ANDROID COLLAPSES INTO FRAGMENTS

Roee Hay
IBM Security Systems
roeeh@il.ibm.com

Abstract—We present a newly found vulnera-
bility in the Android Framework which breaks its
sandbox environment. This vulnerability affects
many Android apps including ones which are bun-
dled with every Android device. The vulnerability
has been patched in Android KitKat.

I. ANDROID BASICS
A. Threat model

Android applications are executed in a sandbox
environment to ensure that no application can ac-
cess sensitive information held by another without
adequate privileges. For example, Android’s browser
application holds sensitive information such as cook-
ies, cache and history which cannot be accessed by
third-party apps. An android app may request spe-
cific privileges (permissions) during its installation;
if granted by the user, the app’s capabilities are
extended. Permissions are defined under the appli-
cation’s manifest file (AndroidManifest.xml).

B. Activities and Fragments

Android apps are composed of application compo-
nents of different types including activities. An Activ-
ity, implemented by the android.content.Activity
class [1], defines a single UI, e.g. A browsing win-
dow or a preferences screen. Activities can contain
fragments (introduced in Android 3.0 [2]). A Frag-
ment, implemented by the android.app.Fragment
class [3], provides a piece of Ul. While activities
enable application reuse across the system, fragments
provide a greater granularity and enable UI reuse
within the same app (see Figure 1).

C. Inter-App Communication and Intents

Android applications make heavy use of Inter-
App Communication. This is achieved by Intents.
These are messaging objects which contain sev-
eral attributes such as an action, data, category,
target and extras. The data attribute is a URI
which identifies the intent (e.g. tel:0422123). Each

Activity A Activity B
Fragment Fragment
1 2
Fragment
3
Fragment Fragment
3 4

Figure 1. The relation between activities and fragments

Intent can also contain extra data fields (In-
tent ’extras’) which reside inside a bundle (im-
plemented by the android.os.Bundle class [4]).
These extra fields can be set by using the an-
droid.content.Intent.putExtra API or by ma-
nipulating the extras bundle directly. It is important
to emphasize that intents provide a channel for a
malicious app to inject malicious data into a tar-
get, potentially vulnerable app. Intents can be sent
anonymously (implicit intents, i.e. target is not spec-
ified) and non-anonymously (explicit intents, target
is specified). Intents can be broadcast, passed to
the startActivity call (when an application starts
another activity), or passed to the startService call
(when an application starts a service). Under the
application’s manifest file, an application component
may claim whether it can be invoked externally using
an Intent, and if so which set of permissions is
required.

II. PREFERENCE ACTIVITIES AND DYNAMIC
FRAGMENT LOADING

The Android Framework pro-
vides an abstract activity class, an-
droid.preference.PreferenceActivity [5] which
presents a hierarchy of preferences. An App which
wants to show preferences to the user can extend
this activity to derive its functionality. The base
activity class examines several extra data fields in
the input Intent, among them two are interesting:
PreferenceActivity.EXTRA_SHOW_FRAGMENT
(’:android:show_fragment’) and Preference-

Activity.EXTRA_SHOW_FRAGMENT_ARGUMENTS
(':android:show_fragment_arguments’). The
first extra field contains a Fragment class name
and causes a PreferenceActivity activity to
dynamically display it upon creation. The latter
contains the Fragment input bundle. A loaded
Fragment can also receive input arguments by
accessing its host activity (and therefore its input
Intent) using the Fragment.getActivity APL

PreferenceActivity
v

Intent
Extra.SHOW_FRAGMENT |- f ~~
"FooFragment”
Extra.SHOW_FRAG_ARG [{-=-=====-=-"1
[R—— -3 | FooFragment
Other
Data --
Extras,

Figure 2. Dynamic Fragment loading

Code under PreferenceActivity calls a dynamic
Fragment loading function, Fragment.instantiate.
This function loads the Fragment using reflection,
and then casts it into a Fragment object (see Figure
3)

577 public static Fragment instantiate
(Context context, String fname, Bundle args)
{
578 try {
579 Class<?> clazz = sClassMap.get (fname);
580 if (clazz == null) {
582 clazz = context.getClassLoader ().
loadClass (fname);
583 sClassMap . put (fname, clazz);
584 }
585 Fragment f = (Fragment)clazz.
newlnstance ();
586 if (args != null) {
587 args.setClassLoader (f.getClass ().
getClassLoader ());
588 f.mArguments = args;
589
590 return f;
591
604 }

Figure 3. Fragment.instantiate (as of Android 4.3.1_r1)

III. VULNERABILITY

Any app which implements and exports an ac-
tivity that extends a PreferenceActivity class
can be subverted to load an arbitrary class by
exploiting the dynamic fragment loading process.
A malicious app can simply invoke the tar-
get activity using an Intent object with an
":android:show_fragment’ extra field containing
the arbitrary class name, and provide it arguments

using the ’:android:show_fragment_arguments’
extra or by other intent fields. In the context of Pref-
erenceActivity, the class loader which is used is
dalvik.system.PathClassLoader [6] which enables
it to load classes belonging the the vulnerable app,
Android or Java frameworks. The loaded class will
run in the context of the vulnerable app, will have
the same privileges of it and have access to its private
data.

IV. EXPLOITATION TECHNIQUES
A. Actions in constructors

As explained above, the attacker can load
any class under the application’s package or
under the Android/Java framework. Any class
which does not extends Fragment will cause a
java.lang.CastException exception (line 585
under Fragment.instantiate, see Figure 3) and
crash. However, before the casting exception is
thrown, two events take place. First, the static
initializer of the class is run (if it hasn’t run before).
Second, its empty constructor is executed. The
attacker can abuse this behavior and search for
a class which does actions in its constructors.
Attractive Java/Android classes would be ones that
require privileges that are available to the vulnerable
app but not to the malicious app. Application classes
provide the same benefit of Java/Android classes
(except for the fact that they should be chosen
specifically for each vulnerable app), but in addition
to that, they are more likely to access sensitive
information which is private to the vulnerable app
and not otherwise accessible to the attacker. For
example, a vulnerable app may have a few exported
activities, and some private ones which are only
invoked in a particular state (e.g. after login).
Normally, the attacker is able to invoke the exported
activity classes by intents, but cannot easily invoke
the state-dependent classes (accessing them usually
requires a user interaction), however by exploiting
the vulnerability he is able to instantiate the private
activities which possibly perform some actions.

Vulnerable app

Malicious Intent

Extra.SHOW_FRAGMENT
"PrivateActivity"

Extra.SHOW_FRAG_ARG

Data || Other A privateActivity
Extras,

PublicActivity

PreferenceActivity

Figure 4. Exploitation by constructors

B. Fragments manipulation

Another opportunity is to find a Fragment
class (again under the application package or
Android/Java frameworks). In contrast to the
previous technique, loading a fragment would not
cause a CastException exception. It allows the
attacker to feed the fragment with malicious data
by using the input channels described in Section II.
Usually the fragment is expected to be loaded by
a non-exported (private) activity class thus it will
trust the input data and consider them genuine.
In addition to the static initializer and default
constructor, the fragment lifecycle takes place. This
means that methods such as Fragment.onCreate
will be automatically invoked thus it is more
likely that sensitive actions will occur. Even if
no sensitive action is performed in automatically
invoked methods, the attacker can be the device
owner himself or a thief (thus he can control the
UI and cause the loaded fragment to perform some
action), and use this technique in order to attack
system applications and bypass restrictions (see
Section V for an example of attacking the Settings
app).

Malicious Intent Vulnerable app

Extra.SHOW_FRAGMENT
"AttackedFragment"
Malicious
Data
Extra.SHOW_FRAG_ARG
Other
Extras

PreferenceActivity

p-| AttackedFragment

Figure 5. Exploitation by Fragments

V. REAL WORLD EXAMPLE: ANDROID SETTINGS

The Settings app’s main activity (which is of
course public), com.android.settings.Settings,

extends PreferenceActivity. Therefore it
is vulnerable. The package contains many
fragments, one of them is ChooseLockPass-
word$ChooseLockPasswordFragment. This
fragment is expected to be loaded under
the ChooseLockPassword class (also extends
PreferenceSettings) which is not exported
according to the manifest file:

<activity

android:name="ChooseLockPassword"

android:exported="false" ... />

The vulnerability allows an external malicious app to
load this fragment and provide it data despite its nor-
mal instantiation under a non-exported activity. This

fragment does indeed consume data from its host
activity under its onCreate method. For example, it
reads the extra value 'confirm_credentials’ which
indicates whether the user has entered the correct
PIN code. The default value for this attribute is true
(see Figure 6).

213 final boolean confirmCredentials =
intent . getBooleanExtra (”
confirm_credentials”, true);
Figure 6. confirmCredentials initialization under Choose-

LockPassword$ChooseLockPasswordFragment

Normally this extra value is provided to the
host activity (ChooseLockPassword) by Choose-
LockPasswordGeneric (under the function update-
UnlockMethodAndFinish) and should be set to false
if and only if the user has confirmed his password.
The conclusion is that the ChooseLockPassword ac-
tivity cannot be invoked with a confirm_extra set
to false unless the user has actually confirmed the
credentials (as shown in Figure 7).

= confirm your PIN

Confirm your PIN

Figure 7. PIN code changing: user must supply old password

A user can bypass this restric-
tion by hosting ChooseLockPass-—
word$ChooseLockPasswordFragment inside

Settings (using the ’:android:show_fragment’
extra parameter, and invoking Settings with the
‘confirm_credentials’ extra set to false, i.e. the
second exploitation technique presented above).
This allows to user to change the device PIN code
without proving that he knows the old one.The
attack flow is shown in Figure 9, PoC code provided
in figure 10, Result is displayed in Figure 11).

Malicious Intent Settings App

Extra. SHOW_FRAGMENT | ___L--="""
"ChooselockPasswordFragment”|
confirm_credentials
False Ch

__» com.android.settings.Settings

Figure 9. Settings exploit attack flow

1176 private void switchToHeaderInner (String fragmentName,
Bundle args,
int direction) {
1179 if (!isValidFragment (fragmentName))
1180 throw new IllegalArgumentException(”Invalid fragment
for this activity: ”
1181 + fragmentName);
1182 }
1183 Fragment f = Fragment.instantiate (this,
fragmentName, args);
1888 }

Figure 8. Patched Fragment instantiation

Intent i = new Intent ();

i.setFlags(Intent .FLAG.ACTIVITY_CLEAR TASK) ;
i.setClassName (”com.android.settings”,
i.putExtra(”:android:show_fragment”,

?com. android . settings .
?com.android . settings .

Settings”);

ChooseLockPassword$ChooseLockPasswordFragment”) ;

i.putExtra(”confirm_credentials”, false);

startActivity (1);

Figure 10. Settings exploit code

=] choose your PIN

Choose your PIN

Figure 11. PIN code changing under attack: user does not need
to supply old password

VI. THE PATCH

We reported the security issue to the Android
Security Team and a patched PreferenceActivity
class is provided in Android 4.4 [7]. The patched
class contains a new method protected boolean
isValidFragment (String fragmentName).

The new method has been given an appropriate
documentation in the Android SDK reference [5]:

“Added in API level 19

Subclasses should override this method and
verify that the given fragment is a valid type
to be attached to this activity. The default
implementation returns true for apps built
for android:targetSdkVersion older than
KITKAT. For later versions, it will throw an
exception.

Parameters fragmentName the class name
of the Fragment about to be attached to
this activity.

Returns true if the fragment class name is
valid for this Activity and false otherwise

which is called before the fragment is in-
stantiated.”

The isValidFragment method is called before the
fragment is instantiated (see Figure 8). It is the re-
sponsibility of the developer to override it to provide
a white-list of fragments that are allowed to be loaded
within a specific activity.

VII. VULNERABLE VERSIONS

Android 4.3 Jelly Bean [8] and below.

VIII. NON-VULNERABLE VERSIONS

Android 4.4 KitKat [7].

IX. DI1SCLOSURE TIMELINE

12/05/2013 Reply from Android Security Team:
“Issue is fixed”.

12/05/2013 Requested a status update.

11/11/2013 Reply from Android Security Team:
“Fix in progress®.

10/24/2013 Requested for status update.

07/14/2013 Reply from Android Security Team:
"We are now looking into the issue“.

07/12/2013 Disclosure to Android Security Team.

(1]
2]
(3]
(4]
(5]

(6]

[7

8

X. APPENDIX: POPULAR & VULNERABLE
ANDROID PLAY APPS

’ Vulnerable App \ Activities

Google GMail GmailPreferenceActivity

Google Search SettingsActivity

Google Pinyin Input | AdvancedSettingsActivity

DropBox PrefsActivity

Evernote EvernotePreferenceActivity
AccountInfoPreferenceActivity
SecurityPreferenceActivity

REFERENCES

Activity class reference. http://developer.android.com/
reference/android/app/Activity.html.

Android 3.0, Honeycomb. http://developer.android.com/
about/versions/android- 3.0- highlights.html.

Fragment class reference. http://developer.android.com/
reference/android/app/Fragment.html.

Bundle class reference. http://developer.android.com/
reference/android/os/Bundle.html.

PreferenceActivity class reference. http://
developer.android.com /reference/android /preference/
PreferenceActivity.html.

PathClassLoader class reference. http://developer.
android.com /reference/dalvik/system/PathClassLoader.
html.

Android 4.4, KitKat. http://www.android.com/about/
kitkat.

Android 4.3, Jelly Bean. http://www.android.com/about/
jelly-bean.

http://developer.android.com/reference/android/app/Activity.html
http://developer.android.com/reference/android/app/Activity.html
http://developer.android.com/about/versions/android-3.0-highlights.html
http://developer.android.com/about/versions/android-3.0-highlights.html
http://developer.android.com/reference/android/app/Fragment.html
http://developer.android.com/reference/android/app/Fragment.html
http://developer.android.com/reference/android/os/Bundle.html
http://developer.android.com/reference/android/os/Bundle.html
http://developer.android.com/reference/android/preference/PreferenceActivity.html
http://developer.android.com/reference/android/preference/PreferenceActivity.html
http://developer.android.com/reference/android/preference/PreferenceActivity.html
http://developer.android.com/reference/dalvik/system/PathClassLoader.html
http://developer.android.com/reference/dalvik/system/PathClassLoader.html
http://developer.android.com/reference/dalvik/system/PathClassLoader.html
http://www.android.com/about/kitkat
http://www.android.com/about/kitkat
http://www.android.com/about/jelly-bean
http://www.android.com/about/jelly-bean

	Android basics
	Threat model
	Activities and Fragments
	Inter-App Communication and Intents

	Preference Activities and Dynamic Fragment Loading
	Vulnerability
	Exploitation techniques
	Actions in constructors
	Fragments manipulation

	Real World Example: Android Settings
	The Patch
	Vulnerable versions
	Non-vulnerable versions
	Disclosure Timeline
	Appendix: Popular & vulnerable Android Play apps
	References

