameters that maximize the
probability of the observed wavelet data. Therefore, we adopt
the EM algorithm used in Ref. [32] for training. The basic steps
are given as follows:

(1) Initialization: Set an initial model estimate �0.
(2) E step: Estimate P {S|W, �t }, the probability for the hidden

state variables of the wavelet coefficients.
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Fig. 6. The HMT model in wavelet domain.

(a) Upward step: Propagate hidden state information up
along the HMT.

(b) Downward step: Propagate hidden state information
down along the HMT.

(3) M step: Update �t to maximize the expected likelihood
function.

(4) Iteration step: Set t = t + 1. If not converged, then return
to E step; else stop the whole procedure.

3.3. Similarity measurement

After obtaining the parameter set of HMT model, we can
regard a handwriting image is completely represented by its
corresponding parameter set �. In other words, the similarity
between two handwriting images can be considered as the sim-
ilarity between the two corresponding HMT parameter sets.

From Ref. [33], we know the Kullback–Leibler distance
(KLD) is an effective measurement of the similarity between
two HMT models. KLD between two pmfs is given as

K(�‖�̄) =
∑

i

�i log
�i

�̄i

, (11)

and KLD between two pdfs is defined below,

K(P (X|�i )‖P(X|�j )) =
∫

P(x|�i ) log
P(x|�i )

P (x|�j )
. (12)

In HMT model, the probability function is very complex which
can be viewed as a mixture of large number of pdfs, and we do
not have a simple, direct expression for the KLD. Monte–Carlo
method is a traditional approximation of the KLD, while it
needs high computational cost [34]. To save the computational
cost, we use the method to compute the upper boundary of the
KLD [35] instead of the Monte–Carlo method, as is based on
such a lemma proposed in Ref. [33] that the KLD between two
mixture densities

∑
i �ifi and

∑
i �̄i f̄i is upper bounded by

K

(∑
i

�ifi

∥∥∥∥∥
∑

i

�̄i f̄i

)
�K(�‖�̄)+

∑
i

�i K(fi‖f̄i ) (13)

with equality if and only if �ifi/�̄i f̄i = const.

For a tree node i, its conditional probability density of its
observation value given that its state is m is defined as

P(Oi = o|Si = m) = bi
m(o). (14)

Generally, bi
m(o) is a Gaussian function.

Then define 	i
m is the conditional probability density of the

observation value of the subtree of the node i given its state
is m, P(i) is the parent of the tree node i, C(i) is the set of
children node of tree node i, Ti is the subtree of all nodes with
root at i (for example, in Fig. 6, the tree inside circle is T2),
and OTi

is the wavelet values (observed value) of this subtree.
For a tree node i, based on the hidden Markov rule, we can get

	i
m(OTi

) = bi
m(oi)

∏
c∈C(i)

2∑
m=1

�i,P (i)
mr 	c

m(OTc). (15)

For a leaf node i without any children node,

	i
m(OTi

) = bi
m(oi). (16)

For the root node 1, the probability of the whole observation
tree is defined as

P(OT1 = oT1 |�) =
2∑

m=1

PS1(m)	1
m(oT1). (17)

Then the upper boundary of the KLD between two HMTs is

K(P (OT1 = oT1 |�)‖P(ŌT1 = ōT1 |�̄))�K(PS1‖P̄S1)

+
2∑

m=1

PS1(m)K(	1
m‖	̄1

m). (18)

K(	1
m‖	̄1

m) can be calculated in the following way,

K(	1
m‖	̄1

m)�K(b1
m‖b̄1

m) +
∑

c∈C(1)

(K(�1
m‖�̄1

m)

+
2∑

n=1

�c,1m,nK(	c
n‖	̄c

n)). (19)
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00101 00201 00301 00401 00501

00102 00202 00302 00402 00502

00601 00701 00801 00901 01001

00602 00702 00802 00902 01002

Fig. 7. A part of PHIs (20 PHIs belonging to 10 persons) carried out in our experiment. The meaning of image index ‘XY’ is defined as follows: the frontal
half ‘X’ means this handwriting is written by the writer whose index is ‘X’ (the value of X is from 001 to 500); the latter half ‘Y’ means the purpose of this
handwriting. If Y = 01, then this handwriting is a training handwriting. For a query handwriting, Y = 02.

This induction can be iteratively operated till the leaf node. As
for the leaf node i of the HMT, the KLD can be written as

K(	i
m‖	̄i

m) = K(bi
m‖b̄i

m). (20)

K(bi
m‖b̄i

m) is a KLD between two Gaussian pdfs and K(�1
m‖�̄1

m)

is a KLD between two pmfs. The following expression for KLD
between two d-dimensional Gaussian pdfs is used [36],

D(N(.|�, C)‖D(N(.|�̄, C̄) = 1

2

[
log

|C̄|
C

− d + trace(C̄−1C)

+(� − �̄)T C̄−1(� − �̄)

]
. (21)

As we mentioned above, the pdf of wavelet coefficients is a
Gaussian with zero-mean, so Eq. (21) can be simplified as

D(N(.|�, C)‖D(N(.|�̄, C̄)

= 1

2

[
log

|C̄|
C

− d + trace(C̄−1C)

]
. (22)

In sum, the KLD of two HMTs can be expressed by Eq. (18),

and D(	1
m‖	̄1

m) in Eq. (18) can be calculated out by Eq. (19)
iteratively till leaf node. The KLD between two leaf nodes is
expressed by Eq. (20).

Next, we can generate the identification result according to
the KLD values. The smaller KLD value is, the more similar it
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is. We only consider the k-nearest neighbor classifier since it is a
simple while efficient scheme [37]. That is, identification result
is the list of top M handwriting images which are most similar to
the query handwriting image. We can know the corresponding
writers from the indexes of these top ranked handwritings.

4. Experiments

4.1. Database used in our experiments

One thousand Chinese handwritings written by 500 persons
have been carried out in our experiments, with one training
handwriting and one query handwriting for each person. All
handwritings are scanned into computer with a resolution of
300 dpis. We produce one PHI from each original handwrit-
ing, and thus totally 1000 PHIs are obtained. The training and
query PHIs both consist of 64 Chinese characters with size
64 × 64 (the unit is pixel), arranged in an 8 × 8 array, shown
in Fig. 7.

4.2. Identification performance evaluation 1

In our experiments, we compare our method with two-
dimensional Gabor model on not only the identification accu-
racy but also the computational efficiency. For two-dimensional
Gabor model, Tan et al. pointed out that for an image of size
N ×N , the most significant Gabor frequency components were
equal to or smaller than N/4 [38]. Therefore, for a PHI of size
512 × 512, the Gabor frequency should not be larger than 128.
Several combinations of different Gabor frequencies are tested,
ranging from 16 to 128. For each spatial frequency, we select
0, 45, 90 and 135 degree as orientations. In our method, we de-
compose the handwriting image via traditional discrete wavelet
transform (DWT) using Daubechies orthogonal wavelets. Of
course, different wavelet filters may lead to different results.
While testing all possible wavelet filters and finding out which
one is the best is out of the scope of this paper.

The evaluation criterion of identification is defined as fol-
lows: for each query handwriting, if the training handwriting
belonging to the same writer is ranked within the top S matches,
we say that this is a correct identification, otherwise a fail-
ure identification. The identification rate is the percentage of
the correct identification. The identification results of our ex-
periments are offered in the Table 1. Fig. 8 shows a graph,
which more directly illustrates the comparison of our method
and two-dimensional Gabor model on identification rate. Ob-
viously, the identification rate changes at varied number of top
matches considered.

An example of writer identification using our method is
shown in Fig. 9. The training handwriting written by the same
writer of the query handwriting is ranked at the top 1, so cer-
tainly this is a successful identification.

And KLD values between the query handwriting and top
matches are much less than those between the query handwrit-
ing and undermost matches. In this example, the KLD values of
the top 9 matches are {1.32×104, 3.18×104, 3.44×104, 5.41×
104, 5.75×104, 5.79×104, 6.77×104, 6.98×104, 7.41×104},

Table 1
Writer identification rate 1(%)

Number of Our method Gabor Gabor Gabor
top matches f = 16 f = 16, 32 f = 16, 32, 64, 128

1 36.4 13.4 18.2 32.8
2 43.6 24.6 31.8 39.0
3 52.2 33.8 43.2 49.4
5 60.4 41.4 51.6 56.2
7 67.8 47.2 58.4 64.8

10 74.6 55.0 64.2 71.4
15 82.4 64.6 71.6 79.8
20 89.8 70.8 79.4 85.2
25 95.4 76.2 84.2 91.2
30 100 80.6 87.8 95.6
40 100 86.6 92.8 100
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Fig. 8. Identification rate according to the number of top matches considered.

while the KLD values of the undermost 5 matches are {4.45 ×
106, 4.60 × 106, 4.83 × 106, 4.87 × 106, 4.93 × 106}. To some
extent, the difference between the similarity distances of cor-
rect matches (“01601” in this example) and uncorrect matches
can indicate one method’s discriminating ability. The larger the
difference is, the better the discriminating ability is.

Our program also records the elapsed time of our method and
two-dimensional Gabor model. Our program is implemented
in PC computer. The software environment of our computer
is: Window XP, Matlab 7.0; and the hardware environment is:
Intel Pentium IV 2.4 GHZ CPU, 512 MB RAM. The record of
average elapsed time is given in Table 2.

From Table 1, it is clear that in two-dimensional Gabor
model, the more frequencies are combined, the higher iden-
tification rate is achieved; unfortunately at the same time,
the elapsed time also increases greatly. The identification rate
of two-dimensional Gabor model combing four frequencies
f = 16, 32, 64, 128 is nearly same to that of our method,
while its elapsed time is four times of that used by our
method. The elapsed time of two-dimensional Gabor model
with f = 16 is close to our method, however its identification
rate is large lower. Comprehensively, our method outperforms
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01602 01601 03301 13001 26001

17101 21001 11101 41501 39601

48001 144001 30501 45001 17301

Fig. 9. One identification example using our method. The query handwriting “01602” is on the top left corner. The upper two row (except the query handwriting
“01602”) are the top nine matches, and the last row is the undermost five matches. The handwriting matches are ranked from left to right, from top to bottom.

Table 2
Average elapsed time 1 for writer identification(second)

Method Our method Gabor Gabor Gabor
f = 16 f = 16, 32 f = 16, 32, 64, 128

Elapsed time 50.35 53.17 107.03 213.87

two-dimensional Gabor model on both identification perfor-
mance and the computational efficiency.

4.3. Identification performance evaluation 2

To increase the writing samples for one writer in order to
enhance the persuasion of the performance evaluation, we di-
vide one PHI of 512 × 512 into four non-overlapped sub-PHIs
of 256 × 256. A figure illustrating this division is given in
Fig. 10. In this way, we can obtain eight sub-PHIs from one
writer. Inspired by the evaluation criterion in Ref. [39], for each
query sub-PHI, only the top S�7 matches are considered since,
for each query sub-PHI, there are seven sub-PHIs of the same
writer. The identification percentage is the ratio of the num-
ber of correct matches within the top S identification results to

00101

00101_1 00101_2

00101_3 00101_4

00102_ 1 00102_2

00102_ 3 00102_4 00102

Fig. 10. Dividing one handwriting image into four non-overlapped subimages.
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Table 3
Writer identification rate 2(%)

Number of Our method Gabor Gabor Gabor
top matches f = 16 f = 16, 32 f = 16, 32, 64, 128

7 26.84 10.17 15.32 22.37
10 31.94 16.65 22.48 27.56
20 41.77 25.82 31.63 37.03
30 49.39 35.73 40.07 44.89
50 60.43 44.25 49.11 54.47
70 69.25 52.19 60.38 66.72
100 77.81 60.39 68.65 74.58
150 84.57 68.48 74.61 80.25
200 91.35 73.54 79.17 88.69
300 97.83 80.26 87.53 93.71

seven. For instance, in the case of S =10, the identification rate
is 5/7 × 100% = 71.43% if five correct matches are at the top
10 matches. In this experiment, we do not classify the sub-PHIs
into training group and query group. All sub-PHIs are used as a
query handwriting, and at the same time other sub-PHIs except
for the query one play the role as the training handwritings. The
identification rates of our method and two-dimensional Gabor
model are offered in Table 3 and Fig. 11. We also provide an
example in this case, as is shown in Fig. 12.

01801_1 01802_2 01802_1 01802_4

01801_2 01801_3 01801_4 01802_3

13601_1 13601_4 13602_2 13601_02

Fig. 12. Another identification example using our method. The query handwriting ‘01801_1’ is on the top left corner. The upper two row (except the query
handwriting ‘01801_1’ are the top 7 matches, the last row is the undermost 4 matches. The handwriting matches are ranked from left to right, from top to
bottom. The KLD values of the top 7 matches are {1.19 × 104, 1.27 × 104, 1.32 × 104, 1.38 × 104, 1.41 × 104, 1.44 × 104, 1.46 × 104}, the KLD values of
the undermost 4 matches are {1.17 × 106, 1.22 × 106, 1.24 × 106, 1.31 × 106}.
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Fig. 11. Identification rate according to the number of top matches considered.

Table 4
Average elapsed time 2 for writer identification (second)

Method Our method Gabor Gabor Gabor
f = 16 f = 16, 32 f = 16, 32, 64, 128

Elapsed time 10.48 5.01 9.10 17.42
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The average elapsed time of our method and two-dimensional
Gabor model in this experiments is offered in Table 4. Com-
bining the results in Table 3 and Table 4, our method still out-
perform the two-dimensional Gabor model in this experiment.

5. Conclusions

In this paper, we presented a new method using HMT model
in wavelet domain for off-line, text-independent handwriting
identification. Experiments on 1000 Chinese handwritings
and 4000 sub-handwritings provided by 500 persons indicate
that our new method is satisfactory and outperforms the two-
dimensional Gabor model, one representative of the existing
methods for off-line, text-independent writer identification, on
both identification accuracy and computational efficiency. This
is consistent with our expectation. At first, in our method, the
handwritings are decomposed into a series of wavelet subbands
at different resolutions via wavelet transform, and only the
wavelet coefficients within subbands of interest are considered.
While in two-dimensional Gabor model, the whole handwrit-
ings are convoluted with the two-dimensional Gabor filters for
each frequency and each orientation and the convolution must
redo when either frequency or orientation changes, as greatly
decreases the computational efficiency. In addition, mean and
standard derivation, two statistical parameters used in two-
dimensional Gabor model, certainly cannot well describe the
statistical properties of Gabor coefficients within each Ga-
bor subband. On the contrary, the HMT model provides an
accurate description for the statistical distribution of wavelet
coefficients. The accurate model naturally brings about a bet-
ter identification result. By the way, the methods discussed in
this paper are also applicable to English, Korean, Japanese and
Latin Language, etc., since text-independent methods do not
care about the writing content.

Acknowledgments

This work was supported by research grants received from
Research Grant Council (RGC) of Hong Kong, and Faculty
Research Grant (FRG) of Hong Kong Baptist University. This
work is supported by Grants 60403011 and 60773187 from the
NSFC, NCET2007 and Grants 2006ABA023, 2007ABA036,
2007CA011 from the Department of Science and Technology
in Hubei province, China. In addition, the authors would like to
thank the anonymous reviewers for their perceptive comments,
which have significantly improved the paper.

References

[1] A.K. Jain, Recent development on biometric authentication, Proceeding
of Advanced Study Institute (ASI), Hong Kong Baptist University, Hong
Kong, December 2004.

[2] M. Benecke, DNA typing in forensic medicine and in criminal
investigations: a current survey, Natur Wissenschaften 84 (5) (1997)
181–188.

[3] B. Devlin, N. Risch, K. Roeder, Forensic inference from DNA
fingerprints, J. Am. Stat. Assoc. 87 (418) (1992) 337–350.

[4] J. Daugman, The importance of being random: statistical principles of
iris recognition, Pattern Recognition 36 (2) (2003) 279–291.

[5] A. Jain, L. Hong, R. Bolle, On-line fingerprint verification, IEEE Trans.
Pattern Anal. Mach. Intell. 19 (4) (1997) 302–314.

[6] S. Srihari, S. Cha, H. Arora, S. Lee, Individuality of handwriting, J.
Forensic Sci. 47 (4) (2002) 1–17.

[7] H.E.S. Said, T. Tan, K. Baker, Writer identification based on handwriting,
Pattern Recognition 33 (1) (2000) 133–148.

[8] Y. Zhu, T. Tan, Y. Wang, Biometric personal identification based on
handwriting, in: Proceedings of 15th International Conference Pattern
Recognition, 2000, pp. 801–804.

[9] R. Plamondon, G. Lorrtte, Automatic signature verification and writer
identification—the state of the art, Pattern Recognition 37 (12) (1989)
107–131.

[10] J. Duvernoy, Handwriting synthesis and classification by means of space-
variant transform and Karhunenloeve analysis, J. Opt. Soc. Am Cybern.
65 (1975) 1331–1336.

[11] J. Duvernoy, D. Charraut, P.Y. Baures, Hybrid optical digital image
processing applied to handwriting recognition and aerial photograph
clustering, Opt. Acta, Univ. de Franche-comte, Besancon, France, 1977,
pp. 795–810.

[12] W. Kuckuck, Writer recognition by spectra analysis, in: Proceedings
of the 1980 International Conference Security Through Science
Engineering, 1980, pp. 1–3.

[13] W. Kuckuck, B. Rieger, K. Steinke, Automatic writer recognition,
in: Proceedings of the 1979 Carnahan Conference on Crime
Countermeasures, University of Kentucky, Lexington, vol. 23(1), 1979,
pp. 57–64.

[14] K. Steinke, Recognition of writers by handwriting images, Pattern
Recognition 14 (1981) 357–364.

[15] V. Klement, K. Steinke, R. Naske, The application of image processing
and pattern recognition techniques to the forensic analysis of handwriting,
in: Proceedings of the International Conference Security Through Science
Engineering 1980, pp. 155–172.

[16] E.N. Zois, V. Anastassopoulos, Morphological wavelform coding for
writer identification, Pattern Recognition 33 (2000) 385–398.

[17] C. Hertel, H. Bunke, A set of novel features for writer identification,
Audio-and-Video Based Biometric Person Authentication, 2003, pp.
679–687.

[18] A. Schlapbach, H. Bunke, Off-line handwriting identification using HMM
based recognizers, in: Proceedings of 17th International Conference on
Pattern Recognition, August 2004, pp. 654–658.

[19] M. Bulacu, L. Schomarker, L. Vuurpijl, Writer identification using
edge-based directional features, in: Proceedings of 7th International
Conference on Document Analysis and Recognition, 2003, pp. 937–941.

[20] A. Nosary, L. Heutte, T. Paquet, Defining writer’s invariants to adapt
the recognition task, in: Proceedings of 5th International Conference on
Document Analysis and Recognition, 1999, pp. 765–768.

[21] A. Bensefia, A. Nosary, T. Paquet, L. Heutte, Writer identification
by writer’s invariants, Proc. International Workshop on Frontiers in
Handwriting Recognition, 2002, pp. 274–279.

[22] A. Bensefia, T. Paquet, L. Heutte, Information retrieval based writer
identification, in: Proceedings of 7th International Conference on
Document Analysis and Recognition, 2003, pp. 946–950.

[23] G. Leedham, S. Chachra, Writer identification using innovative binarised
features of handwritten numerals, in: Proceedings of 7th International
Conference on Document Analysis and Recognition, 2003, pp. 413–417.

[24] S. Cha, S.N. Srihari, Multiple feature integration for writer verification,
in: Proceedings 7th IWFHR2000, September 2000, pp. 333–342.

[25] J.G. Daugman, Uncertainty relation for resolution in space, spatial
frequency, and orientation optimized by two-dimensional visual cortical
filters, J. Opt. Soc. Am. 1985, 1160–1169.

[26] C. Shen, X.G. Ruan, T.L. Mao, Writer identification using Gabor wavelet,
in: Proceedings of 4th World Congress on Intelligient Control and
Automation, June 2002, pp. 2061–2064.

[27] Z.Y. He, Writer Identification Using Wavelet, Contourlet and Statistical
Models, Ph.D Thesis, Hong Kong Baptist University, 2006.

[28] I. Daubechies, Ten Lectures on Wavelets, SIAM, Philadelphia, PA, 1992.
[29] S. Mallat, S. Zhong, Characterization of signals from multiscale edges,

IEEE Trans. Pattern Anal. Mach. Intell. 14 (1) (1992) 710–732.



Z. He et al. / Pattern Recognition 41 (2008) 1295–1307 1307

[30] S. Mallat, W. Hwang, Singularity detection and processing with wavelets,
IEEE Trans. Inf. Theory 38 (2) (1992) 617–643.

[31] M.T. Orchard, K. Ramchandran, An investigation of wavelet-based
image coding using an entropy constrained quantization framework, in:
Proceedings of Data Compression Conference ’94, 1994, pp. 341–350.

[32] M. Crouse, R.D. Nowak, R.G. Baraniuk, Wavelet-based signal processing
using hidden Markov model, IEEE Trans. Signal Process. (Special Issue
on Wavelets and Filter banks) (1998) 886–902.

[33] T.M. Cover, J.A. Thomas, Elements of Information Theory, Wiley Inter-
science, New York, NY, 1991.

[34] B.H. Juang, L.R. Rabiner, A probabilistic distance measure for hidden
Markov models, AT&T Tech. J. 64 (2) (1985) 391–408.

[35] M.N. Do, Fast approximation of Kullback-Leibler distance for
dependence trees and hidden Markov models, IEEE Signal Process. Lett.
10 (2003) 115–118.

[36] Y. Singer, M.K. Warmuth, Batch and on-line parameter estimation of
Gaussian mixtures based on the joint entropy, in: Advances in Neural
Information Processing Systems 11 (NIPS’98), 1998, pp. 578–584.

[37] A.R. Webb, Statistical Pattern Recognition, second ed., Wiley, New York,
2002.

[38] T.N. Tan, Written language recognition based on texture analysis, in:
Proceedings of IEEE ICIP’96, September 1996, pp. 185–188.

[39] B.S. Manjunath, Texture features for browsing and retrieval of image
data, IEEE Trans. Image Process. 18 (8) (1996) 837–842.

About the author—ZHENYU HE received the B.S. and M.S. degrees from Wuhan University of Technology, Wuhan, China and the Ph.D. degree in Department
of Computer Science from Hong Kong Baptist University, Hong Kong, in 2000, 2003 and 2006, respectively. He is presently a post doctoral researcher in
Department of Computer Science and Engineering, The Hong Kong University of Science and Technology. His research interests include wavelet, pattern
recognition, biometrics, medical image analysis.

About the author—XINGE YOU received the B.S. and M.S. degrees in mathematics from the University of Hubei, Wuhan, China and the Ph.D. degree in
computer science from the Hong Kong Baptist University, Hong Kong, in 1990, 2000, and 2004 respectively. He is presently a Professor in the Department of
Electronics and Information Engineering at Huazhong University of Science and Technology, China. And he is currently work as postdoctoral fellow in the
Department of Computer Science at Hong Kong Baptist University, Hong Kong. His current research interests include wavelets and its application, signal and
image processing, pattern recognition, and computer vision.

About the author—YUAN YAN TANG received the B.S. degree in electrical and computer engineering from Chongqing University, Chongqing, China, the
M.Eng. degree in electrical engineering from the Graduate School of Post and Telecommunications, Beijing, China, and the Ph.D. degree in computer science
from Concordia University, Montreal, Canada. He is presently an Adjunct Professor in the Faculty of Mathematics Computer Science at Hubei University,
a Chair Professor in the Department of Computer Science at Hong Kong Baptist University and Adjunct Professor in the Computer Science at Concordia
University. He is an Honorary Lecturer at the University of Hong Kong, an Advisory Professor at many institutes in China.
His current interests include wavelet theory and applications, pattern recognition, image processing, document processing, artificial intelligence, parallel
processing, Chinese computing and VLSI architecture. Professor Tang has published more than 250 technical papers and is the author/co-author of 21
books/book-chapters on subjects ranging from electrical engineering to computer science.
He has serviced as General Chair, Program Chair and Committee Member for many international conferences. Professor Tang will be the General Chair of the
19th International Conference on Pattern Recognition (ICPR’06). He is the Founder and Editor-in-Chief of International Journal on Wavelets, Multiresolution,
and Information Processing (IJWMIP) and Associate Editors of several international journals related to Pattern Recognition and Artificial Intelligence. Professor
Y.Y. Tang is an IEEE Fellow and IAPR Fellow.


	Writer identification of Chinese handwriting documents using hidden Markov tree model
	Introduction
	A classic method for writer identification: two-dimensional Gabor model
	Our algorithm for writer identification
	Preprocessing
	FE based on the hidden Markov tree model in wavelet domain
	Two-dimensional wavelet decomposition
	Training HMT model for the handwriting image

	Similarity measurement

	Experiments
	Database used in our experiments
	Identification performance evaluation 1
	Identification performance evaluation 2

	Conclusions
	Acknowledgments
	References


